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ABSTRACT

Job satisfaction and employee turnover determinants in Fortune 50 companies: Insights

from employee reviews from Indeed.com

by

Bishal Sainju, Master of Science

Utah State University, 2020

Major Professor: John Edwards, Ph.D.
Department: Computer Science

We explored 682176 employee reviews of Fortune 50 companies from Indeed.com us-

ing topic discovery techniques like Latent Dirichlet Allocation (LDA) and Structural Topic

Modeling (STM) to identify salient aspects in employee reviews and automatically infer

latent topics that tend to drive employee satisfaction. We also studied how various satisfac-

tion factors could be related to employee turnover. We discovered important topics in the

reviews, including Management and Leadership, Advancement Opportunity, Pay and Bene-

fits, Work-Life Balance, and Culture, which we compare to the five Job Descriptive Index

(JDI) facets. Both LDA and STM discovered well-separated and distinguishable topics.

We also incorporated a “Job Status” covariate in STM, which helped distinguish between

what topics were talked about most by “Former” vs “Current” employees, and consequently

helped us analyze the factors that could have caused employee turnover. We found that

Leadership and Management and Overwork and Stressful Environment were the dominant

factors contrasting between former and current employees, suggesting that they might be a

leading cause of employee turnover. Furthermore, we post-processed the topic probability

result from the STM model and analyzed it to determine sector-wise topic contribution

for each topic, and also analyzed the company-wise topic contribution in each sector. We
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found that Retail sectors talked the most about Pay and Benefits and Length of Breaks,

whereas the Technology sector’s employees were more concerned about the Work-Life Bal-

ance issue. Our results are directly usable to support company behavioral management

decision makers to conceive and evaluate initiatives intended to enhance employee satisfac-

tion. Furthermore, our techniques, including a novel visualization of topic composition and

quality, are generalizable to any setting that uses topic discovery from unstructured text,

and especially those comparing topics across entities.

(68 pages)
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CHAPTER 1

INTRODUCTION

Employee job satisfaction and retention are some of the important human factors affect-

ing a company’s operating and financial performance. Thus, it is important to understand

and analyze these satisfaction aspects. While such examinations have a long history in the

literature, this project moves beyond traditional means of employee surveys and instead

looks at proactive employee comments. In this project, we used Indeed.com (hereafter re-

ferred to as Indeed) reviews of current and former employees of Fortune 50 companies to

extract latent satisfaction categories and analyzed the data to better understand the drivers

affecting the employee job satisfaction and turnover.

1.1 Motivation

The primary motivation for this research is the plethora of opportunities that online

review sites like Indeed provide for the companies to discover new and latent satisfaction

aspects that companies can utilize in order to direct effective use of human capital and

positively impact organizational outcomes.

Traditional methods for measuring job satisfaction, like questionnaires and surveys,

provide limited capabilities as the user provides their opinions on a limited set of topics

typically developed and delivered by the employer. However, an online platform like Indeed

contains millions of free-form employee reviews that can be analyzed to extract unrestricted

critique on a variety of topics, which may allow for a truer gauge of employee job satisfaction.

Also, with increasing computational resources, topic modeling algorithms like Latent

Dirichlet Allocation (LDA) and Structural Topic Modeling (STM) can be leveraged to mine

large corpora of textual data. Thus, thousands of employee reviews can be analyzed with

relative ease.

In addition to studying job satisfaction determinants, the focus of this research extends
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to employee turnover analysis, motivated by a desire to better understand the reasons

behind employee turnover and perhaps lessen the costly consequences that turnover incurs

to the firms. Prior models fail to incorporate important constructs that explain employee

turnover due to methodological constraints. However, with the online proliferation of first-

hand information from both current and former employees, turnover implications can be

more readily made.

Also, we further investigated the sector-wise and company-wise topic differentiation on

both positive and negative feedback, thus demonstrating to employers one way to evaluate

and analyze their company’s comparative satisfaction aspects in a sleek and discrete manner.

This could help companies compare different satisfaction facets with their competition, and

provide perspective on what they need to focus on to enhance their employees’ satisfaction

and reduce turnover, in turn driving company performance.

1.2 Contribution

In this project, we make the following contributions: In this project, we make the

following contributions:

• We use machine learning approaches to mine latent job satisfaction topics in the large

corpus of employee reviews and analyze the strengths and weaknesses of each model.

We find that LDA performs relatively better than STM in topic discovery, whereas

STM is needed for incorporating covariate information.

• We draw upon the most ubiquitous job satisfaction framework, the Job Descriptive

Index [JDI] [1], but also discover novel job satisfaction aspects that provide additional

breadth and depth to the concept of job satisfaction.

• We present a visualization that allows a person to clearly distinguish between positive

and negative satisfaction drivers (what drives dissatisfaction and satisfaction) and also

distinguish between former and current employees on satisfaction factors, allowing a

conceptual understanding of what drives employee turnover.
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• Finally, we implement a method to compare and analyze company-wise and sector-

wise topic contributions, thus providing comparisons across sectors and within each

sector’s companies, regarding common positive and negative job satisfaction facets.
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CHAPTER 2

BACKGROUND & RELATED WORK

2.1 Employee Job Satisfaction and Job Descriptive Index (JDI)

Employee job satisfaction is an important correlate of both individual employee perfor-

mance [2,3] and organizational success [4,5]. Traditionally, employee surveys have been the

main method used to evaluate job satisfaction. Of these, the Job Descriptive Index (JDI)

is the most common measure, and has demonstrated strong reliability and validity [6]. The

JDI comprises five facets, including satisfaction with: coworkers, the work itself, pay, op-

portunities for promotion, and supervision. These facets have shown good independence [7],

but some research has shown that breaking job satisfaction into more than five dimensions

may be appropriate [8].

When trying to develop and understand drivers of job satisfaction, there are some

drawbacks to the JDI and similar measures. These types of survey methods have limited

validation, are restricted to a relatively small set of topics/questions, and demonstrate large

amounts of method and error variance [6, 9]. Thus, it is difficult to identify new factors or

gauge employees’ independent thoughts. And, although employees are often told their

survey responses are anonymous, their answers may still be biased by social desirability

based on fears of repercussions when the survey is developed, delivered, and/or sponsored

by their employer [10].

Job sites like Glassdoor.com and Indeed.com provide outlets for employees to proac-

tively express their opinions about their current and former employers anonymously and

in an open-ended fashion, thus allowing employees’ opinions to cover an infinite range of

subjects, rather than a restricted set of topics. This allows the employees to express a

much broader and unfiltered opinion of their employers. One more advantage that these

platforms have is that employees who have left the company can also leave their comments,
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thus providing information about dissatisfaction with their previous employer. These online

satisfaction ratings have demonstrated good construct validity in prior research [11].

Indeed allows employees to provide overall satisfaction ratings, which can provide a

general view of their job experience with the company. Users can also rate in 5 different

dimensions: i) Work-Life Balance, ii) Compensation / Benefits, iii) Job Security / Ad-

vancement, iv) Management, and v) Culture, thus allowing further depth. Some of these

five factors are similar to the facets of the JDI [1], such as satisfaction with pay, opportu-

nities for promotion, and supervision. Finally, Indeed users can provide overall comments

about their job experience, and can provide comments about the pros and cons of their

current and former jobs. These free-form comments provide insights about what employees

see as the most salient positive and negative aspects of their jobs, and our research focuses

on these comments in an attempt to use clustering and job modeling techniques to identify

the positive and negative drivers of job satisfaction, and to see whether the emerging clus-

ters match the dimensions of the JDI. Because users are self-identified as current or former

employees, we also examine what drives retention (the pros identified by current employees)

and turnover (the cons identified by former employees).

2.2 Clustering and Topic Modeling

2.2.1 Clustering

Clustering is an unsupervised machine learning algorithm, in which data points segre-

gates into a different number of clusters such that items within the same cluster are similar

to each other compared to items in different clusters. As it is an unsupervised learning

algorithm, the dataset does not contain a label, whereby, the task of this kind of algorithm

in the machine learning field would be to find out hidden patterns in the data, which are

not explicitly identified. Thus, clustering is an important machine learning algorithm, and

this can also be used in the field of document clustering, so as to cluster similar documents

together.

