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We evaluated the soil organic carbon (SOC) pool and selected physico-chemical soil 

variables in a plantation with native tree species established in a degraded pasture of the 

Caribbean lowlands of Costa Rica. Studies on the rate and accumulation of aboveground 

biomass and C have been conducted in native tree plantations of Costa Rica. However, 

more studies on the SOC pool are needed since only few works provide information on 

the subject. The tree plantation was established in 1991 on a 2.6 ha. degraded pasture 

(Ischaemum sp.) Four species were selected: Vochysia guatemalensis Smith, 

Calophyllum brasiliense Cambess, Stryphnodendron excelsum Poeppig et Endl. and 

Hieronyma alchorneoides Allemao. Average SOC concentration ranged from 44.9-55.2 g 

kg-1 (0-10 cm), and decreased with depth up to 12.7-16.8 g kg-1 (40-50 cm). The highest 

SOC pool was measured under H. alchorneoides and V. guatemalensis, i.e. 131.9 and 

119.2 Mg C ha-1, respectively, whereas in the pasture it was 115.6 Mg C ha-1. The SOC 

pool has not changed significantly under the tree species evaluated 14 years after 

establishment. A multivariate ordination technique named between-within class principal 

component analysis was used to determine the factors and trend that explain the 

variability in the data. The effect of vegetation in the SOC and selected soil variables 

measured in this study was only detected for H. alchorneoides. The information 

presented herein about the depth distribution of the SOC fraction improves our 

knowledge for further developing prediction models. 
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The soil organic carbon (SOC) pool is the third largest C reservoir in interaction 

with the atmosphere. The biotic (560 Pg) and the atmospheric (760 Pg) pools are 

considerably smaller than the pedologic pool (Lal, 2004). The SOC pool can be depleted 

by 15 to 40% in a 2-yr period to 1-m depth when tropical forest is converted to 

agricultural land use (Ingram and Fernandes, 2001) or as much as 50-75% (Lal, 2004; 

Post and Kwon, 2000). Such depletion of the SOC pool creates the potential to 

accumulate (sequester) C in soils upon adoption of a restorative land use and less harmful 

agricultural practices.  

Native tree plantations have become an extensively used land use management 

option in Costa Rica during the last 20 years as a restorative tool for degraded lands and 

also because their potential use as providers of ecosystem services (FAO, 2006). A rapid 

land use change occurred in the northeastern part of Costa Rica between 1950 and 2000, 

with the dominant change being the conversion of forests to pastures (Read et al., 2000). 

The usefulness of native tree plantations’ establishment in degraded pastures has been 

recognized (Butterfield, 1995), although some researchers argue the viability of this land 

use in degraded pastures to restore soil quality (Sánchez et al., 1985). Nevertheless, most 

studies in native tree plantations have dealt with aboveground biomass (Fisher, 1995; 

Montagnini and Sancho, 1990; Montagnini and Porras, 1998; Stanley and Montagnini, 

1999; Tornquist et al., 1999). Several studies have provided estimates of the SOC pool 

sometimes assuming that the soil bulk density do not change through the soil profile, 

which seems not to be the valid procedure. 

 4



In Costa Rica, studies on soil C dynamics have been mainly focused on changes 

in total soil C following conversion of forests to pastures (Veldkamp, 1994; Veldkamp et 

al., 1992; Powers and Schlesinger, 2002; Powers, 2004; Powers and Veldkamp, 2005). 
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The SOC pool may also decrease slowly upon conversion of rain forest to pasture 

(Veldkamp, 1994), probably because of higher root biomass production under improved 

pastures (Lugo and Brown, 1993); however, van Dam et al. (1997) indicated the opposite 

trend and found a significant C accumulation in rich volcanic soils after clearance of the 

natural forest for pasture establishment. Reiners et al. (1994) reported the SOC pool at 16 

Mg C ha-1
 under pasture (0-10 cm depth) compared to 15 and 21 Mg C ha-1, respectively, 

under 5 to 10 and 10 to 15 yr-old regrowth forest. Under tree plantations the research data 

on the rates of SOC sequestration in Costa Rica are not abundant in the literature. 

