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Abstract 

fracture surfaces of austenitic samples 
tested at room temperature show a correlation 
between fracture characteristics, .o. K- value and 
R- ratio : 1) at low .o. K- values up to 400 N /mm3 / 2 

and stress ratios of R = 0 . 1 and R = 0.7, no 
fatigue striations but fan - like features and flat 
facets can be seen; 2) fatigue striations, but 
no facets exist at .o. K- values greater than 
900 N/mm3

/
2 and R = 0.1; 3) at a higher stress 

ratio of R = 0 .7 the facets disappear already at 
lower ..,. K-values of about 650 N /mm3 / 2 • 

Applied to failure analysis, this correla ­
tion permits an estimate of operating level of 
fatigue stress as a result of the evaluation of 
fatigue fracture characteristics . 

fracture characteristics of samples tested 
at 200°C differ from those tested at room tempe­
rature, but do not show any appreciable changes 
in fracture features dependent on the .o. K- value 
and R- ratio. 
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Introduction 

The examination of fract ure s urfaces under 
optica l or elect r on micro scope is a major el ement 
of failure analysis . Charac t er istic f r ac tur e 
feat ures provide information on whether fai l ure 
was caused by corrosion and/or mechanical st r es ­
ses . The defect location in the component and 
the macroscopic and microscopic characteristics 
enable the type and orientation of mechanical 
stresses to be determined. 

In failures due to operational stresses , 
fatigue fractures are a major element. They ar e 
caused by unforeseen cyclic loadings which are 
thus not taken into account in the design of the 
component. In water - bearing components such 
loadings may, for example, result from flow con­
ditions giving rise to thermal stressing of the 
component, or from resonant excitation of the 
component . 

The source of the cyclic loadings is fre ­
quently not established; quantitative determina ­
tion of stress magnitude during unanticipated 
operational loadings is impossible . 
Therefore , fractographers are often asked whether 
they could - beside the identification of a 
fracture surface as a fatigue fracture - deter­
mine the magnitude of the load sustained from 
the appearance of the fracture surface . 

Some hints that such a "quantitative frac t o­
graphy " is possible were found in the l iterature 
describing the fracture appearance of samples 
tested under different conditions to investigate 
the crack growth behaviour. So it was found t hat: 
1) fatigue striations do not form at low crack 
growth rates and low "'-K- values /6/ , /10/; 2) the 
appearance of the fatigue striations depends on 
the material , t est frequency and stress magni ­
tude /1/; 3) under certain circumstances one 
load cycle corresponds to one fatigue striation 
/7/, /9/; 4) crack propagation rate /5/ and 
fractographic appearance /2/, /11/ change under 
the effects of var ious environments; 5) a cor r e­
lation exists between heat treatment , stress 
intensity factor and morphology of the fatigue 
fracture surfaces in low-alloy stee l s /4 /. 

The pur pose of the in vestigation described 
below was to evaluate sys t emati cal l y the cor r e­
lation bet ween fractu r e appearance and t est 
conditions as a basis for "quantitati ve 
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fractography " on austenites. As for the part of 
the investigators , "quantitative fractography" is 
to be applied on fatigue fractures in components 
which are exposed to water of varying temperature 
(room- temperature to about 300°C) during opera ­
tion; these conditions were taken into account 
during test performances. 

Test performances 

Fractographic examination was performed on 
austenitic fracture surfaces produced by loading 
in the tension -t ension stress range, varying test 
frequency, temperature , stress ratio and environ ­
ment . The tests were conducted as crack growth 
tests and three - stage tests. While in the crack 
growth tests the ,e, K- value increases continuously 
with crack depth; three different ,e,K- values 
(350, 550 and 850 N/mm3 / 2 ) were held constant at 
specific crack depths in the three - stage test. 

Reference images of fracture features which 
were typical for a certain test condition were 
compiled in a catalog . 

