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ABSTRACT 

 

Lake Arreo sequence (western Ebro Basin, Spain) illustrates the century-scale climatic 

variability and human interactions in the landscape during the last 2.5 kyr in the low 

lands of northern Spain. Two sediment cores from shallow-water and deep-water 

environments were analyzed using sedimentological, geochemical, mineralogical, 

biological –diatoms, pollen and charcoal content-, and radiometric techniques for 

absolute dating. The shallow-water sequence indicates a rapid evolution from an 

alluvial-influenced wetland prior to 7
th

 century BC to a wetland during the Ibero-Roman 

Humid Period (BC 630 – AD 465) and a deeper, carbonate producing lake during the 

Dark Ages Cold Period (AD 465-890). The deep-water core shows the transition from a 

more saline lake during the arid Medieval Climate Anomaly (MCA, AD 890-1300) to 

less saline, meromictic conditions, particularly since the onset of the Little Ice Age 

(LIA, AD 1300-1870). During the last 2.5 kyr, arid conditions occurred prior to 1
st
 

century AD, during the MCA and late 19
th

- mid 20
th

 century while colder temperatures 

and relatively more humid conditions were more frequent during the the Dark Ages, 

particularly the 7
th

 century AD and the LIA. The evolution of the lake also reflects 

changes in grazing and agricultural practices since the Roman Period associated to the 

exploitation of nearby salt mining. Periods of intense human pressure on the lake 

watershed occurred during the High Middle Ages (AD 890-1180) and the Modern 

Period (AD 1600-1830). 

 

Keywords: Land use changes, palaeohydrology, Iberian Peninsula, Late Holocene, lake 

sedimentary facies 
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1- INTRODUCTION 

 

Paleolimnological studies spanning the historic period frequently have to face the 

problem of distinguishing climatic and anthropogenic influences – e.g. (Lotter and 

Birks, 1997; Tinner and Hu, 2003) -. Climate and human impact are main factors 

controlling recent lake dynamics and both have played different roles since the 

Neolithic – e.g. (Brenner et al., 1999; Cohen, 2003) -. Multi-proxy studies represent the 

best strategy to assess the role of Holocene climate evolution and human activities in 

the lake catchments (Curtis et al., 1998; Lamb et al., 1999) although the dataset must be 

examined carefully while combining all the biological, geochemical and 

sedimentological information (Birks and Birks, 2006). The Mediterranean area is an 

excellent region to reconstruct evidences of past land use changes, vegetation dynamics 

and climate oscillations due to the presence at the same place of long high-quality 

historical records, archaeological sites, instrumental time series and excellent natural 

archives (Luterbacher et al., 2012). In the Central Pyrenees, recent studies have revealed 

a relation between climate and human activities during the last millennia (Riera et al., 

2004; 2006; Pérez-Sanz et al., 2011; Rull et al., 2011; Corella et al., 2012), when intense 

land use during Roman and Medieval times coincided with more favorable (warmer) 

climate. The relation between favorable climate and dense human occupation, however, 

does not hold for the last two centuries since the latest cold phase of the LIA during the 

19
th

 century coincided with the highest human population in the Pyrenees and the mid 

20
th

 century land abandonment occurred during the onset of recent global warming 

(Corella et al., 2012). Disentangling both climate and human activities in pre-and post-

industrial conditions is the way to further understand the climate vs. anthropogenic 
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interactions in the environment. 

Most paleolimnological and archaeological studies in NE Iberian Peninsula (IP) 

reveal a significant increase in the anthropogenic influences in the Iberian watersheds 

since the Roman times, e.g. Ebro Basin (González-Sampériz, 2004; González-Sampériz 

et al., 2008); Estanya Lake (Riera et al., 2004); Montcortès Lake (Corella et al., 2011a). 