Available data indicate that SOC pool does not always increase under tree plantations 

(Lugo et al., 1986; Bashkin and Binkely, 1998; Tornquist et al., 1999). Furthermore, the 

data on SOC concentrations, including in the particle-size fractions and its stabilization 

upon conversion to tree plantations are needed to develop rational decision support 

systems for adopting judicious land uses. Physical fractionation methods allow us to 

study the factors involved in the associations between soil mineralogy and soil C 

differing in composition and function (Christensen, 2001). 

The general objective of our study was to quantify the SOC pool and related key 

physical properties under a 14 yr-old mixed tree plantation established in a degraded 

pasture soil in the Caribbean lowlands of Costa Rica. The area has large geographic 

gradients in edaphic properties such as topography, SOC concentration, soil texture, and 

clay mineralogy (Powers and Schlesinger, 2002). Specific objectives were to: (1) assess 
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the depth distribution of SOC concentration up to 50 cm depth, (2) determine the trends 

and variations in SOC pool at the scale of the plantation, (3) establish the association of 

SOC with selected physical and chemical soil properties, and (4) set the determinants of 

the depth distribution of SOC under tree plantations.  

 

2. Material and Methods 

 

2.1 Study site 

 

This study was conducted at EARTH University (10º 10’ N and 83º 37’ W; 64 m 

a.s.l.) at the confluence of “Parismina” and “Destierro” rivers, in the Caribbean lowlands 

of Limón Province, Costa Rica. The climatic zone is classified as premontane, wet forest 

basal belt transition (Bolaños and Watson, 1993). The terrain is flat to undulating, annual 

rainfall averages 3,464 mm and annual mean temperature is 25.1 ºC (iso-hyperthermy). 

Rainfall is evenly distributed and exceeds 100 mm in all months, with peaks during June, 

July, August, November, and December, and yearly mean relative humidity is 87%. Soils 

of the study site are predominantly Andisols, and have moderate to low fertility. Soil pH 

(H2O, 1:1) ranges from 3.7-4.8 and texture from sandy clay and sandy clay loam in the 

surface to clay in the sub-soil layers (Table 1).  

 

Native tree plantations were established in 1991 on a 2.6 ha degraded pasture 

(Ischaemum sp.) that had been grazed for 7 years. Tree plantations were established 

following a completely randomized block design, comprising 3 blocks. Eight native tree 
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species that are normally used in agroforestry systems (Montagnini and Sancho, 1990) 

were planted in a 3x3 m pattern in monoculture within each block, at a density of 1,111 

trees ha
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-1. Four species were selected for this study: Vochysia guatemalensis Smith 

(“Chancho”), Calophyllum brasiliense Cambess (“Cedro María”), Stryphnodendron 

excelsum Poeppig et Endl. (“Vainillo”) and Hieronyma alchorneoides Allemao (“Pilón”) 

(Table 2). Among these species C. brasiliense is considered a “climax” hardwood species 

expected to grow relatively slow, and V. guatemalensis is a long-lived pioneer, an early 

succession species (Carpenter et al., 2004). The tree density proximity at the time of soil 

sampling in July 2005 was 426 trees ha-1. A remaining patch of the previous pasture in 

close proximity to the plantation was used as control. 

 

2.2. Sampling methodology 125 
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Prior to digging the soil profile, litter on the soil surface was hand-sorted from 0.5 

m2 quadrats to estimate the amount of C (50% of the dry weight of the sample) input into 

the soil. Litter was oven-dried in the lab at 60º C for 72 h. Soil samples were obtained in 

all three blocks for each tree species for 0-10, 10-20, 20-30, 30-40 and 40-50 cm depth 

increments. Precautions were taken to minimize soil and site disturbance. Samples were 

gently broken manually into aggregates along planes of cleavages when at field moisture 

content, and air-dried for several days. Later, these aggregates were dropped onto a hard 

surface to ease their separation and sieved through 8 mm sieve to remove root materials 

and stones. Bulk soil and aggregate samples were carefully packed for shipment to The 

Ohio State University.  
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2.3 Soil physical and chemical properties 138 
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Soil bulk density (ρd) for each layer was measured by the core method (Blake and 

Hartge, 1986) using 5-cm Ø and 5 cm deep cores for all sampling depths. The soil core 

was obtained from the middle of each layer and weighed in the lab. Simultaneously, soil 

moisture content was determined gravimetrically by oven-drying a sub-sample at 105º C 

for 48 h to calculate the dry bulk density. 

