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ABSTRACT 

Using Social Media to Assess the Impact of Weather and Climate  

on Visitation to Outdoor Recreation Settings 

by 

Emily J. Wilkins, Doctor of Philosophy 

Utah State University, 2020 

 
Major Professor: Dr. Jordan W. Smith 
Department: Environment and Society 
 
 

Social media has been increasingly used to understand visitor use in parks and 

protected areas. This dissertation begins with a systematic quantitative literature review 

summarizing the state of the science on using social media in a park or protected area 

setting to understand visitation, the spatial patterns of visitors, or aspects of the visitor 

experience. I identify gaps, limitations, opportunities, and best practices for future 

research using social media. In the second study, I use geotagged social media from 

Flickr to understand how weather has impacted where visitors go within 110 U.S. 

National Park Service units. Specifically, I investigate how visitors’ spatial behavior 

changes during the summer in response to temperature and precipitation. Daily 

temperature and precipitation influence visitors’ elevation and distance to roads, parking 

areas, buildings, and bodies of water. However, the effect of weather varies substantially 

by ecoregion. Visitors in parks that contain more microclimates may be more able to 

adapt to adverse weather conditions by visiting park areas with preferable weather. In the 

final paper, I examine how the demand for cultural ecosystem services across public 
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lands in the conterminous U.S. varies by season and climate. The demand for cultural 

ecosystem service, via visits to public lands, was higher in places that had warmer 

average temperatures in the fall, spring, and winter. However, visitation was higher in 

places with relatively cooler average temperatures in the summer. Climate has a larger 

effect on visitation in the summer and winter, and in the Western U.S. Collectively, this 

dissertation provides a greater understanding of how visitation and visitor use across a 

variety of outdoor recreation settings may be altered due to weather conditions and 

climate change. 

 (191 pages) 
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PUBLIC ABSTRACT 

 

Using Social Media to Assess the Impact of Weather and Climate  

on Visitation to Outdoor Recreation Settings 

Emily J. Wilkins 

 

When people post photos on social media, these photos often contain information 

on the location, time, and date the photo was taken; all of this information is stored as 

metadata and is often never seen or used by the individuals posting the photos. This 

information can be used by researchers however, to understand the total number of 

visitors to parks and protected areas, as well as specific places people visit within those 

parks and protected areas. The first study in this dissertation reviews all the ways social 

media has been used to understand visitation and visitors’ experiences in parks. 

Researchers can connect the photo locations from social media to other datasets to 

understand how different factors, such as the weather or climate, influence park 

visitation. Weather refers to the conditions, such as temperature or precipitation, at any 

given place and time; climate refers to the long-term weather averages at a location, often 

over a period of 30 years or more. The second paper explores how weather affects where 

visitors go within 110 U.S. National Parks. Daily temperature and precipitation influence 

visitors’ elevation and distance to roads, parking areas, buildings, and bodies of water. 

However, the effect of weather varies in parks with different climates and landscapes. 

Visitors in some parks may be more able to adapt to adverse weather conditions by 

visiting park areas with preferable weather. In the third study, I examine how the climate 
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of federal and state-managed public lands impact visitation by season. Across the 

conterminous U.S., visitation was higher in places with warmer average temperatures in 

the fall, spring, and winter. However, visitation was higher in places with relatively 

cooler average temperatures in the summer. Climate has a larger effect on visitation to 

public lands in the summer and winter, and in the Western U.S. Collectively, these 

studies provide insight into how visitation to and within parks, protected areas, and public 

lands in the U.S. may change due to weather conditions and climate change.  
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CHAPTER I 

INTRODUCTION 

 

Each year, millions of people recreate outdoors in U.S. parks and protected areas. 

About half of the U.S. public recreated outside at least once in 2018 (Outdoor 

Foundation, 2020). The climate of an area impacts the decisions of outdoor recreationists. 

For example, national parks in the northern U.S. see the most visitors in the summer, and 

the fewest in the winter when it is cold. However, in the southern U.S., park visitation is 

typically lowest in the hot summer months, likely because the average temperature is 

often above comfortable thresholds (National Park Service, 2020a). Park managers 

expect certain visitation trends based on the climate of the park and the visitation they 

have seen in recent years.  

However, the climate is changing. Average temperatures are increasing across all 

seasons, and there is increased variability, meaning more extreme weather events are 

likely (IPCC, 2018). This is expected to impact visitation to the vast majority of U.S. 

national parks (Fisichelli, Schuurman, Monahan, & Ziesler, 2015). This research provides 

insight into how weather impacts visitors’ spatial patterns within national parks, and how 

climate impacts the demand for cultural ecosystem services across all public lands in the 

U.S. Understanding possible changes in visitation due to weather and climate may help 

managers proactively prepare for changing visitation patterns. 

 

1.    Background 

1.1    Public lands in the United States 
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 The United States federal government manages 640 million acres of land, which 

is about 28% of the U.S. (Vincent, Bermejo, & Hanson, 2020). The federal agencies that 

manage the most land include the Bureau of Land Management (BLM), U.S.D.A. Forest 

Service (USFS), National Park Service (NPS), and Fish and Wildlife Service (FWS). 

Although each agency has a different mission and purpose, they all involve providing 

enjoyment to the public (Vincent et al., 2020). Collectively, these four agencies had 592 

million visits in 2016 (Leggett, Horsch, Smith, & Unsworth, 2017). 

State park systems manage 18.6 million acres of lands and had 807 million visits 

in 2017 (Leung, Cheung, & Smith, 2019; Smith & Leung, 2018). This represents a 26% 

increase in visitation at state park units from 1984 - 2017 (Smith & Leung, 2018). In that 

same time period, the NPS saw a 33% increase in visitation, with 331 million visitors in 

2017 (National Park Service, 2020b). These increases in visitation create management 

challenges in many parks and protected areas. For instance, increased visitation often 

causes additional environmental disturbances in parks; it also makes it harder to manage 

visitor flows to maintain visitor safety and enjoyment (Hammitt, Cole, & Monz, 2015). 

Consequently, it is helpful for park managers to understand and prepare for possible 

changes to future visitation patterns. 

Visitors are usually counted through traffic counters, trail counters, visitor 

surveys, observation, and/or administrative data (e.g., registration, fees, permits). Federal 

agencies collect and release data at monthly (NPS), annual (BLM, USFWS), or 5-year 

temporal resolutions (USFS) (Leggett et al., 2017). Additionally, most agencies and parks 

release visitation numbers at the whole park level, and do not release visitation data at 

individual places within parks. Recently, researchers have been using social media as an 
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indicator of visitation to parks and protected areas (e.g., Sessions, Wood, Rabotyagov, & 

Fiser, 2016; Tenkanen et al., 2017; Wood, Guerry, Silver, & Lacayo, 2013). Geolocated 

social media is advantageous because it allows researchers and managers to see the exact 

time and location of visits. Social media are also comparable across units, whereas 

visitation data from different agencies are not necessarily comparable because their 

methods for counting differ (Leggett et al., 2017).  

 

1.2    Climate change in parks 

 Visitors to parks are highly impacted by both the weather and climate. Weather is 

defined as the current conditions at any given time and place, whereas climate represents 

the long-term averages of weather, usually across 30 or more years (NASA, 2020). 

Visitors often consider climate when choosing their destination and when to visit, but the 

weather impacts visitors once on-site (Scott & Lemieux, 2010). For instance, daily 

weather may make park visitors decide to change the length of their stay or change 

recreational activities (Becken & Wilson, 2013). Therefore, changes to the climate and 

changes in weather variability are likely to impact park visitors. 

 Climate change is defined as a “long-term change in the average weather patterns 

that have come to define Earth’s local, regional and global climates” (NASA, 2020). 

Globally, the world has warmed by 1.0ºC compared to pre-industrial levels, and it is 

likely to reach 1.5 ºC by 2030-2052 if emissions continue at the current rate (IPCC, 

2018). In the U.S., NPS lands are warming at a faster rate, likely due to the fact that a lot 

of parklands are at higher elevations and more northerly latitudes (Gonzalez, Wang, 

Notaro, Vimont, & Williams, 2018). Additionally, U.S. National Parks are already at the 
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extreme warm end of their historical temperature distributions (Monahan & Fisichelli, 

2014). There is natural climate variability, because on any given day or year, the weather 

is not the exact same as the long-term average; deviations from the average represent 

natural variability. However, climate change is causing both a shift in the mean 

temperature and an increase in variability, which indicates there will likely be more 

extreme weather events in the future (IPCC, 2018).  

 Climate change has created many new risks for national parks and public lands, 

including increased wildfire probability (Abatzoglou & Williams, 2016), increased 

drought (Gonzalez et al., 2018), loss of species (Burns, Johnston, & Schmitz, 2003), loss 

of glaciers (Hall & Fagre, 2003), and changing visitation patterns (Fisichelli et al., 2015). 

Specifically, warming temperatures alone are expected to alter visitation patterns at 95% 

of U.S. NPS units (Fisichelli et al., 2015). Park visitors themselves see climate change as 

a risk, and many believe it is likely to impact their future travel behavior to parks (de 

Urioste-Stone, Le, Scaccia, & Wilkins, 2016).  

  

2.    Research Objectives 

Climate change is expected to impact many sectors of the global economy, 

including outdoor recreation and nature-based tourism (Gössling, Scott, Hall, Ceron, & 

Dubois, 2012; Hewer & Gough, 2018). Many towns and communities are dependent on 

revenue from nature-based tourism, so it is beneficial to plan and prepare for any changes 

to the demand for outdoor recreation and tourism. Climate change may alter when 

visitors travel to parks, where they travel, the activities visitors participate in, and their 

overall satisfaction (Askew & Bowker, 2018; Hewer & Gough, 2018). Longer peak 
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visitation seasons (Monahan et al., 2016) may require local businesses to open earlier and 

close later. Changes to visitation may also impact the quality of the resources (Hammitt 

et al., 2015). As the climate warms and extreme weather events become more common 

and variable, it is helpful for park managers to understand if and how visitation patterns 

may change in parks and protected areas. 

This dissertation has three main objectives, each corresponding to its own 

manuscript. The objectives are to: (1) Review the state of the literature and better 

understand the uses and limitations of social media data in parks and protected areas; (2) 

Understand how daily temperature and precipitation affect visitors’ spatial behavior 

within U.S. NPS units; and (3) Understand how climate affects the demand for cultural 

ecosystem services across public lands in the U.S. 

 

3.    Overview of the Dissertation 

This dissertation is formatted as three manuscripts to submit to scientific journals 

(chapters two, three, and four). Each manuscript addresses one of the objectives 

mentioned above. The fifth chapter of this dissertation provides a broad discussion of the 

findings, including research contributions, limitations, and future directions. 

The first manuscript uses a systematic quantitative literature review to review the 

state of the scientific literature using social media data in parks and protected areas. I 

grouped studies based on whether they are using social media to estimate visitation, 

spatial patterns of visitors, or understand other aspects of the visitor experience. I address 

specific questions that managers have regarding social media, such as how correlated 

these data are with traditional measures of visitation. This manuscript was prepared for an 
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audience that includes park managers and researchers who study and inform park 

management; it has been submitted to Environmental Management.  

The second manuscript investigates how daily temperature and precipitation 

impact the spatial behavior of visitors within 110 U.S. NPS units. Specifically, I use 13-

years of geotagged photos from Flickr to map visitation patterns at fine spatial and 

temporal resolutions. I connect each point to the daily weather using data from Daymet 

(Thornton et al., 2018), and explore how weather conditions impact visitors’ elevations 

and distances to roads, buildings, parking areas, and bodies of water. I also examine how 

the weather impacts visitors differently in various U.S. ecoregions. This manuscript has 

been submitted to Scientific Reports. 

The third manuscript explores how the demand for ecosystem services across 

public lands in the U.S. varies by season and climate. I use all geotagged Flickr posts 

within state and federally managed public lands to quantify the demand for cultural 

ecosystem services. I find both the daily maximum temperature and climatological 

average maximum temperature at each location and use these climate metrics to 

understand how weather and climate affect visitation on public lands throughout the 

whole country. This paper is intended to be published in a climate-centric journal. 
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CHAPTER II 

USES AND LIMITATIONS OF SOCIAL MEDIA TO INFORM VISITOR USE 

MANAGEMENT IN PARKS AND PROTECTED AREAS: A SYSTEMATIC REVIEW 

 

Abstract 

 Social media are being increasingly used to inform visitor use management in 

parks and protected areas. We review the state of the scientific literature to understand 

the ways social media has been, and can be, used to measure visitation, spatial patterns of 

use, and visitors’ experiences in parks and protected areas. Geotagged social media are a 

good proxy for actual visitation; however, the correlations observed by previous studies 

between social media use and other sources of visitation data vary substantially. Most 

studies using social media to measure visitation aggregate data across many years, with 

very few testing the use of social media as a visitation proxy at smaller temporal scales. 

No studies have tested the use of social media to estimate visitation in near real-time. 

Studies have used geotags and GPS tracks to understand spatial patterns of where visitors 

travel within parks, and how that may relate to other variables (e.g., infrastructure), or 

differ by visitor type. Researchers have also found the text content, photograph content, 

and geotags from social media posts useful to understand aspects of visitors’ experiences, 

such as sentiment, behavior, and preference. The most cited concern with using social 

media is that this data may not be representative of all park users. Collectively, this body 

of research demonstrates a broad range of applications for social media. We synthesize 

our findings by identifying gaps and opportunities for future research and presenting a set 

of best practices for using social media in parks and protected areas.  
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1.    Introduction 

Park and protected area managers often aim to both conserve natural and cultural 

resources while also providing enjoyment to visitors. Any changes to visitation patterns, 

either in space or time, has the potential to degrade the natural environment and cause 

environmental disturbances (Hammitt, Cole, & Monz, 2015). However, land managers 

can mitigate disturbances by proactively managing visitor flows. Estimating visitor use 

and understanding the visitor experience is a critical component to sustainably managing 

natural environments (Leung et al., 2018). Traditionally, researchers and mangers have 

gleaned insights into visitors’ characteristics, preferences, behaviors, and experiences in 

parks and protected areas by using visitor surveys, semi-structured interviews, 

administrative data, as well as vehicle and trail counters (Leggett, Horsch, Smith, & 

Unsworth, 2017). However, these methods require substantial time and financial costs; 

they also often limit data collection to relatively small geographic scales such as 

individual parks (Cessford & Muhar, 2003). Over the last decade, researchers have begun 

exploring the potential use of large volunteered geographic datasets to overcome the 

limitations of more traditional methodologies, while still providing insights into visitors’ 

experiences.  

One data source that is increasingly being used to inform park and protected area 

management is social media. Social media generally refers to online content that is user-

generated, and hosted by a service (e.g., Facebook, Twitter, etc.) that facilitates 

connections between individuals or groups (Obar & Wildman, 2015). Social media can 

include photos, text, and metadata such as the time stamps or geotagged coordinates of 

posts from parks and protected areas (Toivonen et al., 2019). All of these pieces of 
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information can provide a wealth of knowledge about visitors’ behaviors, experiences, 

and preferences. Some social media platforms make all or some of their users’ 

information publicly available for free and often on a global scale. This provides a unique 

opportunity to understand many facets of outdoor recreationists’ behaviors and 

preferences across large geographic areas. 

Researchers have begun using social media to better understand a variety of topics 

pertinent to environmental and visitor management. In parks and protected areas, social 

media were first used to estimate visitation rates and home location of visitors (Wood, 

Guerry, Silver, & Lacayo, 2013) and have since been used to understand other aspects of 

visitors’ characteristics and experiences. Many studies using social media to estimate 

visitation to parks and protected areas have found it can be a reliable proxy (e.g., 

Sessions, Wood, Rabotyagov, & Fisher, 2016; Wood et al., 2013). These investigations 

have evaluated the social media-visitation relationship over many spatial and temporal 

scales (Teles da Mota & Pickering, 2020). Additionally, these investigations report a 

wide range of correlations with other visitation measures (e.g., Fisher et al., 2018; Sonter, 

Watson, Wood, & Ricketts, 2016; Tenkanen et al., 2017; Walden-Schreiner, Rossi, 

Barros, Pickering, & Leung, 2018). Given the variety of ways in which social media have 

been compared to other visitation measures, it would be beneficial to systematically 

review the methods used in previous research. Doing so could provide the research 

community and land managers with insight into the spatial and temporal scales where 

social media can serve as a reliable measure of visitation to parks and protected areas. 

Additionally, summarizing how social media are correlated with other measures of 
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visitation in various settings may help reveal if there is potential to use social media to 

predict future visitation. 

In addition to the growing body of literature using social media to estimate 

visitation in parks and protected areas, there is also a rapidly expanding body of literature 

using social media to understand spatial patterns of visitation or park use (e.g., Campelo 

& Mendes, 2016; Sinclair, Ghermandi, & Sheela, 2018; Walden-Schreiner, Rossi, Barros, 

Pickering, & Leung, 2018). When a photograph is taken on a GPS-enabled device (e.g., a 

smartphone), the exact date and time the photo was taken, as well as the latitude and 

longitude of the photo location, are automatically stored in the photo’s metadata. If the 

photo is uploaded to a social media platform, researchers can access the time stamp and 

coordinates through the metadata. Users of fitness applications, such as Strava, can 

choose to record and upload the GPS track of the route they took during their visit. This 

information can help researchers map where visitors to parks and protected areas go in 

space and time. However, it would be useful to understand and synthesize how 

researchers have used this information, and the spatial resolutions researchers have used 

to answer different types of questions. 

Recent studies have used social media to understand visitors’ preferences, 

sentiment, and experiences (e.g., Barry, 2014; Huang & Sun, 2019; Plunz et al., 2019). 

Studies have also used social media to explore cultural ecosystem services (CES; e.g., 

Clemente et al., 2019; Retka et al., 2019), which include the “nonmaterial benefits people 

obtain from ecosystems” through recreation, spritual, and other experiences with nature 

(Millennium Ecosystem Assessment, 2005, pg 40). CES can help describe the types of 

experiences visitors have on landscapes and the benefits they receive. Traditionally, 
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researchers would most often investigate visitors’ experiences through direct contact with 

visitors (e.g., visitor surveys, focus groups) (Leggett et al., 2017). However, social media 

may provide a lower-cost alternative. Summarizing the types of topics previous studies 

have explored through social media may help identify the ways social media can be used 

quantify and track visitor preferences, sentiment, and experiences across space and time.  

The overall goal of this study is to review the state of the scientific literature and 

better understand the ways social media has been, and can be, used to inform visitor use 

management in parks and protected areas. By synthesizing prior applications, approaches, 

and limitations for managers and researchers, we aim to clarify the realm of questions 

that social media may be able to answer. Since this line of literature is still relatively new, 

and will grow in the future, understanding the collective successes and limitations 

uncovered by prior research can help inform future research directions. This study 

follows previous research and reviews of the potential for social media to inform 

environmental management and conservation (Di Minin, Tenkanen, & Toivonen, 2015; 

Ghermandi & Sinclair, 2019; Toivonen et al., 2019) with a targeted review of the 

scientific literature on ways social media has been, and can be, used to inform visitor use 

management in parks and protected areas. Our review also compliments the recent review 

by Teles da Mota and Pickering (2020) by focusing on three specific research questions 

which are guided by the needs of park and protected area managers.  

The three questions that we address in this manuscript begin with what spatial 

and temporal resolutions have been used to estimate visitation from social media, and 

how correlated are these estimates with other measures of visitation? Knowing how 

much visitation is occurring within a park or protected area is critical to all visitor use 
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monitoring and management efforts (Leung et al., 2018). Understanding the spatial and 

temporal resolutions at which social media can be used to reliably quantify visitation is 

currently an open question. Second, how has previous research used social media to 

understand spatial patterns of visitation in park and protected areas, and at what spatial 

scales? Understanding the spatial distribution of visitation across a park or protected area 

can help guide the effective allocation of managerial resources to outdoor recreation 

settings that are heavily used; it is also an area where the qualities of social media provide 

notable advantages over traditional methods of visitor use monitoring. Third, how have 

social media been used to understand visitors’ experiences in park and protected areas? 

Park and protected area managers often strive to provide an array of recreational 

experiences for visitors, often using little more than anecdotal evidence to guide their 

decisions regarding how and where opportunities for these experiences are provided. 

Social media may be able to provide novel insights into visitors’ experiences, however 

research into this realm is in its infancy. Our review can help provide guidance for where 

future investigations may be most effective. We synthesize our findings into these three 

research questions by identifying gaps and opportunities for future research and 

presenting a set of best practices for using social media in parks and protected areas. 

 

2.    Methods 

We followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) protocol for searching databases and reporting information (Moher, 

Liberati, Tetzlaff, & Altman, 2009). This protocol requires us to report specific measures, 
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such as how the literature was searched and what information was recorded, so the 

systematic review could be replicated in the future. 

 

2.1    Paper Selection 

We attempted to find all academic papers that have used social media in a park or 

protected area to quantify visitation, explore spatial patterns, or understand the visitor 

experience. We searched for relevant articles in the scientific literature using the Scopus 

database and ProQuest Agriculture and Environmental Science database. We used broad 

search criteria to have high sensitivity and low specificity (Petticrew & Roberts, 2006). In 

other words, we collected all studies that might be relevant, and later removed papers that 

did not fit our inclusion criteria. 

We searched for all research articles that contained at least one of the following 

terms in the title, abstract, or keywords: social media, Flickr, Twitter, Instagram, 

Facebook, Panoramio, Strava, MapMyFitness, or Wikiloc. Papers must also have 

included one of the following terms in the title, abstract, or keywords to be included: 

park(s), protected area(s), or public land(s). This search was conducted on January 14, 

2020; it yielded 582 papers before removing duplicates. We conducted another search on 

May 1, 2020 which returned 16 new papers. Given that automated searches can 

sometimes miss pertinent papers, we also added additional relevant papers that we were 

aware of, which were not captured in the searches. 

 

2.2    Article Screening 
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We used a two-tier approach to screen articles. First, we evaluated article 

inclusion based on the title, given the low specificity of the search. At this phase, all 

papers were kept that alluded to a park or protected area being the study site and 

mentioned the use of social media. If it was unclear whether or not the paper reported on 

research within a park or protected area or used social media, the paper was retained at 

this stage of screening. Second, we read the abstracts of all papers that had potentially 

relevant titles to determine their suitability. If it was still unclear from the abstract, we 

read the full text. We retained all papers globally that referenced a park or protected area 

setting and also reported on the use of social media. All types of parks and protected 

areas were included (e.g., urban parks, state parks, national parks). If the setting may 

have referenced a park or protected area, but that was not an explicit focus of the paper, it 

was not included (e.g., Fisher, Wood, Roh, & Kim, 2019). 

Papers that investigated the use of social media to communicate with visitors or 

market destinations (e.g., Wilkins, Keane, & Smith, 2020; McCreary, Seekamp, 

Davenport, & Smith, 2019) were not included in this analysis, as they were studying 

perceptions of social media, rather than using social media to study visitation and/or the 

visitor experience. Additionally, papers that were explicitly related to protests, political 

uprisings, or clinical health studies were not included, even if they took place in a park. 

We also excluded studies that analyzed review site data (e.g., TripAdvisor, Yelp). These 

bodies of literature are all outside the scope of this paper. Appendix Figure A.1 shows the 

number of studies that were identified, screened, eligible, and included. 

 

2.3    Categorizing Papers 
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 We reviewed the full text of each of the 58 relevant papers (Table A.1). For each 

paper, we recorded the information about the study objective, location, and many other 

attributes listed in Table 2.1. After recording information on each paper, we categorized 

papers into non-discrete categories based upon whether the paper used social media to: 

(1) estimate visitation, (2) understand spatial patterns of visitation, and (3) understand 

aspects of the visitor experience.  

Any paper that explicitly compared social media posts or user-days to another 

data source was included in the estimating visitation category (even if this was not the 

main focus of the paper). Any paper that mentioned analyzing or mapping patterns in 

space was included in the spatial patterns category. These papers either mentioned 

mapping/understanding spatial patterns in their research questions, or mentioned 

investigating what factors impact visitation. Papers that asked a research question 

involving visitors’ perceptions, feelings, values, actions, or experiences, were included in 

the visitor experience category. However, this category does not include papers that were 

exploring what factors impact visitation. Although this could be considered an aspect of 

the visitor experience, these papers all had a spatial component to them, and were thus 

only included in the spatial patterns category. We used these specific categories to help 

answer our research questions; they do not fully capture every type of question 

researchers have explored (e.g., comparisons of results from different social media 

platforms).  
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Table 2.1                                                                                                                               
 
The attributes recorded for each paper and their general purpose. 

Broad 
category Specific pieces of information Purpose 
Citation 

information 
- Study authors To cite articles and understand how the 

number of publications has changed 
over time. 

- Article title 
- Journal title 
- Year of publication 

Objective(s) - Explicitly stated research objectives, 
research, questions, or study purpose 

To classify papers based on if they 
were estimating visitation, spatial 
patterns of visitation, or aspects of the 
visitor experience. Also used to classify 
the specific focus of the paper. 

Location and 
setting 

- Continent To understand the distribution of 
studies across continents and countries 
and see which types of settings are 
most often studied. Any setting with 2+ 
mentions was included as a category. 

- Country 
- Specific study site name(s) 
- Setting (i.e., type of park and/or protected 

area) 
Methods - Social media platform(s)  To understand how researchers have 

used social media and the spatial and 
temporal resolutions of the data used. 

- What attributes of social media were used 
(e.g., metadata, photo content, text content) 

- The extent of social media used (e.g., 
number of years) 

- The temporal resolution of the analysis 
(e.g., annual, monthly, weekly) 

- The spatial resolution of the analysis (e.g., 
whole park, grid, trails) 

- If the authors used user-days or total posts 
(if applicable) 

Social media 
acquisition 

and analysis 

- How data were acquired (e.g., API vs 
scrape) 

To understand technical details about 
how others have conducted this 
research. - Software used for data collection/analysis 

- If code to reproduce results is available 
Other datasets 

used 
- Other types of secondary datasets used, if 

applicable 
To understand if and how researchers 
use this data source in conjunction with 
other data. - Other types of primary data collected, if 

applicable 
Limitations - Any explicitly stated biases, limitations, or 

ethical concerns of using social media 
To understand how researchers 
perceive the limitations of this data 
source. This was later summarized into 
categories, with anything that was 
mentioned 3+ times being a category. 