However, it is usually difficult to ascribe specific limnological changes to human 

activities (Valero-Garcés et al., 2000; Kienel et al., 2005) mainly because of the lack of 

detailed local historical records and the complex feedbacks that existed between the 

anthropogenic and climate forcings. In the Mediterranean region, human activities 

around the lakes included not only the use of water resources for drinking or irrigation 

purposes, but also involved other activities, namely salt mining, fishing or hunting 

(Riera et al., 2004; Valero-Garcés et al., 2004). Salt has always been a strategic resource 

of primary importance, in particular during the pre-industrial world, due to its use in 

nutrition, food preservation and textile industry (Williams, 2010). Inland salt mining has 

traditionally produced highly disturbed landscapes as a consequence of associated 

parallel activities including road maintenance, supply of pastures for cattle, and 

deforestation (Reyes, 1998; Valero-Garcés et al., 2000). 

In this paper, we present the paleoclimate and paleoenvironmental 

characterization of two sediment sequences from Lake Arreo, a karstic waterbody in the 

NW Ebro Basin, northern Spain. The deep-water core is  

finely laminated and the shallow-water core is dominated by carbonates and clastics. 

The two cores together constitute one of the few high-resolution studies in Iberia 

covering the last 2500 years. A palynological study on a shallow-water core was 

previously carried out by Peñalba (1989), although the lack of a detailed chronology 

prevented to ascribe the observed abrupt changes in the vegetation to the regional 
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Holocene climate evolution. A previous high resolution study of short cores (Corella et 

al., 2011b) has demonstrated the sensitivity of the lake dynamics to climate and human 

activities during the last 60 years. The Arreo Lake is close (1 km) to the Salinas de 

Añana salt exploitation, the best-preserved inland salt work in NE Spain since Roman 

times (Plata Montero, 2008). Both shallow-water and deep-water sequences reflect the 

climatic evolution of the area and the impact of human activities in the lake catchment 

since the Roman period.  

2- STUDY SITE 

Lake Arreo (42º 46´ N, 2º 59´ W; 655 m a.s.l.) is located in the western Ebro River 

Basin (NE Spain). It lies on the Salinas de Añana diapir, a 5.5 x 3.2 km halokinetic 

structure involving Upper Triassic evaporite formations (Keuper facies) (Garrote Ruíz 

and Muñoz Jiménez, 2001) (Fig. 1). Gypsiferous materials and clays are dominant in 

the watershed (287 ha), although hypovolcanic rocks (ophytes) are also common (Fig. 

1b). An ENE-WSW fault bounds the lake basin to the north (Martín-Rubio et al., 2005), 

and the cliff associated with this structure is responsible for numerous slope and mass-

wasting deposits in the lake (Martínez-Torres et al., 1992). Lake Arreo (Zmax=24 m 

deep) is the deepest water body with evaporite substrate in the IP. The lake basin 

originated by dissolution and collapse of evaporite rocks generating a funnel-shaped 

morphology (Rico et al., 1995) (Fig. 1). The lake has two contrasting environments: i) a 

southern shallow palustrine area that occupies 2/3 of the lake total surface (6.57 ha) 

with a maximum depth of 3-4 m, well-mixed throughout the annual cycle, and with the 

highest production of biogenic carbonate associated with Chara and macrophyte 

incrustations (Martín-Rubio et al., 2005) and ii) a central area up to 24 m deep with 

seasonal anoxic conditions, bounded to the north by a steep scarp (González-Mozo et 
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al., 2000). 

The lake is currently a hydrologically open system, with an ephemeral eastern 

inlet and a small ephemeral western outlet flowing into the Ebro River (Figs. 1b and 

1c). Saline groundwater input has an important influence on the hydrological and 

chemical conditions of the lake but it has not been quantified (González-Mozo et al., 

2000). Chemically, the lake is subsaline Ca-(Mg)-(Na)-SO4-HCO3-(Cl). Lake Arreo 

limnological and hydrological features are synthetized in Table 1. 

The regional climate is transitional between Atlantic and Mediterranean types. 

The mean annual precipitation is 670 mm while the mean monthly temperatures range 

from 20ºC in summer to 5ºC in winter. The site is in a transitional vegetation zone 

between Eurosiberian and Mediterranean bioclimatic regimes (Peinado Lorca and 

Rivas-Martínez, 1987). Apart from the cultivated areas, most of the lake watershed is 

forested (Fig. 1d). The most abundant formations are composed of subhumid mountain 

trees with semi-deciduous oaks (mainly Quercus faginea) and Pinus sylvestris on north-

facing slope. Evergreen oaks (Quercus ilex) develop on drier south-facing exposures. 