A sub-sample of 50-60 g air-dried soil was used for aggregate analyses by the dry-

sieving method. Aggregates were separated into 6 size fractions, i.e. >4.75, 4.75-2.0, 2.0-

1.0, 1.0-0.5, 0.5-0.250 and <0.250 mm by shaking the nest of sieves for 30 min. Size-

class aggregates >250 μm were termed macro-aggregates and those <250 μm as micro-

aggregates (Tisdall and Oades, 1982). The mean weight diameter (MWD) was computed 

with the equation provided by Kemper and Rousenau (1986): 

 

i

n

i
imxMWD ∑

=

−

=
1

, , and the aggregate fraction        

sampletotal

isieve
i M

Mm =)(  153 

154 
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, where  is the mean diameter of each aggregate fraction; M
−

ix sieve i is the dry mass of the 

particles retained in the sieve i; Mtotal sample is the dry mass of the initial total sample. 
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The pH was determined in water (1:1) and CaCl2 by combining the four samples of 

the soil collected for every tree species and the pasture. 

 

2.4. Particle size analysis 

 

We dispersed 50 g of <2mm air-dried soil combining the 4 samples in 50 ml of 0.5 

M Na-hexametaphosphate plus 75 ml deionized water for 18 h and mechanically stirred in 

a multi-mixer machine for 20 minutes. Later, soil was passed through a nest of sieves of 

250, 105, 53, and 20 μm to separate the coarse sand (105-200 μm), fine sand (53-105 

μm), coarse silt (20-53 μm) and silt+clay (<20 μm ) fractions, respectively in beakers that 

were oven-dried at 60 °C for 72 h. No chemical treatment was used to remove organic 

debris, (i.e., light organic fraction). 

 

2.5. Aggregate-associated Carbon and Nitrogen concentrations 

 

Concentrations of C and N in soil were determined for each aggregate size fraction 

by using a CN Elementar Vario Analyzer. The HCl test was performed to detect the 

presence of carbonate C in the samples. Because all samples tested negatively, total C 

was referred to as SOC. The SOC pool (Mg ha-1 for a specific depth) was computed by 

multiplying the SOC concentration (g kg-1) with bulk density (g cm-3) and depth (cm) 

(Batjes, 1996):  
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C poollayer (Mg ha-1) = C contentlayer (kg Mg-1) × BDlayer (Mg m-3) × 

T (m) × 10
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-3 Mg kg−1 × 104 m2 ha-1

 

2.6. Statistical analyses 

 

Normality of the data was determined with the Kolmogorov-Smirnov test. All data 

were log transformed when necessary to meet the assumption of normality. A two-way 

ANOVA was performed to test for significant differences among tree species and depth 

as the main fixed factors. When significant differences were observed, multiple 

comparisons of means were performed with Tukey’s significant difference (HSD) test. 

The Systat statistical package was used to perform ANOVA analysis and the Sigmaplot 

software for graph representation.  

The main pattern and significance between trees sampled were searched by 

performing a between-within class analysis. First, a Principal Component Analysis (PCA) 

is performed to identify the variables that explain better the separation of classes (trees). 

A Montecarlo randomisation test was performed to search for significant differences 

(Manly 1991). Later, a test named within-class PCA was performed to explore those 

factors responsible of variability of data within each tree species. The between-class PCA 

which is illustrated in Dolédec and Chessel (1989), focuses on between groups’ 

differences (tree species, e.g. V. guatemalensis, S. excelsum and so on). The within-class 

PCA, on the contrary, focuses on the remaining variability after the class effect (tree 

species) has been removed. Removing the class effect is achieved by placing all centers 

of classes at the origin of the factorial maps while the sampling units are scattered with 
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the maximal variance around the origin. This operation is simply completed by centring 

the data by classes (Dolédec and Chessel, 1991). The results of the within-class PCA are 

very similar to a normalised PCA (data not shown). The matrix contained 19 columns 

(i.e. number of variables), and 25 rows, (i.e. number of objects = samples). The PCA 

module included in the ADE4 software package was used. The discriminant module 

included in the ADE4 software package (Thiolouse et al., 1997) was used. 

