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Abstract: Thermal etching is a method which is able to reveal and characterize grain 

boundaries, twins or dislocation structures and determine parameters such as grain 

boundary energies, surface diffusivities or study phase transformations in steels, 

intermetallics or ceramic materials. This method relies on the preferential transfer of 

matter away from grain boundaries on a polished sample during heating at high 

temperatures in an inert/vacuum atmosphere. The evaporation/diffusion of atoms at 
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high temperatures results in the formation of grooves at the intersections of the planes 

of grain/twin boundaries with the polished surface. This work describes how the 

combined use of Focussed Ion Beam and Transmission Electron Microscopy can be 

used to characterize not only the grooves and their profile with the surface, but also the 

grain boundary line below the groove, this method being complementary to the 

commonly used scanning probe techniques. 
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1. Introduction 

When a finely pre-polished surface of a metal is heat treated to high temperatures 

under high vacuum conditions, grooves will be formed, revealing crystal 

boundaries/imperfections in a similar way to chemical etching procedures. During 

heating, at the intersection of a grain boundary (GB) plane with the polished surface, 

local equilibrium is established between the surface tension at the free surface and the 

GB [1]. Equilibrium is set-up rapidly and preferential atom diffusion/evaporation 

takes place. The free surface adjacent to the line, where the grain/twin boundary 

emerges, becomes tightly curved, forming so-called thermal grooves. These grooves 

are visible under a light optical microscope [2]. This method, known as thermal 

etching or thermal grooving, has been used in steels and other metals in order to 

investigate grain boundaries, stacking faults, twins or dislocation structures, providing 

important information regarding the surface, GB energies or surface self-diffusivity 

[3-10]. This method has also been employed in ceramic or intermetallic materials for 

similar purposes [11-13].  

The generation of thermal grooving has attracted much attention recently for 

characterization, in-situ or ex-situ, of processes such as grain growth or solid-solid 

phase transformations [14-20]. Among different etching techniques, thermal etching 

has been demonstrated as a reliable method to reveal grain boundaries since 

prominent grooves originate at those locations where grain boundaries intersect with 

the pre-polished surface. It has been argued that thermal grooves can develop in 

association with both mobile and stationary grain boundaries. It is generally accepted 

that surface grooves that are formed where the grain boundaries are stationary are an 

exact copy of the grain structure existing in the bulk of the sample. However, there 
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has been some debate regarding the pinning effects of mobile grain boundaries and 

whether such grooves affect their mobility [14,21-24]. 

Recently, thermal etching has been the subject of a number of experimental 

studies in metals/intermetallics in which atomic force microscopy or scanning probe 

microscopy has been utilised to characterize thermal grooves [7, 23-26]. With these 

techniques it is possible to measure the groove topography and dihedral angle at the 

root of the groove with high accuracy. However, information from these microscopy 

techniques is limited to the surface. To the authors’ knowledge there has been limited 

work concerning the experimental characterization of the structure below the 

thermally formed grooves which would provide valuable information regarding 

pinning effects as well as GB mobility and would help to validate/corroborate existing 

models. Current technological developments in microscopy enable us to carry out 

detailed characterization not only concerning the groove profile but also the region of 

material underneath of the groove. With the aid of Focussed Ion Beam and 

Transmission Electron Microscopy techniques the authors show that it is possible to 

prepare a cross-sectional sample of a section of thermally etched prior austenite grain 

boundaries (PAGBs) that can provide useful additional information on thermal 

grooving processes and grain growth dynamics. 

 

2. Materials and experimental methods 

A low-carbon aluminium-alloyed steel has been employed for this investigation. The 

composition of this steel is given in Table 1. More details about the steel production 

and microstructure can be found elsewhere [27]. In order to reveal the PAGBs by 

thermal etching, cylindrical samples were first mounted in bakelite.  Subsequently, for 

each sample, a surface of 2-3 mm in width was polished parallel to the main axis of 
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the cylinder using standard metallographic techniques and finishing with 1-µm 

diamond cloth. The specimens were then carefully removed from the bakelite 

avoiding damage to the polished surfaces. The heat treatments were carried out in a 

Bahr 805D high resolution dilatometer under high vacuum conditions (10-5 mbar) to 

avoid oxide formation on the polished surfaces. The specimens were heated following 

a multi-step cycle: 1) heating rate of 14 °C/s up to 650 °C; 2) heating rate of 6.6 °C/s 

up to 900 °C; and 3) heating rate of 2 °C/s up to the final austenitization temperatures 

(1150 ºC and 1250 ºC respectively) and held for 600 s. The samples were quenched 

immediately after the austenitization heat treatment at an average cooling rate of 295 

ºC/s. Figure 1 shows the heating/cooling cycle as recorded by the dilatometer. To 

check the as-quenched microstructure, an additional dilatometry sample was heat 

treated according to Figure 1, cut in half, mounted in bakelite, polished using standard 

metallographic techniques and etched with Nital-2% for inspection using a Nikon 

Epiphot 200 light microscope.  Cross-sections of thermally etched grain boundaries 

(austenetised at 1150 ºC) were prepared using a FEI NOVA200 dual beam FIB/SEM 

(Focussed Ion Beam/ Scanning Electron Microscope). A 30 keV Ga ion beam was 

used, and for final thinning the beam current was varied from 500 to 50 pA.  An FEI 

CM200 TEM (Transmission Electron Microscope) was employed to examine the FIB 

sections. In addition, a thermally etched sample (austenetised at 1250 ºC) was 

investigated using the same light microscopy method described above. 