The more degraded areas are covered by Juniperus communis, Aphyllantes 

monspeliensis, Lavandula latifolia, and Thymus vulgaris. Also present in the landscape 

are Fraxinus angustifolia and Ulmus minor. Cultivated areas and grazing pastures 

occupy the lowest parts of the valleys. The lake shorelines are colonized by hygrophytic 

vegetation (mainly Cladium mariscus and Phragmites australis). 

3- MATERIALS AND METHODS 

Two deep-water cores (ARR04-1A-1K and ARR04-1B-1K, 24 and 23.2 m water depth 

respectively) and one shallow-water core (ARR04-2A-1K, 10 m water depth) were 

retrieved in May 2004 with the Kullenberg coring platform from the Limnological 
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Research Center (University of Minnesota, USA) (Figs. 1c and 2). Physical properties 

were measured at a 5 mm resolution with a Geotek multi-sensor core logger (MSCL). 

The cores were split lengthwise and imaged with a DMT core scanner. Deep-water 

cores were easily correlated by sedimentary facies. 

The ARR04-1A-1K (6.79 m long) and ARR04-2A-1K (5.03 m long) cores were 

selected for this study as they represent shallow and deep-water environments. Both 

cores were sampled every 2 cm for total (TC), organic (TOC) and inorganic (TIC) 

carbon, total nitrogen (TN) and total sulphur (TS), and every 5 cm for mineralogical 

analyses. The TC, TS, and TOC values were analysed with a LECO 144DR elemental 

analyser and TN data were obtained with a VARIO MAX CN elemental analyser. 

Mineralogical analyses were carried out by X-ray diffraction (XRD) by an automatic X-

ray diffractometer SIEMENS-D500, Cu-Kα, 40 kV, 30 mA and graphite 

monochromator. Elemental geochemical composition in ARR04-1A-1K and ARR04-

2A-1K cores was obtained by X-Ray Fluorescence (XRF) using an ITRAX XRF core 

scanner with 20 mA current, 30 s count time and 30 kV voltage at 5-mm resolution. 

Results for each element are expressed as intensities in counts per second (cps).  

Large-scale thin sections (120 mm × 35 mm) were prepared after freeze-drying, 

followed by impregnation with epoxy resin (Araldite) under vacuum conditions (Brauer 

and Casanova, 2001) to carry out the description of sedimentary facies in the finely 

laminated intervals. Sedimentary facies were defined by visual description, microscopic 

smear slides and thin sections observations, combined with compositional and 

mineralogical analyses (Schnurrenberger et al., 2003). 

A total of 102 samples for diatom analysis were obtained with sampling resolution 

ranging from 10 to 5 cm, depending on the sedimentation rate. Wet sediment samples 

were cleaned with hydrogen peroxide and dilute HCl (10%), mounted in Naphrax, and 
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analyzed with an inverted microscope. At least 400 diatom frustules were counted per 

sample. Taxonomic identification and assignment of planktonic and benthic habitats 

were based on specialized literature (Krammer and Lange-Bertalot, 1986; 1988; 1991a; 

1991b; Lange-Bertalot, 2001; Krammer 2002). Pollen samples were prepared following 

the classical chemical method, including acetolysis (Faegri and Iversen, 1989). Pollen 

percentages are based on the pollen sum of AP (arboreal pollen, including trees and 

shrubs) and NAP (non-arboreal pollen), excluding aquatic plants and spores of 

Bryophyta and Pteridophyta. At least 350 terrestrial pollen grains were identified to the 

lowest possible taxonomic level. The differentiation of Pinus radiata pollen from Pinus 

sylvestris-type is based on saccus height and width, corpus length and height, and 

morphological characteristics (Zanni and Ravazzi, 2007). Charcoal particles coarser 

than >20 m were also counted as indicators of regional fires (Tinner and Hu, 2003). 

Non-pollen palynomorphs were identified according to Van Geel et al. (1989) and 

Carrión and Navarro (2002).   