 

3. Results 
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3.1. Soil physical properties 

 

There were significant differences (ANOVA, P<0.001) in soil bulk density (ρd) 

among tree species and depths, but the interaction of both factors was not significant. In 

general soil ρd increased with increase in depth, although under some tree species 

differences were not significant (Tukey test, Table 3). No differences in soil  ρd  were 

observed among treatments for the 0- to 20 cm depth. In general, soil  ρd  was higher 

under pasture than under tree species, except for S. excelsum (30-50 cm depth).  

In all cases, ca. 80-90% of aggregates were macro-aggregates, comprising 50% of 

very large macro-aggregates >2mm (Figure 1). These large aggregates may be the result 

of, among other factors, high biological activity in the topsoil. Earthworm activity was 

intense in all treatments, along with some conspicuous ant hills (Atta sp.) The visible part 

of this biogenic structure occupied an area of ca. 30-40 m2 in the soil surface. Compared 
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with the pasture, the aggregate size-class distribution was not different among tree 

species except in S. excelsum.  

The mean weight diameter (MWD) decreased with increase in soil depth regardless 

of the treatment (Figure 1), although differences were not statistically significant (Table 

4). A significant effect of tree species was also observed but the interaction was not 

significant. Regarding the distribution of size-class aggregates no significant differences 

were observed for the 1-2 mm size-class. However, values differed significantly for 0.25-

0.50, 0.50-1 and 2-4.75 mm aggregate size fractions for the two sources of variation 

considered in this study, i.e., tree species and depth. For micro-aggregates only 

significant differences were observed regarding tree species (Table 4). 
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3.2. Carbon and Nitrogen concentrations and SOC pool 

 

The SOC concentration decreased with increase in depth in all treatments, with the 

highest values measured under H. alchorneoides and V. guatemalensis (Figure 2). 

Average SOC concentration ranged from 44.9 to 55.2 g kg-1 in the 0-10 cm layer, and it 

decreased with increase in depth up to 12.7 to 16.8 g kg-1 in the 40-50 cm (Figure 2). 

There were significant differences in SOC concentrations for the main fixed factors and 

the interaction (ANOVA, P<0.001). However, the SOC concentration did not differ 

significantly among size-class aggregates (Figure 3). 

The SOC concentration was significantly higher under H. alchorneoides and V. 

guatemalensis than in the pasture for all depths. The lowest SOC concentration was 

measured in the soil aggregates collected in the leaf-cutting ant deposit, i.e. 10 g kg-1 
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(Figure 2), indicating that this soil is transported from even lower depths. Finally, the 

C:N ratio (Table 3) was similar among treatments and ranged from 10.5 in the pasture (0-

10 cm) to 13.9 under H. alchorneoides plot (10-20 cm).  

There was a decrease in SOC concentration within particle size fractions with 

increase in soil depth (Figure 4). With increasing depth the SOC concentration was 

higher in the silt+clay fraction under all treatments, except in H. alchorneoides. In the 

pasture, the highest SOC concentration was observed in the silt+clay fraction (<20 µm). 

The SOC concentration in the coarse-sand fraction was higher in V. guatemalensis and S. 

excelsum, whereas in H. alchorneoides and C. brasiliense the highest SOC concentration 

was observed in the fine-sand fraction.  

Finally, the highest SOC pool was measured under H. alchorneoides (131.9 Mg C 

ha-1) and V. guatemalensis (119.2 Mg C ha-1). The SOC pools under S. excelsum and C. 

brasiliense were similar, i.e., 112.6 and 113.5 Mg C ha-1, respectively (Figure 5), whereas 

in the pasture it was 115.6 Mg C ha-1. However, differences were not statistically 

significant. The SOC pool down to 50 cm depth was two or three-fold higher than the 

amount of C aboveground. Compared to the pasture, the SOC pool did not change 

significantly in the tree plantations 14 years after establishment. 
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3.3. Ordination analysis. Between-within classes PCA 

 

The first and second axis of the between-class PCA explained 90.8% and 7.4% of 

the total data inertia, respectively (Figure 6a, b). The first axis represented the soil type 

effect and the physico-chemical properties of soil under different tree species as many of 
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the variables measured in this study were displayed along the first axis. Those samples 

with high values of C in the different particle size fractions were clearly distinguished. 