The test parameters are listed below . 
Material 

Austenite X 10 CrNiNb 18 9 (German Standard 
Nr . 1. 4550 , USA grade TP 347) . Chemical analysis 
(German Standard DIN 17440): 
C -< 0 . 1 wt . % , Si ""' 1 . 0 wt . % , Mn c:: 2 . 0 wt.% , 
Cr 17 - 19 wt .%, Ni 9 - 11 .5 wt.%, Nb ~ (8 x wt . 
%C). 
Specimens 

For the description of WOL 25 X- samples 
see /12/. 
Test Paramete r s 

Room temperature 
Test frequency: 100 
Stress ratio: R = 

Room temperature 
water : 

tests in air: 
Hz . 

min = O. 1 
te~~§ in demineralized 

Test frequency : 1, 10 and 100 Hz 
Stress ratio: R = 0 . 1 and R = 0 .7 

Tests at 200°C , demineralized water , 30 bar , 
200 ppb 02 : 

Test frequency: 0.1 Hz 
Stress ratio: R = 0 .2 and R 0 .7 

Test results 

Crack Growth Rate 
Evaluation of the crack growth tests and 

three - stage tests at room temperature yields the 
following results : 1) at a frequency of 100 Hz 
and a stress ratio of R = 0.1 the crack growth 
rate does not depend on the test environment; 
2) reduction of the frequency to 1 Hz (R = 0.1, 
demineralized water) causes the crack growth 
rate to rise (Fig. 1 ); 3) the crack growth rate 
(1 Hz, demineralized water) increases with rising 
stress ratio (Fig. 1 ) . 

At the test temperature of 200°C, (0 . 1 Hz, 
demineralized water, 30 bar, 200 ppb 02 ) , however, 
the crack growth rate was not observed to depend 
on the R ratio (Fig. 2) . 

7056 

·3 
10 

-4 
10 

-7 
10 

7 7 

t,. I 1 t,. 
I l o 

t,.-'-'h ~ 

t t~ 
I Q I 
t,. >O 

□ A , 
'---

I ' ~ o -tJ.-o 
tJ.-'-- x 

~ ~ B-L>4x 
~ ~ □ -L LI O 

~□ t,. ~I ~L□□- t,.IJ 
□ t,. I 

,___._g_ ~ J 
-L□-~ Environment t[H,;] R 

t,. 0 air 100 0, 1 

X 100 0, 1 
- dtminera-

1 0, 1 ~ lize:d'Mlttr 
0 1 0, 7 

Cyclic stress intensity, • K, N/mm 312 

Fig. 1: Correlation between crack growth rate and 
,e, K at RT 

.lll 
~ 
<.> 

-3 
10 

- - 4 E 10 
E 
z· 
~ 
0 

"O ., 
e 
.c 
j -5 
5, 10 

-l'l e 
u 

-6 
10 

0 

~ +o 
!o w 
0o 

IEnvironrNnl lt[HzJI R 

. ~ demint,a-, W, liztdwotu, 
200ppb0, 0,1 0,7 

Cyclic stress intensity, • K, N/mm 312 

Fig . 2 : Corre lation between crack growth rate and 
""K at 200°C 

Fractographic Examinations 
Fractographic evaluation of the fracture sur ­

faces reveals that at room temperature fracture 
characteristics can be assigned to a K- value ran ­
ges , which depend on the respective stress ratio, 
regardless of test frequency and test environment. 



Corr ela t ion : f r actu r e Mechanics/fractography 

Figs. 3a and 3b: Fans and facets at 6K = 350 N/= 3 / 2 , f = 1 Hz. 
Figs. 4a and 4b: Roughened fans, facets and fatigue striations (arrows) at 6K = 550 N/= 3 / 2 , f = 1 Hz. 
Figs. 5a and 5b: Feathered structure, facets, fatigue striations (arrows) and secondary cracks at 6K = 
850 N/= 3/ 2, f = 1 Hz. 
Figs. 3, 4, and 5: Fracture characteristics as a function of 6K-value at room temperature and R 0 . 1. 
Figs. 3a, 4a and 5a are at same magnification, so are figs . 3b, 4b and 5b. Bar= 40 µmin Fig. 5a ; 
10 µmin Fig. 5b. 
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Figs. 6a and 6b: Fatigue striations (arrows) and secondary cracks at 6K = 950 N!mm3! 2, f = 1 Hz. 
Figs. 7a and 7b: Fans and facets at 6K = 350 N/mm3/ 2 , f = 1 Hz. 
Figs. Ba and Sb: Feathered structure, facets and fatigue striations (arrows) at 6K = 550 N!mm3! 2, 
f = 1 Hz. 
Figs. 6, 7, and 8: Fracture characteristics as a function of 6K-value at room temperature and R = 0.1 
(fig. 6); 0.7 (figs. 7 and 8) . Figs. 6a, 7a and Sa are at same magnification. Bar = 40 µmin fig . Sa. 
Figs. 6b and 7b are at same magnification, Bar = 10 µmin Fi g . 7b. Bar = 2 µmin fig. Sb. 
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Correlation : Fracture Mechanics/Fractography 