Sixteen AMS 
14

C samples were analyzed on terrestrial remains, charcoal, seeds, 

and hydrophytes (Table 2). The final chronology is based on 12 AMS radiocarbon dates. 

Radiocarbon dates were calibrated with the INTCAL 09 calibration curve (Reimer et al., 

2009).  

4- RESULTS 

4.1- Chronology  

The chronological models of the Lake Arreo sequences were established using 

the mixed effect regression method (Heegaard et al., 2005) (Table 2, Figure 3). The 

chronological model of the deep-water core ARR04-1A-1K is constrained by 7 dates. 
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For the ARR04-1A-1K model, two dates were rejected because they had too little 

organic matter to assure a precise date (sample CNA149, 5.7 m, 130 ± 70 
14

C yr BP) or 

gave incoherent, too young ages  (sample POZ33482, 5.015 m, 145 ± 30 
14

C yr BP). A 

sedimentation rate (SR) based on the 
14

C model (9.5 mm/yr for the upper part of core 

ARR04-1A-1K, units 1 and 2) compares well with the age model derived from 
137

Cs 

dating and varve counting in a parallel UWITEC short core with a SR about 10 mm/yr 

(Corella et al., 2011b) supporting the robustness of the radiocarbon chronological 

model. Two tie points improve the age model, the limits between former 

lithostratigraphic units 1 and 2 (AD 1994) and units 2 and 3 (AD 1964), which were 

previously dated and described through varve counting and identification of the 1963 

137
Cs  peak in short cores (Corella et al., 2011b). 

The chronology for the shallow-water core ARR04-2A-1K is constrained by 5 

radiocarbon dates obtained from plant macrorests. Two dates were rejected (CNA143 

and POZ33485, 3.05 and 3.065 cm depth; 1140 ± 60 and 1380 ± 35 
14

C yr BP 

respectively) because the ages show a stratigraphic reversal. The top of the shallow-

water sequence is dated AD 840 ± 60, indicating that the palustrine realm has been 

affected by recent erosive processes. The SR is relatively low at the base of the shallow-

water sequence (503-350 cm; 0.14 cm/yr), increasing up to 0.97 cm/yr in the upper 

sediments (350 cm - top of the core).  

According to these chronologies, core ARR04-2A-1K represents shallow-water 

sedimentation between BC 620 and AD 860, while core ARR04-1A-1K reflects 

sedimentation in the deepest part of the lake since AD 585 to present times. Thus, the 

combined Lake Arreo sedimentary record spans the last 2570 cal. yr with an overlap of 

~300 years of the two cores (Fig. 2 and 3). 
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4.2- Sedimentary facies and stratigraphy 

Core correlation for deep-water sequences was carried out based on sedimentary facies 

(Fig. 2). The Arreo sedimentary sequences displays 10 different facies, 5 in deep-water 

cores ARR04-1A-1K and ARR04-1B-1K  and 5 in shallow-water core ARR04-2A-1K  

(Fig 4) - see full description of sedimentary facies in Tables I and II from supplementary 

material -. These facies make up 10 lithostratigraphic units in the sequence, units 1 to 5 

in the deep-water cores and units A to D in the shallow-water core (Figs. 2 and 4). 

Chronological, sedimentological, and palinological features suggest that the limit 

between units 5 and 4 in deep-water core ARR04-1A-1K correlates with the limit 

between units A and B in shallow-water core ARR04-2A-1K (Fig. 2). 

4.2.1- Deep-water environment  

The sediment cores ARR04-1A-1K and 1B show an alternation of massive (facies 1 and 

2), banded to finely laminated (3), and laminated (4 and 5) facies. The coarser grain size 

of massive facies 1 and its mineralogical composition (mafic minerals) indicate a higher 

energy depositional environment, short transport and a local source area (ophyte rocks). 