The second axis showed an opposition between those sites with high MWD and 

percentage of very large aggregates, versus those samples with high amounts of 

aggregates 0.5-1 and 1-2 mm size and C:N ratio. This axis represents the effect of 

vegetation type or land management. The ordination of samples within the plane formed 

by the first two axes of the PCA is represented in Figure 6c. It showed an opposition 

between those samples collected in the first soil layer (0-10 cm) in all treatments, and 

therefore where SOC concentrations were high, and the soil collected at 40-50 cm. Axis 

II separated H. alchorneoides from the rest of tree species and the pasture, i.e. the 

vegetation effect. The Monte Carlo permutation test performed on the partition of objects 

to test the tree effect upon soil variables was highly significant; none of the 1,000 random 

simulation matrices led to an inertia higher or equal to that of the original data (P<0.001).  

The first two axes of the within-class PCA explained 42.5 and 29.9% of the within-

variability, respectively (Figure 7a, b). Again, it was observed the effect of aggregation 

and soil texture in Axis I and II, respectively. The effect of C is removed with this 

analysis, since most variables related to C concentrations are displayed around the origin 

of coordinates. The ordination of objects in the factorial plane showed that the most 

different land use systems were the pasture and the H. alchorneoides plantation (Figure 

7c). 
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4. Discussion 294 
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The SOC pool has been reported to decline after woody plant invasion of pastures 

(Jackson et al., 2002) and conversion from pasture to pine plantation (Guo and Gifford, 

2002). Tornquist et al. (1999) did not observe any significant difference in SOC pool 

under agroforestry and pastures (i.e., 50 and 62.6 Mg C ha  for 0-15 cm depth).-1  In our 

study, the SOC pool was higher in the tree plantation compared with the pasture. In 

general, SOC concentrations measured in were slightly higher than those reported in 

other studies (Table 5). Fisher (1995) reported increases in the SOC pool under two 

exotic tree species, i.e., Pinus tecunumanii and Gmelina arborea out of 11 species just 

after 3 years of establishment in a degraded pasture, and decreased under the pasture 

control. In contrast, Montagnini (2000) reported increase in SOC concentration within 2.5 

years, from 4.8% under fallow (pasture) to 5.3-6.6% under tree plantations. Our data 

showed that both the SOC concentrations and the SOC pool increased under tree 

plantations although not significantly. The reasons are probably in several factors like for 

example, other C sources in the pasture, i.e. higher root biomass contribution, or reduced  

ρb  in the tree plantations compared with the pasture, or the time lag elapsed since the 

establishment of the plantation.  

Regarding the amount of litter our results must be cautiously interpreted since no 

temporal variation in litter production was addressed. Thus, it is difficult to draw general 

conclusions on the effect of litter input on SOC concentration after 14 years of 

establishment. Nonetheless, it is worth noticing that the understory vegetation under H. 

alchorneoides was the highest observed. In fact, ferns and Heliconia sp. were abundant 
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under this system, even if high litter production was observed under V. guatemalensis. No 

understory vegetation was observed under C. brasiliense. Understory vegetation may 

contribute to SOC increases. In fact, Cusack and Montagnini (2004) observed levels of 

understory vegetation significantly higher under H. alchorneoides, V. guatemalensis and 

C. brasiliense in the same region.  
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The formation of aggregates occurs through flocculation of clay colloids and their 

cementation by organic and inorganic materials (Jiménez and Lal, 2006). Several factors 

affect this process, like land use and management, soil mineralogy, texture, quantity and 

quality of the organic matter incorporated, diversity and abundance of soil organisms 

(bacteria, fungi, earthworms and others). Soils thus can be fractionated according to the 

aggregates that configure their structure. In our study, the highest SOC concentrations 

were obtained in the silt+clay, which are important in the longer term due to the complex 

associations of C with the structure of clays (Jiménez and Lal, 2006). This is the general 

rule observed in other tropical sites (Desjardins et al, 1994; Feller and Beare, 1997). The 

sand-size (20-2000 μm) macro-aggregates are important in the short-term dynamics of C. 