Basically, there are 2 methods of clustering:
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1. Hard Clustering

2. Soft Clustering

Hard Clustering

In hard clustering, each data point belongs to only one cluster, and that cluster only.

In our case of document (review) clustering, the task is to cluster the similar documents

together, so we can apply the hard clustering on these documents with the assumption

that a particular document/review talks about one particular topic/cluster only. Since the

length of the review is less than 20 terms, it can be assumed that the reviews are so small

to be talking about multiple topics. Hence, our assumption should hold true and we will

be able to apply hard clustering algorithms on our dataset (reviews).

Following is the hard clustering algorithm that we will use:

1. K-means clustering: Kmeans algorithm is an iterative algorithm that tries to partition

the dataset into K pre-defined distinct non-overlapping subgroups (clusters) where

each data point belongs to only one group. It tries to make the inter-cluster data

points as similar as possible while also keeping the clusters as different (far) as possible.

It assigns data points to a cluster such that the sum of the squared distance between

the data points and the cluster’s centroid (arithmetic mean of all the data points that

belong to that cluster) is at the minimum. The less variation we have within clusters,

the more homogeneous (similar) the data points are within the same cluster.

However, k-means do suffer from the curse of dimensionality. As the number of dimen-

sions tends to infinity the distance between any two points in the dataset converges.

This means the maximum distance and minimum distance between any two points of

the dataset will be the same. This is a big problem when using the euclidean distance

in K-Means.

And, as our dataset is text reviews and the features being each term, there are lots of

unique tokens/dimensions, which can cause our model to suffer from high dimension-

ality curse, which is a big problem. So to get around this problem spherical k-means
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Fig. 2.1: K-Means Clustering

can be used, based on the cosine distance instead of Euclidean distance with thou-

sands of features without any problems. Dimensionality reduction technique could

also have been applied before applying k-means clustering, however, we haven’t ap-

plied dimensionality reduction in our case, because spherical k-means itself gave a

pretty reasonable result for our dataset.

We will primarily be applying k-means clustering to our dataset. The “k” value (num-

ber of cluster / topics) will be chosen according to “elbow method”. According to this

method, for various values of k, Sum of Squared (SSE) is calculated, and at whatever value

of k, the SSE does not decrease significantly, we pick that value of k, as this is also known

as the elbow point as the “k” value that should be the optimal number of cluster. In our

case we want the “k” value to be as minimum as possible.

Soft Clustering

In soft clustering, each data point belongs to all of the cluster with some membership

probability associated with being in that cluster. In our case, each document / reviews might

be discussing about one or more issues (topics) i.e. our assumption that one document talks

about only one topic might be false. Although document length are pretty small, it can be

possible that one or more topics or issues are being talked about by a user, in their reviews.

For this reason, soft clustering are used to exploit this factor that a document might belong
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to more than one cluster.

2.2.2 Topic Modeling

Topic modelling refers to the task of identifying topics that best describes a set of doc-

uments. Some of the most popular topic modeling algorithm are soft clustering algorithms.

They are:

1. Latent Dirichlet Allocation (LDA)

2. Structural Topic Modeling (STM)

Topic modeling is a type of statistical modeling for discovering the abstract “topics”

that occur in a collection of documents. A document can be a part of multiple topics,

similar to fuzzy clustering (soft clustering), in which each data point belongs to more than

one cluster with some membership probability.

LDA

Latent Dirichlet allocation (LDA) [12] is a topic modeling algorithm in which set of

topics are extracted from documents such that each word in the corpus is assigned with

a probability of being in a particular topic, and each document has probabilities of being

in each topic/cluster. Documents can be viewed like a mixture of topics. In LDA, the

topic distribution is assumed to have a sparse Dirichlet prior. This assumption encodes the

intuition that documents cover only a small set of topics and that topics use only a small

set of words frequently. In practice, this results in a better disambiguation of words and a

more precise assignment of documents to topics.

Latent Dirichlet allocation (LDA), originally introduced by Blei et al.(2003) [12], is a

generative model for text. In this model, a “topic” t is a discrete distribution over words with

probability vector φt. Dirichlet priors, with concentration parameter β and base measure

n, are placed over the topics φ = {φ1, ...φT }:

P (φ) =
∏
t

Dir (φt;βn) . (2.1)
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Fig. 2.2: Latent Dirichlet Allocation (LDA)

LDA looks for patterns of co-occurences and makes guesses about sets of themes. Pass-

ing through each document it first randomly assigns probability of a document containing

particular theme (“topic”) among various topics and then iterates to improve the classifi-

cation of the probability of document belonging to one of these hypothetical topics. At the

end, we get topic-term and document-topic distribution matrices.

1. Document-Topic Distribution : A probability matrix that gives us the probability

value of any particular topic belonging to a particular document. For a given docu-

ment, the probability over all topics sums to 1.

2. Topic-Term Distribution : A probability matrix that gives us the probability of a

particular term belonging to a particular topic, defining a topic. The probability of

all terms for a topic sums to 1.

STM

The Structural Topic Model [13] is a general framework for topic modeling with document-

level covariate information. The covariates can improve inference and qualitative inter-

pretability and are allowed to affect topical prevalence, topical content or both. STM is

basically an extension of LDA, incorporating the additional information about the structure

of the corpus into the model by altering the prior distributions to partially pool information

amongst similar documents. Numerous special cases of this framework have been developed

for particular types of corpus structure affecting both topic prevalence and topical content.
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Fig. 2.3: Structural Topic Modeling (STM)

STM is basically the combination and the extension of existing models: the correlated

topic model (CTM) [14], the Dirichlet-Multinomial regression (DMR) topic model [15] and

the Spase Additive Generative (SAGE) topic model [16].

STM provides a general way to incorporate corpus structure or document metadata

(information about the document such as in our case Employee Status, whether the review

was written by “former” or “current” employee) into standard topic model. Using STM we

can observe how topical prevalence varies on the basis of a certain covariate information,

by inclusion of interest into the prior distributions for document-topic proportions and

topic-word distributions. For example, using STM, we can observe what topics “Former

Employees” are talking most about vs what topics “Current Employees” are talking about.
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2.2.3 Related Work

Several studies have applied text mining approaches to online employee reviews. Luo

et al. (2016) [5] used Glassdoor’s employee reviews to build a model which found the

correlation between employee satisfaction and company performance. Lee and Kang [17]

performed topic modeling using LDA by adopting n-gram technique on the employee re-

views obtained from Glassdoor.com. They then conducted dominance analysis to examine

the relative importance of job factors. They found that culture and value, and senior man-

agement had the highest influence on both retention and turnover groups. Similarly, Jung

and Suh [18] used LDA to extract job satisfaction factors from jobplanet.co.kr. They then

measured sentiment and importance of each job satisfaction factor at industry, company,

group, and chronological levels, using the dominance and correspondence analysis. They

found that Senior Management and Benefit and Compensation had the highest importance

on overall job satisfaction. Stamolampros et al. [19] used 297,933 online employee reviews

from US tourism and hospitality firms to study the determinants of job satisfaction and

employee turnover. They found that leadership and cultural values are better predictors

of high employee satisfaction, while career progression is a critical predictor of employee

turnover.

In our work we first perform comprehensive text analysis to extract latent satisfaction

factors, and using STM distinguish these factors between former and current employees,

providing a basis to infer employee turnover factors. Prior works had only used LDA, which

does not support covariates, as a means to extract satisfaction factors. In our research

we distinguish between factors dominant in former versus current employees by employing

STM. Similarly, we also identify what factors are dominant across which sector and which

company in that sector contributed to such dominance, which helps us compare topics across

companies and sectors to a degree not achieved in prior work.
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CHAPTER 3

DATA COLLECTION & PREPROCESSING

3.1 Data Collection

Indeed is the number one job site (https://www.reviews.com/job-sites/), and has the

most listings compared to its other competitors (e.g. Glassdoor.com). Furthermore, with its

easy-to-use user interface and extensive features it has become one of the best platforms for

the employees to express their opinions regarding the companies that they work for (current

employees) or that they previously worked for (former employees). Moreover, Indeed has

one of the highest count of the number of reviews available, which are readily served for

analysis.