	

For papers that used social media to estimate visitation, we also recorded the 

given correlations with other visitation measures, as well as the sample sizes of the 
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correlations. For papers that looked at spatial patterns of visitation, we noted categories 

of other variables (i.e., social, environmental, infrastructure, and managerial) authors 

included in models regarding spatial patterns. For papers that looked at the visitor 

experience, we recorded what aspect of the visitor experience the authors were studying.  

 

3.    Results 

3.1    Characteristics of the Current Literature 

 The first papers using social media in a park or protected area were published in 

2013, with mostly increasing numbers of publications each year since then (Figure 2.1). 

As of April 2020, there were 58 known papers in the scientific literature that used social 

media to measure visitation and visitors’ experiences in parks and protected areas. These 

papers have been published in journals representing a variety of disciplines, including: 

tourism, geography, ecology, environmental science, environmental management, remote 

sensing, and urban planning. The full table with the attributes recorded for each of the 58 

papers is available online1.  

 

 

																																																								
1 Available at: github.com/emilywilkins/Literature-Review 
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Figure 2.1. Papers published by year (n = 58). Note: These are papers published through 
April 2020, so the number of papers in 2020 only represents four months. 
 

3.2    Locations and Settings 

 The highest proportion of papers studied sites in Europe and North America, 

although there were at least five papers from each continent (Figure 2.2a). This body of 

literature represents 23 countries, with the most papers having study sites in the United 

States (n = 13), Australia (n = 6), and Portugal (n = 4). The most common setting was 

national parks, followed by urban parks (Figure 2.2b). The “other” category represents 

public rangelands, national forests and grasslands, conservation parks, a UNESCO World 

Heritage site, and an archaeological park. The “variety of settings” category represents 

papers that either had three or more setting types or stated their study sites contained a 

variety of protected area types. 
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Figure 2.2. The locations of the study sites (a) and the settings of the studies (b). 

 

3.3    Characteristics of Data Collection and Analysis 

The majority of studies (79%) used a single social media platform. Flickr was 

by far the most used social media platform, followed by Twitter and Instagram (Table 

2.2). Most studies analyzed the locations of social media content according to the 

geotagged coordinates of the post or the routes of the users’ track. About half of studies 

relied on the time the social media content was created (Table 2.3). Of the studies that 

analyzed image content, 21 manually viewed the content, while three used automated 

tools (e.g., Google Vision) to classify the subject of the photographs. In some of these 

cases, the authors viewed photograph content to validate geotagged locations assigned by 

users, but the photograph content was not necessarily the focus of their analysis. 

Relatively few (14%) of the papers that we reviewed used social media to study visitors’ 

origins for the purpose of understanding visitors’ characteristics or their travel routes. 

Some studies incorporated identifying information about the user, such as their username, 
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into calculating user-days, for instance; this is not included in Table 3 since user 

identifiers were never a focus of the authors’ analyses. 

 

Table 2.2 
  
The number of studies that used each social media platform, and the general use of each 
platform. Twelve studies used multiple platforms (n = 58). We searched for articles 
referencing Flickr, Twitter, Instagram, Facebook, Panoramio, Strava, MapMyFitness, 
and Wikiloc. 

Platform General use 
Number 
of studies 

Flickr Photo-sharing 35 
Twitter Micro-blogging 10 
Instagram Photo-sharing 8 
Wikiloc Fitness / GPS tracking 6 
MapMyFitness Fitness / GPS tracking 3 
Weibo Micro-blogging 3 
Strava Fitness / GPS tracking 2 
Panoramio Photo-sharing 2 
Facebook General media 1 
Vkontakte General media 1 
GPSies Fitness / GPS tracking 1 

 

Table 2.3 
 
The attributes of social media that were analyzed or used to aggregate data (n = 58). 

Attribute of data 
Number 
of studies 

Geotagged coordinates or routes 47 
Time stamp 28 
Photograph content 24 
Text content 8 
Stated home locations (according to 

user’s profile) 8 
Photograph title, tags, or hashtags 5 
Comments on posts 2 
Number of check-ins (Weibo) 2 
Video content 1 
Likes 1 
Gender 1 
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The majority of papers (78%) reported downloading social media directly through 

Application Programming Interfaces (APIs). Nine studies downloaded data directly from 

websites, while four used InVEST (Sharp et al., 2016), one used Google Earth, and one 

used SAS2. Three studies did not state how they acquired the data. Three studies used 

multiple means of data acquisition for different platforms. The authors of these papers 

used a variety of software to download, organize, and analyze data. Of the studies that 

mentioned using software, the most popular were R (51% of studies), ArcGIS (47%), 

Python (25%), SPSS (10%), Excel (10%), and QGIS (10%). Seven studies did not 

mention any software they used for data processing or analysis. These counts only 

included software the authors explicitly mentioned using; in some cases, other software 

was likely used but not directly mentioned. Only five papers made the code they wrote to 

produce their data and/or analysis publicly available. Of the five papers with available 

code, four made code available to reproduce parts of their analyses, while two made code 

available to download social media. The code that was provided was written in either R 

or Python. 

Many studies used other data in addition to social media. The majority of studies 

(64%) used secondary GIS data, visitation or survey data from agencies, or satellite 

imagery, for example. A total of 11 studies (19%) collected other primary data on visitor 

use. This included using trail cameras and counters, surveys, semi-structured interviews 

with visitors or park experts, focus groups with park experts, and qualitative interviews 

with people who post on social media. Many of the studies (73%) which did collect 

																																																								
2 SAS was used to download Panoramio data and has since been depreciated. Google Earth was used to 
download Wikiloc data; this feature was removed from Google Earth in 2019 (Wikiloc, 2020). 
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primary data used it to validate or compare to social media. Only thirteen studies relied 

on social media alone and did not use other datasets (other than for obtaining park 

boundaries).  

 

3.4    Using Social Media to Estimate Visitation 

A total of 20 papers in this review investigated the use of social media to measure 

visitation (Appendix Table A.2). These studies all compared the user-days of social 

media posts (e.g., photo-user-days (PUDs) or tweet-user-days) to another data source, 

such as surveys, trail counters, or agency-reported data. However, not every study 

reported a measure of association between the datasets. User-days are an aggregate count 

of individuals who make a post within an area such as a park by day (Wood et al., 2013). 

For image-sharing platforms, PUDs are often aggregated across multiple years as 

described below. PUDs are used to eliminate possible measurement bias that may arise 

due to users who post substantially more content from a place and time compared to other 

users.   

 The majority of papers (80%) aggregated social media over entire parks and 

protected areas. These studies predominately looked at differences in visitation between 

multiple parks and protected areas and were often not interested in temporal patterns of 

visitation. Of 16 papers that aggregated data by entire parks or protected areas, 10 papers 

aggregated data across multiple months and years (i.e., aggregating all data they collected 

by unit), while four papers looked at monthly or seasonal trends, one analyzed weekly 

trends, and one paper did not state their temporal scale. Five papers analyzed visitation 

patterns on smaller spatial scales (e.g., trail, grid, or park subregion); three of these 
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papers aggregated data across all months and years, while two papers aggregated data by 

month (i.e., summing user-days for all Januarys across multiple years). Thus far, the 

smallest temporal scale researchers have tested to estimate visitation is the monthly scale, 

and these papers aggregate between 6 to 13 years of social media by month.  

Of the 20 papers which used social media to measure visitation, 17 reported a 

measure of association between social media and visitation measured by another data 

source, such as on-site visitor counts. Measures of association included: Pearson’s 

correlation (r), Spearman’s rank correlation (Rs), or the coefficient of determination (R2) 

from a regression where social media was the only predictor in the model. The other three 

studies did use social media to estimate visitation compared to visitation measured by 

another data source, but included other variables in the model (e.g., year, month), so the 

R2 values are not comparable. Overall, the measures of correlation reported from each 

study are powerful, but difficult to meaningfully compare because they use different 

platforms, different spatial scales, different temporal scales, different measures of 

association, and some use user-days while others use total images or total users 

(photographers). Figure 2.3 summarizes the correlations found in the literature when 

comparing social media to visitation measured by another data source.  
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Figure 2.3. Correlation coefficients reported from previous studies measuring the 
correlation between social media and other measures of visitation. Numbers near the 
points are sample sizes for correlations. Any studies that reported a R2 value from a linear 
regression with social media as the only predictor in the model were converted to r 
coefficients by taking the square root. Park setting represents what level of government is 
managing the park(s). 
	

The papers comparing visitation across multiple parks used between one and 14 

years of data to estimate correlations. The majority of these papers were not interested in 

a temporal scale, and thus aggregated all data by park. However, one paper did look at 

visitation across parks and summers (the point with n = 350 analyzed 75 parks). Papers 

looking at temporal trends in a single park used five and seven years of data. Notably, the 

paper analyzing monthly trends aggregated seven years of data by month, while the paper 
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analyzing weekly trends did not aggregate the five years of data. At the trail/subregion 

scale, these papers aggregated between 2.4 and 13 years of data. Three of these papers 

aggregated data from all years by trail or subregion, while one aggregated data by month 

(the point with n = 35). The citations associated with each point, as well as the location of 

the study, and the number of years of data the authors used can be found in Appendix A, 

Table A.2. 

 

3.5    Exploring Spatial Distributions of Visitors 

Over half of papers (62%) used social media to study spatial distributions of 

visitors. Many papers were interested in understanding the spatial distribution of visitors 

(e.g., by producing maps of where people visit), but that was not their main research 

question. Some papers explored what attributes may affect visitation, while others 

focused on the distribution of cultural ecosystem services (CES), and some investigated 

spatial patterns by user group or photo content (Figure 2.4). Of the 15 papers exploring 

what landscape attributes may affect visitation, 13 included environmental variables (e.g., 

elevation, waterbodies), 11 included infrastructure variables (e.g., roads, trails), seven 

included social variables (e.g., GDP, population density), and five included managerial 

variables (e.g., management type, presence of a fee).  
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Figure 2.4. Papers that used social media to investigate spatial distributions, along with 
the spatial scale used in each paper (n = 36). Papers in the spatial patterns (general) 
category are only those that did not fit into a more specific category. One paper is 
represented in two categories (spatial distribution of CES and attributes that affect 
visitation). 
	

The spatial scale used to answer these questions varied. Some studies analyzed 

distributions at the whole park scale, while others used specific geotags, trails, or grids 

(Figure 2.4). For grids, a 1 km grid was most common. The majority of these studies 

(79%) were not interested in a specific temporal scale; the authors analyzed spatial 

patterns after aggregating all the data they had collected, usually over multiple years. 

Five studies analyzed spatial patterns at the seasonal level, while one paper mapped 

patterns on weekends versus weekdays and across years, and another paper looked at 

patterns based on the time of day, weekend versus weekday, and seasonal scales. Three 

papers did not state the temporal scale of analysis. Citations and additional details on 

each paper can be found in Appendix Table A.3. 

 
 

3.6    Understanding Aspects of the Visitor Experience 
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Some studies have used social media to understand various aspects of the visitor 

experience. Of the 29 studies which did investigate the visitor experience, the highest 

proportion were studying CES, with fewer papers investigating sentiment, behavior, or 

preferences and perceptions (Figure 2.5). Some social media platforms are more 

commonly used to study certain aspects of the visitor experience; for example, all studies 

on sentiment used Twitter as their data source. While the papers using social media to 

investigate visitation or spatial distributions tended to focus on geotagged coordinates 

and time stamps, the majority of studies (72%) of visitor experience used photo content 

to explore their research questions.  

 

 

Figure 2.5. Categories of what aspect of the visitor experience each paper was studying, 
as well as the social media platform the authors used (n = 29). 
 
 

In most papers, the CES studies were broadly looking at multiple CESs, although 

a couple studies focused on a specific aspect (e.g., wildlife-viewing as a CES). The 

majority of the CES studies (90%) analyzed photo content; most of these used the photos 

to identify different types of CES (e.g., aesthetic value, recreational value, educational 
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value). All of the five studies analyzing sentiment used the text of tweets to gauge 

sentiment of park users, with four of these studies being situated in urban parks. Of the 

five studies analyzing visitor behavior, two were looking at unwanted visitor behavior, 

and three were analyzing visitors’ activities. Papers in the “preferences and perceptions” 

category were looking at perceptions of grazing, preferences for biodiversity, how 

tourists view the destination, differences between what domestic and international 

visitors photograph, and experience values. The “other” category includes papers on per-

trip benefits and travel cost, the seasonality mismatch between visitors and wildflowers, 

and the aesthetic value of the parks based on image content and colors. Citations and 

additional details for each paper can be found in Appendix Table A.4. 

 

3.7    Limitations, Biases, and Ethical Concerns 

Although this body of work has displayed many ways social media can be used to 

ask questions of park and protected area visitation, the authors of papers included in our 

systematic review do caution this data source should be used appropriately. The majority 

of papers (86%) explicitly noted limitations, biases, or concerns with using social media. 

The most commonly cited limitation is that social media may not be representative of all 

park users (Table 2.4). Some limitations in the “other” category included: noise from 

bots/spam accounts, accessible areas having more photos, social media use varying due to 

environmental conditions, and that these data require technical skills and infrastructure to 

store and analyze. Ethical concerns mentioned were related to the privacy of social media 

users, and that even though these data are public, users may not know how their data are 

being used for research purposes. 
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Table 2.4  
 
Limitations, biases, and concerns explicitly mentioned by authors of each study (n = 58). 

Limitations, biases, and concerns 
Number of 

studies 
Percentage 
of studies 

Social media is not representative of park users 42 72.4 
Users only share select content 16 27.6 
Inaccuracies in geotags/GPS 14 24.1 
Unknown demographics of social media users 12 20.7 
Social media use varies by country or year 10 17.2 
Users share different content on different platforms 9 15.5 
There is a changing popularity of platforms over time 8 13.8 
There is a low amount of social media in some areas 8 13.8 
Ethical concerns/ privacy of users 7 12.1 
Changes in data accessibility 6 10.3 
Some things are hard to photograph 4 6.9 
Character limit of Twitter may limit descriptions 3 5.2 
Other 15 25.9 
None 8 13.8 

 

 
4.    Discussion 
 
 Collectively, this body of literature demonstrates a broad range of ways in which 

social media can be used to inform visitor use management in parks and protected areas. 

In recent years, some parks and protected areas have seen substantial increases in visitors 

(Smith, Wilkins, & Leung, 2019; National Park Service, 2020). Increased visitation can 

strain biophysical resources and result in increased environmental disturbances (Hammitt, 

Cole, & Monz, 2015). Understanding visitor behavior and patterns of visitation is crucial 

to managing natural environments for future generations. However, collecting data on 

visitors is often costly and time-consuming; social media provides a new way to 

understand how visitors are interacting with the environment. 
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4.1    Characteristics of the Current Literature 

Prior applications of social media include estimating visitation, understanding 

spatial patterns of visitation, and revealing visitors’ behaviors, preferences, and 

sentiment. There has been a notable increase in the number of published papers using 

social media to inform visitor use management in parks and protected areas from 2013 – 

2020, and researchers are likely to continue using social media as an information source. 

The majority of papers are focused on national parks and urban parks, and the literature is 

not necessarily representative of all types of park settings. Further research into social 

media use in peri-urban green spaces or national forests, for example, would provide 

additional insights into understanding a diversity of visitors and types of visitor use.  

Additionally, most papers use geotagged coordinates or GPS tracks, time stamps, and 

photo content of posts, with fewer papers analyzing text content, home location of users, 

and comments on posts.  

Flickr and Twitter are the main platforms researchers have used, with each 

platform being used in ways that reflect its purpose and functionality. For example, 

Twitter is used to measure visitor sentiment, while Instagram and Flickr are often used 

for questions that can be understood by analyzing image content. Social media that are 

geotagged with precise locations – such as Flickr and GPS tracking platforms (e.g., 

Wikiloc, MapMyFitness, Strava) – are amenable to mapping the spatial patterns of 

visitation. However, researchers highlight a number of important limitations and 

considerations that should be taken. Principle among them is the changing popularity of 

different social media platforms over time; platforms used in the past may not be the 

same platforms researchers use in the future. For instance, Instagram started rising in 
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popularity around 2013, while Flickr’s popularity began decreasing, and then Panoramio 

was discontinued in 2016. Additionally, these are private companies that can choose to 

stop sharing data at any point. For example, Instagram stopped sharing the geolocations 

of users’ images in 2018 (Toivonen et al., 2019). Although Flickr is declining in 

popularity, this platform contains over a decade of publicly available information, hence 

its high use by researchers, especially for questions regarding visitor preference. Few 

papers (22%) used multiple social media platforms, and future studies may be able to 

minimize the effects of user bias by integrating data from multiple platforms (e.g., 

Hamstead et al., 2018; Norman & Pickering, 2017; Tenkanen et al., 2017).   

Although most studies combined social media with other secondary data (e.g., 

GIS data), few studies (19%) collected primary data about visitors. The collection of 

primary data (e.g., via on-site visitor intercept counts or surveys) may overcome some of 

the limitations of social media (Crampton et al., 2013; Lopez, Magliocca, & Crooks, 

2019; Xu, Nash, & Whitmarsh, 2019). The studies which did collect other primary data 

were largely to validate the results from social media. There is a lot of potential for 

researchers to leverage social media in conjunction with more traditional means of data 

collection. For example, interviews or focus groups could be used to inform what 

information to mine from social media. Conversely, visitor surveys could be used to 

understand the patterns in social media, such as why spatial or temporal trends exist in 

social media, or why visitors exhibit certain behaviors. Spatial and temporal patterns 

found in social media would also be useful to choose sampling times and locations for 

visitor surveys. 
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4.2    Using Social Media to Estimate Visitation 

Many studies have shown geotagged social media are a good proxy for actual 

visitation to parks and protected areas. However, the correlations between social media 

and other sources of visitation data vary substantially. Most of the correlations found in 

previous studies we reviewed were between 0.50 and 0.80 for visitation data at the entire 

park scale. However, most of these studies aggregated data across many years, with fewer 

studies testing the use of social media as a visitation proxy at smaller temporal scales. 

The smallest amount of data used to estimate visitation was a full year (i.e., using one 

year of data to estimate monthly visitation), and no studies attempted to estimate 

visitation in near real-time or forecast future visitation from social media posts. A few 

recent studies used social media to estimate visitation to trails or other areas within a park 

(e.g., Fisher et al., 2018), but more research is needed to determine the applicability of 

using smaller spatial or temporal scales to estimate visitation across different locations, 

platforms, and settings. Environmental managers may be able to use social media to 

understand the relative popularity of different parks (or regions within parks) and the 

temporal distributions of visitors’ sub-annual scales (e.g., quarterly or monthly) if there 

are enough data to yield reliable estimates. 

 

4.3    Exploring Spatial Distributions of Visitors 

Not only is social media useful to estimate visitation, but it’s very high spatial and 

temporal resolution makes it possible to map distributions of visitors in time or space. 

Often the exact hour and minute a photograph was taken is captured in the metadata, and 

smartphones currently have GPS units that are accurate within 5 meters (National 
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Coordination Office for Space-Based Positioning, 2020). Although this high resolution is 

available for the posts that visitors share on some social media platforms, few studies of 

park visitors have taken advantage of both the high spatial and temporal resolution of 

social media. Future studies could explore whether spatial patterns differ in time – 

between weekends and weekdays, for example. They could also integrate daily weather 

data to better understand the spatial substitution patterns of visitors encountering 

inclement weather. In these future efforts, researchers will likely need to analyze long 

time series of social media from multiple platforms in order to have sample sizes big 

enough to quantify and understand patterns at small spatial or temporal scales. 

Ultimately, the appropriate scales for using social media to understand spatial patterns 

will depend on the appropriateness of the data for the research question and setting. 

 

4.4    Understanding Aspects of the Visitor Experience 

 Relatively few studies in this review used social media to understand aspects such 

as sentiment, visitor behavior, or perceptions of visitors in parks and protected areas. 

However, this review only included papers in parks or protected area settings, and these 

topics have also been studied in other settings (e.g., Arkema et al., 2015; Dunkel, 2015; 

Mitchell, Frank, Harris, Dodds, & Danforth, 2013; Tieskens, Van Zanten, Schulp, & 

Verburg, 2018). Previous research in this review found text and photo content of social 

media useful to understand and analyze these aspects of the visitor experience. 

Additionally, the majority of studies that analyzed photo content did so manually, but 

future work may be able to take advantage of automated tools (e.g., Google Vision). 

Although some research questions do require manually viewing photos (e.g., identifying 
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unwanted behavior), other questions may benefit from using automated tools to quickly 

process large datasets (e.g., identifying landscape features). This may make analyzing 

photo content more accessible for studies that span large geographic areas.  

 

4.5    Best Practices 

After reviewing the current state of the science, we would like to highlight five 

recommendations and best practices. These are based on the methods and results of 

previous studies that use social media to inform visitor use management in parks and 

protected areas. Broadly, these best practices are aimed at addressing a lack of 

consistency in the methods employed in previous research. Inconsistency is expected 

from such a relatively new field of study, yet it suggests to us that it would help to 

establish common reporting standards for researchers working in this area that would 

facilitate further meta-analyses and allow the field to mature. Our suggested best 

practices include: 

(1) Explicitly state the spatial and temporal extent and resolution of all analyses. 

The scale of analysis used patently affects the results of a study and also 

informs the scales utilized in future investigations. Researchers should state if 

they are using different resolutions for different pieces of analyses within their 

investigation. They should also detail why they chose those resolutions.  

(2) Use user-days of social media to estimate visitation. We found the majority of 

previous studies analyzed user-day metrics such as PUD, which count one 

photo or post per visitor, per day. Studies that analyze user-days rather than all 
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social media posts tend to report higher correlations with visitation measured 

by other data sources.  

(3) When possible, report measures of association between social media and other 

sources of visitation data; include the temporal resolution and number of 

observations. It is useful to compare social media use to other estimates of 

visitation across different locations and settings. To meaningfully compare 

results across sites, studies must present similar metrics. Depending on the 

analysis, Pearson’s or Spearman’s rank correlation, or the coefficient of 

determination (R2), should be provided to help future comparative efforts. 

(4) If analyzing data using grids or multiple sites, report the sensitivity to spatial 

scale. Using arbitrary spatial units introduces statistical bias and can potentially 

impact results (i.e., the modifiable areal unit problem) (Fotheringham & Wong, 

1991). Reporting results at multiple spatial scales can reveal whether the 

results are consistent regardless of the chosen areal unit.  

(5) Make coded workflows for collecting and analyzing data publicly available. 

Making code available would make analysis more transparent, increase 

reproducibility, and lower the barrier for other researchers and practitioners to 

use social media as a data source.  

 

5.    Conclusions 

 Social media have been used in a variety of ways to inform visitor use 

management in parks and protected areas. Previous research has used social media to 

estimate visitation, explore spatial or temporal patterns of visitation, and understand 
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aspects of the visitor experience. The high spatial and temporal resolutions of social 

media allow researchers to investigate novel questions at small and large geographic 

scales. Land managers can use the exact geotagged coordinates or GPS tracks to see 

where visitors go within parks and protected areas, and time stamps to understand when 

they go places. However, often it is necessary to aggregate multiple years of data to have 

adequate sample sizes for estimating visitation or mapping spatial patterns – particularly 

at less visited sites. Although research has shown that social media can be used in many 

ways to inform park and protected area management, there are also many ways that it 

could be misapplied – especially if it does not account for the fact that social media users 

may not be representative of all park visitors. Future research may be able to minimize 

many biases by leveraging data from multiple platforms or using mixed-method 

approaches. Additionally, with the use of social media becoming more and more common 

in the scientific literature, common methodological practices and reporting standards can 

lead to a more coherent, reliable, and transparent body of knowledge. 
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CHAPTER III 

SOCIAL MEDIA REVEAL ECOREGIONAL VARIATION IN HOW WEATHER 

INFLUENCES VISITOR BEHAVIOR IN U.S. NATIONAL  

PARK SERVICE UNITS 

	

Abstract 

 Daily weather affects total visitation to parks and protected areas, as well as 

visitors’ experiences. However, it is unknown if and how visitors change their spatial 

behavior within a park due to daily weather conditions. We investigated the impact of 

daily maximum temperature and precipitation on summer visitation patterns within 110 

U.S. National Park Service units. We connected 489,061 geotagged Flickr photos to daily 

weather, as well as visitors’ elevation and distance to amenities (i.e., roads, waterbodies, 

parking areas, and buildings). We compared visitor behavior on cold, average, and hot 

days, and on days with precipitation compared to days without precipitation, across 

fourtneen ecoregions within the continental U.S. Our results suggest daily weather 

impacts where visitors go within parks, and the effect of weather differs substantially by 

ecoregion. In most ecoregions, visitors stayed closer to infrastructure and bodies of water 

on rainy days. Temperature also affects visitors’ spatial behavior within parks, but there 

was not a consistent trend across ecoregions. Importantly, parks in some ecoregions 

contain more microclimates than others, which may allow visitors to adapt to unfavorable 

conditions by visiting a park area with preferable weather. These findings suggest 

visitors’ spatial behavior in parks may change in the future due to the increasing 

frequency of hot summer days.  
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1.    Introduction 

Climate change poses risks to ecosystems within parks and protected areas as well 

as the outdoor recreation opportunities they provide (Hand, Smith, Peterson, Brunswick, 

& Brown, 2018; Hewer & Gough, 2018). Previous research suggests visitation will likely 

change at most parks across North America as temperatures continue to rise, extreme heat 

events become more common, and precipitation becomes more variable (Fisichelli, 

Schuurman, Monahan, & Ziesler, 2015; Hewer & Gough, 2018). To date, projected 

impacts to visitation in response to warming temperatures and extreme heat events have 

only been studied at the scale of whole park units (e.g., Fisichelli et al., 2015; Smith, 

Wilkins, Gayle, & Lamborn, 2018); we are unaware of any research examining how the 

spatial patterns of visitation may change within parks. Understanding how visitation 

patterns may change within a park due to weather can help park managers plan and 

prepare for managing visitor flows, both on a daily scale and when thinking about future 

climate change. For example, managers could anticipate and proactively manage 

weather-altered visitation patterns by providing additional information to visitors and 

increasing signage in certain areas. Managers could also expand recreation infrastructure 

(e.g., trails, campgrounds, restroom facilities, etc.) in those areas which are more likely to 

see increased use as the climate continues to warm. In addition, managers can plan to 

mitigate health risks to visitors posed by extreme weather events through proactive risk 

communication, infrastructure, and enhanced search-and-rescue resources.  

