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ABSTRACT. Graphene materials containing different functional groups were prepared from a 

natural graphite, by means of two different oxidation methods (Hummers and Brodie). It was 

observed that the differences in the structure of the resultant graphite oxides (GOs) greatly affect 

the structure of the graphenes resulting from their thermal exfoliation/reduction. Although the 

oxidation of the graphite was more effective with the modified Hummers method than with 

Brodie´s method (C/O of 1.8 vs 2.9, as determined by XPS), the former generated a lower 

residual oxygen content after thermal exfoliation/reduction and a better reconstruction of the 2D 

graphene structure (with fewer defects). This is explained by the presence of conjugated epoxy 

and hydroxyl groups in the GO obtained by Brodie´s method, which upon thermal treatment, 

lead to the incorporation of oxygen into the carbon lattice preventing its complete restoration. 

Additionally, graphene materials obtained with Brodie´s method exhibit, in general, a smaller 

sheet size and larger surface area. 
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1. INTRODUCTION 

The development of graphene materials of different structure, functionality and sheet size is of 

special interest for different applications as for example polymer composites [1, 2]. The presence 

of polar groups on graphene surface can improve the compatibility with the polymer matrices but 

reduces its inherent thermal and electrical conductivity [3, 4, 5]. The chemical route through the 

oxidation of graphite is widely used due to both the easy scalability of the process and the costs 

involved [1, 2]. Furthermore, the possibility of using different parent graphites [6], oxidation 

methods [7] (or conditions) [8] and different reduction processes widens the range of graphene 

materials that can be produced [7, 9, 10]. Although the structure of graphene oxides (GrO) is still 

a matter of debate the last studies seem to confirm that they exhibit epoxy, hydroxyl (mainly at 

the basal planes of the sheets) and carboxyl groups (at the edges of the sheets or the defects 

(pores) [11, 12, 13]. Nonetheless, the amount type and location of the oxygen functional groups 

can be varied by modifying the preparation conditions, which could have a strong influence on 

the reactivity of these materials. For instance, depending on the quantity and location of theses 

groups, the GrO will exhibit a very different behavior, either when used directly for a specific 

application (catalysis) or when it is subjected to further reduction treatment [9, 14]. Carboxyl 

groups and hydroxyl and epoxy groups located on the basal plane (in the interior of the sheet) are 

the most reactive on thermal reduction. Hydroxyl and epoxy groups located on the edges exhibit 

a lower reactivity [15]. In addition, the relative contribution of one or another group (i.e. 

hydroxyl/epoxy) and their proximity to each other need to be considered [15]. The yield and size 

of the sheets of the graphene materials can also be controlled by varying the crystal structure of 

the parent graphite [6] and/or the graphite oxide exfoliation conditions [16]. 
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Thermal reduction has many advantages over chemical reduction for the restoration of the 

pristine graphite 2D-structure through the elimination of oxygen functional groups. It is simpler 

and easier to perform, as it usually results in the simultaneous exfoliation and reduction of the 

graphite oxide. Furthermore, there is no need to use liquids [16], which is an advantage for some 

applications, for example as electrodes in lithium [17] or vanadium batteries [18], which require 

dry graphene. Moreover, when large amounts of sample are demanded and the graphene 

materials need to have a good thermal conductivity, as in the preparation of polymer-based 

composites with good heat dissipation properties [19], the thermal exfoliation/reduction of 

graphite oxide is an excellent alternative [18]. The possibility of retaining some oxygen 

functional groups in the graphene to facilitate interaction with the polymer is an additional 

advantage.  

 

Nowadays, the most widely used methods to prepare graphite oxide (GO) and/or graphene oxide 

(GrO) is either the Hummers [20] or the Brodie [21] method. These methods differ in both the 

acid medium (nitric or sulfuric acid), and the type of salt used (potassium chlorate or potassium 

permanganate). The oxidation degree attained is usually reported to be higher for the Hummers 

method. A recent publication evaluated the structural transformations of GO prepared by both 

methods using solvation/hydration [22]. The solvation/hydration behavior of the GOs obtained 

by the Brodie (GO-B) and Hummers (GO-H) methods resulted in crystalline and osmotic 

swelling, respectively. These were ascribed to the presence C–OH groups in GO-B and C=O 

groups in GO-H, respectively. They also analyzed the thermal exfoliation behavior of both 

products, and observed a smaller degree of expansion in GO-H compared to GO-B. However to 
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our knowledge there have been no studies on the effect of the two methods on the reconstruction 

of the sp2 C structure, when thermal treatment is applied to their respective graphene oxides, 

which is directly related with certain properties of the resultant materials such as their thermal 

and electrical conductivity.  