All these features point to mass wasting processes associated with the cliffs with ophyte 

outcrops located in the northern shore of the lake. High C/N ratios (up to 17.4) suggest 

that organic matter present in facies 1 has a predominant terrestrial origin. Deposition of 

finer massive facies 2, mainly composed of clay minerals, indicates less energetic (or 

more distal) turbidite-like processes likely triggered by flooding episodes that increased 

sediment delivery to the lake from creeks draining the catchment.  The banded to finely 

laminated facies 3 is composed of clayey silt and displays fining upwards textures and 

irregular basal surfaces. This texture is similar to small-scale turbidites and storm-

related deposits described by Noren (2002) and Corella et al (2012). The high C/N 
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ratios (up to 15.1) suggest a predominant source in terrestrial plants rather than aquatic 

organic matter.   

The deposition and preservation of finely laminated sediments such as facies 4 

and 5 occurred when anoxic conditions prevailed during most of the year, with limited 

bioturbation (Brauer, 2004; Zolitschka, 2007). In small, relatively deep karstic lakes 

such as Lake Arreo these meromictic periods usually corresponded to relatively high 

lake levels (Martín-Puertas et al., 2009; Corella et al., 2012). However, the presence of 

thin laminae with endogenic prismatic gypsum crystals in facies 5 indicates that lake 

water chemical concentration was higher during deposition of facies 5. Facies 4 

corresponds to biogenic varves with calcite and organic laminae previously described in 

Corella et al., (2011b). 

Lithostratigraphic units in the deep-water sequence are defined by the 

dominance of massive and banded facies or laminated facies. Units 4 (AD 890-1180) 

and 2 (AD 1600- 1964) are banded to laminated, black and grey units dominated by 

clastic facies 2 and 3 with some intervals of laminated facies 4. Coarser clastic facies 1 

are more abundant at the lower part of these three units.  

Units 5 (AD 585-890), 3 (AD 1180-1600) and 1 (AD 1964-Present-day) are 

variegated, finely laminated units rich in calcite (facies 4) and gypsum laminae (facies 

5) with minor clastic facies, except in units 3 and 1, with abundant layers of coarse 

facies 1. These units have higher TIC, calcite and gypsum contents and less clay 

minerals. The preservation of fine laminations with gypsum suggests meromictic 

conditions and higher chemical concentration of the waters during deposition of these 

units. 

4.2.2- Shallow-water environment.  

Shallow-water facies in core ARR04-2A-1K include massive (facies 6, 7, and 8) and 
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banded to laminated carbonate-rich facies (9 and 10). Composition and textures of 

facies 8 indicate strong alluvial influence in the shallow-water, particularly during 

deposition of conglomerate subfacies 8.2. The deposition of organic (up to 13.3% of 

TOC) massive to weakly laminated facies 7 and the progressive increase in the C/N 

ratio (up to 17) suggest wetland conditions with high terrestrial organic matter 

production and accumulation. The massive, carbonate- rich facies 6 is interpreted as 

shallow-water deposition with reworking during periods of higher run-off in the 

watershed. 

The banded carbonated facies 9 and 10 reflect deposition in a carbonate-

producing shallow-water environment. The finer facies 9 suggests relatively deeper 

depositional environment, while the abundance of Chara and gastropod fragments in 

facies 10 indicates shallower littoral environments. 

Four units have been defined in the shallow-water sequence (Fig. 4): Unit D (BC 

620- AD 150) is composed of a fining upward sequence of conglomerates and sandy 

silts (subfacies 8.2 and 8.1) reflecting the transition from an alluvial-influence lacustrine 

littoral to a wetland-lacustrine littoral. During unit C (AD 150-465) carbonate 

deposition dominated the shallow-water environments (facies 7). The transition from 

this carbonate-producing sub-environment to an organic-accumulating wetland/shallow 

lake is illustrated by the carbonate decrease and organic carbon increase trend (Fig. 4). 

Unit B (AD 465-830) is composed of banded carbonate facies 9 and 10. More coarser 

facies 10 and a 22 cm-thick interval of organic facies 7 occur in the lower part of this 

unit (subunit B.IV) while carbonated facies 9 dominates in subunit B.II. Unit A (AD 

830-860) is composed of carbonate clastic, massive facies 6 and 9. 