The overall objective of this study is to explore how the spatial behavior of 

visitors to U.S. parks changes during the summer in response to temperature and 

precipitation. Visitors’ spatial behavior captures where individuals choose to go during 
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their park visit. Outdoor recreationists in U.S. national parks make sovereign decisions 

about which trails to hike, which rivers to float, and which scenic overlooks to stop at, 

among many other decisions affecting the location of where outdoor recreation occurs. 

All of these decisions are influenced, to varying degrees, by the weather. This research is 

the first attempt to quantify how, and to what extent, the weather influences park visitors’ 

spatial behavior. We focus on summer because the influence of weather on the spatial 

patterns of visitation likely differ by season, and because visitation-related management 

challenges are most often experienced in the summer, when visitation tends to be highest 

(National Park Service, 2020a).  

We focus on two measures of visitors’ spatial behavior: the elevation of an 

outdoor recreation trip and the distances of that trip from roads, waterbodies, parking 

areas, and buildings. We test the hypotheses that visitors may be more likely to visit 

higher locations and stay closer to roads, waterbodies, parking areas, and buildings on 

extremely hot days, particularly in the warmest ecoregions. We hypothesize this because 

previous research shows there is a threshold that visitors consider too hot in parks, which 

may make visitors more likely to stay near infrastructure or seek cooler temperatures at 

higher elevations (Paudyal, Stein, Birendra, & Adams, 2019; Smith et al., 2018). On days 

with high precipitation, we expect that visitors will stay at lower elevations and be closer 

to roads, parking areas, and buildings.  

To test these hypotheses, we used geotagged social media to understand exact 

dates and locations of visits within 110 U.S. National Park Service (NPS) units. NPS 

units include national parks, national recreation areas, national monuments, and national 

seashores, among others; these are all considered different designations of parks 
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(National Park Service, 2020b). Because of the geographic diversity of U.S. NPS units, 

the influence of weather on visitor behavior is likely to be highly variable. Previous 

research has found that the effect of weather on tourists and park visitors varies based on 

the setting and climate of the destination (e.g., Hadwen, Arthington, Boon, Taylor, & 

Fellows, 2011; Scott, Gössling, & de Freitas, 2008). For example, warmer than average 

temperatures may cause visitors to travel farther from roads in relatively cool climates, 

but may cause visitors to stay closer to roads in hot climates. To account for this 

variability, we examine the proposition that the impact of weather on visitors’ spatial 

patterns within parks varies by ecoregion. Ecoregions represent areas in North America 

where the ecosystems (i.e., biotic, abiotic, terrestrial, and aquatic components) are 

generally similar. They were designed as a spatial framework to understand and manage 

ecosystems across administrative or political boundaries (U.S. Environmental Protection 

Agency, 2016). Although there is still some variation within an ecoregion with regards to 

climate and topography, we believe analyzing the affect of weather on visitor behavior by 

ecoregion is a useful first step in understanding if and how weather impacts visitors’ 

behavior differently across diverse regions. 

We used geotagged social media from Flickr to understand spatial patterns of 

visitation given the fine spatial and temporal resolution of these data. Flickr is a photo-

sharing application that has been previously used to understand park visitation and spatial 

patterns of visitors in parks 11. Our work is informed by both the growing body of 

research examining the influence of weather on outdoor recreation, as well as the 

literature on using social media data to understand park visitors (e.g., da Mota & 
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Pickering, 2020; Fisichelli et al., 2015; Hewer, Scott, & Fenech, 2016; Smith et al., 

2018.) 

 

1.1    The Impact of Weather on Outdoor Recreation 

Outdoor recreationists often select their destination and timing of their trip based 

on the climate (Scott & Lemieux, 2010). Once on-site, weather influences the types of 

activities chosen, the length of stays, and the amount of satisfaction obtained (Becken & 

Wilson, 2013). Studies have looked at a variety of ways in which weather influences 

outdoor recreation; temperature and precipitation are the two most commonly studied 

weather metrics related to the behavior of outdoor recreationists (Verbos, Altschuler, & 

Brownlee, 2018). For example, Hewer, Scott, and Fenech (2016) found that visitation to a 

Canadian park was affected by both daily maximum temperature and daily precipitation. 

During the summer, the authors found that precipitation was negatively correlated with 

visitation, and temperature positively correlated with visitation, up to a threshold of 33°C, 

after which visitation declined (Hewer et al., 2016). Although daily  or monthly mean 

temperature is most commonly studied, recent research indicates maximum temperatures 

may be even more important in predicting visitation to parks, particularly in the summer 

(Smith et al., 2018). 

Tourists’ sensitivities to and preferences for weather differ depending on the 

climate of their destination (Scott et al., 2008). For instance, tourists in mountain areas or 

urban areas have been found to believe the “ideal” temperature is lower than the ideal 

temperature desired by beach tourists, likely because beach tourists expect warmer 

temperatures (Rutty & Scott, 2010; Steiger, Abegg, & Jänicke, 2016). There is substantial 
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variation found in the literature for optimal temperatures and thresholds for outdoor 

recreation, largely because outdoor recreation settings (e.g., beach, mountain, forest) and 

the activities they support vary widely, and many studies tend to be focused on one or 

two specific settings (Dubois, Ceron, Gössling, & Hall, 2016; Hewer, Scott, & Gough, 

2015). Additionally, it can be challenging to compare the effects of weather on outdoor 

recreation across different settings because studies use different methodologies, data 

sources, questionnaires, and temporal scales. In this study, we utilize nationwide data to 

analyze the impact of daily weather on the spatial behavior of visitors across multiple 

settings.    

Changing temperature and precipitation patterns are likely to directly impact both 

the supply of and demand for outdoor recreation opportunities, although the impacts will 

also differ by activity and geographic region (Gössling, Scott, Hall, Ceron, & Dubois, 

2012; Hewer & Gough, 2018). For example, Hadwen and colleagues (2011) found the 

impact of monthly weather averages on visitation to Australian parks varied by climate 

region. Increased temperatures due to climate change have already expanded the length 

of the peak season in U.S. national parks (Monahan et al., 2016). Warmer than average 

temperatures generally equate to longer seasons in which individuals can participate in 

warm-weather recreation activities (e.g., hiking, camping, biking) (Hand et al., 2018). 

However, the ways in which weather impacts park visitation is likely to be dependent 

upon the geographic features of particular parks. Some outdoor recreation destinations 

may see visitation actually decline after reaching a certain temperature threshold (e.g., 

25-33°C), while parks with a greater number of different microclimates accessible to 
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visitors (e.g., mountain parks or those with deep canyons) may continue to experience 

visitation increases above the threshold (Smith et al., 2018).   

Most studies to date have not taken into account different microclimates within a 

single destination. For example, Rutty and Scott (2014) found that coastal tourism areas 

contained varying microclimates, with thermal conditions differing up to 4°C at various 

areas of a particular resort. This indicates that if conditions are uncomfortable at one area 

of the resort, visitors can adapt by moving to a different area (Rutty & Scott, 2014). 

Although some outdoor recreation destinations may appear “too hot” under altered 

climatic conditions (Fisichelli et al., 2015), it is unknown whether visitors may adapt by 

visiting different areas within a park (e.g., higher altitudes or near bodies of water). By 

joining the location and date of social media posts with historical weather data, this 

research is the first study to understand how temperature and precipitation impact the 

spatial behaviors of outdoor recreationists within parks at a high spatial and temporal 

resolution. 

 

1.2    Using Social Media Data in Parks 

Social media data has been increasingly used over the last few years to understand 

a wide array of environmental problems (Ghermandi & Sinclair, 2019; Toivonen et al., 

2019). The most commonly used social media platforms in environmental research 

include Twitter, a microblogging website, and Flickr, a photo sharing website 

(Ghermandi & Sinclair, 2019). Researchers have used many aspects of social media data 

to glean insights, including text content, photo content, video content, and metadata (e.g., 
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geographic information and timestamps) (Ghermandi & Sinclair, 2019; Toivonen et al., 

2019).  

Over the last decade, researchers have found social media data to be helpful to 

inform outdoor recreation management in parks and protected areas (da Mota & 

Pickering, 2020). Social media can be used as a relatively accurate estimation of 

visitation to parks and protected areas at annual and monthly scales (Keeler et al., 2015; 

Sessions, Wood, Rabotyagov, & Fisher, 2016; Wood, Guerry, Silver, & Lacayo, 2013). 

Recent research indicates social media data are useful to estimate visitation to individual 

trails within National Forests (Fisher et al., 2018). Although many land management 

agencies estimate visitation through surveys, administrative data, and traffic counters 

(Leggett, Horsch, Smith, & Unsworth, 2017), social media data are unique in that they 

allow for visitation estimates at fine spatial and temporal resolutions and are comparable 

across sites. For instance, the NPS only produces visitation estimates at the monthly scale 

(Leggett et al., 2017), whereas social media data can show temporal trends in visitation at 

the hourly resolution (Barros, Moya-Gómez, & Gutiérrez, 2019). This is because the 

timestamp that the photo was taken, and the geographical coordinates of the photo, are 

recorded in metadata automatically recorded by and stored on individuals’ smartphones 

(Toivonen et al., 2019). For instance, one study used multiple years of geotagged Flickr 

data to understand trends in what time of day, and what day of the week, people tend to 

visit a national park in Spain (Barros et al., 2019). More relevant to this work is the high 

spatial resolution of social media data. The geographic locations of posts are acquired 

through metadata which accompany posts, but are often not readily seen by users. This 

metadata includes date and time the photo was taken, as well as the geographic 
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coordinates where the photo was taken. The geographic coordinates are typically accurate 

within five meters if they are taken with a GPS-enabled device (National Coordination 

Office for Space-Based Positioning Navigation and Timing, 2017), making the spatial 

resolution higher than other sources of visitation data.  

Researchers have also leveraged this spatial specificity of geotags to show trends 

in where visitors go within parks and protected areas (Barros et al., 2019; Hale, 2018; 

Schirpke, Meisch, Marsoner, & Tappeiner, 2018; Walden-Schreiner, Leung, & Tateosian, 

2018a). By mapping social media data along with other geospatial data, researchers can 

better understand what factors relate to visitor demand within a park (Donahue et al., 

2018; Walden-Schreiner et al., 2018a; Walden-Schreiner, Rossi, Barros, Pickering, & 

Leung, 2018b). For example, Walden-Schreiner et al. (2018a) concluded that distance to 

a road was the most important variable for predicting the presence of Flickr photos within 

Hawaii Volcanoes National Park, followed by elevation. Spatial patterns of Flickr posts 

in parks differ by season, and the presence of trails was the most important factor 

predicting Flickr photos in the summer for national parks in Australia and Argentina 

(Walden-Schreiner et al., 2018b). Collectively, these studies show the resolution of 

geotagged social media data is useful to understand how visitation patterns relate to 

environmental factors and infrastructure. However, none of these studies have 

investigated how an exogenous factor, like weather, influences the spatial patterns of 

visitors. 

 

2.    Methods 

2.1    Study Sites 
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Study sites include all U.S. NPS units in the continental U.S. that manage more 

than 10,000 acres of land (4,047 hectares). We imposed this size restriction since we are 

interested in the spatial behavior of visitors within park units; visitors to parks under 

10,000 acres (4,047 hectares) may not have the option to vary their spatial behaviors due 

to weather conditions. NPS units include national parks, national monuments, national 

battlefields, national recreation areas, and national seashores, among others. However, 

national parkways were not included in the sample because of their very different spatial 

characteristics (i.e., they are roads that span multiple states). The sample includes a total 

of 110 NPS units.  

Each park unit was assigned both a level I and a level II ecoregion based on the 

location of the centroid of the unit. Level I ecoregions represent the most general 

category, while level II ecoregions are more detailed. For nearly all ecoregions we used 

the level I ecoregions. However, two level I ecoregions (North American Deserts and 

Eastern Temperate Forests) were split into their level II ecoregions due to their vast size 

and the number of study sites contained within them. Figure 3.1 shows the study sites 

along with the ecoregion categories used in this paper, and Appendix B, Table B.1 
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provides a list of all NPS units included in this study and their ecoregion classifications.

 

Figure 3.1. Locations of the 110 NPS units used in this study and continental U.S. 
ecoregions used to categorize parks. 
 

2.2    Data Collection and Processing 

All data used in this paper are publicly available. Table 3.1 lists all datasets used 

along with their sources. In cases where an R package is listed as a source, we 

downloaded the data directly through R, using the specified packages to interact with the 

Application Programming Interfaces (APIs). All code written for data collection, 

processing, and analysis is available at https://dx.doi.org/10.3886/E119191V1.  



	

 

 
64 

	
Table 3.1  
 
Datasets and sources used in this paper. 
Data Type of data Source Citation 
NPS spatial boundaries Polygons NPS (National Park Service, 2019a) 
NPS unit centroids Table (turned 

into points 
from 
lat/long) 

NPS (National Park Service, 2017) 

Main visitor center for 
each NPS unit 

Table (turned 
into points 
from 
lat/long) 

Manually compiled 
via Google Maps and 
NPS unit websites 

Dataset made available at: 
https://dx.doi.org/10.3886/E119191
V1 

Acreage of NPS units Table NPS (National Park Service, 2019c) 
Visitation at NPS units Table NPS (National Park Service, 2019b) 

Ecoregions levels I & II Polygons EPA (U.S. Environmental Protection 
Agency, 2016) 

Geotagged Flickr posts 
(2006 – 2018) 

Points Flickr API (via 
Python code) 

(Flickr, n.d.) 

Daily temperature & 
precipitation 
(2006 – 2018) 

Raster 
(1 km 

resolution) 

Daymet 
R package: daymetr 

(Thornton et al., 2018) 
R: (Hufkens, 2019) 

Elevation Raster 
(1/3 arcsec 

resolution) 

USGS 
R package: elevatr 

(U.S. Geological Survey, 2017) 
R: (Hollister and Shah, 2018) 

Roads Lines1 OpenStreetMap 
R package: osmdata 

(OpenStreetMap Contributors, 2019) 
R: (Padgham et al., 2017) 
  

Parking areas Polygons & 
multipolygo
ns  

Bodies of water Polygons, 
multipolygo
ns, & lines 

Buildings Polygons & 
multipolygo
ns 

1 These data also include raw polygon files (representing loop roads) that were converted to line features 

 

2.3.1    Flickr Data Processing 

We downloaded Flickr data from 2006 to 2018 directly from the Flickr API using 

Python. We downloaded these data in October 2019. Flickr points were turned into a 

spatial object by using their latitude and longitude. We only used Flickr points that were 
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within park unit boundaries, and only retained the points that represented pictures taken 

between the months of May and September. We added additional attributes to the Flickr 

data corresponding to individual NPS units and ecoregion.  

We deleted any photos by the same user, on the same day, within 10 meters of 

another photo posted by the same user; therefore, we only retained one photo per user, 

per location. This is similar to the concept of Photo User Days (PUD) (e.g., Sessions et 

al., 2016; Wood et al., 2013), except we only deleted duplicates in close proximity rather 

than duplicates anywhere within the unit. We did this believing it was important to retain 

posts by the same user if they were in different locations within the park. If a user had 

multiple posts on the same day within 10 m, we randomly selected one point to retain. 

Table 3.2 shows the sample sizes for the number of Flickr points in each ecoregion. 

Appendix B, Table B.2 contains the sample size of Flickr points for each individual unit. 
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Table 3.2  
 
Ecoregions in this study, along with the number of units and number of data points in 
each between May – September, 2006 – 2018. Total Flickr points = 489,061.  

Ecoregion 
Number 
of units 

Number of 
Flickr points1 Example units 

Northern forest 6 6,035 Isle Royale, Voyageurs 
Northwest forested mountains 20 209,173 Rocky Mountain, Yosemite 
Marine west coast forest 1 3,858 Redwood 
Eastern temperate forest: Mixed wood 
plains 

4 14,228 Acadia, Cuyahoga Valley 

Eastern temperate forest: Southeastern 
USA plains 

5 1,391 Congaree, Mammoth Cave 

Eastern temperate forest: Ozark, 
Ouachita-Appalachian forests 

10 17,830 
Shenandoah, Great Smoky 
Mountains 

Eastern temperate forest: Mississippi 
Alluvial and Southeast USA coastal 
plains 

11 18,337 
Gateway, Cape Cod National 
Seashore 

Great plains 10 24,901 Badlands, Tallgrass Prairie 
North American deserts: cold deserts 21 86,804 Zion, Grand Canyon 
North American deserts: warm deserts 9 25,784 Joshua Tree, Lake Mead 
Mediterranean California 5 76,508 Channel Islands, Point Reyes 
Southern semi-arid highlands 2 1,258 Saguaro, Chiricahua 

Temperate Sierras 2 797 
Guadalupe Mountains, 
Carlsbad Caverns 

Tropical wet forests 4 2,157 Everglades, Big Cypress 
1 Represents only one post per user, per day, within a 10-meter radius 
	
 
 
2.3.2    Joining Flickr Data with Weather and Geospatial Data 

We joined each Flickr point to the daily weather on that day at that location using 

spatially continuous modeled weather data from Daymet; these data were acquired using 

the R package daymetr (Thornton et al., 2018). These data are at a 1 km resolution and 

cover the entire continental U.S. However, Daymet does not provide weather estimates 

over oceans. Therefore, our analysis does not include any Flickr points tagged in an 

ocean (e.g., off the coast of a national park). Dry Tortugas National Park only had Flickr 
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points in the ocean; although this park was initially included as a study site, it did not 

contain any observations. 

We obtained elevation data for each point from the R package elevatr, which uses 

data from the U.S. Geological Survey for the continental U.S. We downloaded this data 

at the 1/3 arcsec resolution, which is a ground resolution of 6.8 m at 45° latitude (joerd 

respository, 2017). 

We also downloaded data on roads, waterbodies, buildings, and parking areas 

from OpenStreetMap directly from R using the osmdata R package. Table B.3 shows the 

key-value pairs used to download OpenStreetMap data for each feature category. All 

OpenStreetMap data were downloaded in December 2019. For each Flickr point, we 

calculated the straight-line distance to the nearest road, waterbody, parking area, and 

building. 

 

2.3    Analysis 

2.3.1    Social Media Data Validation 

 We compared the number of Flickr PUDs within each unit between the months of 

May and September from 2006 to 2018 to the NPS-reported visitation for each unit 

during the same time period to ensure the Flickr data are a reliable and representative 

indicator of visitation. PUD indicates that only one photo per visitor was counted each 

day; duplicate posts by the same visitor on the same day were removed even if they were 

in different areas of the park. Subsequent analyses used the full dataset filtered to include 

just one photo per user, per location. The NPS did not have visitation estimates for two 

units during this time period (Mississippi National River and Recreation Area and Sand 
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Creek Massacre National Historic Site), so they were not included in the correlations. We 

ran a Shapiro-Wilk test to see if the distributions of Flickr PUDs and NPS visitation were 

normal. If the distributions were normal, Pearson’s correlation is appropriate; Spearman’s 

correlation was used if the distributions were not normal.  

 

2.3.2    Understanding How Weather Impacts Visitors’ Spatial Behavior 

We first explored if and how individual parks have different microclimates (i.e., 

the park offers different areas where visitors can go that may have slightly different 

climates). We recorded the differences between the daily maximum temperature and 

precipitation at the Flickr points compared to the main visitor center on that day. We 

plotted distributions of differences by ecoregion to see if visitors were going to places 

within parks that have substantially different weather than at the visitor centers.   

We then investigated the effect of maximum temperature and precipitation on 

visitors’ spatial behavior by grouping visitors by the weather during the day they visited. 

For maximum temperature, visitors were grouped into three categories: cold day, average 

day, or hot day, based on the temperature at the visitor center on the day of the visit. 

Average days were defined as those within one standard deviation from the unit-specific 

seasonal mean maximum temperature. Cold days were defined as days with a maximum 

temperature lower than one standard deviation below the unit-specific seasonal mean 

maximum temperature. Hot days were classified as days with a maximum temperature 

greater than one standard deviation above the unit-specific seasonal mean maximum 

temperature. We grouped these observations by unit rather than ecoregion to reduce bias. 

For instance, one park within an ecoregion could be warmer than the others; grouping by 
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unit avoids having all data from one park classified in the same temperature category. 

Precipitation was split into two groups based on whether or not there was precipitation at 

the visitor center on the day of the visit. 

We tested if maximum temperature or precipitation affected: 1) the elevations 

visitors were traveling to within a park; 2) their distance to roads; 3) their distance to 

waterbodies; 4) their distance to designated parking areas, and 5) their distance to 

buildings. We ran Welch’s ANOVA tests to determine if there were differences in 

visitors’ elevations and distances to features between cold, average, and hot groups. If the 

results were significant at the 0.05 level, we ran Games-Howell post-hoc tests to 

determine where the significant differences were (i.e., if differences were between the 

cold and average group, hot and average, hot and cold, or all three). We used Games-

Howell tests because they do not require the assumptions of equal variances or equal 

sample sizes to be met (Hilton & Armstrong, 2006). Additionally, if there were 

significant differences between groups, we reported Cohen’s d to measure how large the 

effect size was. For precipitation, we ran Welch’s t-tests with Cohen’s d effect sizes. 

Welch’s tests were used rather than Student’s t-tests and standard ANOVAs because 

much of the data violated the assumption of equal variances. Furthermore, Welch’s tests 

often do not lose robustness even if the assumption of equal variances is met (Delacre, 

Lakens, & Leys, 2017). We ran separate tests for each ecoregion, given that weather may 

impact visitors differently by ecoregion. Therefore, we ran 70 Welch’s ANOVAs to test 

the effects of maximum temperature on each of the five variables (elevation and distance 

to roads, waterbodies, parking areas, and buildings) across the 14 ecoregions, and 70 

Welch’s t-tests to explore the effects of precipitation. We did not adjust for multiple 
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comparisons because each ecoregion represents a different dataset, and we are interested 

in how weather impacts visitors’ elevations and distances to roads, waterbodies, parking 

areas, and buildings independently. To visually compare how distributions may differ, we 

mapped spatial distributions in parks on cold days compared to hot days.  

 

3.    Results 

3.1    Correlations Between Flickr Data and NPS-reported Visitation  

Results indicated the distributions of both the Flickr data and the NPS visitation 

data were non-normal. We therefore ran Spearman’s correlation rather than Pearson’s 

correlation tests. When aggregating all data for each unit from 2006 to 2018 for the 

months of May through September, the correlation between Flickr PUDs and NPS-

reported visitation was Rs = 0.707 (n = 108, p < 0.001). At the monthly scale, aggregating 

monthly data from 2006 - 2018, the correlation was Rs = 0.709 (n = 540, p < 0.001). 

These results suggest geotagged Flickr data are a useful proxy for summer visitation in 

U.S. NPS units. 

 

3.2    Descriptive Statistics 

Table 3.3 shows all the means and standard deviations by ecoregion for daily 

maximum temperature at the visitor centers and Flickr points, daily precipitation at the 

visitor centers and Flickr points, and elevation at the visitor centers and Flickr points. 

Mean maximum daily temperature at visitor centers was highest in the warm desert 

ecoregion (37.1 °C) and lowest in the Marine west coast forest ecoregion (22.5 °C). 

Maximum daily temperature at Flickr points was also highest in the warm desert 
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ecoregion (35.2 °C), but lowest in the northwest forested mountains ecoregion (21.0 °C). 

Mean daily precipitation at visitor centers was highest in the tropical wet forest ecoregion 

(6.3 mm) and lowest in the Mediterranean California ecoregion (0.1 mm). Overall, there 

was not much variation in the amount of daily precipitation at visitor centers compared to 

Flickr points.  
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Table 3.3  
 
Means and standard deviations (in parenthesis) for all weather data and elevation by 
ecoregion. Values represent data from May – September. n represents one Flickr post per 
person per day, within a 10 m radius. 