 

The overall aim of this research is to obtain polymer-based graphene composites with improved 

heat transmission properties. For that, in an initial stage, graphene materials with different sized 

sheets and containing different functional groups were prepared. This paper reports on: i) the 

oxidation of a natural graphite by the Hummers [20] and Brodie [21] methods; ii) the thermal 

exfoliation/reduction of the graphite oxides (GOs) at temperatures of 700, 1000 and 2000 ºC 

[23]; iii) the characterization of the graphene materials obtained by the two methods.  

 

2. EXPERIMENTAL SECTION 

A commercial natural graphite powder supplied by Sigma Aldrich was used as starting material 

for the preparation of the samples in this study. The ash content of the graphite, as determined by 

TGA was lower than 0.1 wt %. The carbon content, on an ash-free basis was 99.9 wt %. The 

characterization data of the graphite are included in the Supporting Information (S.I.). 

 

2.1. Preparation of graphite oxide by a modified version Hummers method 

GO was prepared from the commercial graphite using a modified Hummers’ method (GO-H) [6, 

20, 23]. This method makes use of the Hummers’ reagents with additional amounts of NaNO3 

and KMnO4. Concentrated H2SO4 (360 mL) was added to a mixture of graphite (7.5 g) and 

NaNO3 (7.5 g), and the mixture was cooled down to 0 °C in an ice bath. KMnO4 (45 g) was 
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added slowly in small doses to keep the reaction temperature below 20 °C. The solution was 

heated to 35 °C and stirred for 3 h. Then 3 % H2O2 (1.5 L) was slowly added. This had a 

pronounced exothermal effect at 98 °C. The reaction mixture was stirred for 30 min and, finally, 

the mixture was centrifuged (3700 rpm for 30 min), after which the supernatant was decanted 

away. The remaining solid material was then washed with 600 mL of water and centrifuged 

again, this process being repeated until the pH was neutral [6]. 

 

2.2. Preparation of graphite oxide by the Brodie method 

The oxidation of the graphite was also performed using Brodie´s method (GO-B) [21]. Fuming 

nitric acid (200 mL) was added into a flask with a cooling jacket and cooled to 0 °C in a cryostat 

bath. The graphite powder (10 g) was introduced into the flask and thoroughly dispersed to avoid 

agglomeration. Next, potassium chlorate (80 g) was slowly added for 1 h, and the reaction 

mixture was stirred for 21 h at 0 °C. Special caution is necessary during addition of potassium 

chlorate since explosions can occur [3]. Once the reaction had finished, the mixture was diluted 

in distilled water and vacuum filtered until the pH of the filtrate was neutral.  

 

2.3. Thermal exfoliation/reduction of GOs 

The temperatures used for the exfoliation/reduction of GO-H and GO-B to prepare the graphene 

materials (TRGs) were 700, 1000 and 2000 ºC. The treatments at 700 and 1000 ºC were 

performed in a horizontal tube furnace using a ceramic boat with a graphite cover to prevent the 

blowing of the material [23]. 0.3 g of GO was introduced into the furnace and heated at 5 ºC min-

1 under a N2 atmosphere (100 mL min-1) to the desired temperature, and kept for 1 h. The 

samples obtained at 700 °C were then annealed at 2000 ºC in a graphitization furnace (Pyrox VI 
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150/125) under an atmosphere of argon (3 L min-1) at a heating rate of 5 ºC min-1 up to 800 ºC 

and then at 10 °C min-1 up to 2000 ºC,  this temperature being maintained for 1 h. The samples 

obtained were labeled as TRGH-700, TRGH-1000, TRGH-2000, TRGB-700, TRGB-1000 and 

TRGB-2000, where H and B refer to the oxidation method (H: Hummers and B: Brodie). 

Colloidal suspensions of individual TRG sheets were prepared in purified water/DMF (1:1) in 1 

mL batches and kept under ultrasound treatment for 30 min. 