 

3. Results 

 

Figure 2 shows an optical micrograph of the thermally etched microstructure. 

Nomarski microscopy has been used to highlight microtopographic surface features 
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which aids the visualization of the PAGBs produced at 1150 ºC. Figures 3A and 3B 

illustrate two SEM images of the selected areas (areas A and B) from where 

sectioning of thin samples has been carried out by using the focussed ion beam 

technique. TEM micrographs of each FIB section have been taken at different 

magnifications (see Figures 4 (region A) and 5 (region B). In these TEM images the 

GB line, below the sample surface, and also the free surface have been indicated. 

Figures 4(B) and 5(B) also show a schematic representation of each groove and GB 

line beneath the groove derived from the TEM images. The angle between the GB line 

and the surface normal has been estimated. The depth of the groove has also been 

quantified from these images. A light microscope image of a thermally etched sample 

at 1250 ºC is shown in Figure 6.  

 

4. Discussion 

After the austenitisation heat treatment at 1150ºC the sample has been quenched 

reaching an average cooling rate of 295 ºC/s (Figure 1). At this rate it is quite unlikely 

that any grooves may have formed during cooling. Therefore, it could be assumed that 

grooves formed on the polished surface represent former locations of prior austenite 

grain boundaries at 1150 ºC. Figure 7 shows the temperature evolution of the relative 

change in length experienced by the sample during the heating/cooling treatment (an 

insert has been included in Figure 7 to show, with more detail, the start and end 

temperatures of the dilatation observed during cooling). A clear dilation is observed 

between 650 ºC and 425 ºC. Figure 8 shows an optical micrograph of the as-quenched 

microstructure. The border of the sample has been delineated using a white dashed 

line. From this micrograph it can be concluded that the microstructure is a 

combination of bainite and martensite. To support these experimental observations, 
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the critical transformation temperatures Bs and Ms, that correspond to the start of the 

bainitic and martensitic reactions as a function of composition respectively, have been 

calculated using the program MUCG83 developed by Bhadeshia and collaborators 

[28] . The program is based on a model that takes into account all the alloying 

elements included in the composition of the steel under investigation in this work 

(Table 1). According to this model, for our steel, Bs=674 ºC and Ms=526 ºC. The Bs 

calculated shows very good agreement with the value estimated from experimental 

dilatometry plot (Figure 7, Bs=650 ºC). Thus it could be argued that the start 

temperature of the dilatation observed in Figure 7 represents the start of the bainitic 

transformation. In addition, as the Ms temperature lies above 425 ºC (finishing 

transformation temperature experimentally estimated in Figure 7), it should be 

expected that some martensite is present in the microstructure along with bainite. 

Since bainite and martensite do not affect the prior austenite grain boundaries, it can 

be deduced that austenite grain boundaries are likely to remain unchanged. Therefore, 

based on these calculations and experimental observations it can be concluded that 

grain boundary lines observed below the grooves in Figures 4 and 5 are likely to be 

prior austenite grain boundaries. 

It has been extensively discussed in the scientific literature that thermal 

grooves can develop in association with mobile as well as stationary grain boundaries 

[1,3, 21-23]. Mullins [21, 22] and Allen [3] showed that moving grooves have a 

different profile to their stationary counterparts. Figure 9 shows a schematic of a 

characteristic steady-state profile of a thermal groove formed at a migrating GB at a 

constant speed [21]. A stationary GB would appear perpendicular to the specimen 

surface (0) while moving grooves would form a certain angle (0) with the 

surface normal. Figure 9 is very similar to GB profiles shown in Figures 4 and 5, 
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which allows us to suggest that the GBs investigated describe moving grooves rather 

than stationary ones.  

The work of Rabkin and co-workers highlights the diversity of GB grooves 

observed in Ni and NiAl materials [1,23,24]. Based on the work of Mullins [21,22], 

these authors predicted asymmetric groove profiles similar to the one shown in Figure 

4, by accounting in their model for GB grooving with simultaneous GB sliding, and 

considering that only surface diffusion is responsible for the observed grooves (which 

is true if the groove width is lower than 10 µm [5]). 