Indeed’s employee reviews were used for the purpose of our analysis. We got the

approval from Indeed for using their employee reviews. They provided us with all the

reviews of Fortune 50 companies. The list of Fortune 50 companies were obtained from

“https://fortune.com/fortune500/”.

The Fortune 500 is an annual list compiled and published by Fortune magazine that

ranks 500 of the largest United States corporations by total revenue for their respective

fiscal years. The list includes publicly held companies, along with privately held companies

for which revenues are publicly available. The Fortune 500 is more commonly used than its

subset Fortune 100 or superset Fortune 1000.

In our experiment, only Fortune 50 companies were used for analyses, as a preliminary

step into analyzing employee review. Since, we wanted to understand what aspects the

employees in topmost companies are satisfied with, we just used Fortune 50 companies as

a first step towards understanding employee satisfaction aspects.

For our analysis purpose, only the attributes like “Review Title”, “Reviewer Job Sta-

tus”, “Review Text”, “Pros Texts”, “Cons Texts”, “Ratings” were used. Furthermore,
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Indeed also provided a platform for users to rate in five of the most general satisfaction as-

pects ( similar to “JDI” facets) which are Job Work/Life Balance, Compensation/Benefits,

Job Security/Advancement, Management, and Job Culture. Most of the employees have

given their ratings on these dimensions as well, however, only a few of them did not bother

to rate in these dimensions. For our analysis, we had enough data in these dimensions as

well to carry out quantitative analyses. Similarly, not all users had provided “pros” and

“cons” reviews separately, however, we had enough dataset to carry out our analyses.

3.2 Data Preprocessing

We gathered the following information from Indeed : “Review Title”, “Reviewer Job

Status”, “Review Text”, “Pros Text”, “Cons Text”, and “Ratings” - both overall rat-

ings and the five sub-dimensions sub-ratings (5 sub-dimensions are: Work-Life Balance,

Benefits, Job Advancement, Management, Culture). Because this study is concerned with

understanding the salient positive and negative aspects related to job satisfaction, we fo-

cused on the “Pros Text” and “Cons Text” in our analyses. There are a total of 675,117

total pro and con reviews combined. Among them are 344,573 pro reviews and 330,544 con

reviews that were gathered. For each of the Fortune 50 companies, the following steps were

taken for both the positive (pro) feedback and negative (con) feedback (see Figure 3.1 for

an example of processing):

1. Data Cleaning : Data cleaning was done to remove the URL, @ mentions, hashtags,

punctuation marks, and letter repititions.

2. Upper to Lowercase: Each of the terms was lowercased.

3. Tokenization: Each of the documents (reviews) was tokenized.

4. Stop Word Removal : Stop words were removed from each of the documents.

5. Stemming : Stemming was done on each of the tokens using the Porter Stemmer

algorithm.



14

Fig. 3.1: Text Preprocessing.

6. N-Gram Creation and Addition: Bigrams and Trigrams were generated using words

that appeared together and added to the document.

7. Stop Word Removal : Stop words were again removed after the text had been stemmed

and bigrams and trigrams generated.

8. Pruning : Terms that did not appear in the top 1000 unigrams, top 500 bigrams, or

top 300 trigrams for each company were pruned.

We randomly sampled 1000 reviews from each company for both the positive (pro) and

the negative (con) feedback, so that companies with the largest volume of reviews (e.g.,

Walmart) would not dominate the results. Some companies had fewer than 1000 reviews,

in which case we used all reviews. The fewest reviews for a single company was 125. All

reviews from each company were merged to form two large groups, one for the positive text

and one for negative text. After this, each of the documents that had less than 3 terms

were removed, and modeling was done on the remaining data. Thus, of the 1000 original

reviews for each company, some documents didn’t have enough terms and were discarded.
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CHAPTER 4

PROPOSED MODEL

Figure 4.1 shows various steps of the proposed model, which consists of Data Collection,

Data Pre-processing, Topic Modeling, and Topic Evaluation, which will be discussed in more

detail in the following sub-sections.

4.1 Data Collection

Data Collection was discussed in detail in Section 3.1

4.2 Data Preprocessing

Data Preprocessing was discussed in detail in Section 3.2

4.3 Topic Modeling

Figure 4.2 shows various topic modeling algorithms that will be applied. We first

started with a hard clustering algorithm like the k-means algorithm to get the general idea

of what kind of topics will come out.

Then we moved onto soft clustering algorithms like LDA and STM. LDA has various

variations and there are various papers which by incurring minor changes in the algorithm

has significantly improved this algorithm. LDA’s implementation in Python and R pro-

gramming language varies. Python’s gensim library provides gensim implementation of

LDA, and mallet package provides mallet implementation of LDA in python, which had

performed much better than the gensim’s implementation. However, to incorporate the

effects of covariates in the topic modeling, Structural Topic Modeling (STM) was most

widely used in various disciplines, ranging from Business and Management to Psychological

domains. So, we applied STM in order to incorporate the effect of Job Status on employee

satisfaction aspects.
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Fig. 4.1: Proposed Methodology

Fig. 4.2: Proposed Models
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The main purpose of Topic Modeling in our research analysis is to discover topics

that are most widely talked across or expressed in the employee reviews across Fortune

50 companies. This method of discovering latent topics in the employee reviews, certainly

proves to be beneficial, as they help us discover latent topics that might have not been

considered before now. The traditional method of figuring out which metrics best influence

employee satisfaction is limited in that surveys and questionnaires rely on fixed sets of

dimensions to quantify employee satisfaction. Although Indeed does provide employees 5

other domains to rate in, besides overall rating, employees have no obligation to rate, and

they can express their reviews in the form of texts, as they deem necessary, since their

satisfaction is not just bounded upon those 5 categories. They might have other reasons

to be satisfied or dissatisfied with their current or former employer. Indeed thus provides a

platform for users to freely express their employee satisfaction in whatever dimension they

wish. In order to discover such latent metrics of satisfaction, we used k-means clustering

algorithm, LDA, and STM.

We also go one extra step and look at what factors differentiates between the former

employee and the current employee, thus reflecting upon employee turnover determinants in

Fortune 50 companies. It would be really interesting to look at what factors influenced the

employees to leave that company, and what’s making the current employees stick with their

current employer. So, a covariate of Employee Status (Former/Current) is introduced, which

can help to discover an important relationship between the former and current employees,

which we aim to discover with our analysis. Thus, naive LDA’s model is inadequate in

providing this flexibility, which was why Structural Topic Modeling (STM) was introduced,

which can incorporate covariates to perform analysis on the basis of these covariates. There

is no Structural Topic Modeling package provided in Python, so we used R programming

to perform this task, using R’s STM package.

For LDA, semantic coherence was evaluated for models with topics ranging from 2 to

40, and a graph was plotted to figure out the best topic model for our document. Similarly

for STM, various metrics like Semantic Coherence, Exclusivity, and Held-Out Likelihood
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were used to evaluate the efficient number of topics.

Also we processed the document topic probability, topic term probability matrix which

was outputted from our model, to analyze sector wise topic proportion and in each sector

company wise topic contribution, which would help us compare topic distribution across

various sectors and companies.