 

2.4. Characterization of the samples 

The GOs were thermally treated in a thermal programmed desorption (TPD) device in order to 

determine the temperature of their thermal exfoliation (blasting temperature) [23]. The system 

consists of an electrical furnace with a U-shape quartz glass reactor connected to a mass 

spectrometer (Omnistar TM-Pheiffer Vacuum). Initially, the samples (50 mg) were degassed 

under a He flow (50 mL min-1) at room temperature for 1 h. Then they were heated from room 

temperature, at a heating rate of 5 °C min-1, until blasting occurred as a consequence of the 

sudden release of gases [16, 23]. Thermogravimetric analyses were carried out using a TA SDT 

2960 analyzer. 5 mg of sample was placed in a crucible that was then introduced into the 

thermobalance; the temperature was increased to 1000 ºC at a heating rate of 5 ºC min-1 under a 

nitrogen flow of 100 mL min-1.  

 

The oxygen content of the samples was determined directly in a LECO-TF-900 furnace coupled 

to a LECO-CHNS-932 microanalyzer. The analyses were performed using 1 mg of ground 

sample. The results were quoted from an average of the values of four determinations. In all 

cases, the experimental error was < 0.5 % of the absolute value. UV-Vis spectra of GrOs were 
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recorded at room temperature between 190 and 600 nm using a UV-Vis spectrometer (UV 

spectrophotometer. UV-1800, Shimadzu). XPS analyses were carried out in a VG-Microtech 

Mutilab 3000 device. The XPS C1s peak was analyzed using a peak synthesis procedure that 

employs a combination of Gaussian and Lorentzian functions [24] in order to identify the 

functional groups and the respective percentages. The binding energy profiles were deconvoluted 

as follows: undamaged structures of Csp2-hybridized carbon (284.5 eV), damaged structures or 

sp3-hybridized carbons (285.5 eV), C-OH groups (286.5 eV), C-O-C functional groups (287.7 

eV) and C(O)OH groups at 288.7 eV). XRD analysis of the powdered samples was performed 

using a Bruker D8 Advance diffractometer. The radiation frequency employed was the Kα1 line 

from Cu (1.5406 Å), with a power supply of 40 kV and 40 mA. The crystallite size along the c-

axis (Lc) and the interlaminar distances of the sheets were obtained from the (002) reflection of 

the XRD patterns of the TRGs and the (001) reflection in the case of GOs [23], which were 

recorded at steps of 0.01º and intervals of 6 s per step, using the Scherrer equation. SEM images 

were obtained using a field emission gun scanning electron microscope (QUANTAN FEG 650, 

FEI) operating at 5 kV. TEM observations were performed on a JEOL 2000 EX-II instrument 

operating at 160 keV. Suspensions of GrOs and TRGs were deposited on standard holey carbon 

copper grids using the drop cast method and loaded into the microscope. The size and height of 

the sheets in the GrOs and TRGs suspensions were measured by means of AFM imaging and 

profiling was carried out by depositing a drop of the suspension onto the surface of mica. The 

sheets were imaged using a Cervantes atomic force microscope from Nanotec Electronica™ 

operating under ambient conditions. Microcantilevers with nominal spring constants of k = 40 

N/m and a resonance frequency of f = 300 kHz were used to image the sheets. WSxM software 

was employed to control the atomic force microscope as well as for the data processing of the 
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acquired images. Raman spectroscopy was performed on a Renishaw 2000 Confocal Raman 

Microprobe (Rhenishaw Instruments, England) using a 514.5 nm argon ion laser. The spectra 

were recorded from 750 to 3500 cm-1. The surface area was determined from the N2 adsorption 

isotherm at 77 K using the BET equation. These analyses were performed in ASAP 2020 

Micromeritics equipment using around 100 mg of sample for each experiment. Before the 

experiments, the samples were outgassed at 350 ºC for 3 h under vacuum (pressure below 10−3 

Pa).  

 

3. RESULTS AND DISCUSION 

The parent graphite was fully oxidized by the two methods as confirmed by XRD. The graphite 

has an intense crystalline peak at 26.5º corresponding to the (002) plane. On conversion to GO, 

the (002) and (101) peaks of graphite disappear while the (001) appears at 2Θ=9.8º (Figure 1) [6, 

23]. The interlayer distance increases from 0.336 nm for the graphite to 0.846 nm for GO-H and 

0.610 nm for GO-B, as a result of the expansion caused by the incorporation of water and 

oxygen functional groups during the oxidation process. The larger value of GO-H is the result of 

a more extensive oxidation as confirmed by elemental analysis. GO-H contains 47.8 % of 

oxygen, while GO-B only contains 28.2 % (C/O ratios determined by XPS are 1.8 and 2.9, 

respectively).Also, only in the case of GO-H the presence of the small amount of sulphur 

(≈2 wt.%) is observed, as the result of the treatment with sulphuric acid. 
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Figure 1. XRD spectra of parent graphite and GOs. 