Ecoregion n 

Max. 
temp at 
visitor 
centers 

(˚C) 

Max. 
temp at 
Flickr 
post 
(˚C) 

Precip. At 
visitor 
centers 
(mm) 

Precip. 
at Flickr 

post 
(mm) 

Elevation 
at visitor 
centers 

(m) 

Elevation 
at Flickr 
post (m) 

Warm deserts 25,784 37.1 
(6.6) 

35.2 
(7.2) 

0.3 
(2.0) 

0.3 
(2.3) 

478.3 
(403.1) 

722.2 
(560.0) 

Southern semi-
arid highlands 

1,258 33.5 
(4.6) 

33.1 
(5.7) 

1.2 
(3.5) 

1.2 
(3.7) 

1088.9 
(284.1) 

1100.6 
(479.3) 

Tropical wet 
forests 

2,157 32.3 
(1.6) 

32.4 
(1.6) 

6.3 
(10.3) 

6.9 
(12.7) 

1.2 
(0.4) 

1.1 
(0.9) 

Southeastern USA 
plains 

1,391 29.6 
(3.8) 

29.5 
(3.8) 

3.9 
(9.2) 

3.9 
(9.1) 

210.4 
(88.4) 

197.9 
(89.7) 

Temperate Sierras 797 29.5 
(4.9) 

29.3 
(5.5) 

1.3 
(4.8) 

1.3 
(4.7) 

1506.5 
(197.5) 

1521.3 
(350.2) 

Mississippi 
alluvial and 
southeast USA 
coastal plains 

18,337 27.6 
(4.2) 

27.8 
(4.3) 

3.5 
(10.8) 

3.2 
(9.9) 

5.1 
(3.8) 

3.7 
(7.0) 

Cold deserts 86,804 27.3 
(6.1) 

27.4 
(6.0) 

1.1 
(3.1) 

1.0 
(3.1) 

1829.0 
(467.1) 

1830.8 
(501.7) 

Ozark, Ouachita-
Appalachian 
forests 

17,830 27.1 
(3.9) 

25.3 
(4.6) 

4.1 
(8.3) 

4.6 
(8.9) 

387.0 
(106.2) 

770.3 
(492.3) 

Great plains 24,901 26.3 
(5.0) 

26.3 
(5.0) 

2.6 
(6.9) 

2.8 
(7.4) 

375.3 
(241.0) 

385.2 
(258.0) 

Mixed wood 
plains 

14,228 24.1 
(4.2) 

23.8 
(4.3) 

3.1 
(7.6) 

3.3 
(7.9) 

99.0 
(86.8) 

172.5 
(128.8) 

Northern forest 6,035 24.0 
(4.2) 

24.0 
(4.2) 

3.1 
(7.7) 

3.0 
(7.9) 

265.6 
(93.3) 

211.1 
(47.0) 

Northwest 
forested 
mountains 

209,17
3 

23.7 
(6.7) 

21.0 
(6.0) 

0.9 
(2.8) 

1.0 
(3.0) 

1606.8 
(685.1) 

1999.2 
(770.6) 

Mediterranean 
California 

76,508 23.0 
(4.3) 

22.5 
(4.2) 

0.1 
(1.2) 

0.1 
(1.3) 

77.7 
(63.3) 

82.9 
(137.6) 

Marine west coast 
forest 

3,858 22.5 
(3.2) 

21.7 
(3.4) 

0.7 
(2.8) 

0.7 
(2.7) 

47.5 
(0.0) 

97.1 
(126.1) 

   
 

Elevation at visitor centers was highest for the cold deserts ecoregion (1829.0 m), 

and highest for Flickr points in the northwest forested mountains ecoregion (1999.2 m). 
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Flickr points in the northwest forested mountains ecoregion had the largest standard 

deviation for elevation, indicating this ecoregion has the largest range of elevations 

visitors frequent. Elevation was lowest in the tropical wet forests ecoregion (1.2 m at the 

visitor centers, and 1.1 m at Flickr points). 

Table 3.4 shows the means and standard deviations by ecoregion for the distance 

from each Flickr point to the nearest road, waterbody, parking area, and building. We did 

not use road or parking data for three units (Channel Islands, Isle Royale, and Apostle 

Islands) because these parks are islands that do not have publicly accessible roads or 

parking.  
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Table 3.4  
 
Means and standard deviations (in parenthesis) for all distance measures by ecoregion. 
Values represent data from May – September. n represents one Flickr post per person 
per day, within a 10 m radius. 

Ecoregion n 

Dist. to 
road 
(m) 

Dist. to 
water 
(m) 

Dist. to 
parking 

(m) 

Dist. to 
buildin
g (m) 

Warm deserts 25,784 83.9 
(279.6) 

3697.9 
(9165.7) 

1181.9 
(4547.2) 

462.9 
(1131.6) 

Southern semi-arid 
highlands 

1,258 26.0 
(66.2) 

355.4 
(587.0) 

347.0 
(944.7) 

402.7 
(828.2) 

Tropical wet forests 2,157 120.4 
(401.7) 

319.9 
(643.9) 

666.4 
(1216.9) 

452.0 
(1134.9) 

Southeastern USA 
plains 

1,391 9.3 
(17.2) 

145.5 
(268.7) 

552.3 
(1331.9) 

174.2 
(447.1) 

Temperate Sierras 797 165.2 
(287.4) 

5829.1 
(2924.4) 

626.9 
(1557.3) 

612.4 
(1586.6) 

Mississippi alluvial 
and southeast USA 
coastal plains 

18,337 161.7 
(787.5) 

73.1 
(108.7) 

594.2 
(1377.0) 

102.2 
(222.1) 

Cold deserts 86,804 72.3 
(351.4) 

941.8 
(1918.5) 

549.2 
(1465.6) 

574.0 
(1201.2) 

Ozark, Ouachita-
Appalachian forests 

17,830 17.3 
(32.5) 

213.6 
(352.8) 

505.5 
(1329.1) 

197.2 
(537.2) 

Great plains 24,901 9.3 
(95.9) 

881.6 
(1975.9) 

309.2 
(3307.9) 

262.2 
(793.2) 

Mixed wood plains 14,228 57.6 
(348.0) 

87.1 
(128.3) 

430.0 
(2109.3) 

265.2 
(679.5) 

Northern forest 6,035 77.0 
(425.1) 

56.5 
(92.1) 

752.1 
(1431.1) 

599.9 
(1530.6) 

Northwest forested 
mountains 

209,173 72.2 
(258.5) 

119.9 
(213.4) 

417.6 
(1078.5) 

297.9 
(546.6) 

Mediterranean 
California 

76,508 25.9 
(110.3) 

80.5 
(164.7) 

100.6 
(252.2) 

548.1 
(847.9) 

Marine west coast 
forest 

3,858 15.1 
(20.8) 

222.3 
(262.8) 

259.9 
(412.8) 

497.4 
(543.2) 

 

Mean distance to roads ranged from 9.3 m (Southeastern USA plains) to 165.2 m 

(Temperate Sierras). Across all ecoregions, the mean distance to roads was 63.0 m, and 

the median distance to a road was 10.9 m. This indicates many visitors to NPS units stay 

very close to roads in the summer. In most ecoregions, visitors were farther from 
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buildings and designated parking areas compared to roads. These results suggest many 

visitors may take photos from their cars, or from pullout areas on the side of roads. 

Distance to waterbodies varied, with visitors in the Temperate Sierras ecoregion being 

the farthest from water, and visitors in the Northern forest ecoregion being closest to 

waterbodies.  

 

3.3    Microclimates Within Parks 

Some parks have more microclimates than others. Figure 3.2 shows the 

distributions for the difference in daily maximum temperature between the visitor center 

and individual Flickr point locations. Wider distributions (e.g., Northwest forested 

mountains ecoregion) indicate more microclimates within the parks, while narrower 

distributions (e.g., Southeastern USA plains) indicate daily temperatures are similar 

across the whole park unit, in places that receive visitation. These microclimates 

represent the differences in temperature between where people visit compared to the 

visitor center; they do not necessarily represent differences in daily temperature across all 

park areas. Since some places may be inaccessible, we felt it was important to explore 

temperature differences, and thus microclimates, in park areas that receive visitation. 
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Figure 3.2. Boxplots of the distributions by ecoregion for the difference in daily 
maximum temperature (°C) between visitor centers and individual Flickr points within 
each park. Boxes represent the interquartile range, with black lines representing the 
medians; black dots represent outliers. Negative values indicate visitors are going to 
places within the park that are colder than the temperature at the visitor center.  

 

Overall, there is less variation in the difference in daily precipitation between the 

visitor centers and Flickr point locations. For all ecoregions, the interquartile range for 

the precipitation difference is 0.0 mm to 0.0 mm., indicating at least 50% of the Flickr 

points in each ecoregion have the same daily precipitation as the visitor centers in every 

ecoregion. However, there are still some differences in precipitation between Flickr 

points and visitor centers, with the Mississippi alluvial/southeastern coastal plains 

ecoregion having the largest differences.   

 

3.4    Differences in Visitation Patterns between Hot and Cold Days  
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 The cutoff points for what was defined as a cold day, average day, and hot day 

differ by park unit and can be found in Appendix B, Table B.4. The effect of maximum 

temperature on visitors’ elevation and distance to roads, waterbodies, parking areas, and 

buildings varied by ecoregion (Figure 3.3). There is not a consistent trend in how 

temperature impacts patterns of visitation across ecoregions for any variable. In some 

ecoregions (e.g., tropical wet forests, mixed wood plains), visitors stay closer to parking 

areas and buildings on cold days, but in other regions (e.g., cold deserts, warm deserts), 

visitors travel farther from infrastructure on cold days. Visitors tend to frequent lower 

elevations on cold days in most ecoregions, but there is not a consistent trend in elevation 

on hot days. Although temperature does affect visitors’ spatial distributions within parks, 

the effect sizes were all very small or small.  

Boxes without values in Figure 3.3 indicate there was no statistical differences 

across the three temperature classifications for that particular ecoregion; this does not 

necessarily mean no difference exists. Some ecoregions had smaller sample sizes (e.g., 

temperate sierras at n = 797), while some had very large sample sizes (e.g., northwest 

forested mountains at n = 209,173). Statistical power is higher when sample sizes are 

larger, so we were inherently more likely to detect significant differences in ecoregions 

with larger sample sizes. Appendix Table B.5 shows the sample sizes for each ecoregion 

based on temperature and precipitation grouping. Additionally, Appendix Table B.6 

shows the full statistical results associated with Figure 3.3, including p-values and effect 

sizes. Within each ecoregion, different units contain different sample sizes; therefore, the 

results are likely driven by the parks with the largest samples in each ecoregion. 
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Figure 3.3. Differences in means on cold days, compared to average days (left side), and 
differences in means on hot days, compared to average days (right side). All numbers are 
differences in meters. Positive values represent higher elevations and farther distance 
from features on cold or hot days (compared to average); negative values represent lower 
elevations and closer distance to features on hot or cold days.  

 

 Figure 3.4 shows examples of how spatial distributions differ during cold and hot 

days for two parks: Yosemite National Park (Northwest forested mountains ecoregion) 

and Death Valley National Park (warm deserts ecoregion). These maps suggest some 

trails or regions are more popular on hot days, while others are more popular on cold 

days. In Yosemite, the map shows that visitors are more likely to stay closer to roads on 

cold days. This is consistent with findings from the results in Figure 3 from the 

Northwest forested mountains ecoregion, that visitors stay 19.6 m closer to roads on cold 

days compared to average days. In Death Valley, visitors appear more likely to stay near 

roads on hot days, consistent with results from the warm deserts ecoregion that shows 

visitors stay 12.1 m closer to roads on hot days, and 20.4 m farther from roads on cold 



	

 

 
79 

days, compared to average days. Maps showing general spatial distributions of visitors in 

each study site, as well as spatial distributions on cold versus hot days, are available 

online (https://dx.doi.org/10.3886/E119191V1). 

Figure 3.4. Spatial distribution of visitors in Yosemite National Park and Death Valley 
National Park on cold days (blue dots) compared to hot days (red dots). Solid black lines 
represent roads, and dotted black lines represent trails downloaded from OpenStreetMap. 
Figures created in R with ggmap. 
 

3.5    Differences in Visitation Patterns Between Wet and Dry Days 

The effect of daily precipitation on visitors’ elevation and distance to roads, 

waterbodies, parking areas, and buildings also varied by ecoregion, although there are 

some trends across ecoregions (Figure 3.5). Overall, on rainy days, visitors were more 

likely to stay near roads, waterbodies, parking areas, and buildings. However, this trend 

does not hold for some of the warmest ecoregions (e.g., warm deserts), where visitors 

were farther from infrastructure on rainy days. In the warmer ecoregions, visitors went to 
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higher elevations on rainy days, but in the cooler ecoregions, visitors stayed at lower 

elevations on rainy days. Although rain does impact visitors spatial behavior in all 

ecoregions, the effect sizes are mostly very small, with a few effects being small or 

medium. Appendix B, Table B.7 contains the full statistical results associated with Figure 

3.5, including p-values and effect sizes.  

	

 
Figure 3.5. Differences in means on days with precipitation, compared to days with no 
precipitation. All numbers are differences in meters. Positive values represent higher 
elevations and farther distance from features on days with precipitation; negative values 
represent lower elevations and closer distance to features on days with precipitation. 
 

4.    Discussion 
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 Our results suggest visitors in some ecoregins do change their elevations and/or 

distances to roads, waterbodies, parking areas, or buildings based on daily temperature 

and precipitation. The effect of temperature on elevation and distance to a road, distance 

to a waterbody, distance to a parking area, and distance to a building varied by ecoregion, 

with no consistent trends across all ecoregions. Overall, visitors were more likely to stay 

near infrastructure and waterbodies on days with precipitation, although this is not true in 

every ecoregion. It is not clear why visitors would be staying closer to bodies of water on 

days with precipitation; further research is needed to determine what the reasoning is for 

this or if there are confounding effects. However, the effect sizes of the differences are 

mostly very small, indicating that maybe only a subset of visitors are impacted by 

weather. Weather impacts visitors differently depending on their activity type and 

demographic characteristics, so some visitors may be more or less impacted by the 

weather (Verbos et al., 2018). We found that the majority of visitors stay very close to 

roads (i.e., over half are within 11 meters from a road); it is possible that weather may 

have less of an impact on visitors who plan to stay near roads, most likely very close to 

(if not in) a vehicle. More research would be needed to determine if and why only certain 

groups of visitors alter their spatial behavior within parks based on the weather.  

 Climate change is expected to alter the total number of visitors to parks, with the 

majority of parks in the U.S. expected to see an increase in visitation (Fisichelli et al., 

2015). This could strain park resources and cause overcrowding in some parks. Since 

most visitors stay close to roads, it is important to maintain the roads and infrastructure 

that are already present. Accommodating visitation demand may not require substantial 

increases in some types of outdoor recreation infrastructure (e.g., trails), but rather a re-
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thinking of what the typical park experience is for most visitors. With most visitors 

choosing to stay extremely close to existing park infrastructure, capital investments 

should be focused on infrastructure upgrades and developments (e.g., remodeling and 

expanding visitor centers) that are better able to serve the needs and desires of more 

visitors in the future. However, it is important to note that climate change is not the only 

factor that is likely to change patterns of park visitation; other factors that impact 

visitation patterns include the economy, advertising, population growth, and shifting 

demographics (Jones & Scott, 2006; Poudyal, Paudel, & Tarrant, 2013; Stevens, More, 

Markowski-Lindsay, 2014; Weber & Sultana, 2013). 

Previous work has found total visitation to parks is influenced by daily and 

monthly weather conditions (e.g., Paudyal et al., 2019; Smith et al., 2018). Our findings 

suggest that some visitors will respond to warmer than average temperatures by adapting 

where they go within a park. For example, some visitors may go to higher elevations on 

warm days, while other parks may see more visitors at lower elevations, possibly in 

cooler canyons or near the ocean. In some ecoregions, visitors may also choose to stay 

closer to roads or bodies of water on exceptionally hot days. Once a visitor is already at a 

park unit, they can respond to adverse weather by not visiting (i.e., staying in nearby 

towns), visiting a different location in the park, or changing activities (Verbos et al., 

2018). More research is needed to understand how visitors decide to respond in different 

ways, and how that varies by user group.  Park managers can help visitors adapt to 

extreme temperatures by providing information on which areas of the park, that are 

accessible by road, are comparatively cooler. However, not all parks contain 

microclimates that may allow for adaptation.  
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Parks in some ecoregions have more microclimates than others. For example, our 

analyses showed that parks in the warm deserts, cold deserts, and the Northwest forested 

mountains ecoregions had wide distributions in the difference in temperature between 

visitors’ locations in the park and the temperature at the visitor center. In other 

ecoregions, such as the Southeast USA plains, visitors were almost always at a location in 

the park that had the same temperature as the visitor center. Visitors may therefore have a 

greater ability to adapt and spatially substitute outdoor recreation settings within park 

boundaries at some parks compared to others. In parks that do not have varying 

microclimates, visitors may be less likely to visit on days with unfavorable temperatures 

rather than change their spatial behavior within the park. This is consistent with findings 

from Smith and colleagues (2018), which found that visitation declined in some Utah 

national parks once temperatures were above 25 °C, but visitation continued to increase 

above this threshold in parks that seemingly had more microclimates. However, we only 

investigated microclimates with regards to where people currently visit; it is possible that 

some parks in this study do have microclimates within their boundaries that are not 

currently visited, but may see visitation in the future. 

 Although this analysis only covered the summer season (defined as May – 

September), it is likely that some trends may be attributed to within-season variability. 

For instance, it is more likely to be cold in May and September, and hot in July and 

August. In some mountainous parks, certain roads or trails may be closed at the 

beginning of the summer season until snow melts. Therefore, visitors may not have had 

the option to visit some park areas on colder than average days. Visitor patterns may be 

driven by managerial factors (i.e., closed roads or trails) rather than solely visitors’ 
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decisions in some parks. Parks in the Northwest forested mountains ecoregion are the 

most likely to have certain areas closed due to snow in the summer, so these managerial 

factors are likely to have the biggest influence in this ecoregion. Additionally, the impact 

of weather of visitors’ behavior is likely to be different in other seasons.  

As with any data source, social media data has its limitations. Social media data 

may not be representative of the spatial patterns of all park visitors, since only a small 

portion of total visitors post photos to Flickr. During the time period of this study (May – 

September, 2006 – 2018), the NPS recorded 1.17 billion visits across 108 parks in this 

study for which they had visitation data. Our Flickr dataset for these 108 parks represents 

470,894 points, indicating that only 0.04% of visits to these parks during our period of 

analysis are captured on Flickr. We also cannot obtain visitor demographics from social 

media, so it is unknown if weather alters spatial behavior of some visitor demographics 

more than others. Additionally, some parks (e.g., Yellowstone, Yosemite) tend to have 

substantially more social media posts than other parks, indicating the most popular parks 

were overrepresented in this analysis. OpenStreetMap was an excellent resource for 

large-scale volunteered geographic information, but the accuracy of this data source does 

vary by location and feature (Parr, 2015; Zhang & Malczewski, 2017). While the road 

and water features appeared to be complete in all NPS units, the parking and building 

datasets were likely not entirely complete. In other words, some buildings and parking 

areas were missing, but all of the parking areas and buildings documented on 

OpenStreetMap did exist in that location. Therefore, the estimates for distance to parking 

and buildings likely represent high estimates. In addition, distances to features do not 
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necessarily indicate how far a visitor hikes or ventures; a visitor could hike for over 500 

m and still be within 10 m of a road. 

Our investigation began with an effort to understand how weather may impact 

visitors’ spatial behavior within U.S. NPS units. Further studies could explore if weather 

changes spatial patterns of visitors outside park boundaries, such as to gateway towns and 

surrounding parklands. Additionally, a visitor survey would be a useful complement to 

understand stated preferences, and if weather impacts the behavior of some visitors but 

not others. Future research should also consider that the effect of weather on park 

visitation is not homogenous across a country. Our results indicated large differences 

across ecoregions, so results from one ecoregion cannot necessarily be extrapolated onto 

parks with differing climates or topography. We would expect parks in other countries 

may exhibit comparable results to the ecoregion that has the most similar climate and 

topography; however, this needs additional research. In addition, this analysis 

demonstrates the utility of social media data for revealing visitation patterns within parks 

at high spatial and temporal resolutions, which can be useful to understand visitor 

behavior beyond the context of weather-dependencies. 

 

5.    Conclusions 

 In certain ecoregions, visitors alter the locations they go to within NPS units 

based on daily weather conditions. The effect of temperature and precipitation on 

visitors’ spatial behavior varies by ecoregion, likely because the climates, topography, 

and availability of microclimates within parks differ by these ecoregions. Some parks 

may see an increase in visitors to higher elevations on hot days, while other parks may 
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see more visitors at lower elevations on hot days. Visitors are overall more likely to stay 

near infrastructure, such as roads and parking areas, on rainy days. Park managers should 

expect spatial distributions of summer visitors within parks to change somewhat in the 

future due to increasing numbers of hot days. In parks that contain more microclimates, 

visitors may have a greater ability to adapt to adverse temperature conditions by spatially 

substituting one outdoor recreation setting for another.  
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CHAPTER IV 

CLIMATE AND THE DEMAND FOR RECREATIONAL ECOSYSTEM SERVICES 

ON PUBLIC LANDS IN THE UNITED STATES 

Abstract  

Cultural ecosystem services (CES) represent nonmaterial benefits people derive 

from the environment, such as recreational or aesthetic enjoyment. However, a warming 

climate may shift the demand for CES spatially or temporally. Here, we explore how the 

average seasonal maximum temperature affects the demand for recreational CES across 

public lands in the continental United States. We use 14 years of geotagged data from 

Flickr to understand how the climate of an area affects the demand for recreational CES 

by season. We use geographically weighted negative binomial regression models to 

explore if the effect of average seasonal maximum temperature on the demand for 

recreational CES may vary in different regions of the U.S. Results indicate that in the 

spring, fall, and winter, the demand for recreational CES on U.S. public lands is higher in 

places with warmer climates; in the summer, the demand is higher in cooler climates. The 

effect of average temperature on visitation is not spatially stationary in the winter and 

summer, with a greater impact on the Western U.S. These results suggest that under 

climate change, there may be an increased demand for recreational CES in the spring, 

fall, and winter, but a lower demand in the summer. People may choose to visit in 

different seasons, choose different location, or visit on days that are comparatively 

warmer or cooler depending on their preferences. In hotter locations, in the fall, spring, 

and summer, people were more likely to visit on days that were colder than seasonal 

averages. 
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1.     Introduction 

Ecosystem services represent all direct and indirect benefits humans receive from 

the environment. These include provisioning services (e.g., food), regulating services 

(e.g., water purification), supporting services (e.g., nutrient cycling), and cultural 

services. Cultural ecosystem services (CES) are defined as “the nonmaterial benefits 

people obtain from ecosystems through spiritual enrichment, cognitive development, 

reflection, recreation, and aesthetic experiences” (Millennium Ecosystem Assessment, 

2005). CES reflect the social and psychological values ascribed to an environment. As 

such, they have been mapped using a variety of different methods which allow 

individuals to provide input on what those values are, and where they are provided on a 

landscape (Lee et al., 2019). Mapping CES helps landowners, land managers, and 

policymakers understand the trade-offs associated with different policies and decisions 

(Plieninger et al., 2015, Ruckelshaus et al., 2015). Public land management decisions 

may also be seen as more acceptable and legitimate if the non-material benefits, such as 

CES, that individuals receive from the landscape are included in decision-making 

processes (McKenzie et al., 2014; Milcu, Hanspach, Abson, & Fischer, 2013). 

Mapping CES can be costly; the process often requires individuals who use a 

landscape to provide input on how they value that landscape through surveys or 

participatory exercises. Consequently, maps of CES are often limited to small geographic 

scales such as municipalities (Van Berkel & Verburg, 2014) and regions (Martínez-

Harms & Balvanera, 2012). Outdoor recreation and tourism opportunities are CES that 

are relatively easy to quantify when compared to other types of CES such as spiritual 

value (Crossman et al., 2013; Egoh, Drakou, Dunbar, Maes, & Willemen, 2012). For 
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example, researchers can use data on park visitation or hotel and campsite occupancy to 

map outdoor recreation and tourism opportunities (e.g., Arkema et al., 2015). Outdoor 

recreation and tourism opportunities are also intertwined with other CES like spiritual, 

educational, and aesthetic values, making them a good indicator of these broader CES 

(Hermes et al., 2018). 

Many factors affect the demand for recreational CES across landscapes and drive 

changes in the production of CES (Milcu et al., 2013). Previous research shows the 

overall climate of an area, as well as the daily weather, impact the demand for outdoor 

recreational opportunities (Finger & Lehmann, 2012; Smith, Wilkins, Gayle, & Lamborn, 

2018). Thus, warmer than average temperatures, and increasing variability in weather due 

to climate change, are likely to shift the demand for recreational CES spatially and/or 

temporally. Additionally, climate change may affect the demand for CES indirectly. For 

example, there may be spatial or temporal shifts due to changing ecosystems and species 

distributions (Moreno & Amelung, 2009). Climate change may threaten CES in some 

locations or seasons but increase the demand for CES in other areas or seasons. In this 

research, we identify how climate affects the demand for recreational CES on public 

lands across the continental United States. We use geotagged social media posts as a 

measure of visitation to public lands; direct use, or visitation, is one measure that has 

been used to represent the demand for CES (Wolff, Schulp, & Verburg, 2015). 

Understanding potential future shifts in the demand for recreational CES can help public 

land managers plan and prepare for changing demand. 

 

1.1 Mapping Cultural Ecosystem Services 
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Studies that map CES have used a wide variety of data as indicators (Egoh et al., 

2012; Kopperoinen, Luque, Tenerelli, Zulian, & Viinikka, 2017). Recently, researchers 

have used social media to map CES within public lands (e.g., Clemente et al., 2019; 

Rossi, Barros, Walden-Schreiner, & Pickering, 2019; Vaz et al., 2020). Social media 

often have a fine spatial resolution and have been shown to be correlated with visitation 

to public lands across many locations around the globe (Tenkanen et al., 2017; Wilkins, 

Wood, & Smith, 2020; Wood, Guerry, Silver, & Lacayo, 2013). The majority of studies 

mapping CES with social media tend to use data from Flickr, a photo-sharing application.  

Researchers studying CES using social media data have predominately analyzed 

photo content and geotags to understand spatial distributions of what visitors photograph 

(Wilkins, Wood, & Smith, 2020). For example, studies have manually viewed and 

classified Flickr photos in public lands based on the specific CES depicted (e.g., aesthetic 

landscapes, recreation, cultural heritage, spiritual, research/education) (e.g., Clemente et 

al., 2019; Retka et al., 2019). The most common CES present in Flickr photos include 

aesthetic and recreational values, both of which are ascribed to landscapes and their 

characteristics (Clemente et al., 2019; Retka et al., 2019; Rossi et al., 2019). Other CES 

(e.g., spiritual values) may also be present in Flickr photos, however they are often 

underrepresented because they are harder to photograph and identify through photos 

(Clemente et al., 2019). Other studies have analyzed Flickr photographs to understand a 

specific CES, such as wildlife viewing (Runge, Hausner, Daigle, & Monz, 2020; 

Willemen, Cottam, Drakou, & Burgess, 2015). 