When the mean stress is increased, in the present 
investigations this was achieved by raising the 
st r ess ratio from R = 0 . 1 to 0 .7, the respective 
fracture char ac t eristics shift towards lower .o. K­
value ranges . 

At ""K- values of the or der of magnitude of 
350 N/mm3 / 2 and an R r atio of 0 .1 a fracture 
structure is obser ved which is characterized by 
fans and isolated fl at face ts (Fi g . 3). The fan 
vanes appear smooth ; even at a magnification of 
10,000 no fatigue striations can be di scerned . 
The facets are fo rmed by sepa r ation along 
crystallographic planes . A (111 ) orien t ation of 
these facets is to be assumed , according to 
pr evious investiga ti ons /8/ . Their formation is 
considered to be part of the fatigue pr ocess and 
not as a rapid brittle fract ur e process . It is 
to be assumed that surfaces similar t o "cleavage 
fracture surfaces " deve l op in the ductile aus t e­
nitic mate ri al by alt ernate slip at crack tips in 
conjunction with the formation of very small 
voids ahead of the cr ack 131; this mechan ism is , 
however, not yet fully understood . 

With the R ratio held constant at 0 . 1 
"r oughening " of th e fan vanes t o form discrete 
feathers s t arts in the A K- value range around 
550 N/mm3 / 2 • The number of facets rises slightly 
and there are some secondary cracks (Fig . 4) . 
The beginning of fatigue striation formation is 
to be discer ned at magnifications of about 1, 500 
(st r iations indicated by ar r ows) . 

Ata ,:,.K- valueof850N/mm 3 / 2 (Fig . 5) the 
fracture structure appears feathered . In addition 
to facets and by this stage relatively clear 
fatigue s tr iations , seconda r y crac ks become much 
more evident . 

As the .o.K- value is increased to 950 N/mm3 /; 

fatigue striations are visible at magnifications 
as low as about 500 (Fig . 6) . The number of 
secondary cracks rises, facets no longer occu r. 

The pr esent data show that the higher the 
AK- value the better is th e agreement be t ween 

crack growth rate calculated from st ri ation 
spacing and macroscopic crack gr owth rat e . 

There is nearly no effec t of inc r eased mean 
stress at l ow .c. K- values below 400 N /mm3 / 2 • Fans 
and facets are to be seen on the frac tur e surf a ­
ces, with the number of face t s sligh tly larger 
and the f ractur e surface a bit more r oughened at 
R = 0 .7 than at R = 0 .1 (compare Fig . 7 and Fig . 
3) . 

By contrast a distinct diffe rence in the 
fracture char ac teristics becomes visible a t .o. K = 
550 N/mm3 / 2 and R = 0 .7 compared with th ose of 
sampl es tested a t i den tic a l range of the cyc lic 
stress in ten sity factor but at R = 0 .1. In addi ­
tion t o isolated facets , distinct fa ti gue s tria ­
tion s occur in the feathered fra c ture structure 
of the sample tested at R = 0.7 . These fractu re 
characteristics resemble those of a fra ct ure sur ­
face induced at 850 N/mm3 / 2 and R = 0 . 1 (compare 
Fig . 8 and Fig. 5). 

The fracture surfac es produced in deminerali ­
zed water at a pressure of 30 bar and temperature 
of 200°C differ significantly from those in the 
room temperature samples . Facets are not obser ­
ved, seconda ry cracks occu r at l ow A K- values 
(Fig. 9) . Featherings running in the direction 
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of crack propagation and , abcve magnifications 
of about 1 ,500 , fatigue striations are visible in 
the fans . The fans govern the appearance of the 
f ractu re surface at a magnification of about 500 . 