4.4 Topic Evaluation

Evaluation is an important issue: the unsupervised nature of topic models makes model

selection difficult. Topic evaluation is a universal way to generalize the efficacy of the topic

model in a way that is accurate, computationally efficient, and independent of any specific

application. With this metric, we will be able to compare one model with another. Some of

the topic evaluation metrics that will be used in this paper to evaluate and compare various

models are presented in the following sub-sections:

4.4.1 Topic Coherence

The evaluation of statistical topic models has traditionally been dominated by either

extrinsic methods (i.e., using the inferred topics to perform some external task such as

information retrieval (Wei and Croft, 2006 [20])) or quantitative intrinsic methods, such as

computing the probability of held-out documents (Wallach et al., 2009 [21]). Recent work

has focused on the evaluation of topics as semantically coherent concepts. For example,

Chang et al. (2009) [22] found that the probability of held-out documents is not always a

good predictor of human judgments.

Semantic coherence is a criterion developed by Mimno et al. (2011) [23] and is closely

related to pointwise mutual information (Newman et al. 2010 [24]): it is maximized when

the most probable words in a given topic frequently co-occur together. Mimno et al. (2011)

[23] show that the metric correlates well with the human judgment of topic quality. Formally,

let D(vi, vj) be the number of times that words vi and vj appear together in a document.

Then for a list of the M most probable words in topic k, the semantic coherence for topic

k is given as
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Ck =

M∑
i=2

i−1∑
j=1

log

(
D(vi, vj) + 1

D(vj)

)
(4.1)

High semantic coherence can be easily obtained by having a few topics dominated by

very common words, as was pointed out in Roberts et al. (2014) [25]. That is why other

metrics need to be taken into consideration for evaluating various topic models.

Since these scores are log probabilities they are negative. Large negative values indicate

words that don’t co-occur often; values closer to zero indicate that words tend to co-occur

more often.

For LDA, the ”gensim” package provides the implementation of coherence score eval-

uation, where the coherence score is normalized such that they have positive values and

higher the coherence score indicates better the model.

For STM, however, ”stm” package in R provides the implementation of semantic co-

herence score evaluation, where score closer to zero indicates higher coherence, and higher

negative values mean that the top terms in the topic don’t occur coherently.

For each model, an overall coherence score is calculated by calculating the topic coher-

ence for each topic individually and then averaging these values.

4.4.2 Exclusivity

There are various ways to define the theme of the topics. However, the most general

way of defining the core concept of the topic is by the highest probable words in a topic.

However, it is not always sufficient that the most probable terms in a topic are always the

best definer of a topic, as the terms can be rather frequently occurring in the whole corpus,

and can be occurring equally frequently in other topics as well. So, it is also important

to understand if the most probable terms in the topic in question are relatively exclusive

to that particular topic only, and not common in other topics or not. So, exclusivity is

basically the measure of the extent to which the top words for this topic do not appear

as top words in other topics – i.e., the extent to which its top words are ’exclusive’. The

value is basically the average, over each top word, of the probability of that word in the
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topic divided by the sum of the probabilities of that word in all topics. The FREX metric

(Bischof and Airoldi 2012 [26]; Airoldi and Bischof 2016) is used to measure the exclusivity

in a way that balances word frequency. FREX is the weighted harmonic mean of the word’s

rank in terms of exclusivity and frequency.

FREXk,v =

(
ω

ECDF (βk,v/
∑K

j=1 βj,v)
+

1− ω
ECDF (βk,v)

)−1

(4.2)

where ECDF is the empirical CDF and ω is the weight which is set to .7 to favor

exclusivity.

Both term frequency and term exclusivity are informative: non-exclusive words are less

likely to carry topic-specific content, while infrequent words occur too rarely to form the

semantic core of a topic.

Both topic coherence and exclusivity are calculated for each topic of a model and then

averaged over all the topics to get the score for the model. Therefore, a model with higher

exclusivity and semantic coherence is generally preferred (i.e., models with average scores

towards the upper right side of the diagnostic plot).

4.4.3 Held-out Likelihood

One of the oldest evaluation methods for statistical topic modeling is held-out likeli-

hood, developed by Wallach (2009) [21], which is basically the probability of generating

unseen held-out documents given a trained model. Better models on average tend to have

a higher probability of held-out documents. A better model will give rise to a higher prob-

ability of held-out documents, on average.

Held-out likelihood is generally measured by splitting the dataset into two parts: one

for training, the other for testing. For LDA, a test set is a collection of unseen documents

wd, and the model is described by the topic matrix Φ and the hyperparameter α for topic-

distribution of documents. The LDA parameters Θ is not taken into consideration as it

represents the topic-distributions for the documents of the training set, and can therefore

be ignored to compute the likelihood of unseen documents.
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L(w) =
∑
d

log p(wd|Θ, α) (4.3)

Held-out likelihood is the measure of the predictive power of the model and does not

infer the latent structure of the model. Furthermore, Chang et al. (2009) [22] found that

the probability of held-out documents is not always a good predictor of human judgments.

Therefore, recent work has focused more on the evaluation of topics as semantically

coherence concepts, rather than as a held-out likelihood of the documents, which is why

we focus more on the “semantic coherence” and “exclusivity” more than the “held-out

likelihood” while evaluating the topic models.
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CHAPTER 5

PRELIMINARY ANALYSIS

There are a total of 675117 total pros and cons reviews combined. Among them are

344573 pros reviews and 330544 cons reviews that we were provided from Indeed of Fortune

50 companies. Although we had an average of 6891 pros reviews, and 6610 cons reviews

of each company. Walmart had the highest number of reviews of 159328, while, Berkshire

Hathaway had the lowest number of reviews of 125. The top 10 lowest number of reviews

is shown in Figure 5.1a.

Most of the companies have more than 1000 reviews (pros and cons combined).

After preprocessing the dataset, we tokenized each review, and only those documents

that had more than 3 tokens in it were taken, which reduced our total review document

size from “675117” to “215452”. Top 10 lowest number of reviews after preprocessing and

elimination is in Figure 5.1b.

Most of the companies still had a reasonable number of reviews. We had 107954 pros

document, and 107498 cons documents. We then sampled at most 1000 pros and 1000 cons

reviews from each of the Fortune 50 companies, so as to distribute the effect of one company

overpowering our topic model. So, we ended up with 2 datasets, one for pros and one for

cons. Pros had 33624 reviews while cons had 32988 reviews. Review Length Distribution

in Figure 5.2a and Figure 5.2b for pros and cons shows that the number of tokens in the

preprocessed reviews are mostly less than 10. So, these reviews are quite short. The actual

review might have been quite long, but after the preprocessing, the number of tokens in

each review might have been reduced drastically. The lengthiest topic is actually just 72

tokens long after preprocessing.

We used these sampled datasets for further analysis.
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(a) Before Preprocessing (b) After Preprocessing

Fig. 5.1: Total Number of Reviews in each company

(a) Pro (b) Con

Fig. 5.2: Document Length Distribution
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CHAPTER 6

ANALYSIS & RESULTS for technical interpretation

6.1 Hard Clustering

6.1.1 K-Means Clustering

K-means algorithm was first applied to get a general idea about the kind of topics that

would come up in the topic modeling process. Reviews generally contain multiple topics,

i.e. employees generally talk about multiple topics in one single review, however, from our

preliminary analysis in Figure 5.2a and Figure 5.2b, it can be observed that the length

of the reviews was very small. Most of the reviews were less than 20 tokens long after

pre-processing, that, it can be concluded that not many topics are talked about by a single

employee. In fact, for k-means, we assume that only one topic is being talked about in a

single review. Hence, with this assumption, the k-means clustering algorithm was applied

to the reviews.

K-means clustering was applied on the sampled corpus which contained around 33624

reviews for “pros” and 32988 reviews for “cons”. The total number of features (unique

words/terms/tokens) in the corpus were 14889.

The time complexity of k-means algorithm is O(t ∗ k ∗ n ∗ d), where

t = num of iterations

k = num of clusters

n = num of data points (num of documents in our case)

d = num of dimensions (num of features / num of unique words in the corpus)

For our clustering analysis, the data points are basically each processed reviews, each of

dimension d indicating d number of features, where features are basically the terms/tokens
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Fig. 6.1: Elbow Method for optimal “k” (Pro)

in the whole corpus (bag of reviews). Tf-idf values for each of those tokens are calculated for

each of the reviews. And these d-dimensional tf-idf values becomes a single point describing

a particular review.