Previous research has also used other aspects of social media, beyond photo 

content, to analyze CES. Johnson et al. (2019) found all categories of CES mentioned in 
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the Millennium Ecosystem Assessment were present in geotagged tweets within an urban 

park. Other studies have used geotagged Flickr photos and viewsheds to map the demand 

for and the production of CES across a landscape (Van Berkel et al., 2018; Yoshimura & 

Hiura, 2017). Previous research has used social media to quantify recreational and 

aesthetic CES at large geographic scales (van Zanten et al., 2016). Collectively, this 

growing body of literature has demonstrated the potential utility of using geotagged 

social media to map CES across landscapes. 

Most of the studies using social media analyze the demand for CES. ‘Demand’, in 

an economic sense, refers to the desire of an individual to use a CES as well as a 

willingness to pay the costs associated with doing so. For recreational CES, if an 

individual travels to a destination from one’s home, the travel cost indicates the 

individual’s willingness to pay to participate in outdoor recreation (Khan, 2006). Related 

to demand, is the supply of CES; this is the total potential for a landscape to produce a 

CES (Tallis et al., 2012). While the term “demand” in the CES literature has been used to 

indicate preferences and values as well as direct use, we adopt the stricter definition and 

use demand to refer specifically to direct use (Wolff et al., 2015).  

Many factors influence visitation to public lands, and by inference the demand for 

CES, including the daily weather and long-term climatological averages (Hewer, Scott, & 

Fenech, 2016; Smith et al., 2018). There is a need to better understand how the demand 

for CES provided by public lands changes in response to climate. 

 

1.2 The Effect of Weather and Climate Change on Visitors to Public Lands 
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Individuals often consider the climate of a destination when choosing where and 

when to visit an outdoor recreation or tourism destination (Scott & Lemieux, 2010). Once 

on-site, the daily weather impacts where visitors go within parks, what activities they 

choose, and how long they stay (Hewer, Scott, & Gough, 2017; Wilkins, Howe, & Smith, 

in review). For example, visitors to some U.S. national parks venture farther from roads, 

but stay closer to bodies of water, on hot days (Wilkins et al., in review). Visitors’ 

sensitivity to weather conditions, as well as their behavioral responses, varies based on 

the location, climate, and topographic features of the area (Scott, Gössling, & de Freitas, 

2008; Verbos, Altschuler, & Brownlee, 2018).  

Visitation to public lands generally increases with increasing temperatures, but 

there is a threshold that visitors consider too hot, and visitation declines (Fisichelli et al., 

2015). Previous research has found this threshold to be between 25 - 33°C, although this 

varies based on the climate and topography of the park, as well as the season, and the 

recreational activity of interest (Fisichelli et al., 2015; Hewer, Scott, & Gough, 2018; 

Hewer et al., 2016; Smith et al., 2018). Recent research suggests maximum daily 

temperature affects park visitors more than mean or minimum daily temperature, likely 

because visitors tend to be outside in the afternoons, when temperatures tend to be the 

hottest (Jones & Scott, 2006; Smith et al., 2018).  

Climate change has already expanded the length of the peak visitation season for 

some parks (Buckley & Foushee, 2012; Monahan et al., 2016), and is expected to change 

total visitation at 95% of U.S. National Park Service units (Fisichelli et al., 2015). 

However, the effects of climate change on visitation to public lands may vary by season, 

location, and activity (Hewer & Gough, 2018). Some places may see an increase in 
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visitation in the shoulder seasons, but a decrease in summer visitation (Scott, Jones, & 

Konopek, 2007). Warmer winters may decrease outdoor recreation opportunities in 

places that traditionally provided snow-dependent recreation (e.g., skiing, 

snowmobiling), but may increase opportunities for warm-weather activities (Askew & 

Bowker, 2018; Hand, Smith, Peterson, Brunswick, & Brown, 2018).  

Climate may also indirectly impact the demand for CES. For instance, people may 

have less desire to recreate on landscapes with melted glaciers (Stewart et al., 2016), or in 

places that recently experienced wildfire (Kim & Jakus, 2019; Duffield, Neher, Patterson, 

& Deskins, 2013). The demand for CES may also shift spatially or temporally depending 

on changing distributions of plants, fish, and wildlife (Lamborn & Smith, 2019; Moreno 

& Amelung, 2009). For example, snow melting earlier than usual may change the timing 

of wildflower blooms in parks, which in turn may decrease visitor satisfaction, or change 

the timing of trips (Breckheimer et al., 2020). However, most studies that investigate the 

impacts of climate change on visitors to public lands tend to focus on one agency and 

often one park; there is a need for research across multiple agencies and public lands 

(Brice et al., 2017). 

Given this need to understand how climate may impact visitors to public lands 

across multiple sites, our research is guided by two related research questions: (1) How 

does average maximum temperature influence the seasonal demand for recreational CES 

across U.S. public lands? And (2) Are there seasonally- and geographically-dependent 

temperature preferences that may influence the seasonal demand for recreational CES 

across U.S. public lands? 
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2.    Methods 

2.1    Study Sites 

 Study sites include public lands managed by state or federal agencies within the 

continental U.S. Specifically, this includes lands managed by state agencies, and lands 

managed by the National Park Service, USDA Forest Service, Fish and Wildlife Service, 

Bureau of Land Management, and Army Corps of Engineers. We did not include 

easements in this study. Table 4.1 shows the types of lands managed by each of these 

agencies, and Figure 4.1 shows the distribution of these lands across the U.S. We 

downloaded the boundaries for all public lands in 2019 from the Protected Areas 

Database of the United States; this database was last updated in September 2018 (U.S. 

Geological Survey Gap Analysis Project, 2018). 
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Table 4.1  
 
Land management agencies included in this study, as well as the types of lands they 
manage. 

Land management agency Type(s) of lands 
Federal agencies: 

Bureau of Land Management (BLM) BLM lands 
Fish and Wildlife Service (FWS) National wildlife refuges 

Resource management areas 
Conservation areas 

National Park Service (NPS) National parks 
National monuments 
National recreation areas 
National seashores 
National historic sites 
Wild & scenic rivers 

Army Corps of Engineers (USACE) Recreation management areas 
State recreation areas 

USDA Forest Service (USFS) National forests 
National grasslands 

State Agencies:  
State Department of Conservation (SDC) State parks 

State recreation areas 
State conservation areas 
State resource management areas 
State cultural or historic areas 

State Department of Natural Resources (SDNR) 
State Department of Land (SDOL) 
State Fish and Wildlife (SFW) 
State Land Board (SLB) 
State Park and Recreation (SPR) 
Other state agency (OTHS) 
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Figure 4.1. Public lands managed by select federal and state agencies in the U.S. 
 
 
2.2    Data Collection and Processing 

 We downloaded all Flickr data within the study sites from 2006 – 2019 directly 

from the Flickr Application Programing Interface (API) using a Python script. These data 

were downloaded in March 2020 and included geotagged coordinates, time stamps, user 

IDs, photo IDs, URLs to photographs, and spatial precisions. We only retained posts that 

had a spatial precision of 15 - 16 (on a scale from 1 – 16, with 16 being the highest 

spatial precision). We only retained one post per user, per day, within the same grid cell 

(described below). This represents the concept of a Photo-User-Day (PUD), which has 

been previously used to avoid oversampling users who post many pictures (Wood et al., 

2013; Wilkins et al., 2020). We used Flickr PUD as an indicator of visitation to public 

lands, and thus the demand for recreational CES. Each geotagged point indicated a 

person was at a specific place on the landscape for the purposes of obtaining CES.  
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We aggregated PUD across all years, by season, at a 30 km hexagonal grid3. 

Given that weather impacts visitors differently in different seasons, we separated PUD 

based on the season the photos were taken during: Summer (June, July, August); Fall 

(September, October, November); Winter (December, January, February); or Spring 

(March, April, May).  

 For each photo location, we found the average daily maximum temperature from 

1990 - 2019, for the specific season the photo was taken, using data from Daymet. 

Daymet provides spatially continuous modeled weather data at a 1-km scale; we used 30-

years of monthly climate summary rasters (Thornton et al., 2016a). For instance, if a 

photo was taken on July 1, 2018, we found the average daily temperature across June, 

July, and August, from 1990 – 2019, at that location. We then calculated the average 

temperature by grid cell, for each season, by taking the mean of the temperature at all 

Flickr points within the grid cell. We analyzed temperature at the Flickr points rather than 

the average across entire grid cells to account for the fact that some areas may not be 

easily accessible (e.g., steep slopes, road-less areas) or have much demand for CES. If a 

grid cell had 0 PUD, we found the average seasonal maximum temperature from 1990 – 

2019 at the cell centroid.  

 We calculated the population residing within 500 km of each grid cell using 2010 

population data from the NASA Socioeconomic Data and Applications Center (Center 

for International Earth Science Information Network, 2017). We used population within 

500 km to control for local population and potential local visitors, but do not assume that 

the population within 500 km is the only source of demand for recreational CES. We also 

																																																								
3 30 km grid size was chosen after analyzing the proportion of cells with 0 PUD at different scales (see 
Appendix C, Figure C.1.) 
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calculated the area of each grid cell that was public lands, as well as the area that was 

managed by the NPS. Lands managed by the NPS have substantially more visitation than 

the BLM, FWS, and USFS, yet the NPS manages less land (Leggett, Horsch, Smith, & 

Unsworth, 2017); therefore, this is likely an important predictor of the demand for CES. 

Additionally, we found the area of each cell that is designated wilderness (U.S. 

Geological Survey, n.d.); wilderness areas tend to be harder to access and may have 

lower visitation; again, a useful piece of information to include in a model estimating the 

demand for CES. In Appendix C, Figure C.2 provides a visual example of what the 

Flickr, public lands, and population data look like for one cell. 

We also found the daily maximum temperature at each point on the date the Flickr 

photo was taken using weather data from Daymet (Thornton et al., 2016b). We used 

maximum temperature because this has been shown to be a more influential predictor of 

visitation to parks than minimum or mean temperature (Smith et al., 2018). Maximum 

temperature often occurs in the afternoon, which is when public lands visitation is the 

highest, and visitors are more likely to see forecasts for maximum temperature than mean 

temperature. We downloaded maximum temperature data directly using the R package 

daymetr (Hufkens, 2019). We subtracted this value from the average 30-year seasonal 

daily maximum temperature at the same location, to see whether the visitor was at the 

location on a hotter or colder than average day. We used this data to understand how 

temperature at the date of visit may deviate from seasonal climatological averages. 

 

2.3    Data Analysis 
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2.3.1. Global and Local Regression Models to Estimate the Influence of Climate on the 

Demand for CES 

We first examined the spatial autocorrelation of Flickr PUDs using Moran’s I. We 

then used geographically weighted negative binomial regression (GWNBR) models to 

understand how the effect of average seasonal maximum temperature on Flickr PUDs 

varies spatially across the country. We used a Gaussian weighting scheme and found the 

bandwidth that minimized the root mean square prediction error using cross-validation. 

GWNBR is useful to model spatial non-stationarity while more accurately representing 

count data that is overdispersed (da Silva & Rodrigues, 2014). We ran separate models by 

season and plotted the spatial heterogeneity of the coefficients for the effect of average 

maximum temperature on PUD counts. We also ran season-specific negative binomial 

regression models to understand the global coefficients and global model fit. Global 

model fit was assessed using Nagelkerke R2, a pseudo-R2 measure that is appropriate for 

regression models using count data (Nagelkerke, 1991). 

We ran both season-specific GWNBRs and global negative binomial regressions 

to understand how the recent climate of an area affects the demand for CES in that area. 

The global negative binomial regression model for each season can be generally 

expressed as: 

Yi = NB[B0 exp(B1x1i + B2x2i + B3x3i + B4x4i + B5x5i), α] + ei 

Where the subscript i refers to each cell, NB represents negative binomial, and α refers to 

the overdispersion parameter. B0 refers to the intercept, and x1 refers to the cell-specific 

historical maximum temperatures. x2 refers to the cell-specific population within 500 km, 
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x3 refers to the area of public lands included in this study per grid cell, x4 refers to the area 

of NPS lands per cell, and x5 refers to the area of designated wilderness per grid cell. 

We tested the spatial non-stationarity of each independent variable by conducting 

a Monte Carlo significance test (Brunsdon, Fotheringham, & Charlton, 1996). The null 

hypothesis of this test is that coefficients do not vary spatially across the study area.  

 

2.3.2.    Spatial Correlation to Identify Seasonally- and Geographically-dependent 

Temperature Preferences 

 For each cell, we found the difference between the temperature at the date of visit 

and the 30-year temperature averages at that location and season; these differences were 

averaged across all Flickr PUDs by cell. We plotted these values by season to visually 

explore how temperature preferences deviate across the U.S. by season. We also 

calculated Spearman’s rank correlations between temperature deviation and average 

climate, by season, to understand if temperature preferences may be related to average 

seasonal temperatures.  

 

3.     Results 

3.1.    Descriptive Statistics and Autocorrelation 

Across public lands in the continental U.S., the demand for recreational CES was 

highest in the summer and lowest in the winter (Table 4.2). Flickr PUDs by season, 

aggregated from 2006 – 2019 at a 30 km grid, ranged from 159,620 to 326,810 posts. 

Between 31 – 45% of cells had public lands but no Flickr posts over this time period. The 

spatial distributions of PUD on public lands can be found in Appendix C, Figure C.3. 
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Additionally, PUDs per cell are spatially correlated (Moran’s I = 0.245 – 0.276, p < 

0.001; Queen’s case to define neighbors and symmetric binary weights). 

 
 
Table 4.2  
 
Descriptive statistics of the total posts and PUDs by cell and by season (data aggregated 
from 2006 – 2019). Numbers only represent Flickr posts within study sites shown in 
Figure 4.1. There were 9,096 cells that had federal or state public lands (1,488 cells had 
no federal or state public lands included in this study). Moran’s I values are from a 
Monte-Carlo simulation using 999 simulations. 

Season 
Total 
posts 

PUD (30 
km grid) 

Cells with 0 
PUD (%) 

Mean 
PUD per 
cell* (SD) 

Median 
PUD per 

cell* Moran’s I 
Moran’s 
I: p-value 

Summer 2,187,355 326,810 2,832 
(31.1%) 

52.2 
(257.7) 

9 0.276 0.001 

Fall 1,645,887 258,869 3,274 
(36.0%) 

44.5 
(228.9) 

7 0.266 0.001 

Winter 879,950 159,620 4,064 
(44.7%) 

31.7 
(185.7) 

5 0.252 0.001 

Spring 1,618,287 249,441 3,245 
(35.7%) 

42.6 
(264.3) 

7 0.245 0.001 

* Does not include cells that have 0 PUD 
 
 
3.2.    Global and Local Models of the Demand for Recreational CES  

 Results from the global negative binomial regression models indicate average 

maximum temperature has a positive relationship with the demand for recreational CES 

on public lands in the fall, winter, and spring, but a negative relationship in the summer 

(Table 4.3). The global coefficient is the largest in the summer, indicating the relationship 

between average temperature and the demand for recreational CES is the strongest in the 

summer. The population within 500km, area of public lands included in this study, and 

area of NPS land all have positive and significant relationships with the demand for 

recreational CES in every season. The area of wilderness is positively and significantly 

related to the demand for recreational CES in all seasons excluding summer. The 

Nagelkerke R2 values from the models are: 0.145 (spring), 0.155 (fall), 0.159 (winter), 
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and 0.234 (summer). Figures showing the spatial distribution of average seasonal 

maximum temperature can be found in Appendix C, Figure C.4.  

 
Table 4.3  
 
Results by season for global negative binomial regression models and GWNBR models. 
Coefficients are not standardized and represent the change in the log PUD for every one-
unit change in the predictor variables. Average maximum temperature is in ºC, 
population within 500 km is in millions, and area variables represent 100 km2. 
  Global 

regression 
Geographically weighted  

negative binomial regression 
 

  

Coef S.E. Min. 
First 
Qu. 

Med-
ian 

Third 
Qu. Max. 

p-
valu
e* 

Summer Intercept 5.166 0.155 4.658 4.896 5.034 5.178 5.322 0.00 
 Average max temp. -0.117 0.005 -0.120 -0.117 -0.114 -0.111 -0.106 0.00 
 Population 500 km 0.035 0.001 0.034 0.035 0.035 0.036 0.037 0.00 
 Area PPAs 0.160 0.009 0.154 0.167 0.167 0.171 0.176 0.01 
 Area NPS 0.798 0.031 0.732 0.782 0.832 0.889 1.044 0.11 
 Area wilderness 0.014 0.027 0.012 0.016 0.020 0.023 0.032 0.53 
Fall Intercept 1.482 0.094 1.336 1.404 1.431 1.460 1.513 0.00 
 Average max temp. 0.012 0.005 0.008 0.010 0.012 0.014 0.017 0.24 
 Population 500 km 0.036 0.001 0.035 0.035 0.036 0.037 0.038 0.03 
 Area PPAs 0.130 0.010 0.120 0.129 0.137 0.143 0.153 0.01 
 Area NPS 0.872 0.033 0.815 0.856 0.896 0.939 1.035 0.50 
 Area wilderness 0.173 0.029 0.165 0.172 0.176 0.179 0.185 0.31 
Winter Intercept 0.684 0.054 0.623 0.652 0.669 0.688 0.707 0.00 
 Average max temp. 0.084 0.004 0.079 0.081 0.083 0.085 0.088 0.00 
 Population 500 km 0.035 0.001 0.034 0.034 0.035 0.035 0.036 0.02 
 Area PPAs 0.096 0.010 0.091 0.095 0.099 0.102 0.106 0.00 
 Area NPS 0.689 0.036 0.661 0.684 0.701 0.726 0.770 0.89 
 Area wilderness 0.366 0.031 0.363 0.366 0.369 0.370 0.374 0.90 
Spring Intercept 1.195 0.086 0.969 1.083 1.139 1.197 1.273 0.01 
 Average max temp. 0.033 0.004 0.031 0.033 0.034 0.034 0.036 0.08 
 Population 500 km 0.035 0.001 0.034 0.035 0.036 0.036 0.038 0.26 
 Area PPAs 0.102 0.010 0.092 0.101 0.109 0.116 0.125 0.01 
 Area NPS 0.844 0.033 0.805 0.837 0.868 0.899 0.969 0.89 
 Area wilderness 0.147 0.029 0.141 0.147 0.149 0.151 0.156 0.61 
Note: Bold variables are statistically significant at p < 0.01.  
* Represents p-values from Monte Carlo significance tests for spatial non-stationarity. 
 
 

Summer and winter show statistically significant spatial non-stationarity of 

average maximum temperature, but we do not detect spatial non-stationarity in fall and 
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spring at the 0.05 level (Table 4.3). Spatial non-stationarity indicates that the regression 

coefficient varies across the study period. Figure 4.2 displays the spatial patterns of 

GWNBR coefficients for the relationship between average maximum temperature and 

PUD, by season. In both the summer and winter, the coefficients are largest on the West 

coast, and smallest on the East coast. This suggests average maximum temperature has a 

stronger effect on the demand for recreational CES on the West coast.  

 

 
Figure 4.2. Spatial patterns of the GWNBR model coefficients for only the average 
maximum temperature variable. Positive coefficients represent the increase in log PUDs 
by cell, for every 1ºC temperature increase, holding all the other independent variables 
constant. White cells represent areas that have no public lands included in this study. 
Spatial non-stationarity is only statistically significant for summer and winter. 
 
 
3.3.    Temperature Preferences by Season 



	

 

 
111 

The previous analysis explored how average maximum temperature is related to 

the demand for recreational CES on public lands. However, as the climate continues to 

warm, the demand for reacreational CES may be more variable in certain regions and 

seasons due to temperature preferences of visitors. Figure 4.3 shows if visitors tend to 

visit public lands on days that are hotter or cooler than seasonal 30-year averages across 

the U.S. Overall, there are not strong visual trends in preferences in the summer and 

winter. In both the fall and the spring, people tended to visit on warmer days in Northern 

and mid-latitudes; however, in the Southern U.S., people visited on days with 

temperatures that were colder than seasonal climatological averages.  

Temperature preferences are correlated with the climatological averages. In the 

fall and spring, in hotter areas, people were more likely to visit on colder days (fall: rs = -

0.439, p < 0.001; spring: rs = -0.317, p < 0.001). This trend was the same in the summer, 

but the correlation is lower (rs = -0.116, p < 0.001). In the winter, the correlation is 

smaller, but positive, indicating in hotter areas, people were slightly more likely to visit 

on hotter days (rs = 0.029; p = 0.037). The larger correlations in the fall and spring may 

be somewhat attributable to ecosystem characteristics rather than just temperature 

preferences. For instance, fall visitation may be substantially influenced by peak foliage 

colors and spring visitation may be influenced by wildflower blooms in some regions. 
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Figure 4.3. Distribution of the difference in maximum temperature at the day of visit 
compared to seasonal climate averages. Numbers are averaged for all Flickr PUD within 
public lands in each 30 km grid cell. White cells represent areas that have no state or 
federal public lands included in this study. 
 
 
4.     Discussion 

Overall, the demand for recreational CES on U.S. public lands was the highest in 

the summer and lowest in the winter. The demand for recreational CES on public lands 

between 2006 – 2019 was twice as high in the summer compared to the winter. In the 

spring, fall, and winter, the demand for recreational CES on public lands was higher in 

places with warmer climates, with the largest effect in the winter. However, in the 

summer, demand was higher in places with cooler climates. The effect of average 
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temperature on PUD was not stationary in the summer and winter, with the greatest 

impact of temperature being in the Western U.S.  

 As the climate continues to warm, our results suggest there will likely be a greater 

demand for recreational CES on public lands in the spring, winter, and fall, and a lower 

demand for recreational CES in the summer compared to past seasonal visitation patterns. 

Our findings support the idea of the expanding peak season of visitation others have 

found (Buckley & Foushee, 2012; Monahan et al., 2016). Rather than have high demand 

for CES during only a few months (often in the summer), the demand may be either 

spread out more or be elevated for a longer period of time (i.e., expanding shoulder 

seasons).  

As temperatures rise across the U.S., visitors may choose to shift the timing, 

location, and frequency of their trips to public lands. Visitors may shift the timing of their 

trips to a different season entirely, or they may choose to visit on a day that has preferable 

weather. For example, the temperature preference maps in Figure 4.3 indicate that in hot 

locations, visitors may be more apt to visit on comparatively cooler days. This supports 

what others have found, that although warmer temperatures are generally preferred, there 

is likely a threshold that people consider too hot (Fisichelli et al., 2015; Hewer et al., 

2018). However, non-local visitors may have less ability to adapt by visiting on 

comparatively cooler days, since trips are often planned weeks or months in advance. 

Future research is needed to better understand how different groups of visitors, such as 

local versus non-local visitors, may shift their demand for CES spatially or temporally 

due to increasing temperatures.  
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Our study does have limitations that need to be considered when interpreting the 

findings. Overall, the pseudo-R2 values from the global models were relatively low, 

indicating there are other variables that impact the demand for recreational CES on public 

lands which we did not account for. We were not aiming to create the best possible model 

to explain PUD counts; rather, our models show the impact of average temperature on 

PUD, while holding other known important predictors constant. Additionally, the 

coefficients from the global models represent the change in log PUD per change in one 

degree Celsius. It is unknown how Flickr PUDs relates to actual visitation numbers 

across all of our study sites. For instance, one study found that one Flickr PUD in a U.S. 

National Park may indicate an estimated 1,000 visitors, but there is variation by park 

(Wood et al., 2013). Another study in a national forest found one monthly PUD 

corresponded to roughly 1,000 visitors counted via trail counters, with variation by trail 

(Fisher et al., 2018). And another study found that in western U.S. National Parks, a 1% 

increase in PUD translated to a 0.65% increase in visitation, but that the exact 

relationship varies by season (Sessions, Wood, Rabotyagov, & Fisher, 2016). With only a 

portion of visitors posting to the Flickr platform, these data are not likely representative 

of all the users of public lands and may be biased towards some user groups. 

Future research could aim to investigate how PUDs relates to actual visitation 

numbers at different types of settings (e.g., state parks, BLM lands, wilderness areas), in 

order to better understand how factors such as climate change may impact total visitation 

(e.g., Zhang & Smith, 2020). Additionally, future studies could explore the direct versus 

indirect impact of climate on the demand for CES. For example, some of the temperature 

preferences found in this study may be due to indirect factors such as seasonal blooms or 
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foliage changes, rather than temperature alone. Finally, visitor surveys would be useful to 

determine if and how warming temperatures would affect the amount, location, and 

timing of visits to public lands. Our study found the demand for recreational CES is 

higher in warmer climates in the fall, spring, and winter, but it is unknown if visitors 

would predominately change locations, timing of trips, or total demand due to increased 

warming.  

 

5.     Conclusion 

 This study is an exploration into how climate may impact the demand for 

recreational CES across U.S. public lands across different seasons. We found the demand 

for recreational CES was positively related to average temperatures in the fall, spring, 

and winter, but negatively related in the summer. This suggests that as the climate 

continues to warm, demand for CES on public lands may increase in the fall, spring, and 

winter, but decrease in the summer. In many locations, managers may want to consider 

preparing for an increased peak season length, and more visitation in the winter than 

usual. Some visitors may be able to adapt to warmer temperatures by visiting on 

comparatively cooler days. Although this study shows climate does have an impact on the 

demand for recreational CES across public lands, further research is needed to determine 

if visitors will adapt to a changing climate by altering the frequency, location, and timing 

of their visits to public lands.  
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CHAPTER V 

CONCLUSIONS 

 

1.    Summary of Findings 

 The three studies presented in this dissertation provide a better understanding of 

visitor use management in parks and protected areas. In the first study (Chapter II), I 

examine how social media has been used to inform visitor use management in parks and 

protected areas and the limitations of using these data. The second study (Chapter III) 

investigates how daily temperature and precipitation affect the summer spatial behavior 

of visitors within U.S. NPS units. Lastly, the third study (Chapter IV) looks at how the 

climate of an area affects the demand for cultural ecosystem services (CES) on public 

lands by season. The second and third studies investigate public lands throughout the 

entire conterminous U.S. and provide insight on how the influences of weather and 

climate vary in different regions of the country. 