In his seminal work on mobile grain boundaries, Mullins [21, 22] suggested 

that under certain conditions thermal grooves could pin grain boundaries at the 

surface. He presented experimental evidence of spasmodic/jerky GB migration, in 

which the GBs were sequentially pinned and unpinned at the surface, leaving a series 

of parallel (ghost) grooves. He adapted his theory for stationary GBs to mobile ones 

and demonstrated that a grain boundary would become stuck at the surface if the 

magnitude of the angle  (see Figure 9) with the surface normal was less than a 

critical value “c“. Under these conditions, he concluded that thermal grooves would 

be decelerated and become temporarily trapped, behaviour that would explain the 

spasmodic migration he observed. These ghost grooves have not been observed in the 

thermally etched microstructure of the investigated steel after heating to 1150 ºC 

(Figure 2). However, they have been clearly observed after heating to 1250 ºC (see 

Figure 6). Allen [3] suggested that spasmodic movements considered by Mullins were 

a special case only applicable at slow grain growth rates. Support for the work of 

Allen can be found in the work of Halliday [20]. Similarly, in a detailed investigation 

concerned with the study of grain growth in different microalloyed steels, Garcia de 

Andrés and co-workers observed that the higher the austenitization temperature, the 
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more pronounced were the ghost grooves/traces in the microstructure [14]. 

Furthermore, for the same heating temperature, longer times would also favour the 

occurrence of ghost traces. These authors related the decrease in GB mobility to the 

manifestation of GB ghost traces. The higher the austenite grain size, the lower its 

mobility and the greater the interference of the grooves with the GB movement on the 

surface. In addition, at higher temperatures, surface diffusion would be more 

prominent, leading to deeper grooves that would hinder the advance of the GB. These 

observations concerning ghost groove formation conditions seem to agree well with 

experimental observations exposed in this work: 1) at lower heating temperatures, 

grains are still small (Figure 2; average grain size=37 µm ), their mobility is expected 

to be high, pinning by grooves is improbable and ghost traces are not likely to be 

observed; and 2) the angle between the GB and the surface normal has been found to 

be quite large for the two cases investigated (23 and 30 º), which could suggest that 

these angles are above the critical angle, c, below which Mullins postulated that 

pinning would take place (and ghost traces would be observed). At the higher 

temperature (1250 ºC, Figure 6), where we have a much greater average grain size 

(181 µm) GB migration is much slower, pinning is expected to happen and ghost 

traces are present in the microstructure. 

 

Conclusion: 

Thermally etched austenite boundaries have been investigated by FIB/TEM 

technique. The authors show that with FIB is possible to prepared sample cross-

sections of thermally etched PAGBs and provide images for the investigation of the 

whole system “groove/GB line” that can supply very useful additional information on 

thermal grooving processes and grain growth dynamics. The combined use of these 
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techniques is an excellent complementary method to AFM or SPM which are 

extensively used to characterize thermally etched grain boundaries. 
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Figure Captions 

 

Figure 1 Heating/cooling cycle applied to the sample as recorded by the dilatometer 
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Figure 2 Light optical micrograph of the prior austenite microstructure of a low 

carbon steel at 1150 ºC revealed by thermal etching. Nomarsky microscopy has been 

employed to highlight the microtopographic features such as thermal grooves at 

Ferrite Grain Boundaries (FGB) and Prior Austenite Grain Boundaries (PAGB). 
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Figure 3 SEM images of the two representative areas from where the FIB sections 

have been obtained in the thermally etched sample (figure 1). 
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Figure 4 A), C) TEM micrographs taken at different magnifications showing a 

thermally etched grain boundary obtained by FIB sectioning from an area shown in 

Figure 2A; B) schematic of the groove and grain boundary line beneath the groove as 

shown in TEM image. 
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Figure 5 A), C), TEM micrographs taken at different magnifications showing a 

thermally etched grain boundary obtained by FIB sectioning from an area shown in 

Figure 2B; B) schematic of the groove and grain boundary line beneath the groove as 

shown in TEM image . 
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Figure 6 Light optical micrograph showing the prior austenite grain boundaries of the 

low carbon aluminium alloyed steel under investigation after heating to 1250 ºC for 

600 s. Nomarsky microscopy has been employed to highlight grain boundaries. Ghost 

traces are indicated by arrows. 
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Figure 7 Temperature evolution of the relative change in length. An insert has been included 

to show the start (650 ºC) and end (425 ºC) temperatures of the dilatation detected during 

cooling with more detail. 
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Figure 8 Optical micrograph of the as-quenched microstructure. The border of the sample has 

been delineated using a white dashed line. 
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Figure 9 Characteristic steady-state profile of a thermal groove formed at a free 

surface by a moving grain boundary. Parameter c is the critical grain boundary angle 

as defined by Mullins [22] (please see text for definition). 
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Table 1. Chemical composition (wt.%) of the steel under investigation (Fe to balance) 

C Si Mn P S Al N 

0.022 0.29 1.41 0.001 0.001 0.94 0.001

 

 

 

 