 

These compositional and structural differences are macroscopically evidenced by the color of 

their colloidal suspensions in water (Figure 2). GO-H is yellow-brown while GO-B is green-

brown. The facility of GO-H to exfoliate when subjected to ultrasounds (see S.I.), as evidenced 

by the strong UV-Vis adsorption (Figure 3), is also a consequence of its more extensive 

oxidation, there being a larger presence of oxygen functional groups which diminishes in a larger 

extent the Van der Waals interactions [1, 2, 6, 21]. Thus, GO-B requires a minimum of 15 h to 

exfoliate, whereas GO-H exfoliates after just 1 h. Moreover, the UV-Vis adsorption spectra of 

the exfoliated GOs are very different. The sample obtained from GO-H exhibits the 230 nm and 

300 nm peaks typical of graphene oxides, which are attributed to π-π* transitions of aromatic C-

C and C-O bonds, respectively (Figure 3), while in the sample from GO-B a multi peak pattern 

appears above 300 nm (typical of highly condensed polycyclic aromatic structures). The Raman 

spectra of both exfoliated samples exhibit clear differences. There is a shift of the G peak 

position form 1592 cm-1 for GO-H to 1565 cm-1 for GO-B (Table 1) which, according to previous 
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studies [25, 26] is possibly related to the different distribution of the oxygen functional groups in 

the graphene sheet.. 

 

 

 

 

Figure 2. Images of GO-H (left) and GO-B (right) in water (without ultrasonication). 
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Figure 3. UV-Vis spectra of GrO-H (left) and GrO-B (right) at different sonication times (1, 5 

and 15 h). 

 

The differences in the exfoliation behavior are clearly illustrated in the TEM images which show 

single folded GO-H sheets after dispersion in water and 5 h sonication (Figure 4) and un-

exfoliated GO-B for the same sonication time (Figure 4). The larger population of monolayers 

obtained from GO-H is highlighted by SEM (Figure 5) and AFM (Figure 6). Additionally, GO-H 

generates larger size sheets than GO-B. This could be due to the poorer degree of exfoliation 

observed in GO-B (only the smallest particles are exfoliated) or to the breakage of the sheets. In 

view of what has so far been discussed, the first explanation is more likely.  

 

   

 

Figure 4. TEM images of GO-H-5h (left) and GO-B-5h (right). 
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Figure 5. SEM images of GO-H-5h (left) and GO-B-5h (right). 
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Figure 6. AFM images of GO-H-2h (top) and GO-B-5h (bottom). The blue lines indicate the 

sections corresponding to the traces shown on the right. 
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TPD experiments were performed in both GOs (see S.I.). These allow the exfoliation 

temperature to be determined (when blasting occurs) and, at the same time, provide information 

on the type of oxygen functional groups lost with the increase in temperature. During the heating 

process, the oxygen functional groups of GO decompose and produce gases that build up 

pressure between adjacent graphene sheets, as a result of the abrupt elimination of intercalated 

water and oxygen groups, in the form of CO, CO2. Thermal exfoliation occurs when the pressure 

exceeds the Van der Waals interlayer attractions [16], a higher pressure being required for shorter 

interlaminar distances. GO-H thermally exfoliates at lower temperature than GO-B, 150 ºC and 

200 ºC, respectively. The reason for this is to be found in a higher amount of labile groups in 

GO-H.  

 

The structural differences between GO-H and GO-B are evident from the results obtained by 

thermogravimetric analysis (Figure 7). The TGA/DTG curves of GOs typically show the release 

of a small amount of water at the initial heating stage, followed by a dramatic loss at 150-300 ºC, 

corresponding to the decomposition of oxygen functional groups [16, 13]. The products of this 

decomposition are mainly H2O and CO2. There is a continuous and smooth weight loss in the 

temperature range of 350-1000 ºC (which corresponds to the loss of CO and H2 as corroborated 

by the TPD results). GO-H starts to lose weight below 150 ºC, maximum weight loss occurring 

at 200 ºC (corresponding to a weight loss of about 40 %). Weight loss then progressively 

continues reaching 54 % at 800 ºC. GO-B, however, does not start to lose weight until 200 ºC, 

maximum weight loss occurring at 250 ºC (weight loss at 200-320 ºC was of the order 27 wt %). 