 Study 1 (Chapter II). Social media are being increasingly used to understand the 

spatial patterns of visitation to parks and protected areas; they are also beginning to be 

used to understand the on-site experiences of visitors. Geotagged social media are a good 

indicator for observed or reported visitation; however, the correlations reported in 

previous studies between social media use and other sources of visitation data vary 

substantially. Most studies using social media to measure visitation aggregate data across 

many years, with very few testing the use of social media as an indicator of visitation at 

smaller temporal scales. No studies have tested the use of social media to estimate 

visitation in near real-time. Additionally, text and photo content can be useful to 
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understand visitors’ experiences, such as sentiment, behavior, and preferences. 

Researchers have found the geotags and GPS tracks provided via social media are useful 

for understanding the specific locations of where visitors travel in parks and protected 

areas, and the timestamps on posts can be used to glean the exact day or time of visit. We 

leveraged this high spatial and temporal resolution to understand how daily weather 

impacts visitors in parks and protected areas. 

 Study 2 (Chapter III). By combining weather data at the exact location and date 

that images on Flickr were taken, I showed both daily temperature and precipitation 

impact where visitors travel within National Parks in the conterminous U.S. In most 

ecoregions, visitors stayed closer to infrastructure (e.g., roads, buildings, parking areas) 

on rainy days. However, in some ecoregions we did not detect a difference in visitors’ 

spatial patterns on days with precipitation versus no precipitation. The effects of 

temperature also differed across the country, with no consistent trends across all 

ecoregions. For instance, in some ecoregions, exceptionally hot days correlated with 

visitors going to higher elevations, and in some ecoregions, visitors went to lower 

elevations on cold days. This could be due to both the climate of an area as well as the 

topography of individual parks. Importantly, parks in some ecoregions contain more 

microclimates than others, which may allow visitors to adapt to unfavorable conditions 

by visiting a park area with preferable weather. These results indicate visitors’ spatial 

behavior within parks may change in the future due to the increasing frequency of hot 

summer days. However, all parks may not see changes in future visitation patterns due to 

changing weather, and the changes are likely to vary by ecoregion. 
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 Study 3 (Chapter IV). CES represent nonmaterial benefits people derive from 

the environment, such as recreational or aesthetic enjoyment. In the spring, fall, and 

winter, the demand for CES on public lands was higher in places with warmer climates. 

However, in the summer, demand was higher in places with cooler climates. Average 

temperature has the greatest effect on the demand for CES in the summer and winter, and 

the effect also varies across the U.S. in these seasons. Average temperature has the 

greatest impact on the demand for CES on public lands in the Western U.S. These results 

indicate the peak season to visit public lands (often in the summer for most parks) may 

expand to include additional weeks or months under climate change. Demand for CES on 

public lands may decline in the summer in some locations but increase in the shoulder 

seasons. Together, studies 2 and 3 utilized social media to understand how both the daily 

weather and the long-term climatological averages affect visits to and within public 

lands.  

 

2.    Research Contributions 

Collectively, these three studies aim to advance the state of the science while also 

providing information that may be useful for park and protected area management. 

Chapter II provides a synthesis of how social media has been used to answer visitor use 

management questions in parks and protected areas. This paper addresses specific, 

common questions both managers and researchers have with regards to using social 

media data. For instance, although many papers have concluded that social media is a 

good indicator of observed or reported visitation in parks, there is substantial variation in 

the literature in the spatial and temporal resolution and extent of the data used, as well as 
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the correlations reported. Having information from all previous studies summarized in 

one location can save future researchers time and reveal the current state of the literature. 

Although there has been one previous study summarizing the use of social media in 

nature-based tourism research (da Mota & Pickering, 2020), my study is unique in that it 

focuses on specific questions helpful for park and protected area managers. Additionally, 

I summarize best practices for researchers using social media data; these are 

recommendations that have been used in previous studies, but more consistency in the 

literature would aid in the comparability of future research.  

 Chapter III is the first study I am aware of that investigates how weather impacts 

where visitors travel within parks and protected areas. Previous studies have shown that 

weather impacts total visitation to parks (e.g., Hewer, Scott, & Fenech, 2016; Smith, 

Wilkins, Gayle, & Lamborn, 2018), but no known studies have looked at weather-altered 

visitation patterns within parks. This is important because changing visitation patterns 

within parks could create unexpected crowding or increase the strain on resources in 

some locations. Understanding potential changes to visitation patterns can help park 

managers plan and prepare for managing visitor flows, both on a daily scale and when 

thinking about future climate change. For example, managers could anticipate and 

proactively manage weather-altered visitation patterns by providing additional 

information to visitors and increasing signage in certain areas. In parks with more 

microclimates, park staff could provide information on the coolest areas of the park on 

exceptionally hot summer days. Managers could also expand recreation infrastructure 

(e.g., trails, campgrounds, restroom facilities, etc.) in areas that are more likely to see 

increased use as the climate continues to warm. 



	

 

 
130 

 Chapter IV is the first study I am aware of that explores how climate may affect 

the demand for CES across all state and federal public lands in the conterminous U.S. 

Previous studies have looked at how climate impacts visitation to public lands (e.g., 

Hewer & Gough, 2018; Smith et al., 2018), but these studies tend to focus on a single 

park or agency, and it can be difficult to compare or extrapolate results to other locations 

(Brice et al., 2017). Understanding the impact of climate on the demand for CES across 

U.S. public lands can help public land managers plan and prepare for changing demand in 

the future as a result of climate change.  

 

3.    Research Limitations 

As with any data source, social media does have its limitations. Social media 

users are likely not representative of all park users. Social media users tend to be younger 

than the average population, and are more likely to live in urban areas (Greenwood, 

Perrin, & Duggan, 2016; Perrin & Anderson, 2019). Additionally, some people may be 

less likely to take photos and post them online during adverse weather conditions. This 

may have somewhat biased the total number of posts and PUD on rainy days or in colder 

seasons. However, this was deemed to be the most suitable dataset to answer the 

questions posed in this dissertation due to the data’s fine spatial and temporal resolutions, 

as well as its broad geographic extent. Using social media data for research also presents 

possible ethical and privacy concerns (Thatcher, 2014). Although no personally 

identifying information was presented in this research, Flickr users may not be aware 

how their data is used for research. In social science research, we often explain the 

purpose of the study and get consent from all our participants; however, this is 
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unfortunately not possible when using data scraped from the web. Researchers using 

social media data need to be extra cautious with how these data are used, shared, and 

interpreted. 

There are also limitations associated with other geospatial datasets. For instance, 

Daymet provides gridded weather data that is interpolated and extrapolated from weather 

stations. Although the interpolations are overall fairly accurate, there is some error. The 

mean absolute error and mean bias are higher for precipitation than temperature, and the 

extent of the bias varies by ecoregion (Behnke et al., 2016). Additionally, Daymet is 

more accurate at interpolating weather data that is close to climate averages rather than 

extreme weather events (Behnke et al., 2016). 

Data from OpenStreetMap also has limitations. This content is user-generated, 

and thus completeness, accuracy, and consistency likely vary by location (Kaur, Singh, 

Sehra, & Rai, 2017). From visual inspection of OSM data in U.S. National Parks, it was 

clear that the accuracy of different layers varied (e.g., roads layers were complete and 

accurate, while building layers were not). However, the geographic scope of these data 

sources makes them useful for doing analyses across the U.S.  

 

4.    Future Research Directions 

 Future research could aim to better understand the magnitude of the limitations 

and biases of using social media data that researchers mentioned in Chapter II. For 

instance, no known research to date has actually looked at the differences between 

visitors to parks who post on social media, and visitors who do not post. A visitor survey 

would be useful to both understand how social media users differ from other visitors, and 
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if the content they share is biased (e.g., only taking photos or sharing content on sunny 

days, or when they are traveling away from home). Understanding how park visitors 

choose to take and share content could help researchers better understand the extent of 

these different biases. Additionally, more research is needed to determine the 

applicability of using social media data in remote or low-use locations. 

 Regarding the impact of weather on visitation, future research could aim to better 

understand the separate impacts of the seasonal cycle and extreme weather events on 

visitors’ spatial patterns. For instance, future studies could look at how spatial patterns 

differ by month or season to understand how the seasonal cycle may affect where visitors 

go within parks. To understand extreme weather events without the seasonal cycle, we 

could see if the weather on any given day was in the 90th percentile or greater, when 

compared to 30-year historical data for the weather on that day or week. Additionally, a 

visitor survey would be useful to understand if only a subset of visitors change the 

locations they visit within parks, and if so, the characteristics of those who change their 

visitation (e.g., activities, motivations, demographics). The social media analysis and 

maps presented in Chapter III could be used to choose sampling locations or the timing of 

surveys.  

 Additionally, the results presented in Chapter IV could be used to more precisely 

understand how the demand for CES across U.S. public lands may change in the future 

under differing climate change scenarios. Although this analysis did not extrapolate 

results out into the future, this could be accomplished by obtaining the temperature 

projections from RCP scenarios out until 2100. In addition, more analysis could be done 

to understand the relationship between Flickr PUDs and total visitation to different 
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settings, in order to better interpret what an increase in one PUD means in a practical 

sense. Furthermore, additional variables could be added to the models to understand what 

factors affect the demand for CES beyond climate. Factors such as distance to roads, 

distance to a major airport, presence of amenities, miles of trails, land cover, and species 

distributions may all affect the demand for CES, but these variables were not included in 

my analysis. 

 

5.    Concluding Remarks 

This dissertation contributes to our knowledge on how weather and climate 

impact visitation to parks, protected areas, and public lands. Using geotagged social 

media data, I was able to explore the impacts of weather and climate at a nationwide 

scale, and at fine resolutions. Although the focus of this dissertation was on how weather 

and climate impact visitation to parks, protected areas, and public lands, these studies 

also provide further evidence of how social media can be used to understand spatial 

patterns of visitors. The first study shows that social media can inform visitor use 

management in a variety of ways, but there are limitations. The subsequent two studies 

provide examples of how social media can be used to answer research questions in parks, 

protected areas, and on public lands which may not have been possible to answer with 

traditional methods of data collection. Collectively, these studies advance the literature of 

how weather and climate affect park visitors, while also increasing our understanding of 

methodologies that can be used to answer research questions in parks, protected areas, 

and on public lands.    
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APPENDIX A 

SUPPLEMENTARY MATERIAL ASSOCIATED WITH CHAPTER II 

 
 

 
Figure A.1. Diagram of how many studies were identified, screened, and included in 
Chapter II. Figure template from Moher, Liberati, Tetzlaff, & Altman (2009). 
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Table A.1  
 
The 58 papers included in the Chapter II analysis after article screening.   

Authors Title Year Journal title Source 
Barros, C., Moya-

Gómez, B., Gutiérrez, 
J. 

Using geotagged photographs and 
GPS tracks from social networks to 
analyse visitor behaviour in national 
parks 

2019 Current Issues 
in Tourism 

Scopus 

Barry, S.J. Using social media to discover public 
values, interests, and perceptions 
about cattle grazing on park lands 

2014 Environmental 
Management 

Scopus, 
ProQuest 

Breckheimer, I.K., 
Theobald, E.J., 
Cristea, N.C., Wilson, 
A.K., Lundquist, J.D., 
Rochefort, R.M., 
HilleRisLambers, J. 

Crowd-sourced data reveal social 
ecological mismatches in phenology 
driven by climate 

2020 Frontiers in 
Ecology and 
the 
Environment 

Scopus 

Callau, A.À., Albert, 
M.Y.P., Rota, J.J., 
Giné, D.S. 

Landscape characterization using 
photographs from crowdsourced 
platforms: Content analysis of 
social media photographs 

2019 Open 
Geosciences 

Scopus 

Campelo, M.B., 
Mendes, R.M.N. 

Comparing webshare services to 
assess mountain bike use in 
protected areas 

2016 Journal of 
Outdoor 
Recreation 
and Tourism 

Scopus 

Clemente, P., Calvache, 
M., Antunes, P., 
Santos, R., Cerdeira, 
J.O., Martins, M.J. 

Combining social media photographs 
and species distribution models to 
map cultural ecosystem services: 
The case of a Natural Park in 
Portugal 

2019 Ecological 
Indicators 

Scopus, 
ProQuest 

Conti, E., Lexhagen, M. Instagramming nature-based tourism 
experiences: a netnographic study 
of online photography and value 
creation 

2020 Tourism 
Management 
Perspectives 

Scopus 

Do, Y. & Kim, J.Y. An assessment of the aesthetic value 
of protected wetlands based on a 
photo content and its metadata 

2020 Ecological 
Engineering 

Scopus 

Donahue, M.L., Keeler, 
B.L., Wood, S.A., 
Fisher, D.M., 
Hamstead, Z.A., 
McPhearson, T. 

Using social media to understand 
drivers of urban park visitation in 
the Twin Cities, MN 

2018 Landscape and 
Urban 
Planning 

Scopus, 
ProQuest 

Fisher, D.M., Wood, 
S.A., White, E.M., 
Blahna, D.J., Lange, 
S., Weinberg, A., 
Tomco, M., Lia, E. 

Recreational use in dispersed public 
lands measured using social media 
data and on-site counts 

2018 Journal of 
Environmental 
Management 

ProQuest 

Garzia, F., Borghini, F., 
Bruni, A., Lombardi, 
M., Mighetto, P., 
Ramalingam, S., 
Russo, S. B. 

Emotional reactions to the perception 
of risk in the Pompeii 
Archaeological Park 

2020 International 
Journal of 
Safety and 
Security 
Engineering 

Scopus 
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Václavík, T., Poulin, 
B., Ziv, G. 
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and natural language processing to 
map multiple recreational 
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2019 Ecosystem 
Services 

Scopus, 
ProQuest 

Hamstead, Z.A., Fisher, 
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Wood, S.A., 
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Kremer, P. 
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equitable park access 

2018 Computers, 
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2017 Scientific 
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Scopus 
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Social media data can be used to 
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2017 Conservation 
Letters 

Authors 
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H., Hausmann, A., 
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Toivonen, T. 

User-generated geographic 
information for visitor monitoring 
in a national park: A comparison of 
social media data and visitor survey 

2017 ISPRS 
International 
Journal of 
Geo-
Information 

Scopus, 
ProQuest 

Huang, S.-C.L., Sun, 
W.-E. 

Exploration of social media for 
observing improper tourist 
behaviors in a National Park 

2019 Sustainability 
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Scopus 

Johnson, M.L., 
Campbell, L.K., 
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ecosystem services: A comparison 
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interview methods 

2019 Sustainability 
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Scopus 
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Indicators 
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2019 Tourism 
Management 

Scopus 
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parks and their visitors in London 
based on spatiotemporal and 
sentiment analysis of twitter data 
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International 
Journal of 
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Information 

Scopus 
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Goldspiel, H., Barr, 
B., Sampson, A., 
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Using social media data and park 
characteristics to understand park 
visitation 

2020 Journal of Park 
and 
Recreation 
Administratio
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Authors 

Levin, N., Kark, S., 
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Where have all the people gone? 
Enhancing global conservation 
using night lights and social media 

2015 Ecological 
Applications 

Scopus, 
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Levin, N., Lechner, 
A.M., Brown, G. 

An evaluation of crowdsourced 
information for assessing the 
visitation and perceived importance 
of protected areas 

2017 Applied 
Geography 

Scopus, 
ProQuest 

Li, F., Li, F., Li, S., 
Long, Y. 

Deciphering the recreational use of 
urban parks: Experiments using 
multi-source big data for all 
Chinese cities 

2020 Science of the 
Total 
Environment 

Scopus 

Liang, Y., Kirilenko, 
A.P., Stepchenkova, 
S.O., Ma, S. 

Using social media to discover 
unwanted behaviours displayed by 
visitors to nature parks: 
comparisons of nationally and 
privately owned parks in the 
Greater Kruger National Park, 
South Africa 

2019 Tourism 
Recreation 
Research 

Scopus 

Mancini, F., Coghill, 
G.M., Lusseau, D. 

Using social media to quantify 
spatial and temporal dynamics of 
nature-based recreational activities 

2018 PLoS ONE Scopus, 
ProQuest 

Martinez-Harms, M.J., 
Bryan, B.A., Wood, 
S.A., Fisher, D.M., 
Law, E., Rhodes, 
J.R., Dobbs, C., 
Biggs, D., Wilson, 
K.A. 

Inequality in access to cultural 
ecosystem services from protected 
areas in the Chilean biodiversity 
hotspot 

2018 Science of the 
Total 
Environment 

ProQuest 

Muñoz, L., Hausner, 
V.H., Runge, C., 
Brown, G., Daigle, R. 

Using crowdsourced spatial data 
from Flickr vs. PPGIS for 
understanding nature's contribution 
to people in Southern Norway 

2020 People and 
Nature 

Authors 

Norman, P., Pickering, 
C.M. 

Factors influencing park popularity 
for mountain bikers, walkers and 
runners as indicated by social media 
route data 

2019 Journal of 
Environmental 
Management 

Scopus, 
ProQuest 

Norman, P., Pickering, 
C.M. 

Using volunteered geographic 
information to assess park 
visitation: Comparing three on-line 
platforms 

2017 Applied 
Geography 

Authors 
 

Norman, P., Pickering, 
C.M., Castley, G. 

What can volunteered geographic 
information tell us about the 
different ways mountain bikers, 
runners and walkers use urban 
reserves? 

2019 Landscape and 
Urban 
Planning 

Scopus, 
ProQuest 

Orsi, P., Geneletti, D. Using geotagged photographs and 
GIS analysis to estimate visitor 
flows in natural areas 

2013 Journal for 
Nature 
Conservation 

Authors 

Pickering, C., Walden-
Schreiner, C., Barros, 
A., Rossi, S.D. 

Using social media images and text 
to examine how tourists view and 
value the highest mountain in 
Australia 

2020 Journal of 
Outdoor 
Recreation 
and Tourism 
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Plunz, R.A., Zhou, Y., 
Vintimilla M.I.C., 
Mckeown, K., Yu, T., 
Uguccioni, L., Sutto, 
M.P. 

Twitter sentiment in New York City 
parks as measure of well-being 

2019 Landscape and 
Urban 
Planning 

Scopus, 
ProQuest 
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Retka, J., Jepson, P., 
Ladle, R.J., Malhado, 
A.C.M., Vieira, 
F.A.S., Normande, 
I.C., Souza, C.N., 
Bragagnolo, C., 
Correia, R.A. 

Assessing cultural ecosystem 
services of a large marine protected 
area through social media 
photographs 

2019 Ocean and 
Coastal 
Management 

Scopus, 
ProQuest 

Rice, W.L., Mueller, 
J.T., Graefe, A.R., 
Taff, B.D. 

Detailing an approach for cost-
effective visitor-use monitoring 
using crowdsourced activity data 

2019 Journal of Park 
and 
Recreation 
Administratio
n 

ProQuest 

Roberts, H., Sadler, J., 
Chapman, L. 

The value of Twitter data for 
determining the emotional 
responses of people to urban green 
spaces: A case study and critical 
evaluation 

2019 Urban Studies Scopus, 
ProQuest 

Roberts, H., Sadler, J., 
Chapman, L. 

Using Twitter to investigate seasonal 
variation in physical activity in 
urban green space 

2017 Geo: 
Geography 
and 
Environment 

Scopus 

Rossi, S.D., Barros, A., 
Walden-Schreiner, 
C., Pickering, C. 

Using social media images to assess 
ecosystem services in a remote 
protected area in the Argentinean 
Andes 

2019 Ambio Scopus 

Sessions, C., Wood, 
S.A., Rabotyagov, S., 
Fisher, D.M. 

Measuring recreational visitation at 
U.S. National Parks with crowd-
sourced photographs 

2016 Journal of 
Environmental 
Management 

Scopus, 
ProQuest 

Sim, J., Miller, P. Understanding an Urban Park 
through Big Data 

2019 International 
Journal of 
Environmental 
Research and 
Public Health 

Scopus, 
ProQuest 

Sinclair, M., 
Ghermandi, A., 
Sheela, A.M. 

A crowdsourced valuation of 
recreational ecosystem services 
using social media data: An 
application to a tropical wetland in 
India 

2018 Science of the 
Total 
Environment 

Scopus 

Sinclair, M., Mayer, 
M., Woltering, M., 
Ghermandi, A. 

Using social media data to estimate 
visitor provenance and patterns of 
recreation in Germany's national 
parks 

2020 Journal of 
Environmental 
Management 

Scopus 

Song, X. P., Richards, 
D. R., & Tan, P. Y. 

Using social media user attributes to 
understand human–environment 
interactions at urban parks 

2020 Scientific 
Reports 

Authors 

Song, Y., Zhang, B. Using social media data in 
understanding site-scale landscape 
architecture design: taking Seattle 
Freeway Park as an example 

2020 Landscape 
Research 

Scopus 

Sonter, L.J., Watson, 
K.B., Wood, S.A., 
Ricketts, T.H. 

Spatial and Temporal Dynamics and 
Value of Nature-Based Recreation, 
Estimated via Social Media 

2016 PLoS ONE Authors 
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Tenkanen, H., Di 
Minin, E., 
Heikinheimo, V., 
Hausmann, A., 
Herbst, M., Kajala, 
L., Toivonen, T. 

Instagram, Flickr, or Twitter: 
Assessing the usability of social 
media data for visitor monitoring in 
protected areas 

2017 Scientific 
Reports 

Scopus 

Ullah H., Wan W., 
Haidery S. A., Khan 
N. U., Ebrahimpour 
Z., Muzahid A. A. M. 

Spatiotemporal patterns of visitors in 
urban green parks by mining social 
media big data based upon WHO 
reports 

2020 IEEE Access Scopus 

Vaz A.S., Gonçalves 
J.F., Pereira P., 
Santarém F., Vicente 
J.R., Honrado J.P. 

Earth observation and social media: 
Evaluating the spatiotemporal 
contribution of non-native trees to 
cultural ecosystem services 

2019 Remote Sensing 
of 
Environment 

Scopus, 
ProQuest 

Vaz, A.S. et al. Digital conservation in biosphere 
reserves: Earth observations, social 
media, and nature’s cultural 
contributions to people 

2020 Conservation 
Letters 

Scopus 

Vieira, F.A.S., 
Bragagnolo, C., 
Correia, R.A., 
Malhado, A.C.M., 
Ladle, R.J. 

A salience index for integrating 
multiple user perspectives in 
cultural ecosystem service 
assessments 

2018 Ecosystem 
Services 

Scopus 

Walden-Schreiner, C., 
Leung, Y.-F., 
Tateosian, L. 

Digital footprints: Incorporating 
crowdsourced geographic 
information for protected area 
management 

2018 Applied 
Geography 

ProQuest 

Walden-Schreiner, C., 
Rossi, S.D., Barros, 
A., Pickering, C., 
Leung, Y.-F. 

Using crowd-sourced photos to 
assess seasonal patterns of visitor 
use in mountain-protected areas 

2018 Ambio Scopus, 
ProQuest 

Willemen, L., Cottam, 
A.J., Drakou, E.G., 
Burgess, N.D. 

Using social media to measure the 
contribution of red list species to 
the nature-based tourism potential 
of African protected areas 

2015 PLoS ONE Scopus, 
ProQuest 

Wood, S.A., Guerry, 
A.D., Silver, J.M., 
Lacayo, M. 

Using social media to quantify 
nature-based tourism and recreation 

2013 Scientific 
Reports 

Scopus 

Yoshimura, N., Hiura, 
T. 

Demand and supply of cultural 
ecosystem services: Use of 
geotagged photos to map the 
aesthetic value of landscapes in 
Hokkaido 

2017 Ecosystem 
Services 

Scopus, 
ProQuest 

Zhang, S., Zhou, W. Recreational visits to urban parks and 
factors affecting park visits: 
Evidence from geotagged social 
media data 

2018 Landscape and 
Urban 
Planning 

Scopus, 
ProQuest 
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Table A.2  
 
A full list of papers that correlate social media posts with other measures of visitation. 
Note: some papers are included as multiple rows if they used different platforms or 
scales.  

Corr
. 

Platfo
rm Setting 

Full 
setting 

Spatial 
scale for 
correlation 

Temporal 
scale for 
correlation 

Amount 
of data PUD Citation 

In 
fig 
2.3? 

0.62 Flickr 
(r) 

variety Over 800 
tourism 
sites 
globally 

Whole unit Mean 
annual 

 7 years  yes (Wood, 
Guerry, 
Silver, & 
Lacayo, 
2013) 

yes 

0.47 Flickr 
(r) 

state State parks 
in Vermont 
(U.S.) 

Whole park 8-year sum, 
only 
summer 
months 

8 years  yes (Sonter, 
Watson, 
Wood, & 
Ricketts, 
2016) 

yes 

0.58 Flickr 
(r) 

urban Urban 
parks in 
New York 
City (U.S.) 

Whole 
park; 
excluded 
parks with 
< 3 daily 
observation
s  

2-year sum, 
only 
summer 
months 

Flickr: 
10 years 

yes (Hamstead 
et al., 2018) 

yes 

0.82 Flickr 
(r) 

urban Urban 
parks in 
Twin 
Cities, MN 
(U.S.) 