Our data showed that under S. excelsum and V. guatemalensis, the highest SOC 

concentrations were obtained in the coarse-sand sized fraction (105-200 um). This is 

likely the result of contribution of litter and other plant fragments to this fraction. 

Estimates of C sequestration are mainly based on the aboveground biomass, which 

represent about 90% of the total tree biomass, and growth belowground represents 

between 2-4% (Montagnini and Sancho, 1994), sometimes higher around 10% of total 

biomass (Enquist and Niklas, 2002; Jenkins et al., 2003).  
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Finally, the between-within analysis PCA was very useful to explore the links 

between the variables analysed and the trend in SOC concentrations 14 years after 

establishment of the tree plantations. At the local scale of our study this trend may 

indicate a long-lasting residual effect of the pasture and the effect of H. alchorneoides 

(Figures 6 and 7), although further studies are needed t

339 

340 

341 

342 

343 

344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

o obtain complete and accurate 

estimations of C sequestration belowground. 
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Table 1. Soil textural analysis (hydrometer method) and pH under the different tree 

species and pasture. 

 

Table 2. List of tree species used in the on-farm agroforestry systems and associated 

characteristics 

 

Table 3. Soil ρb and C:N ratio (mean ± stand. error) up to 50 cm depth under the tree 

plantations and the pasture (control). Values followed by the same letter within a column 

are not statistically different (Tukey HSD test, P<0.05). 

 

Table 4. Tukey HSD two-way ANOVA for aggregate size distribution and MWD in the 

tree plantation and pasture (control), with tree species and sampling depth as main fixed 

factors. The F-ratios for each variable are indicated. NS, not significant; * P<0.05; ** 

P<0.01; *** P<0.001. 

 

Table 5. The SOC pool concentration under tree plantations of different ages in Costa 

Rica.
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Table 1.  

System Depth 
(cm) 

Texture (%) pH 

  Sand Silt Clay H2O 1:1 CaCl2

Pasture (“degraded”) 0-10  54.1 11.0 34.9 4.5 4.1 

 10-20 49.9 11.2 39.9 4.7 4.0 

 20-30 55.5 6.0 38.5 4.7 4.0 

 30-40 47.2 6.7 46.2 4.7 4.0 

 40-50 48.7 9.4 41.9 4.8 4.0 
       

Hieronyma alchorneoides 0-10  62.8 13.6 23.6 4.1 3.8 

(Pilón) 10-20 56.8 10.7 32.5 4.2 3.8 

 20-30 61.7 8.7 29.6 4.6 4.0 

 30-40 45.4 12.7 41.9 4.6 4.0 

 40-50 45.5 12.6 41.9 4.7 4.0 
       

Stryphnodendron excelsum 0-10  49.3 13.8 36.9 3.7 3.6 

(Vainillo) 10-20 21.4 9.7 68.9 4.3 3.9 

 20-30 11.4 15.7 72.9 4.4 3.9 

 30-40 27.4 13.8 58.8 4.6 4.0 

 40-50 37.4 13.7 48.8 4.7 4.0 
       

Vochysia guatemalensis 0-10  65.0 9.40 25.6 4.2 4.0 

(Chancho) 10-20 43.7 14.8 41.5 4.1 3.9 

 20-30 45.8 11.8 42.4 4.5 4.0 

 30-40 31.9 13.7 54.4 4.6 4.0 

 40-50 27.5 15.1 57.4 4.5 3.9 
       

Calophylum brasiliense 0-10  50.0 11.1 38.9 3.8 3.7 

(Cedro María) 10-20 22.3 16.9 60.8 4.1 3.9 

 20-30 18.2 17.0 64.8 4.6 4.0 

 30-40 20.6 15.8 63.6 4.7 4.1 

 40-50 22.2 14.3 63.6 4.5 4.0 



Table 2. 