Weight loss then continues gradually up to 900 ºC, where it experiences a second maximum of 

about 20 wt % between 900 and 1000 ºC. This suggests that, apart from the lower amount of 
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oxygen functional groups present in GO-B (one third of the amount in GO-H, according to the 

elemental analysis), these groups are more stable.   

 

 

 

Figure 7. Thermogravimetric analysis profiles of GO-H (top) and GO-B (bottom). 

 

The differences in the structure and thermal behavior of the two GOs affect the characteristics of 

graphenes resulting from their thermal exfoliation/reduction (TRGs). The type and amount of 
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functional groups of TRGs were determined by XPS (Table 1). Although the oxidation was more 

effective with the modified Hummers method (C/O of 1.8 in GO-H vs 2.9 in GO-B), TRGH-

1000 and TRGH-2000 exhibit C/O ratios (of 57.8 and 332.3, respectively) which are higher than 

those of TRGB-1000 and TRGB-2000 (25.3 and 37.5, respectively). This confirms the previous 

observation by TGA. DTG evidences a more extensive reduction of oxygen functional groups in 

GO-H. Furthermore, only GO-B undergoes a second maximum weight loss at temperatures 

above 900 ºC. Since there is no substantial increase in the C/O ratio of this sample in the 700-

1000 ºC interval, we can conclude that the weight loss is not only caused by the elimination of 

oxygen containing functional groups but also by the rearrangement of its C-H structure. It is 

worth mentioning that the evolution of the different type of oxygen functional groups with 

temperature is rather different in both samples. Although GO-H has a higher amount of all types 

of functional groups, their elimination at 700 ºC is more pronounced than in GO-B. TRGH-1000 

and TRGH-2000 contain only, 3.6 % and 1.5 % of hydroxyl groups, respectively. Meanwhile, 

there are significantly higher amounts of residual hydroxyl groups inTRGB-1000 and TRGB-

2000 (8.6 and 5.3 % respectively). The most interesting finding in this study is that the 

restoration of the sp2–bonded C atoms is greater in the samples obtained by the Hummers 

method than by the Brodie´s method, reaching 88.9 % in TRGH-2000 while in the case of 

TRGB-2000 it reaches 81.8 %. This is surprising as the Brodie’s method is less aggressive and 

the resulting GO is less functionalized. This means that the higher thermal stability of the oxygen 

functional groups introduced by the Brodie’s method makes their removal more difficult and that 

it generates more defects.  
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Considering the theoretical studies reported by Bagri et al [15], it can be proposed that 

GO-B contains conjugated epoxy groups and hydroxyl, which, at moderate temperatures lead to 

the incorporation of oxygen in-plane as ether groups or out-of-plane as carbonyl groups. These 

groups are highly stable and thus the Csp2 structure of the carbon lattice is not fully recovered. In 

contrast, the presence of less conjugated oxygen functional groups in GO-H facilitates their 

thermal removal, and no oxygen is incorporated into the carbon lattice, resulting in a better 

restoration of the sp2 structure. This is consistent with the higher oxygen content remaining in the 

GO-B sample even after treatment at 2000°C (2.6 %) and with the higher ID/IG ratio in TRGB-

2000 (0.33) than in TRGH-2000 (0.09). 
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Table 1. Main characteristics of samples. 

 Elemental Analysis (wt. %)   XPS SBET
a Raman 

 C H O N S C/O 
O 

(%) 

C 

(%) 

Csp2 

(%) 

Csp3 

(%) 

C-OH 

(%) 

C-O-C 

(%) 

C(O)OH 

(%) 
(m2g-1) ID/IG

b 
WD

c 

(cm-1) 

WG
d 

(cm-1) 