The time complexity is pretty reasonable. However, increasing the number of clusters

would lose the significance and interpretability of the topics. For this reason, the number

of clusters/topics was kept relatively low, i.e. less than 20 topics.

From preliminary modeling, it was observed that setting a number of topics/clusters

greater than 8 and less than 20, would produce better clustering results. Hence, setting

the k (Number of Topics/Clusters) = [8, 12, 16, 20] as the number of clusters to work on,

Sum of Squared Error (SSE) was calculated for each “k” value. Using “elbow method”, the

value of “k” to work with would be determined.

The elbow plot for “pro” is shown in Figure 6.1. A similar plot is obtained for “con”.

The elbowing effect was not observed. This indicated that we needed to increase the

value of k furthermore, however, increasing the number of k would significantly reduce the

interpretability of the topics, so it was decided that “20” was the maximum number of

clusters that we would work with. Maybe if we increased the number of topics further, the

graph might have elbowed, but choosing a large number of topics would lose interpretability,

so we stopped at 20 topics.

Each of the models with a value of k = [8, 12, 16, 20] was studied qualitatively since

the elbow plot did not give a significant conclusion. An 8 topic model gave “less coherent”

and “meaningful” topics, while a 20 topic model gave “well separated’, “exclusive”, and

“less interpretable” topics. An 8 topic model is presented in Figure 6.2a and Figure 6.2b
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for both “pros” and “cons”.

The top 10 values across the cluster centroid’s dimension were taken to describe a

particular cluster. Each dimension is a token, since, we are passing n documents/reviews

as a data point, and the dimension of each of those reviews is the total number of unique

tokens in the whole corpus. Hence, taking the top 10 values across these dimensions for

each centroid defines a particular cluster or topic.

From the figure, it can be observed that some interesting topics comes out of the

clustering. For the “pro” model, topics like: opportunity to advance/growth, free lunch,

flexibility in schedule, management and co-workers, decent pay and benefits, meeting nice

people, and paid vacations comes out. Similarly for the “con” model, topics like: poor work-

life balance, short breaks, low pay and benefits, lack of advancement opportunities, and poor

management come out. There are some jargon topics and topics which are a mixture of

multiple concepts as well, but overall the topics that k-means clustering has generated were

cohesive and interpretable.

Hence, employees do emphasize on JDI facets for their satisfactions. Also, some

other factors like meeting nice people, nice co-workers, paid vacations, benefit packages, free

lunches and longer breaks, schedule flexibility are some of the other factors that influence

employee satisfaction.

6.2 Soft Clustering

6.2.1 Latent Dirichlet Allocation (LDA)

LDA was applied using both python’s “gensim” and “mallet” package on both “pros”

and “cons” reviews. However, better models were observed using “mallet” package, hence,

the model created from “gensim” package was not used for analysis and evaluation. Both

“pros” and “cons” were modeled using LDA, which will be discussed in each of the following

sections.
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(a) Pro

(b) Con

Fig. 6.2: Top 10 terms across each topics
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(a) Pro (b) Con

Fig. 6.3: Coherence score for various number of topics using LDA

Pro

LDA was run on sampled “pros” reviews, and the coherence score for topics from 4 to

20 was plotted, as shown in Figure 6.3a.

For LDA, the coherence score is normalized such that they are positive value. In this

case, the higher the value of the coherence score, better the model. The coherence score

increases with an increasing number of topics. However, we limited the number of topics to

20 as more jargon topics come up if we increase the topic number to more than 20. From

the plot, a 16 topic model was chosen since it had the highest coherence score. A 16 topic

model is shown in Figure 6.4

The stacked barplot presented in Figure 6.4 indicates for each topic, how dominant

a particular term is. In other words, each bar in the plot for each topic is composite of

multiple smaller bars of terms, size of which represents the probability of the term being in

a particular topic (let’s say topic 1). Hence with this graph, we can easily observe what a

particular topic is about looking at the dominant terms used for that topic. Furthermore, we

have included just the top 10 terms for each topic, as other terms have a lesser probability

of being in that topic, and are insignificant for identifying the concept that a particular

topic is conveying. A horizontal dotted line at probability .5, denotes a threshold, below

which if the top ten terms of a particular topic fall is considered a bad quality topic because

every term has an equal probability of being on that topic. And since a topic has a few

dominant terms, it will be hard for us to identify what a topic is about, however, this is a
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Fig. 6.4: Top 10 terms across each topics (Pro) using LDA.
(The dotted line indicates 50% probability.)

just qualitative interpretation of the quality of the topic, and it should be considered with

caution, as there can be times when top ten terms falls below .5 threshold probability and

still can be considered a good quality topics. However, in most cases, if the top ten terms

falls below .5 probability threshold, it was seen that the topics were of bad quaity.

Looking at the bar plots we can observe some interesting topics are coming out from

LDA as well. For the “pros” model, topics like: fast and friendly environment, pay and

benefits, work-life balance, advancement opportunities, free foods and long breaks, learning

opportunities, meeting nice people, paid vacations, flexibility in schedule, management and

leadership, nice co-workers, and various benefit packages comes up. However, some topics

have greater significance than others as the dotted line shows the threshold below which if

the top 10 terms probability falls are considered poor quality topics. So, it can be inferred

from the graph that topics 1, 2, 5, 10, 11, 12, 14, and 15 are relatively better topics

than other topics. And it can also be qualitatively observed that these topics have their

ideas easily conveyed compared to other bad quality topics. However if we look at topic
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Fig. 6.5: Top 10 terms across each topics (Con) using LDA.
(The dotted line indicates 50% probability.)

8, although the top ten terms have probabilities below .5 threshold, it still is a very good

topic, as it clearly conceives the idea of meeting people.

So, we obtained some good and well-separated topics that come from LDA model,

which are consistent with the topics that we obtained from k-means. Most of the JDI facets

are considered satisfaction aspects. Besides these facets, some other topics also come out

such as: nice co-workers, meeting nice people, various benefit packages, free foods and long

breaks and so on. Hence, focusing on these aspects will help uplift company performance

in terms of employee satisfaction.

Con

LDA was then run on sampled “con” reviews, and the coherence score for topics from

4 to 20 was plotted, as shown in Figure 6.3b.

From the plot, the 10 topic model was chosen since it had the highest coherence score.

A 10 topic “con” model is shown in Figure 6.5
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From the figure, it can be observed that employees made negative comments about

various aspects like: lack of advancement opportunities, low pay and benefits, poor manage-

ment and leadership, short breaks, poor and stressful work-life balance, problem in managing

schedules and so on. Compared to the “pro” model, there are many bad quality topics. Only

topics 2, 4, 6 and 8 have highly probable terms, however other topics have less probable

terms, thus they are less qualitative topics.

6.2.2 Structural Topic Modeling (STM)

To observe the effect of the covariate (in our case Job Status being the covariate),

STM was applied on both “pros” and “cons” reviews separately, and on “pros” and “cons”

reviews combined as well.

Pro

1. Model Selection: The evaluation score for various evaluation metrics were plotted

for topics from 4 to 20, and the plot in Figure 6.6 was obtained. Various evaluation

metrics were discussed in Section 4.4. Only “Semantic Coherence”, “Exclusivity”

and “Held-Out Likelihood” were used as an evaluation metrics to further our model

selection process, as these are the only robust evaluation metrics, and other evaluation

metrics did not provide much distinction.

However, it’s not quite clear from the diagnosis plot which model to select. A model

with high semantic coherence, high exclusivity, and high held-out likelihood is gener-

ally preferred. In our diagnosis, we can observe that exclusivity and held-out likelihood

increased and the semantic coherence decreased with the increasing number of topics.