The number of seconda ry cracks and the dis ­
tance between fatigue striations increase at 
higher A K- values (Fig . 10) . At these .o.K- values 
of about 600 N/mm3 / 2 the crack growth rate cal ­
culated from striation spaci ng is in good agr ee ­
ment with the macroscopic crack growth rate . (At 
lower A K- values the calcu l ated crack growth rate 
is higher than the macroscopic one . ) 

No di ffe r ence can be discerned between 
fr acture surfaces induced at R = 0 .2 and at 0 .7 
when c. K- values a r e as low as 400 N /mm3 / 2 • At 
higher .c.K- values , i. e . 600 N/mm3 / 2 , a higher 
st re ss rati o makes itself somewhat more apparent 
in the form of wider seco ndar y cracks , the longi ­
tudinal extension of which may be more than 100 
µm. Furth er~ore , secondary micro -cracks of the 
or der of magnitude of 1 µm occu r between the 
in divid ual fatigue striations . 

Conclusions 

In austenitic fracture surfaces produced in 
the tension - tension stress range at room tempe­
rature it is possible to dis t ingu i sh four ranges 
of diffe r ent fracture structure irrespective of 
test f requ ency and test environment . These ranges , 
in order of rising c. K- value, are typified by 
the fol l owing characteristics : Range I : smooth 
to slightly roughened fans , facets , fat igue 
s tr ia t ions not discernible even at high magnifi ­
cations; Range II : roughened fans or fea th eri ng 
on fractu r e surface , high proportion of facets , 
fatigue striations discernible at magnifica t ions 
above approx . 1, 500 ; Range III : feathered fractu ­
r e struct ur e , face t s , fatigue striations and 
gaping secondary c racks visible at magnifications 
above approx . 500 ; Range IV: facets absent , dis ­
tinct fatigue striations ; secondary cracks . 

These frac t ur e ranges are cor r elated with 
AK- values and R ratio in the manner shown in 

Table 1. 
This compilation shows that fract ur e 

features are th e same whether they are caused by 
high AK-values and l ow R rat io or vic e versa . 
So, the fo rmati on of fracture features i s in ­
fluenced decisively by the effective maximum 
stress . 

The stress rati o also affects the c r ack 
growth rate at room temperature: as R increases 
fr om 0 . 1 to 0 .7, the crack growth rate increases. 

Fractur e characteristics of samples tested 
at 200 °C differ from those teste d at room tem­
perature . 

By contrast with the room temperature sam­
pl es , however, no appreciable changes in fracture 
structure , i .e . appearance or di sappearance of 
specific fracture features dependent on the A K­
value, were observed in the samples tested at 
200 °C. The effect of the R ratio on crack growth 
rate and fracture characteristics is only sl ight 
as well . Therefore, an estimation of the magni ­
tude of the effective cyclic loading from frac­
ture features is not possible within the range of 

A K- values (up to 600 N/mm3 / 2 ) investigated . 
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Figs . 9a and 9b: Fatigue striations (arrows) within a fan-like structure, secondary cracks at 6K = 400 
N/mm3/ 2, f = 0.1 Hz. 
Figs. 10a and 10b: Fatigue striations (arrows) within a fan-like structure, secondary cracks at 6K 
600 N/mm3/ 2 , f = 0 . 1 Hz 
Figs . 9 and 10: Fracture characteristics as a function of 6K-v alue at T = 200 °c and R = 0.2. 
Bar= 20 µm (in figs. 9a and 10a); 10 µm (in figs . 9b and 10b) . 

Table 1: Correlation between fracture characteristics, 6 K- value and stress ratio Rat room temperature 

fracture characteristics c-K in N /mm3 ;2 6 K in N/mm3/2 
at R = 0 . 1 at R = 0 .7 

Smooth to rough fans , facets < 400 < 400 

Roughened fans or feathering, facets, 400 to 800 400 to 550 fatigue striations at M = 1.500 x 

feathered , facets , fatigue striations 800 to 900 550 to 650 
lat M = 500 x, gaping secondary cracks 

feathered, fatigue striations , secondary cracks > 900 > 650 
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Discussion with Reviewers 

G. Lange : Do you agree that "cleavage fracture 
surfaces " in austenitic material are the same 
phenomenon as the crystallographically orientated 
crack propagation in fatigue fracture of cobalt 
and nickel? 
Authors: We think that formation of "cleavage 
fracture surfaces " in fatigue fractures is a 
general phenomenon of fee materials . 
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