Whole park Mean 
annual 

Flickr: 
10 years 

yes (Donahue et 
al., 2018) 

yes 

0.80 Flickr 
(r) 

national All U.S. 
National 
Forests 

Whole 
forest 

Mean 
annual 

11 years  yes (Fischer et 
al., 2018) 

yes 

0.84 Flickr 
(r) 

national A National 
Park in 
Spain 

Whole park Monthly, 
but 
aggregated 
7 years 

7 years yes (Barros, 
Moya-
Gomez, & 
Gutierrez, 
2019) 

yes 

0.52 Flickr 
(r) 

variety National 
and State 
Parks in the 
northern 
forest 
region 
(U.S.) 

Whole park Summers 5 years no (Kuehn et 
al., 2019) 

yes 

0.80 Flickr 
(r) 

variety 436 
protected 
areas 
globally 

Whole park Mean 
annual 

9 years yes (Levin & 
Crandall, 
2015) 

yes 

0.97 Flickr 
(r) 

national 16 national 
parks 
across 
Germany 

Whole park Mean 
annual 

14 years yes (Sinclair, 
Mayer, 
Woltering, 
& 
Ghermandi, 
2020) 

yes 

0.77 Flickr 
(Rs) 

national National 
Parks in 

Whole park Annual 1 year  yes (Tenkanen et 
al., 2017) 

yes 
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South 
Africa 

0.63 Flickr 
(Rs) 

national National 
Parks in 
Finland 

Whole park Annual 1 year  yes (Tenkanen et 
al., 2017) 

yes 

0.36 Flickr 
(Rs) 

variety All 
protected 
areas in 
Victoria 
(Australia) 

Whole park Mean 
annual 

9 years no (Levin, 
Lechner, & 
Brown 
2017) 

yes 

0.25 Flickr 
(Rs) 

national A National 
Park in 
Argentina 

Whole unit Not given 5 years, 
only 
peak 
season (5 
months) 

no (Walden-
Schreiner, 
Rossi, 
Barros, 
Pickering, & 
Leung, 
2018) 

yes 

0.74 Flickr 
(Rs) 

variety Protected 
areas in a 
Chilean 
biodiversity 
hotspot 

Whole unit Mean 
annual 

8 years  yes (Martinez-
Harms et al., 
2018) 

yes 

0.76 Twitte
r (r) 

urban Urban 
parks in 
New York 
City (U.S.) 

Whole 
park; 
excluded 
parks with 
< 3 daily 
observation
s  

2-year sum, 
only 
summer 
months 

Twitter: 
3 years 

yes (Hamstead 
et al., 2018) 

yes 

0.8 Twitte
r (r) 

urban Urban 
parks in 
Twin 
Cities, MN 
(U.S.) 

Whole park Mean 
annual 

Twitter: 
3 years 

yes (Donahue et 
al., 2018) 

yes 

0.59 Twitte
r (Rs) 

national National 
Parks in 
South 
Africa 

Whole park Annual 1 year  yes (Tenkanen et 
al., 2017) 

yes 

0.81 Twitte
r (Rs) 

national National 
Parks in 
Finland 

Whole park Annual 1 year  yes (Tenkanen et 
al., 2017) 

yes 

0.69 Instagr
am 
(Rs) 

national National 
Parks in 
South 
Africa 

Whole park Annual 1 year  yes (Tenkanen et 
al., 2017) 

yes 

0.83 Instagr
am 
(Rs) 

national National 
Parks in 
Finland 

Whole park Annual 1 year  yes (Tenkanen et 
al., 2017) 

yes 

NA Flickr national National 
Parks in the 
Western 
U.S. 

Whole park Monthly 6 years  yes (Sessions, 
Wood, 
Rabotyagov, 
& Fisher, 
2016) 

no 

NA Flickr national A national 
park in 
Scotland 

5 km, 10 
km, 20 km 

6-year sum 6 years  yes (Mancini, 
Coghill, & 
Lusseau, 
2018) 

no 
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NA Flickr national Mount 
Rainier 
National 
Park in 
Washingto
n, USA 

Whole park Mean 
monthly 

7 years Not 
sure 

(Breckheime
r et al., 
2019) 

no 

0.67 Instagr
am 
(Rs) 

national A National 
Park in 
Finland 

Subregions 
within a 
park 

2.4-year 
sum 

2.4 years  no (Heikinheim
o et al., 
2017) 

no 

0.79 Flickr 
(r) 

national A National 
Forest in 
Washingto
n State 
(U.S.) 

Trailshed Monthly, 
but 
aggregated 
11 years 

11 years yes (Fischer et 
al, 2018) 

no 

0.83 MapM
yFitne
ss (r) 

variety Three parks 
in 
Queensland
, Australia 

Trails 3-year sum 3 years NA (Norman, 
Pickering, & 
Castley, 
2019) 

no 

0.9 MapM
yFiten
ss (r) 

other A 
conservatio
n park in 
Queensland
, Australia 

Trails Mean 
monthly 

13 years 
for 
Flickr, 
unsure 
about 
trail 
counters 

NA (Norman & 
Pickering, 
2017) 

no 

NA Weibo 
(r) 

urban Urban 
parks in 4 
Chinese 
cities 

Whole unit Not given Not 
given 

NA (Li, Li, Li, & 
Long, 2020) 

no 
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Table A.3  
 
A full list of papers in Figure 2.4 that analyze spatial distributions.   

Category of 
spatial paper 

Additional 
details 

Spatial scale 
for analyzing 
distributions 

Temporal 
scale for 
analyzing 
distributions Attributes 

Platform 
(s) Citation 

What attributes 
affect park 
use; spatial 
patterns of 
CES 

spatial patterns 
for CES; how 
variables 
impact CES 
spatial 
distribution 

geotag Multiple years envi., infra., 
manag.. 
(distributio
n of CES) 

Flickr (Clemente et al., 
2019) 

What attributes 
affect park use 

NA whole park Multiple years social, envi., 
infra. 

Flickr; 
Twitter 

(Donahue et al., 
2018) 

What attributes 
affect park use 

NA whole park Multiple years social, envi., 
infra. 

Flickr, 
Twitter 

(Hamstead et al., 
2018) 

What attributes 
affect park use 

NA 0.01 degree 
grid 

Multiple years social, infra. Flickr (Levin, Kark, & 
Crandall, 2015) 

What attributes 
affect park use 

NA whole park Not given social, envi., 
infra., 
manag. 

Weibo (Li, Li, Li, & 
Long, 2020) 

What attributes 
affect park use 

NA whole park Multiple years social, envi. Flickr (Martinez-Harms 
et al., 2018) 

What attributes 
affect park use 

NA whole park Multiple years social, envi., 
infra., 
manag. 

Flickr (Sonter, Watson, 
Wood, & 
Ricketts, 2016) 

What attributes 
affect park use 

NA geotag Seasonal, 
multiple 
years of data 

envi., infra. Flickr (Walden-
Schreiner, 
Rossi, Barros, 
Pickering, & 
Leung, 2018) 

What attributes 
affect park use 

NA whole park Multiple years envi., infra., 
manag. 

MapMyFit
ness, 
Strava, 
Wikiloc 

(Norman & 
Pickering, 
2019) 

What attributes 
affect park use 

NA 1 km grid Multiple years envi., infra. Flickr (Kim, Kim, Lee, 
Lee, & 
Andrada, 2019) 

What attributes 
affect park use 

NA geotag Seasonal, 
multiple 
years of data 

envi., infra. Flickr (Walden-
Schreiner, 
Leung, & 
Tateosian, 
2018) 

What attributes 
affect park use 

NA geotag Multiple years envi. Flickr (Yoshimura & 
Hiura, 2017) 

What attributes 
affect park use 

NA whole park Multiple years social, envi., 
infra., 
manag. 

Weibo (Zhang & Zhou, 
2018) 

What attributes 
affect park use 

specifically 
looking at 
what factors 
affect social 
media posts 

whole park One year social, envi. Instagram (Hausmann et al., 
2017) 

What attributes 
affect park use 

NA geotag Multiple years envi., infra. Flickr (Muñoz, Hausner, 
Runge, Brown, 
& Daigle, 
2020) 
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spatial patterns 
relating to 
photo content 

spatial patterns 
of bird, seal, 
dolphin, and 
whale 
watching by 
year 

geotag Multiple years NA Flickr (Mancini, 
Coghill, & 
Lusseau, 2018) 

spatial patterns 
relating to 
photo content 

spatial patterns 
by type of 
photograph 

geotag Multiple years NA 
 

Wikiloc (Callau, Albert, 
Rota, Giné, 
2019) 

spatial patterns 
by user group 

differences 
between 
runners and 
walkers and 
off trail use 

trail Multiple years NA MapMyFit
ness, 
GPSies, 
Wikiloc 

(Norman & 
Pickering, 
2017) 

spatial patterns 
by user group 

differences 
between 
runners, 
walkers, and 
bikers 

trail Multiple years NA MapMyFit
ness 

(Norman, 
Pickering, & 
Castley, 2019) 

spatial patterns 
by user group 

spatial patterns 
by season 
and type of 
visitor 

1 km grid Seasonal, 
multiple 
years of data 

NA Flickr (Gosal, 
Geijzendorffer, 
Václavík, 
Poulin, & Ziv, 
2019) 

spatial patterns 
by user group 

spatial patterns 
by type of 
visitor (local, 
domestic, 
international) 

geotag Multiple years NA Flickr (Sinclair, 
Ghermandi, & 
Sheela, 2018) 

spatial patterns 
by user group 

spatial patterns 
of different 
groups of 
visitors 

whole park Multiple years NA Flickr (Song, Richards, 
& Tan, 2020) 

spatial patterns 
by user group 

Spatial patterns 
by type of 
visitor (local, 
domestic, 
international) 

geotag Seasonal, 
multiple 
years of data 

NA Flickr (Sinclair, Mayer, 
Woltering, & 
Ghermandi, 
2020) 

spatial patterns 
by user group 

Spatial patterns 
by gender 

whole park Annual, 
weekend vs 
weekday 

NA Weibo (Ullah et al., 
2020) 

spatial patterns 
(general) 

NA subregions of a 
park 

Multiple years NA Instagram (Heikinheimo et 
al., 2017) 

spatial patterns 
(general) 

NA trail Multiple years NA Wikiloc; 
GPSies 

(Campelo & 
Mendes, 2016) 

spatial patterns 
(general) 

spatial patterns 
and off-trail 
use 

trail Multiple years NA Strava (Rice, Mueller, 
Graefe, & Taff, 
2019) 

spatial patterns 
(general) 

Estimate 
popular 
destinations 
within the 
study site 

Grid (210 m) Multiple years NA Panoramio (Orsi & Geneletti, 
2013) 

spatial 
distribution of 
CES 

NA zones within 
the park 

2 weeks (all 
data 
collected) 

NA Twitter (Johnson, 
Campbell, 
Svendsen, & 
McMillen, 
2019) 
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spatial 
distribution of 
CES 

NA geotag Multiple years NA Flickr (Retka et al., 
2019) 

spatial 
distribution of 
CES 

spatial patterns 
(of trees for 
CES, by 
season) 

1 km grid Seasonal, 
multiple 
years of data 

NA Flickr; 
Wikiloc 

(Vaz et al., 2019) 

spatial 
distribution of 
CES 

NA specific 
locations 

Multiple years NA Flickr, 
Instagra
m 

(Vieira, 
Bragagnolo, 
Correia, 
Malhado, & 
Ladle, 2018) 

other places to put 
information 
stands 

200 m hexagon 
grid 

Multiple years NA Flickr; 
Wikiloc 

(Barros, Moya-
Gómez, & 
Gutiérrez, 
2019) 

other how spatial 
patterns are 
affected by 
snow 

geotag Not given NA Flickr (Breckheimer et 
al., 2019) 

other viewsheds geotag Not given NA Flickr, 
Panorami
o 

(Karasov, Vieira, 
Külvik, & 
Chervanyov, 
2020) 

other find main 
center of 
activity, and 
find distance 
to given 
parks 

geotag Time of day, 
weekend/we
ekday, and 
seasonal 

NA Twitter (Kovacs-Györi et 
al., 2018) 
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Table A.4  
 
A full list of papers included in Figure 2.5 that analyze aspects of the visitor experience.  

Topic analyzed 
Topic 
category 

Aspect of social 
media Platform(s) Citation 

Sentiment Sentiment text Twitter (Kovacs-Györi et al., 2018) 
Sentiment Sentiment text Twitter (Plunz et al., 2019) 
Sentiment Sentiment text Twitter (Roberts, Sadler, & 

Chapman, 2019) 
Sentiment Sentiment text Twitter (Sim & Miller, 2019) 
Sentiment Sentiment text Twitter (Garzia et al., 2020) 
Cultural ecosystem 

services 
CES photo content, 

geotag 
Flickr (Clemente et al., 2019) 

Cultural ecosystem 
services 

CES photo content, 
geotag 

Flickr (Retka et al., 2019) 

Cultural ecosystem 
services 

CES photo content, 
geotag 

Flickr (Rossi, Barros, Walden-
Schreiner, & Pickering, 
2019) 

Cultural ecosystem 
services 

CES photo content, 
geotag 

Flickr, 
Instagram 

(Vieira, Bragagnolo, Correia, 
Malhado, & Ladle, 2018) 

Cultural ecosystem 
services 

CES photo content, 
geotag 

Wikiloc (Callau, Albert, Rota, & 
Giné, 2019) 

Cultural ecosystem 
services 

CES text, photo content 
(if applicable), 
geotag 

Twitter (Johnson, Campbell, 
Svendsen, & McMillen, 
2019) 

Cultural ecosystem 
services 

CES photo content, 
geotag 

Flickr (Vaz et al., 2020) 

Cultural ecosystem 
services (demand for) 

CES geotag Flickr (Yoshimura & Hiura, 2017) 

Cultural ecosystem 
services: non-native 
trees 

CES photo content, 
geotag 

Flickr, 
Wikiloc 

(Vaz et al., 2019) 

Cultural ecosystem 
services: wildlife-
viewing 

CES photo tags and 
content 

Flickr (Willemen, Cottam, Drakou, 
& Burgess, 2015) 

Monitor unwanted 
behavior 

Behavior photo, video, text, 
and comments 

Facebook (Huang & Sun, 2019) 

Monitor unwanted 
behavior 

Behavior photo content Instagram (Liang, Kirilenko, 
Stepchenkova, & Ma, 
2019) 

Visitors' activities Behavior photo content Instagram (Heikinheimo et al., 2017) 
Visitors’ activities and 

use of the park 
Behavior Photo content, 

hashtags 
Instagram (Song & Zhang, 2020) 

Seasonal differences in 
physical activity 

Behavior text Twitter (Roberts, Sadler, & 
Chapman, 2017) 

Cluster visitors and 
understand 
differences in what 
they photograph 

Preferences photo content, 
geotag 

Flickr (Song, Richards, & Tan, 
2020) 

Public perceptions of 
grazing 

Preferences photo content, title, 
and comments 

Flickr (Barry, 2014) 

Preferences for 
biodiversity 

Preferences photo content Flickr, 
Instagram 

(Hausmann et al., 2017) 
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How tourists view and 
value the destination 
in different seasons 

Preferences photo content, title, 
and tags 

Flickr (Pickering, Walden-
Schreiner, Barros, & Rossi, 
2020) 

Experience values from 
the destination 

Preferences photo content Instagram (Conti & Lexhagen, 2020) 

How photo content 
differs between 
international and 
domestic visitors 

Preferences photo content, 
home location 

Flickr (Muñoz, Hausner, Runge, 
Brown, & Daigle, 2020) 

Understand aesthetic 
value and colors of 
photographs 

Other photo content Flickr (Do & Kim, 2020) 

Per-trip benefits and 
travel cost 

Other geotags, home 
location 

Flickr (Sinclair, Ghermandi, & 
Sheela, 2018) 

Mismatch between 
visitors & 
wildflowers 

Other photo content, 
geotag 

Flickr (Breckheimer et al., 2019) 
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APPENDIX B 

SUPPLEMENTARY MATERIAL ASSOCIATED WITH CHAPTER III 

 

Table B.1  
 
The NPS units included in Chapter III, by ecoregion. 

Ecoregion 
# 

units NPS Units 
Northern forest 6 Apostle Islands NL, Isle Royale NP, Pictured Rocks NL, Saint Croix 

NSR, Upper Delaware S&RR, Voyageurs NP 
Northwest forested 

mountains 

20 

Bandelier NM, Crater Lake NP, Curecanti NRA, Glacier NP, Grand 
Teton NP, John Day Fossil Beds NM, Kings Canyon NP, Lava 
Beds NM, Lake Chelan NRA, Lassen Volcanic NP, Mount Rainier 
NP, North Cascades NP, Olympic NP, Ross Lake NRA, Rocky 
Mountain NP, Sequoia NP, Whiskeytown NRA, Wind Cave NP, 
Yellowstone NP, Yosemite NP 

Marine west coast 
forest 1 Redwood NP 

Eastern temperate 
forest: Mixed wood 
plains 

4 
Acadia NP, Cuyahoga Valley NP, Indiana Dunes NP, Sleeping Bear 

Dunes NL 

Eastern temperate 
forest: Southeastern 
USA plains 

5 
Big Thicket NPRES, Chattahoochee River NRA, Congaree NP, 

Mammoth Cave NP, Prince William Forest Park 

Eastern temperate 
forest: Ozark, 
Ouachita-
Appalachian forests 

10 

Big South Fork NRRA, Buffalo NR, Cumberland Cap NHP, 
Delaware Water Gap NRA, Gauley River NRA, Great Smoky 
Mountains NP, Little River Canyon NPRES, New River Gorge 
NR, Ozark NSR, Shenandoah NP 

Eastern temperate 
forest: Mississippi 
Alluvial and 
Southeast USA 
coastal plains 

11 

Assateague Island NS, Cape Cod NS, Cape Hatteras NS, Cape 
Lookout NS, Canaveral NS, Cumberland Island NS, Fire Island 
NS, Gateway NRA, Gulf Island NS, Jean Lafitte NHP & PRES, 
Timucuan EHP 

Great plains 

10 

Badlands NP, Bighorn Canyon NRA, Lake Meredith NRA, 
Mississippi NRRA, Missouri NRR, Niobrara NSR, Padre Island 
NS, Sand Creek Massacre NHS, Tallgrass Prairie NPRES, 
Theodore Roosevelt NP 

North American 
deserts: cold deserts 

21 

Arches NP, Black Canyon of the Gunnison NP, Bryce Canyon NP, 
Canyon de Chelly NM, Canyonlands NP, Capitol Reef NP, Chaco 
Culture NHP, City of Rocks NRES, Colorado NM, Craters of the 
Moon NM & PRES, Dinosaur NM, El Malpais NM, Glen Canyon 
NRA, Great Basin NP, Grand Canyon NP, Great Sand Dunes NP 
& PRES, Lake Roosevelt NRA, Mesa Verde NP, Petrified Forest 
NP, Wupatki NM, Zion NP 

North American 
deserts: warm 
deserts 

9 
Amistad NRA, Big Bend NP, Death Valley NP, Joshua Tree NP, 

Lake Mead NRA, Mojave NPRES, Organ Pipe Cactus NM, Rio 
Grande W&SR, White Sands NM 

Mediterranean 
California 5 Channel Islands NP, Golden Gate NRA, Pinnacles NP, Point Reyes 

NS, Santa Monica Mountains NRA 
Southern semi-arid 2 Chiricahua NM, Saguaro NP 
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highlands 
Temperate Sierras 2 Carlsbad Caverns NP, Guadalupe Mountains NP 
Tropical wet forests 4 Big Cypress NPRES, Biscayne NP, Dry Tortugas NP, Everglades 

NP 
 

NP = National Park, NM = National Monument, NRA = National Recreation Area, NS = National 
Seashore, NHP = National Historical Park, NL = National Lakeshore, NSR = National Scenic River, 
S&RR = Scenic & Recreational River, NPRES = National Preservation, NR = National River, 
NRRA = National River & Recreation Area, EHP = Ecological & Historic Preserve, NHS = National 
Historic Site, W&SR = Wild & Scenic River 
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Table B.2  
 
The number of Flickr data points in each study site between May – September, 2006 – 
2018. Numbers represent only one post per user, per day, within a 10-meter radius. 

Code Park Name n Code Park Name n 
ACAD Acadia National Park 8,101 GUMO Guadalupe Mountains 

National Park 
322 

AMIS Amistad National Recreation 
Area 

32 INDU Indiana Dunes National 
Lakeshore 

1,372 

APIS Apostle Islands National 
Lakeshore 

355 ISRO Isle Royale National Park 1,183 

ARCH Arches National Park 9,020 JELA Jean Lafitte National 
Historical Park and Preserve 

313 

ASIS Assateague Island National 
Seashore 

1,532 JODA John Day Fossil Beds National 
Monument 

1,151 

BADL Badlands National Park 4,416 JOTR Joshua Tree National Park 4,552 
BAND Bandelier National Monument 974 KICA Kings Canyon National Park 7,770 
BIBE Big Bend National Park 1,688 LABE Lava Beds National 

Monument 
684 

BICA Bighorn Canyon National 
Recreation Area 

153 LACH Lake Chelan National 
Recreation Area 

313 

BICY Big Cypress National Preserve 492 LAKE Lake Mead National 
Recreation Area 

8,725 

BISC Biscayne National Park 52 LAMR Lake Meredith National 
Recreation Area 

20 

BISO Big South Fork National River 
and Recreation Area 

768 LARO Lake Roosevelt National 
Recreation Area 

303 

BITH Big Thicket National Preserve 32 LAVO Lassen Volcanic National Park 4,340 
BLCA Black Canyon of the Gunnison 

National Park 
1,289 LIRI Little River Canyon National 

Preserve 
134 

BRCA Bryce Canyon National Park 10,581 MACA Mammoth Cave National Park 498 
BUFF Buffalo National River 490 MEVE Mesa Verde National Park 3,272 
CACH Canyon de Chelly National 

Monument 
992 MISS Mississippi National River and 

Recreation Area 
18,130 

CACO Cape Cod National Seashore 3,429 MNRR Missouri National Recreation 
River 

132 

CAHA Cape Hatteras National Seashore 2,352 MOJA Mojave National Preserve 1,526 
CALO Cape Lookout National Seashore 201 MORA Mount Rainier National Park 17,415 
CANA Canaveral National Seashore 341 NERI New River Gorge National 

River 
1,385 

CANY Canyonlands National Park 4,540 NIOB Niobrara National Scenic 
River 

72 

CARE Capitol Reef National Park 3,394 NOCA North Cascades National Park 1,880 
CAVE Carlsbad Caverns National Park 475 OLYM Olympic National Park 12,365 
CHAT Chattahoochee River National 

Recreation Area 
597 ORPI Organ Pipe Cactus National 

Monument 
216 

CHCU Chaco Culture National 
Historical Park 

963 OZAR Ozark National Scenic 
Riverway 

316 

CHIR Chiricahua National Monument 266 PAIS Padre Island National 
Seashore 

141 

CHIS Channel Islands National Park 1,331 PEFO Petrified Forest National Park 2,836 
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CIRO City of Rocks National Reserve 265 PINN Pinnacles National Park 986 
COLM Colorado National Monument 1,184 PIRO Pictured Rocks National 

Lakeshore 
1,836 

CONG Congaree National Park 154 PORE Point Reyes National Seashore 6,259 
CRLA Crater Lake National Park 4,558 PRWI Prince William Forest Park 110 
CRMO Craters of the Moon National 

Monument 
1,110 REDW Redwood National Park 3,858 

CUGA Cumberland Gap National 
Historical Park 

231 RIGR Rio Grande Wild and Scenic 
River 

240 

CUIS Cumberland Island National 
Seashore 

309 ROLA Ross Lake National 
Recreation Area 

1,951 

CURE Curecanti National Recreation 
Area 

618 ROMO Rocky Mountain National 
Park 

15,152 

CUVA Cuyahoga Valley National Park 2,523 SACN Saint Croix National Scenic 
Riverway 

335 

DEVA Death Valley National Park 7,671 SAGU Saguaro National Park 992 
DEWA Delaware Water Gap National 

Recreation Area 
1,721 SAMO Santa Monica Mountains 

National Recreation Area 
15,385 

DINO Dinosaur National Monument 1,258 SAND Sand Creek Massacre National 
Historic Site 

37 

DRTO Dry Tortugas National Park 0 SEQU Sequoia National Park 8,724 
ELMA El Malpais National Monument 198 SHEN Shenandoah National Park 4,423 
EVER Everglades National Park 1,613 SLBE Sleeping Bear Dunes National 

Lakeshore 
2,232 

FIIS Fire Island National Seashore 2,447 TAPR Tallgrass Prairie National 
Preserve 

276 

GARI Gauley River National 
Recreation Area 

21 THRO Theodore Roosevelt National 
Park 

1,524 

GATE Gateway National Recreation 
Area 

3,899 TIMU Timucuan Ecological and 
Historic Preserve 

457 

GLAC Glacier National Park 16,459 UPDE Upper Delaware Scenic and 
Recreational River 

2,189 

GLCA Glen Canyon National 
Recreation Area 

5,721 VOYA Voyageurs National Park 137 

GOGA Golden Gate National 
Recreation Area 

52,547 WHIS Whiskeytown-Shasta-Trinity 
National Recreation Area 

248 

GRBA Great Basin National Park 674 WHSA White Sands National 
Monument 

1,134 

GRCA Grand Canyon National Park 26,192 WICA Wind Cave National Park 497 
GRSA Great Sand Dunes National Park 

and Preserve 
1,918 WUPA Wupatki National Monument 472 

GRSM Great Smoky Mountains 
National Park 

8,341 YELL Yellowstone National Park 56,850 

GRTE Grand Teton National Park 15,928 YOSE Yosemite National Park 41,296 
GUIS Gulf Islands National Seashore 3,057 ZION Zion National Park 10,622 
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Table B.3  
 
Key-value pairs used to download OpenStreetMap data for each category of data used in 
this analysis. 