Since the diagnosis produced unclear results, 14 to 20 topic models were built indi-

vidually, and qualitatively analyzed. A 16 topic model was determined to be the best

model, after being qualitatively analyzed. Hence, further analyses were done using

the 16 topic model.
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Fig. 6.6: Diagnostic Plot (Pro) for STM
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Fig. 6.7: Top 10 terms across each topics (Pro) using STM.
textit(The dotted line indicates 50% probability.)

2. Model Definition/ Topic Labeling: The stacked barplot in Figure 6.7 indicates

the dominance of specific terms within each topic. In other words, each bar in the

plot for each topic is composite of multiple smaller bars of terms, the size of which

represents the probability of the term being in a particular topic. For example, Topic

2 is dominated by the “pay” and “benefit” terms, which together account for nearly

60% of the probability. Hence with this graph, we can easily observe what a particular

topic is about by analyzing the term probabilities. We have included the top 10 terms

for each topic, as these dominant terms are most likely to convey the topic meaning

most clearly. We have qualitatively established a .5 threshold to help differentiate

topic quality. If the top 10 terms compose a total of more than .5 probability, these

terms dominate a majority of the topic, and the topic should be relatively strong. If

the ten topics do not sum to at least .5 probability, the topic should be viewed with

some caution, and may be considered weaker.

Looking at the bar plots for pro in Figure 6.7 identifies that 13 of the 16 topics
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(81.25%) are above the .5 threshold. Some clearly defined topics come out from

this analysis. For the pro model, topics like: fun people (Topic 1), pay and benefits

(Topic 3), nice co-workers (Topic 4), free lunch (Topic 5), long breaks (Topic 6), paid

time off (Topic 10), and flexible schedules (Topic 16) emerge. Some topics comprise

two interrelated sub-topics, such as management and work environment (Topic 7),

free food and work-life balance (Topic 8), work teams and work-life balance (Topic

12), and health insurance and fast-paced work (Topic 15). Some topics have greater

significance than others as the dotted line shows the threshold below which if the top

10 terms probability falls are considered poor quality topics. Thus, topics 2, 9, and

14 are relatively weaker topics than the others.

Many topics do make sense, however, there are also many jargon topics compared to

“LDA” that does not make sense at all, and there are topics that are a mixture of

multiple ideas as well. So we need to further investigate the quality of each topic indi-

vidually, to infer which topics are good and which are not, which we have conducted

in the subsequent sections.

3. Model Evaluation:

(a) Topic Proportion: This plot shows the proportion of each topic in the whole

corpus. This graph helps us determine which topic is the most dominant across

all the documents, and which topics are the least dominant ones.

Figure 6.8 shows that topic 5 relating to free foods’ is the most dominant topic

among all, and topic that about nice co-worker is the least dominant one, and

the least talked about topic.

(b) Topic Quality : Topic quality graph was plotted to observe which topics were

of good quality and which ones were bad. A plot of “Semantic Coherence” vs

“Exclusivity”, should give us the visualization for good quality topics vs bad

quality topics. Topic having higher semantic coherence would mean that the top

terms in the topics are much more likely to co-occur across all the documents

where that particular topic has a higher probability. Similarly, a topic having
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Fig. 6.8: Topic Proportion (Pro) using STM

higher exclusivity would signify that the top terms that belong to that particular

topic are exclusive to that particular topic only and are not general across all

the topics.

Figure 6.9 shows the topic quality plot. It can be observed that “Topic 5”,

which discusses free food has a very low exclusivity, although it has a pretty

comparable semantic coherence score. So, what we can conclude from this is

that the free food topic is not exclusive to certain documents only, rather it is

general, meaning, almost every employee is talking about this issue and seems to

like this a lot. So, companies should focus on this issue, to satisfy their employees

and improving the employee rating. Similarly, “Topic 4” seems to have the lowest

semantic coherence and can be considered as a bad quality topic. “Topic 4” talks

about nice co-workers and nice people, however, since this topic has low semantic

coherence, it can be concluded that the top terms used to describe this topic do

not co-occur coherently in many documents.

(c) Topic Correlation: Next, we looked at the correlation graph. This graph shows

the connection between those topics which are most similar to each other. Using

this graph, we can understand which topics are similar to each other, and which
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Fig. 6.9: Topic Quality (Pro) using STM

other topics are distinct from each other.

Figure 6.10 shows the topic correlation plot for our model. As can be seen from

the figure, “Topic 3”, “Topic 6” and “Topic 14”, which all discusses benefits

are correlated, however, it’s quite surprising to have “Topic 6” correlated with

“Topic 3” and “Topic 14” as “Topic 6” is observed to convey a different concept.

Similarly, “Topics 11, 9, 7, 5, 10”, are observed to be correlated, although those

topics are talking about entirely different concepts. So it is not always wise to

stick to these observations, and these observations should be consolidated with

proper qualitative evaluation.

4. Covariate Effect (Effect of Job Status on Topic Distribution): Figure 6.11

show the distribution of topics across the former and current employees. A vertical

bar in the middle separates the topics that are most talked about by the former

employees versus the topics that are most talked about by the current employees.

Further is the topic from the vertical bar, more significantly a particular topic is

dominant in particular covariate (“Former/Current”). From Figure 6.11, it can be

observed that the current employees are satisfied by the aspects like: pay and benefits,
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Fig. 6.10: Topic Correlation (Pro) using STM

paid vacations, work-life balance, and flexible schedules, whereas the former employees

were satisfied by aspects like: meeting people, nice co-workers, free foods, and good

management.

It can be observed in the figure that the scale on the x-axis is very small (one hun-

dredth), hence, indicating very less discriminative power, so the result should be

interpreted with precaution.

Con

1. Model Selection: Figure 6.12 shows the diagnostic plot for “cons” reviews for topics

from 4 to 20.

For “cons” as well the plot does not provide a clear distinction of which optimal model

to choose, hence, qualitative analysis was performed for topics 14 to 20. A 17 topic

model was chosen after being qualitatively evaluated.

2. Model Definition/ Topic Labeling: A 17 topic model for “con” is shown in Fig-

ure 6.13.
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Fig. 6.11: Effect of Job Status on Topics (Pro) using STM

Fig. 6.12: Diagnostic Plot (Con) using STM
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Fig. 6.13: Top 10 terms across each topics (Con) using STM.
(The dotted line indicates 50% probability.)

Figure 6.9 highlights the negative comments made by employees about various aspects,

such as poor work-life balance (Topic 1), poor management (Topic 2), stressful envi-

ronment (Topic 8), lack of advancement opportunities (Topic 9), short breaks (Topic

14), work schedule (Topic 15), and low pay (Topic 16). As with the pro topics, some

of the con topics also cover two interrelated sub-topics. These include customers and

work-life balance (Topic 7) and hard work and low pay (Topic 10). Compared to the

“pro” model, there are many lower quality topics, as only eight of 17 topics (47%) have

at least 50% probability with the top ten terms. Each topic is further investigated in

more detail in subsequent sections.

3. Model Evaluation:

(a) Topic Proportion: Figure 6.14 shows that “Topic 2” relating to poor management

is the most dominant topic among all.
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Fig. 6.14: Topic Proportion (Con) using STM

(b) Topic Quality : Figure 6.15 shows the topic quality plot. It can be observed that

“Topic 8”, which discusses lots of different ideas (esp. stressful environment), is

a bad quality topic as it has a very low exclusivity score. “Topic 10” has a low

coherence score, and does not make sense, so, it is also a bad quality topic.

(c) Topic Correlation: Figure 6.16 shows the topic correlation plot for our model.

As can be seen from the figure, “Topic 6” and “Topic 14”, which discusses short

breaks, are correlated, however, it’s quite surprising to have “Topic 3” correlated

with “Topic 6 and 14”, as “Topic 3” is a bad quality topic.

4. Covariate Effect (Effect of Job Status on Topic Distribution): When it comes

to the negative aspect of the job, it can be observed from Figure 6.17 that current

employees are dissatisfied by aspects like lack of advancement opportunity and low

pay, while for the former employees, the negative topics discussed tends to cluster

around aspects like management issues and benefits.