Scientific name  
(family) 

Spanish common 
name 

Distribution Growth1  
(9 years) 

Characteristics2

Hieronyma alchorneoides 

(Euphorbiace) 

“Pilón” Belize to Amazon 

region 

21.7; 17.5 Good litter-producer, moderately 

fast growth 

Stryphnodendron excelsum 

(Mimosaceae) 

“Vainillo” Nicaragua, Costa 

Rica, Panamá 

26.6; 15.8 N-fixing, low litter-producer, fast 

growth 

Vochysia guatemalensis 

(Vochysiaceae) 

“Chancho blanco” All Central America 28.7; 20.8 Good litter-producer, Al 

accumulator, fast growth 

Calophylum brasiliense 

(Clusiaceae) 

“Cedro María” Mexico to North 

South America 

18.3; 16.2 Mature forest, slower growth 

1 Numbers refer to diameter at breast height (DBH) and tree height, respectively. 
2 Montagnini (2000) 
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Table 3.  

 Tree Species     

Depth (cm) H. alchorneoides S. excelsum V. guatemalensis C. brasiliense Pasture (control) 

 ρd C:N ρd C:N ρd C:N ρd C:N ρd C:N 

  0-10 0.76 a 11.8 ± 0.22 a 0.76 a 10.7 ± 0.21 b 0.67 a 11.4 ± 0.25 a 0.78 a 11.3 ± 0.28 ac 0.94 a 10.5 ± 0.3 bc 

10-20 0.94 b 12.2 ± 0.20 a 0.90 a 10.7 ± 0.16 b 0.90 a 11.1 ± 0.05 a 0.91 a 10.8 ± 0.14 bc 0.99 a 11.0 ± 1.0 ac 

20-30 0.90 b 13.8 ± 0.22 a 0.98 a 12.2 ± 0.09 b 0.91 a 11.5 ± 0.12 c 0.91 a 11.0 ± 0.11 b 1.07 b 11.4 ± 0.8 b 

30-40 0.97 b 13.9 ± 0.17 a 1.06 b 13.0 ± 0.08 b 0.96 a 11.5 ± 0.08 b 0.93 a 11.3 ± 0.06 c 1.06 b 11.7 ± 0.5 c 

40-50 0.91 b 12.7 ± 0.11 a 1.02 b 13.7 ± 0.09 bd 0.89 a 11.0 ± 0.07 b 0.98 a 11.1 ± 0.02 c 1.02 b 11.6 ± 0.4 d 
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Table 4.  

Source of variation df MWD1 Aggregate size (mm) 

  (cm) <0.25  0.25-0.50 0.50-1.00 1.00-2.00 2.00-5.00 >4.75 

Tree species (A) 4 4.145 ** 2.783 * 3.470 * 3.441 * 1.305 NS 3.087 * 5.106 ** 

Depth (B) 4 2.348 NS 1.590 NS 3.803 ** 2.552 * 0.584 NS 6.353 *** 2.184 NS 

AxB 16 0.819NS 0.413 NS 0.651 NS 0.923 NS 0.606 NS 0.687 NS 1.058 NS 
1 Mean weight diameter 
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Table 5 

Tree species Soil type (FAO) Age 

(years) 

Depth 

(cm) 

SOC  

(g kg-1) 

Reference 

Erythrina peoppigiana Cambisol 10 0-20 19.0 Oelbermann et al., 2004 (1) 

E. peoppigiana Cambisol 19 0-20 29.0 (1) 

Gliricidia sepium Cambisol 10 0-20 29.9 (1) 

Vochysia ferruginea Acrisol 10 0-15 36.5 Tornsquist et al., 1999 

E. peoppigiana Cambisol 9 0-15 27.3 Fassbender, 1998 

E. peoppigiana Cambisol 10 0-10 27.8 Mazzarino et al., 1993 (2) 

G. sepium Cambisol 10 0-10 27.5 (2) 

E. peoppigiana Cambisol 6 0-20 18.5 Haggar et al., 1993 (3) 

G. sepium Cambisol 6 0-20 14.8 (3) 

Calophylum brasiliense Inceptisol (Fluvent. Dystr.) 4 0-15 34.0-36.7 Montagnini and Porras, 1998 (4);  