GO-H 48.0 2.2 47.8 0.0 2.0 1.8 35.2 64.8 32.2 12.8 36.2 14.3 4.4 --- 0.88 1348 1592 

TRGH-700 87.8 0.8 11.1 0.0 0.3 9.2 9.8 90.2 74.6 15.1 8.5 0.6 1.2 390 0.91 1354 1592 

TRGH-1000 97.9 0.1 1.1 0.0 0.9 57.8 1.7 98.3 82.4 13.9 3.6 0.0 0.0 300 1.28 1335 1570 

TRGH-2000 99.5 0.0 0.5 0.0 0.0 332.3 0.3 99.7 88.9 9.6 1.5 0.0 0.0 140 0.09 1350 1580 

GO-B 70.1 0.9 28.2 0.0 0.0 2.9 25.7 74.3 39.2 14.5 32.4 11.2 2.7 --- 0.88 1332 1565 

TRGB-700 90.1 0.2 9.7 0.0 0.0 13.1 7.1 92.9 75.0 13.1 9.2 1.8 0.9 660 0.86 1353 1578 

TRGB-1000 98.0 0.3 1.6 0.1 0.0 25.3 3.8 96.2 77.3 14.1 8.6 0.0 0.0 570 1.10 1335 1570 

TRGB-2000 99.3 0.0 0.7 0.0 0.0 37.5 2.6 97.4 81.8 13.0 5.3 0.0 0.0 140 0.33 1364 1588 

a, BET surface area. 
b, ratio of intensities of band D and G in the Raman spectra 
c, position of band D in the Raman spectra 
d, position of band G in the Raman spectra 
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While no significant differences were observed by TEM in the two series of TRGs (see S.I.), 

SEM (Figure 8) of the as-prepared powder samples shows important differences between those 

obtained at 700 and 1000 ºC by the two methods. TRGH-700 and TRGH-1000 show the typical 

randomly oriented graphene sheets previously reported in other studies [17, 18, 23] (Figure 8), 

while TRGB-700 and TRGB-1000 exhibit some areas with “accordion-type” sheets typical of 

expanded graphite [27] which indicates the partial exfoliation of the GO-B (as in the case of the 

ultrasounds exfoliation discussed above). This may be the factor responsible for their large BET 

surface area (660 and 570 m2g-1; vs 390 and 300 m2g-1 in TRGH-700 and TRGH-1000. TRGH-

2000 and TRGB-2000, however, both exhibit the typical shape of randomly oriented graphene 

sheets. This means that the gases produced by the removal of the more stable functional groups 

above 1000 ºC, as observed by DTG and TPD (see S.I.) completed the  exfoliation of GO-B. 
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Figure 8. SEM images of powder TRGs obtained at 700 ºC, 1000 ºC and 2000 ºC. 

 

4. CONCLUSIONS 

“Tailor made” graphene sheets of different size and surface area, with an accurate structure and 

functionality, can be obtained by controlling the oxidation process of the graphite and the 

thermal reduction of the oxide. The Brodie’s method introduces a smaller amount of oxygen than 

Hummers, but favors the formation of conjugated epoxy groups and hydroxyl, which, at 
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moderate temperatures leads to the incorporation of oxygen in-plane as ether groups or out-of-

plane as carbonyl groups. These groups are highly stable. Thus the Csp2 structure of the carbon 

lattice is not fully recovered and residual oxygen remains even after treatment at 2000°C. In 

contrast, the presence of less conjugated oxygen groups in GO-H facilitates their thermal 

removal, and no oxygen is incorporated into the carbon lattice, resulting in a better restoration of 

the sp2 structure. In short, a larger restoration of the pristine graphite 2D structure is achieved by 

Hummers oxidation method.  
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Figure captions 

 

Figure 1. XRD spectra of parent graphite and GOs. 

Figure 2. Images of GO-H (left) and GO-B (right) in water (without ultrasonication). 

Figure 3. UV-Vis spectra of GrO-H (left) and GrO-B (right) at different sonication times (1, 5 

and 15 h). 

Figure 4. TEM images of GO-H-5h (left) and GO-B-5h (right).  

Figure 5. SEM images of GO-H-5h (left) and GO-B-5h (right). 

Figure 6. AFM images of GO-H-2h (top) and GO-B-5h (bottom). The blue lines indicate the 

sections corresponding to the traces shown on the right 

Figure 7. Thermogravimetric analysis profiles of GO-H (top) and GO-B (botton). 

Figure 8. SEM images of powder TRGs obtained at 700 ºC, 1000 ºC and 2000 ºC. 
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Table captions 

 

Table 1. Main characteristics of samples. 

 

 

 

 