It can be observed from the figure that the scale on the x-axis is very small (one thou-

sandth), smaller than that in the case of “pro”, hence the result should be interpreted

with caution. This indicates that the differentiation of topics between 2 co-variate has
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Fig. 6.15: Topic Quality (Con) using STM

Fig. 6.16: Topic Correlation (Con) using STM
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Fig. 6.17: Effect of Job Status on Topics (Con) using STM

a very low discriminative power, and any interpretation should be consolidated with

qualitative analysis.

Pro Con Combined

Next, we combined the “pros” and “cons” reviews and modeled them together. Rather

than analyzing them separately, we wanted to observe the model when combining them.

1. Model Selection: Figure 6.18 shows the diagnostic plot for the “combined” reviews

for topics from 8 to 20.

For “combined reviews” as well the plot does not provide a clear distinction of which

optimal model to choose, hence, qualitative analysis was performed for topics from 4

to 20. After qualitatively analyzing each of the models, and scoring and reviewing by

three experts, it was decided that the 14 topic model be chosen for further investiga-

tion and analysis since this model was well-separated, much distinct, and much more

understandable. A 16 topic model was another good model, however, we decided to

stick with a 14 topic model as it had a better score from the graders.
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Fig. 6.18: Diagnostic Plot (Pro & Con combined) using STM
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Fig. 6.19: Top 10 terms across each topics (Pro & Con combined) using STM.
(The dotted line indicates 50% probability.)

2. Model Definition/ Topic Labeling: A 14 topic model for “combined reviews” is

shown in Figure 6.19.

Employees are talking about topics like: free food and short/long breaks, advancement

opportunity, pay and benefits, management and leadership, schedule flexibility, people

and culture, and work-life balance, which is consistent with the prior models using

“pros” and “cons” reviews separately. Since we mixed 2 different reviews, topics are

much more unclear and are a combination of multiple ideas. These topics will be

elaborated in the following subsections furthermore.

3. Model Evaluation:

(a) Topic Proportion: Figure 6.20 shows that “Topics 2” relating to pay and benefit

is the most dominant topic among all. And schedule flexibility is talked about

the least.
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Fig. 6.20: Topic Proportion (Pro & Con combined) using STM

(b) Topic Quality : Figure 6.21 shows the topic quality plot. It can be observed

that “Topic 13”, which discusses free food has the lowest exclusivity, meaning

employees talk about free foods everywhere. “Topic 4” is a bad quality topic and

can be ignored since it has the lowest semantic coherence score.

(c) Topic Correlation: Figure 6.22 shows the topic correlation plot.

4. Covariate Effect (Effect of Job Status on Topic Distribution): From Fig-

ure 6.23, it can be observed that the current employees are most satisfied with various

satisfaction aspects like: benefits and pay, flexible schedule, and meeting people, how-

ever, they are dissatisfied by factors like: short breaks, lack of opportunity for growth

and advancement, low pay, and difficulty for life balance.

Similarly, the former employees were mostly satisfied by factors like: fast pace envi-

ronment and culture, and free foods, however, they were dissatisfied because of aspects

like: poor management and leadership, and extreme stress, and overworks.

Although topics are easily separated with large values in the “Pro Con” dimension,

they are not separated by larger values in “Former Current” dimension. Therefore,

although topic distribution across positive and negative feedbacks are prominent, topic
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Fig. 6.21: Topic Quality (Pro Con combined) using STM

Fig. 6.22: Topic Correlation (Pro & Con combined) using STM
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Fig. 6.23: Effect of Job Status on Topics (Pro & Con Combined) using STM

distribution across former and current employee domains is not much significant, to

have any significance to drive any managerial or executive decision.
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CHAPTER 7

ANALYSIS & RESULTS for management interpretation

7.1 K-Means Clustering

Figure 6.2a and 6.2b shows the topics that were discovered using k-means clustering

on “pros” and “cons” reviews respectively. From the figure it can be seen that employees

are mostly satisfied by aspects like: opportunity to advance, free foods, schedule flexibility,

good management, nice co-workers, decent pay and benefits, meeting nice people, vacations

(paid), whereas, they are dissatisfied by aspects like: inflexible schedules, poor work-life

balance, short breaks, low pay, lack of opportunity to advance, stress, poor management and

leadership.

Companies, therefore, needs to focus on aspects like: management and leadership, pay

and benefits, work-life balance, advancement opportunity, which are also the four of the

five “JDI” facets. Work Culture, which is also one of the “JDI” facets, however, does not

seem to be talked a lot by employees. Besides these factors, schedule flexibility, meeting

nice people and nice co-workers, free foods and long breaks are also important areas for the

employees to work on, to keep their employees happy. Similarly, companies should make

the environment as less stressful for the employees to work.

7.2 LDA

With “LDA” as well similar topics like that from “k-means clustering” comes out,

as can seen in 6.4 and 6.5 for “pros” and “cons” reviews respectively. Some other topics

that comes out of “LDA” besides that from “k-means” are : fast and friendly environment,

career growth, opportunities to learn new skills/technology and gain experiences, and various

types of benefits, specifically employee discounts and bonuses, paid vacations, free foods,

health benefits, gym, cafeteria and so on using “pros”, and difficult goals and expectations,
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requiring to work overtime and on weekends as well, layoffs, unstable schedules, no care

from upper management using “cons”.

So, companies need to focus on aspects like: maintaing good environment, teacihng new

skills/technology, various benefits like: discounts, bonuses, health care, gym, cafeteria, free

foods to keep their employees happy. Also, companies should ease their expectation/goals to

make their employees less stressful, and also maintain a stable schedule. Upper management

should provide constant care and support for the employees to feel motivated and happy.

7.3 STM

Similarly, we applied STM to incorporate “Job Status” co-variate information. There

were many bad quality topics with “STM” compared to “k-means” and “LDA”. As shown

in Figure 6.7, we could infer topics like: meeting people, nice co-workers, work-life balance,

management, decent pay, schedule flexibility, growth opportunities and various benefits like:

gym, cafeteria, tuition reimbursement, health benefits, free foods, paid vacation and so on

using “pro” reviews, which is quite similar to topics discovered from “k-means” and “LDA”.

Similarly, using “con” reviews, topics like: poor life balance, poor management and lead-

ership, unrealistic expectations and extreme pressures, limited growth opportunities, short

breaks, lack of advancement opportunities, schedule problems and low pay were discovered

as shown in Figure 6.13. Similarly, we also combined “pros” and “cons” reviews together,

and formed a model by combining both the reviews together using STM. The model that we

obtained had topics like: short breaks, lack of advancement opportunities, pay and benefits,

schedule flexibiliity, work-life balance, free foods and culture, which are quite similar to prior

models, however, since we mixed 2 different kind of reviews “pros” and “cons” together,

the topics were much more congested and noisy.

Similarly, we applied covariate information of “Job Status” on all 3 models using

“pros”, “cons” and “combined”, and obtained the “Effect of Job Status on Topics” as

shown in Figure 6.11, Figure 6.17 and Figure 6.23. It can be seen from those figures that

“Former Employees” are motivated by factors like: meeting new people, free foods, better

management, nice co-workers and so on. However, they are demotivated by factors like:
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bad management, lack of benefits, stressful environments and so on. Similarly, “Current

Employees” are motivated by factors like: pay and benefits, paid vacations, schedule flex-

ibility and better work-life balance, and are demotivated by factors like: low pay, lack of

advancement opportunities and work-life imbalance.

Therefore, companies need to focus on improving their management and leadership,

providing free foods and other benefits, creating a culture for meeting new people and nice

co-workers and creating stress-free environment for their employee to work on if they want to

retain their employees. Similarly, to keep their current employees happy, the companies need

to focus more so on decent and competitive pays and benefits, creating good work-life balance

for employees, creating opportunities for employees to advance/grow and maintaining a

flexible schedule for employees.