Category Key Value(s) Types of data used 
Roads highway motorway, trunk, primary, secondary, 

tertiary, motorway_link, trunk_link, 
primary_link, tertiary_link, unclassified, 
residential, service 

lines, polygons 

Water natural water, bay, strait, coastline lines, polygons, 
multipolygons 

 waterway river  
Parking amenity parking polygons, multipolygons 
Buildings building (all) polygons, multipolygons 
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Table B.4  
 
Maximum daily temperature ranges for what is considered a cold, average, or hot day, 
by park unit. Average days are within one standard deviation of the mean, while cold 
days are greater than one standard deviation colder, and hot days are greater than one 
standard deviation warmer.  

Unit Ecoregion 
Cold  

range (ºC) 
Average 

range (ºC) 
Hot  

range (ºC) 
ACAD Mixed wood plains 9 - 19 19.5 - 27 27.5 - 33.5 
CUVA Mixed wood plains 11 - 21.5 22 - 30 30.5 - 36 
INDU Mixed wood plains 10.5 - 20.5 21 - 29.5 30 - 38 
SLBE Mixed wood plains 9 - 20 20.5 - 28.5 29 - 33.5 
AMIS Warm deserts 27.5 - 31 31.5 - 37.5 39 - 41 
BIBE Warm deserts 16 - 28.5 29 - 36 36.5 - 40.5 
DEVA Warm deserts 25.5 - 36.5 37 - 47.5 48 - 50 
JOTR Warm deserts 18 - 26 26.5 - 37.5 38 - 43.5 
LAKE Warm deserts 20.5 - 32 32.5 - 42.5 43 - 48 
MOJA Warm deserts 21 - 30 30.5 - 41 41.5 - 45.5 
ORPI Warm deserts NA (no obs.) 25 - 35.5 36 - 42 
RIGR Warm deserts 25 - 34 34.5 - 40.5 41 - 43 
WHSA Warm deserts 18.5 - 27.5 28 - 35 35.5 - 41 
APIS Northern forest 11.5 - 19.5 20 - 27.5 28 - 32 
ISRO Northern forest 9 - 19 19.5 - 26 26.5 - 30.5 
PIRO Northern forest 4.5 - 18.5 19 - 26.5 27 - 32.5 
SACN Northern forest 11 - 21.5 22 - 29.5 30 - 35 
UPDE Northern forest 11 - 21.5 22 - 29.5 30 - 35.5 
VOYA Northern forest 10.5 - 19 20 - 27.5 28 - 30.5 
ARCH Cold deserts 13.5 - 26 26.5 - 36.5 37 - 42.5 
BLCA Cold deserts 4.5 - 18 18.5 - 30 30.5 - 32.5 
BRCA Cold deserts 4.5 - 17.5 18 - 27.5 28 - 32.5 
CACH Cold deserts 16 - 26 26.5 - 33.5 34 - 37 
CANY Cold deserts 9.5 - 21 21.5 - 32.5 33 - 37.5 
CARE Cold deserts 11.5 - 23 23.5 - 33 33.5 - 37.5 
CHCU Cold deserts 13.5 - 24 25 - 32 32.5 - 36 
CIRO Cold deserts 8 - 18 19 - 29.5 30 - 33.5 
COLM Cold deserts 11.5 - 24 24.5 - 33 33.5 - 37.5 
CRMO Cold deserts 7 - 20 20.5 - 31.5 32 - 36 
DINO Cold deserts 13 - 23.5 24 - 34 34.5 - 37.5 
ELMA Cold deserts 12 - 23 24 - 32 32.5 - 34.5 
GLCA Cold deserts 14 - 27.5 28 - 37.5 38 - 43 
GRBA Cold deserts 10.5 - 26 26.5 - 34.5 35 - 38.5 
GRCA Cold deserts 5.5 - 19.5 20 - 29 29.5 - 35.5 
GRSA Cold deserts 9 - 20 20.5 - 28 28.5 - 32 
LARO Cold deserts 13.5 - 23 23.5 - 33.5 34 - 40.5 
MEVE Cold deserts 7 - 20.5 21 - 30.5 31 - 34 
PEFO Cold deserts 14 - 25 25.5 - 33.5 34 - 38.5 
WUPA Cold deserts 13 - 25.5 26 - 35.5 36 - 40.5 
ZION Cold deserts 14 - 26 26.5 - 37 37.5 - 42.5 
ASIS MS alluvial/SE coastal plains 11.5 - 23.5 24 - 31.5 32 - 37.5 
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CACO MS alluvial/SE coastal plains 8.5 - 19.5 20 - 27 27.5 - 33.5 
CAHA MS alluvial/SE coastal plains 17 - 25.5 26 - 30.5 31 - 34 
CALO MS alluvial/SE coastal plains 21.5 - 27 27.5 - 31.5 32 - 36.5 
CANA MS alluvial/SE coastal plains 25.5 - 28.5 29 - 32.5 33 - 36 
CUIS MS alluvial/SE coastal plains 24.5 - 28 28.5 - 33 33.5 - 37.5 
FIIS MS alluvial/SE coastal plains 9.5 - 22.5 23 - 29.5 30 - 40 
GATE MS alluvial/SE coastal plains 11 - 22.5 23 - 31 31.5 - 39 
GUIS MS alluvial/SE coastal plains 22.5 - 29 29.5 - 33.5 34 - 38 
JELA MS alluvial/SE coastal plains 25 - 28.5 29 - 33.5 34 - 38 
TIMU MS alluvial/SE coastal plains 24 - 28.5 29 - 33.5 34 - 36.5 
BADL Great plains 7.5 - 23.5 24 - 34 34.5 - 42.5 
BICA Great plains 10.5 - 19 20 - 32.5 33 - 37.5 
LAMR Great plains 23.5 - 26.5 30.5 - 36 38 - 39 
MISS Great plains 5 - 20.5 21 - 30 30.5 - 37 
MNRR Great plains 15 - 24.5 25 - 32 32.5 - 38.5 
NIOB Great plains 17 - 27.5 28 - 35 36 - 37.5 
PAIS Great plains 25 - 29.5 30 - 33 33.5 - 35.5 
SAND Great plains 18 - 24 26 - 34 NA (no obs.) 
TAPR Great plains 18.5 - 25 25.5 - 34 34.5 - 39.5 
THRO Great plains 6.5 - 21.5 22 - 32 32.5 - 38.5 
BAND NW forested mountains 15.5 - 22 22.5 - 32 32.5 - 36 
CRLA NW forested mountains -2 - 13 13.5 - 23.5 24 - 29 
CURE NW forested mountains 9 - 21.5 22 - 29.5 30 - 33 
GLAC NW forested mountains 6.5 - 21 21.5 - 31 31.5 - 37.5 
GRTE NW forested mountains 2 - 18 18.5 - 28.5 29 - 34 
JODA NW forested mountains 13 - 24 24.5 - 36.5 37 - 40 
KICA NW forested mountains 1.5 - 19.5 20 - 29 29.5 - 32.5 
LABE NW forested mountains 9 - 21 21.5 - 32 33 - 36.5 
LACH NW forested mountains 16 - 21 21.5 - 29 29.5 - 36.5 
LAVO NW forested mountains 1 - 19 19.5 - 27 27.5 - 31.5 
MORA NW forested mountains 1 - 11.5 12 - 21.5 22 - 29 
NOCA NW forested mountains 11 - 19.5 20 - 30.5 31 - 37 
OLYM NW forested mountains 10.5 - 16.5 17 - 24 24.5 - 34 
ROLA NW forested mountains 11.5 - 18 18.5 - 29 29.5 - 38 
ROMO NW forested mountains 1 - 19 19.5 - 27.5 28 - 32 
SEQU NW forested mountains 14.5 - 29.5 30 - 38.5 39 - 46 
WHIS NW forested mountains 15.5 - 24.5 25.5 - 38 38.5 - 41 
WICA NW forested mountains 9.5 - 21.5 22 - 32.5 33 - 39.5 
YELL NW forested mountains 2 - 15 15.5 - 25.5 26 - 31.5 
YOSE NW forested mountains 7.5 - 23.5 24 - 34 34.5 - 39.5 
BICY Tropical wet forests 27.5 - 31.5 32 - 34.5 35 - 36.5 
BISC Tropical wet forests 27.5 - 28.5 29 - 32.5 33 - 33.5 
EVER Tropical wet forests 27.5 - 30.5 31 - 33.5 34 - 35 
BISO Ozark forests 10.5 - 19.5 20 - 29.5 30 - 33 
BUFF Ozark forests 6.5 - 24.5 25 - 34 34.5 - 39.5 
CUGA Ozark forests 18 - 23.5 24 - 32 32.5 - 36 
DEWA Ozark forests 11 - 21 21.5 - 29 29.5 - 35 
GARI Ozark forests 21 - 22 24.5 - 28 30.5 - 32 
GRSM Ozark forests 11 - 24 24.5 - 30.5 31 - 38 
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LIRI Ozark forests 13.5 - 22.5 23.5 - 31.5 32 - 35.5 
NERI Ozark forests 10.5 - 22 22.5 - 29 29.5 - 35.5 
OZAR Ozark forests 19.5 - 27.5 28 - 35 36 - 40 
SHEN Ozark forests 12.5 - 22.5 23 - 30.5 31 - 37.5 
BITH SE USA plains 24.5 - 24.5 29.5 - 36 36.5 - 36.5 
CHAT SE USA plains 16 - 25.5 26 - 33 33.5 - 38.5 
CONG SE USA plains 18.5 - 27 27.5 - 34.5 35 - 37.5 
MACA SE USA plains 16 - 26 26.5 - 32.5 33 - 38 
PRWI SE USA plains 19 - 23 23.5 - 30 30.5 - 35 
CAVE Temperate Sierras 17 - 25.5 26 - 35.5 36 - 41 
GUMO Temperate Sierras 14.5 - 23 24 - 31.5 32 - 37 
CHIR S semi-arid highlands 20 - 24 24.5 - 31.5 32 - 36 
SAGU S semi-arid highlands 23 - 31 31.5 - 38 38.5 - 43.5 
CHIS Mediterranean CA 16.5 - 22 22.5 - 28 28.5 - 35.5 
GOGA Mediterranean CA 13.5 - 18 18.5 - 25 25.5 - 39 
PINN Mediterranean CA 16 - 23.5 24 - 33.5 34 - 39.5 
PORE Mediterranean CA 13.5 - 18.5 19 - 26.5 27 - 39.5 
SAMO Mediterranean CA 14.5 - 22 22.5 - 31 31.5 - 41.5 
REDW Marine west coast forest 12 - 19 19.5 - 25.5 26 - 34.5 
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Table B.5  
 
Sample sizes for each group based on daily temperature and precipitation at the visitor 
center, by ecoregion.  

Ecoregion  Total n 
Cold 
days 

Average 
days 

Hot 
days 

No 
precip. Precip. 

Warm deserts 25,784 4,543 17,623 3,618 24,623 1,161 

Southern semi-arid 
highlands 

1,258 234 823 201 1,024 234 

Tropical wet forests 2,157 448 1,485 224 1,077 1,080 

Southeastern USA plains 1,391 201 985 205 957 434 

Temperate Sierras 797 110 573 114 697 100 

Mississippi alluvial and 
southeast USA coastal 
plains 

18,337 2,832 12,969 2,536 13,237 5,100 

Cold deserts 86,804 13,871 59,961 12,972 72,301 14,503 

Ozark, Ouachita-
Appalachian forests 

17,830 2,506 12,638 2,686 11,017 6,813 

Great plains 24,901 3,708 17,550 3,643 18,221 6,680 

Mixed wood plains 14,228 2,334 9,838 2,056 9,589 4,639 

Northern forest 6,035 905 4,369 761 4,196 1,839 

Northwest forested 
mountains 

209,173 32,764 148,875 
 

27,534 175,730 33,443 

Mediterranean California 76,508 11,564 53,691 11,253 74,483 2,025 

Marine west coast forest 3,858 577 2,728 553 3,273 585 
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Table B.6  
 
Full statistical results associated with Figure 3.3. Welch’s ANOVA tests comparing 
distributions on hot, cold, and average days by ecoregion. 

 

Mean: 
Cold 
days 

Mean: 
Avg. 
days 

Mean: 
Hot 
days 

Welch’s 
ANOVA 
p-value 

Cold-
Avg 

Games-
Howell 
p-value 

Hot-Avg 
Games-

Howell p-
value 

Cold-
Avg 

Cohen
’s d 

Hot-
Avg 

Cohen
’s d 

ELEVATION   
Warm deserts 733.3 725.0 694.8 0.003 0.614 0.007 0.015 -0.053 
S semi-arid highlands 1035.5 1077.7 1270.2 0.000 0.386 0.000 -0.094 0.398 
Tropical wet forests 1.0 1.1 1.1 0.012 0.008 0.888 -0.150 -0.034 
SE USA plains 203.0 196.3 200.1 0.581 0.596 0.851 0.075 0.042 
Temperate Sierras 1581.1 1498.5 1577.7 0.032 0.098 0.152 0.248 0.232 
MS alluvial/SE 

coastal plains 
4.0 3.7 3.5 0.074 0.177 0.507 0.038 -0.024 

Cold deserts 1785.2 1833.5 1867.2 0.000 0.000 0.000 -0.095 0.068 
Ozark forests 679.8 792.2 751.4 0.000 0.000 0.000 -0.229 -0.081 
Great plains 384.4 384.4 389.6 0.537 1.000 0.516 0.000 0.020 
Mixed wood plains 162.3 174.2 175.8 0.000 0.000 0.864 -0.092 0.012 
Northern forest 208.3 211.9 210.1 0.063 0.060 0.543 -0.076 -0.039 
NW forested 

mountains 
1873.1 2019.4 2040.5 0.000 0.000 0.000 -0.191 0.027 

Mediterranean CA 97.3 80.9 78.0 0.000 0.000 0.082 0.119 -0.021 
Marine westcoast 

forest 
96.1 99.6 85.5 0.039 0.826 0.030 -0.028 -0.113 

DISTANCE TO ROADS 
Warm deserts 102.4 82.0 69.9 0.000 0.000 0.034 0.072 -0.045 
S semi-arid highlands 16.5 27.3 31.8 0.002 0.003 0.802 -0.182 0.063 
Tropical wet forests 66.4 126.5 188.0 0.000 0.002 0.147 -0.153 0.145 
SE USA plains 7.0 10.1 7.3 0.004 0.011 0.056 -0.178 -0.158 
Temperate Sierras 175.9 157.2 195.4 0.438 0.820 0.447 0.066 0.134 
MS alluvial/SE 

coastal plains 
351.9 127.6 124.0 0.000 0.000 0.947 0.273 -0.006 

Cold deserts 81.7 72.2 62.7 0.000 0.010 0.010 0.027 -0.027 
Ozark forests 16.0 17.6 17.0 0.035 0.028 0.650 -0.048 -0.017 
Great plains 9.4 9.4 8.6 0.523 1.000 0.683 0.000 -0.008 
Mixed wood plains 41.5 68.0 26.6 0.000 0.001 0.000 -0.071 -0.116 
Northern forest 90.4 75.8 67.2 0.550 0.734 0.809 0.033 -0.021 
NW forested 

mountains 
55.2 74.8 78.4 0.000 0.000 0.055 -0.075 0.013 

Mediterranean CA 25.5 24.8 31.2 0.000 0.809 0.000 0.006 0.057 
Marine westcoast 

forest 
15.8 15.2 13.9 0.184 0.840 0.245 0.026 -0.065 
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DISTANCE TO WATERBODIES 
Warm deserts 3995.6 3646.9 3572.5 0.068 0.079 0.890 0.038 -0.008 
S semi-arid highlands 353.7 349.8 380.1 0.876 0.995 0.864 0.007 0.051 
Tropical wet forests 295.8 324.9 335.4 0.645 0.669 0.973 -0.045 0.016 
SE USA plains 137.6 151.7 123.6 0.267 0.819 0.248 -0.051 -0.107 
Temperate Sierras 6333.9 5568.6 6651.4 0.000 0.061 0.000 0.260 0.382 
MS alluvial/SE 

coastal plains 
76.4 72.4 72.5 0.199 0.178 0.999 0.036 0.001 

Cold deserts 887.0 950.8 958.6 0.000 0.000 0.910 -0.033 0.004 
Ozark forests 203.3 219.2 196.6 0.002 0.095 0.004 -0.045 -0.064 
Great plains 945.9 865.2 894.7 0.102 0.096 0.669 0.040 0.015 
Mixed wood plains 78.1 89.9 84.4 0.000 0.000 0.163 -0.091 -0.042 
Northern forest 57.5 57.3 51.2 0.079 0.997 0.077 0.002 -0.065 
NW forested 

mountains 
122.7 120.8 111.3 0.000 0.291 0.000 0.009 -0.044 

Mediterranean CA 97.3 78.2 74.1 0.000 0.000 0.021 0.114 -0.026 
Marine westcoast 

forest 
216.7 223.6 221.8 0.826 0.811 0.988 -0.026 -0.007 

DISTANCE TO PARKING 
Warm deserts 1589.3 1052.9 1298.9 0.000 0.066 0.000 0.122 0.061 
S semi-arid highlands 237.0 353.0 450.7 0.004 0.148 0.007 -0.151 0.095 
Tropical wet forests 409.1 731.0 753.3 0.000 0.000 0.000 -0.263 0.017 
SE USA plains 469.6 597.5 416.4 0.090 0.891 0.386 -0.094 -0.134 
Temperate Sierras 1160.3 515.3 672.9 0.038 0.233 0.065 0.401 0.134 
MS alluvial/SE 

coastal plains 
788.1 560.5 550.0 0.000 0.000 0.000 0.160 -0.009 

Cold deserts 706.9 536.3 440.3 0.000 0.000 0.000 0.113 -0.071 
Ozark forests 551.7 497.7 499.4 0.199 0.338 0.176 0.040 0.001 
Great plains 321.1 282.1 427.3 0.148 0.490 0.809 0.013 0.045 
Mixed wood plains 250.0 504.8 276.3 0.000 0.819 0.000 -0.116 -0.103 
Northern forest 619.2 777.5 761.9 0.046 0.257 0.035 -0.112 -0.011 
NW forested 

mountains 
343.5 434.0 416.9 0.000 0.000 0.000 -0.082 -0.015 

Mediterranean CA 112.9 97.9 101.2 0.000 0.002 0.000 0.060 0.013 
Marine westcoast 

forest 
237.6 252.6 318.9 0.003 0.011 0.772 -0.037 0.168 

DISTANCE TO BUILDINGS 
Warm deserts 570.0 434.5 466.9 0.000 0.000 0.286 0.121 0.030 
S semi-arid highlands 292.7 418.7 465.3 0.001 0.001 0.883 -0.183 0.052 
Tropical wet forests 247.4 472.3 726.0 0.000 0.000 0.035 -0.207 0.212 
SE USA plains 171.3 187.2 115.0 0.022 0.902 0.016 -0.034 -0.163 
Temperate Sierras 1210.2 490.4 648.6 0.023 0.037 0.326 0.439 0.132 
MS alluvial/SE 

coastal plains 133.1 95.2 103.2 0.000 0.000 0.125 0.167 0.041 
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Cold deserts 640.4 569.3 525.0 0.000 0.000 0.000 0.058 -0.038 
Ozark forests 213.0 192.8 203.6 0.181 0.192 0.635 0.038 0.020 
Great plains 270.0 253.4 296.5 0.020 0.476 0.019 0.021 0.054 
Mixed wood plains 216.2 282.3 239.0 0.000 0.000 0.012 -0.096 -0.063 
Northern forest 582.5 617.5 519.8 0.093 0.855 0.076 -0.022 -0.067 
NW forested 

mountains 273.5 304.4 291.3 0.000 0.000 0.000 -0.056 -0.024 

Mediterranean CA 623.5 539.1 512.8 0.001 0.004 0.522 0.098 -0.031 
Marine westcoast 

forest 576.5 489.6 453.5 0.001 0.008 0.257 0.158 -0.069 
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Table B.7  
 
Full statistical results associated with Figure 3.5. Welch’s t-tests comparing distributions 
on days with no precipitation to days with precipitation, by ecoregion. 

 

Mean: no 
precipitation 

Mean: 
precipitation p-value Cohen’s d 

ELEVATION 
Warm deserts 717.235 827.427 0.000 -0.197 

S semi-arid highlands 1083.800 1174.308 0.018 -0.189 

Tropical wet forests 1.053 1.160 0.007 -0.117 

SE USA plains 191.913 211.008 0.000 -0.214 

Temperate Sierras 1495.471 1700.929 0.000 -0.598 

MS alluvial/SE coastal plains 3.733 3.636 0.409 0.014 

Cold deserts 1824.627 1861.756 0.000 -0.074 

Ozark forests 752.506 798.958 0.000 -0.094 

Great plains 395.204 357.775 0.000 0.145 

Mixed wood plains 175.480 166.193 0.000 0.072 

Northern forest 210.761 211.990 0.352 -0.026 

NW forested mountains 2001.266 1988.599 0.004 0.016 

Mediterranean CA 83.423 64.694 0.000 0.136 

Marine westcoast forest 100.349 78.758 0.000 0.172 

DISTANCE TO ROADS 
Warm deserts 82.099 122.218 0.003 -0.144 

S semi-arid highlands 23.728 36.009 0.061 -0.186 

Tropical wet forests 124.465 116.369 0.640 0.020 

SE USA plains 9.391 9.025 0.709 0.021 

Temperate Sierras 156.452 226.336 0.038 -0.244 

MS alluvial/SE coastal plains 174.310 129.067 0.000 0.057 

Cold deserts 74.406 61.743 0.000 0.036 

Ozark forests 17.037 17.650 0.213 -0.019 

Great plains 10.158 7.022 0.000 0.033 

Mixed wood plains 66.157 40.028 0.000 0.075 

Northern forest 64.878 102.224 0.019 -0.088 

NW forested mountains 75.782 53.416 0.000 0.087 

Mediterranean CA 25.698 31.469 0.038 -0.052 

Marine westcoast forest 15.274 14.288 0.261 0.047 

DISTANCE TO WATERBODIES 
Warm deserts 3490.725 8091.293 0.000 -0.505 

S semi-arid highlands 329.268 469.620 0.013 -0.240 

Tropical wet forests 287.111 352.694 0.018 -0.102 

SE USA plains 139.511 158.703 0.231 -0.071 
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Temperate Sierras 5934.186 5096.904 0.002 0.287 

MS alluvial/SE coastal plains 74.442 69.441 0.004 0.046 

Cold deserts 960.319 849.269 0.000 0.058 

Ozark forests 220.968 201.604 0.000 0.055 

Great plains 960.132 667.203 0.000 0.149 

Mixed wood plains 92.831 75.372 0.000 0.136 

Northern forest 55.680 58.462 0.275 -0.030 

NW forested mountains 120.075 118.821 0.309 0.006 

Mediterranean CA 80.783 70.344 0.010 0.063 

Marine westcoast forest 216.552 254.583 0.001 -0.145 

DISTANCE TO PARKING 
Warm deserts 1138.106 2111.281 0.000 -0.214 

S semi-arid highlands 314.737 488.248 0.121 -0.184 

Tropical wet forests 588.471 744.166 0.003 -0.128 

SE USA plains 544.165 570.388 0.736 -0.020 

Temperate Sierras 604.803 780.709 0.191 -0.113 

MS alluvial/SE coastal plains 635.943 485.954 0.000 0.109 

Cold deserts 552.066 534.838 0.159 0.012 

Ozark forests 528.246 468.773 0.003 0.045 

Great plains 365.037 156.851 0.000 0.063 

Mixed wood plains 491.480 302.948 0.000 0.089 

Northern forest 781.969 689.876 0.041 0.064 

NW forested mountains 424.566 380.824 0.000 0.041 

Mediterranean CA 100.455 107.517 0.257 -0.028 

Marine westcoast forest 273.715 182.306 0.000 0.222 

DISTANCE TO BUILDINGS 
Warm deserts 459.378 538.059 0.030 -0.070 

S semi-arid highlands 370.259 544.649 0.065 -0.211 

Tropical wet forests 408.153 495.657 0.073 -0.077 

SE USA plains 175.735 170.957 0.857 0.011 

Temperate Sierras 582.249 822.247 0.095 -0.151 

MS alluvial/SE coastal plains 104.157 97.039 0.042 0.032 

Cold deserts 580.556 541.520 0.000 0.032 

Ozark forests 212.291 172.898 0.000 0.073 

Great plains 297.094 167.027 0.000 0.164 

Mixed wood plains 299.900 193.417 0.000 0.157 

Northern forest 624.292 544.391 0.063 0.052 

NW forested mountains 308.311 242.990 0.000 0.120 

Mediterranean CA 542.751 732.033 0.008 -0.223 

Marine westcoast forest 494.896 511.353 0.492 -0.030 
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APPENDIX C 

SUPPLEMENTARY MATERIAL ASSOCIATED WITH CHAPTER IV 

 

	
Figure C.1. Percent of grid cells that have federal and/or state public lands, but 0 Flickr 
posts between 2006 - 2019, by season, across varying grid sizes. 
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Figure C.2. An example of what these data look like for one grid cell. Black dots 
represent Flickr PUD in the fall (n = 314). This cell has 689.7 km2 of total public lands, 
309.7 km2 of NPS lands, 206.8 km2 of designated wilderness, and 16.5 million people 
within 500 km. NPS = National Park Service; USFS = U.S.D.A. Forest Service; SFW = 
State Fish and Wildlife.   
 



	

 

 
167 

	
Figure C.3. Spatial distribution of Flickr PUDs by season across U.S. public lands in this 
study. White cells represent areas that have no state or federal public lands included in 
this study. 
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Figure C.4. Spatial distribution of average seasonal maximum temperature (ºC; 1990 – 
2019), based on where people currently visit. Average seasonal maximum temperature 
was averaged over all Flickr PUD in each 30-km cell; if a cell had 0 PUD, the average 
seasonal maximum temperature was found at the centroid. White cells represent areas 
that have no state or federal public lands included in this study. 
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