Montagnini, 2000 (5) 

C. brasiliense Inceptisol (Fluvent. Dystr.) 4 0-30 90.0 (4)  

Stryphnodendron microstachyum Inceptisol (Fluvent. Dystr.) 4-5 0-30 98.1-120.9 (5) 

V. guatemalensis Inceptisol (Fluvent. Dystr.) 4-5 0-30 104.4-102.3 (4), (5) 

Jacaranda copaia Inceptisol (Fluvent. Dystr.) 4-5 0-30 97.5-137.4 (4), (5) 

Dipteryx panamensis Inceptisol (Fluvent. Dystr.) 4-5 0-30 86.1-105.0 (4), (5) 

Albizia guachapele Inceptisol (Fluvent. Dystr.) 4-5 0-30 88.2-102.0 (4), (5) 

Terminalia amazonia Inceptisol (Fluvent. Dystr.) 4-5 0-30 90.0-124.5 (4), (5) 

Virola koschnyi Inceptisol (Fluvent. Dystr.) 4-5 0-30 85.5-123.9 (4), (5) 

Genipa Americana Inceptisol (Fluvent. Dystr.) 4 0-30 82.8 (4) 

Hieronyma alchorneoides Inceptisol (Fluvent. Dystr.) 4 0-30 81.6 (4) 
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30

Pithecellobium elegans Inceptisol (Fluvent. Dystr.) 4 0-30 98.1 (4) 

V. ferruginea Inceptisol (Fluvent. Dystr.) 4 0-30 87.9 (4) 

H. alchorneoides  Andosol 14 0-30 112.6 This study 

S. excelsum  Andosol 14 0-30 82.2 This study 

V. guatemalensis  Andosol 14 0-30 108.1 This study 

C. brasiliense  Andosol 14 0-30 100.3 This study 

Pasture (control) Andosol 21? 0-30 97.4 This study 
1 Calculated by multiplying the SOC concentration (g kg-1) and bulk density (Mg m-3) 
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Figure captions

Figure 1. Aggregate size distribution and mean weight diameter (MWD, number above the 

bars) under the different tree species and the pasture. 

Figure 2. Distribution of SOC through the soil profile under the different treatments. 

Different letters indicate significant differences among soil layers for the same treatment.

Figure 3. SOC concentration in the different size-class aggregates. Capital letters refer to 

differences between treatments for the same soil layer, and lowercase letters indicate 

differences between soil layers within treatments (HSD Tukey ANOVA test, P<0.05). NS 

= Not significant for comparisons between different size-class aggregates within the same 

treatment in the same soil layer.

Figure 4. SOC concentration in micro-aggregates (<250 µm) after particle-size 

fractionation analysis.

Figure 5. Above- and belowground C pools in a native tree plantation compared with the 

pasture (control). Data for aboveground C accumulation are from Leblanc et al. (unpubl.), 

except litter (this study). Different letters indicate significant differences between land use 

systems at P<0.05 level (ANOVA), NS = Not significant.

Figure 6. Between-class PCA of the data from the tree plantations and the pasture: (a) 

variability of data retained in the first two axes retained in the PCA (98.2% of total 

variance); (b) “Eigenvalue” diagram; (c) ordination of samples on F1-F2 plan according to 

tree plantation and depth. Codes are: Ha = H. alchorneoides, Vg = V. guatemalensis, Se = 

S. excelsum, Cb = C. brasiliense, Pa= Pasture. Numbers 1 to 5 indicate soil depth (1 = 0-10 

cm and so on). Cs+c = C concentration in the silt+clay fraction (<20 µm); Ccsi = id. for the 

coarse silt fraction (20-53 µm); Cfsa = id. for the fine sand fraction (53-105 µm); Ccsa = 

id. for the coarse sand fraction (105-200 µm).

Figure 7. Within-class PCA: (a) Variability of data retained in the first two axes retained in 

the PCA (98.2% of total variance); (b) “Eigenvalue” diagram; (c) ordination of samples on 

F1-F2 plan according to tree plantation. Same legend as figure 6.
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Figure 2 – Jimenez et al.
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Figure 3 – Jimenez et al.
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