7.4 Company-wise and Sector-wise Analysis

The output from the optimal “pro” and “con” model using STM was used for this

analysis. The document-topic distribution matrix and the topic-term distribution matrix

was used for creating this visualization. Each of the companies belonged to a certain sec-

tor, the information which was provided by Fortune 500 website. Each review (document)

belonged to a certain company, and the document-topic distribution matrix provides us

with the probability of any particular document (review) having a certain probability of

belonging to a particular topic. Aggregating and normalizing this over each of the Fortune

50 companies gives us the probability of the company having a particular topic, and fur-

ther aggregating over sector gives us the probability of that sector having a specific topic.

Similarly, what a topic is can be recalled from the topic-term distribution and taking the

top 10 probable terms to define any particular topic, will help us identify the general idea

of that topic.

Figure 7.1 shows the analysis result for the topic Pay and Benefits.

The figure shows the grouped stacked bar chart, indicating which sector talks about

which topic the most, and in each sector which companies contribute to the most topic

proportion. In each sector, we take the top 3 companies contributing to a particular topic.
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Fig. 7.1: Sector-wise Topic Distribution and Company-wise Topic Distribution

We take the top 3 companies only, for comparability between various sectors, as some sectors

have less than 3 companies in the Fortune 50 company list. We ignore all those sectors that

have less than 3 companies. There are 2 bars for each sector, blue one indicating topic

proportion on the pro side, and the red one indicating topic proportion on the con side.

On the right subplot is the topic description for positive and negative feedback. A blue

bar indicates “pro” topic description, whereas a red bar indicates “con” topic description.

For comparison purposes, we qualitatively choose similar “pro” and “con” topics, and place

them together. Each bar is a stacked bar chart, indicating which companies contribute

to what proportion of the topic for that sector. These stacked bars are arranged in the

descending order of the topic proportion from bottom to top.

From Figure 7.1 it can be seen that the Retailing sector talks the most about the pay

on the positive side as well as the negative side. Retailing sector employees are very satisfied

with the pay compared to the Financial and Technology sector, which is kind of surprising,

since we assume that Financial and Technology people have better earning, however, we

see Retailing people commenting more on decent pay and benefits. It might be because

the employees of Retailing sectors have lesser expectations compared to the other sectors.

Particularly, Costco, Amazon, and Lowe’s employees are more satisfied with the pay within

the Retailing sector. Similarly, on the “con” side as well Retailing sectors employees are



52

Fig. 7.2: Sector-wise Topic Distribution and Company-wise Topic Distribution

complaining, this time, contributed by companies like Home Depot, Walmart, and Target.

Similarly, in the Technology sector, Apple employees are most satisfied with pay while IBM’s

employees are the least satisfied.

From Figure 7.3 it can be seen that again Retailing people seem to be more concerned

about the duration of the lunch breaks, compared to people in other areas. Technology

people don’t care about the duration of the breaks. In Retailing, employees from Walmart

are happy that they are given longer breaks, whereas, Amazon employees are complaining

about the short breaks. Similarly, CVS health in the Health care sector, and Valero Energy

in the Energy sector are dissatisfied with the shorter duration of the break. Other companies

don’t care about the duration of the break that much.

Similarly, from the Figure 7.3 it can be seen that Technology sector employees are the

most satisfied by the Work-life Balance, due to companies like IBM, Dell, whereas they

are also least satisfied due to companies like Microsoft and Intel. All sectors seem to have

pretty even Poor Work-life Balance, so every sector needs to work on providing better

work-life balance to their employees. In the financial sector, Freddie Mac, Fannie Mae, and

Prudential Financial also seem to have a good work-life balance.

In this project, we made the following contributions:

• We proposed a novel text pre-processing approach for short reviews that of length less



53

Fig. 7.3: Sector-wise Topic Distribution and Company-wise Topic Distribution

than 20 words, which is very effective for various topic modeling algorithm approaches

like LDA and STM.

• We extended the work of [27] by employing the analyses on Indeed.com’s reviews of

Fortune 50 companies.

• We experimented and validated various machine learning approaches to mining latent

topics in the large corpus of short reviews and analyze the efficacy of each model.

• We incorporated an important topic visualization to clearly distinguish between posi-

tive and negative satisfaction aspects and also between former and current employees

discrepancy on satisfaction factors.

• We found that a simple k-means algorithm can perform very well when the reviews

are short.

• We found that LDA and k-means perform better in topic discovery, whereas STM is

needed for incorporating covariate information.

• We found that various aspects like: free foods and long breaks, meeting people, benefits

and packages are also important besides 5 JDI facets for satisfying employees.
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• We found that former employees were dissatisfied by leadership and management is-

sues, work-life imbalance, and were mostly satisfied by aspects like: meeting people,

free foods and nice co-workers, whereas current employees were satisfied by aspects

like: pay and benefits, scedule flexiility, and dissatisfied by lack of opportunity to ad-

vance and indicating that management and leadership issues, work-life balance issues,

need to be resolved in order to retain their current employee.

• We provided an elegant visualization to compare sector-wise and company-wise topic

proportions. It was found from this visualization that Retailing sectors were the most

concerned about the payments on both the positive and the negative sides. And they

were also very concerned about the length of the break. However, the Technology

sector was the most concerned about work-life balance.
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CHAPTER 8

CONCLUSION

In this paper, we have presented novel approaches for leveraging open-source reviews

to extract latent (hidden) satisfaction aspects of the employees in Fortune 50 companies,

using LDA and STM. We have also analyzed these factors and distinguished between former

versus current employees’ contributions to the topics, and have come up with suggestions

for employee turnover, which could potentially help companies improve employee retention

and long-term organizational success.

It was found that free food and long breaks were some of the factors that were talked

about by most of the employees, which is somewhat surprising since little prior research

focuses on these specific factors. We specifically point out these factors because they are so

common in the reviews that we analyzed. This could imply that if the companies focused

more on these aspects they may see gains in employee satisfaction. These topics also deserve

more attention in academic research.

Many topics that we discovered were similar to the JDI facets, albeit often more specific.

Thus, this project highlights the factors in a particular facet that may contribute most

strongly to employee satisfaction. For example: Fun People, Nice Co-workers and Teamwork

were some of the aspects that contributed for the satisfaction of employee with co-workers,

while Difficult People dissatisfied them. This helped us break down specific areas to focus

on in satisfying employees. In the above example, hiring people that are “fun” and “nice”

and that know how to work in a team may be a productive focus.

By analyzing sector-wise topic distributions, we see that the work-life balance topic may

apply more heavily in Technology and Financial sectors and pay may apply more in the

Retail industry, indicating the relative interests of employees in those sectors. In addition,

we found that breaks are also topics discussed heavily by employees in the Retail sector. In a

general sense, this indicates that pay and breaks may be highly salient for Retail employees,
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while employees in other sectors are most focused on other aspects like personal satisfaction

of a job and maintaining a work-life balance.

Our visualization of topic composition (Figures 6.7 and 6.13), along with our probability-

based measure of topic quality (see the 50% threshold in the figures) are generalizable to

topic discovery from unstructured text in settings including customer reviews, critic reviews,

and social media comments. Our company-wise and sector-wise topic distribution analyses

are also applicable to these settings, especially when topics need to be compared across

attributes. And finally, the visualization of topic composition (again, Figures 6.7 and 6.13)

can be a way to gain additional intuition into traditional measures of topic quality (e.g.

coherence and exclusivity).

8.1 Future Work

This work opens the door to new areas of study. For example, analyzing direct cor-

respondence of employee satisfaction to company revenues, and how employee satisfaction

impacts company profits. Further investigation could be done to find the difference in the

satisfaction needs between employers in low performing companies and high performing

companies. Similarly, other algorithms like hierarchical clustering and other variants of

LDA can be used to compare resulting models and topics. Finally, job satisfaction research

may benefit from drilling down to understand what specific components drive satisfaction

of the five general facets, and the JDI may benefit from updating to include other relevant

job satisfaction facets like work-life balance).
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