4.3- Geochemistry 
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The XRF geochemical record obtained in both shallow and deep-water cores 

shows a clear correspondence with the sedimentary facies (Fig. 4). We have selected 

two element ratios to illustrate the geochemical variability of the Arreo record. Sr/Ca 

ratio is widely used as a paleosalinity indicator due to a higher Sr uptake of carbonates 

under more saline conditions –e.g. (Dodd and Crisp, 1982). A previous study in several 

Iberian lakes, including Lake Arreo, has also shown a direct relation between Sr/Ca 

ratio in lacustrine carbonates and Sr/Ca ratio in lake waters (Anadón et al., 2002). 

Therefore Sr/Ca ratio in the sediment has been selected as a reliable proxy of water 

salinity in Lake Arreo showing higher values in units 4 and 2.b. We use the Ca/Ti ratio 

to identify intervals with elevated endogenic calcite precipitation and low clastic input 

(units 5, 3 and 1).  

4.4- Pollen Stratigraphy 

The pollen taxa are grouped following Behre (1981), Gaillard (2007), Carrión et al. 

(2010), and the modern flora and plant ecology for the area. The pollen stratigraphy in 

the two cores comprises six local pollen zones (LPAZ): Zones LPAZ 1 to 3 in the 

shallow-water core ARR04-2A-1K, and zones LPAZ 3 to 6 in deep-water core ARR04-

1A-1K (Fig. 5) – see Table III of the supplementary material for a more exhaustive 

description of local pollen zones -. 

LPAZ 1 (core ARR04-2A-1K, 429-302 cm, AD 0- 505) is characterized by 

strong fluctuations in the arboreal content (AP 40-80%; mainly deciduous and evergreen 

Quercus, Fagus, Corylus, and Pinus diploxylon-type at the base of the zone), as well as 

the highest charcoal values (up to 65%). Meadows and pasture indicators (30%) and 

Cyperaceae (20%) dominate the non-arboreal pollen types (NAP). LPAZ 2 (core 

ARR04-2A-1K: 302-48 cm, AD 505-790) is characterized by maxima of Fagus and 
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deciduous oaks of 30% and 25% respectively. Human impact indicators such as 

charcoal, cultivated plants, ruderals, meadows and pastures and Sporormiella taxa 

decrease while hydrophytes increase. 

LPAZ 3 (core ARR04-2A-1K: 48-0 cm; core ARR04-1A-1K: 679-545 cm; AD 

790-1180) is characterized by significantly lower values of the arboreal taxa (AP < 

40%). Both oak types and beech decrease. All taxa related to anthropogenic activities 

reach maxima - cultivated plants (8%), ruderals (10%), meadow and pasture indicators 

(30%), Glomus (5%), Sporormiella (8%). and charcoal values (30%) -. Pediastrum and 

Botryococcus have sequential maxima up to 20%.  

In LPAZ 4 (core ARR04-1A-1K: 545-414 cm, AD 1180-1600), deciduous oak 

and beech dominate and Poaceae is the main herbaceous taxon (25-35%). Percentages 

of ruderals, cultivated plants, and indicators for pasture and grazing (Sporormiella) 

decrease.  

In LPAZ 5 (core ARR04-1A-1K: 414-130 cm, AD 1600-1800) AP values are 

high (45-70%) with an increase in evergreen Quercus, Juniperus and Pinus sp. while 

significant fluctuations in deciduous oak and a sharp decrease in Fagus occur. Charcoal 

values strongly fluctuate with peaks at 397 cm (45%), 305 cm (20%), and 245 cm 

(25%). Sporormiella increases at the end of this zone. Pinus sp. Pinus radiata, 

evergreen oaks and Juniperus dominate LPAZ 6 (core ARR04-1A-1K: 130-0 cm, AD 

1800-Present) and a slight decrease in hydrophytes occurs in this zone.  

4.5- Diatoms 

Diatom assemblages are composed of a total of 110 taxa distributed among 28 genera, 

being Navicula (15), Nitzschia (11), Gomphonema (7) and Cymbella (7) the genera with 
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more species. Most taxa found are typical of benthic habitats (i.e. epipelon, periphyton 

or epiphyton) or are tychoplanktonic. Strictly planktonic taxa are represented by only 

three species of the genus Cyclotella (C. distingüenda, C. pseudostelligera and C. 

radiosa). Only 22% of taxa have a relative abundance greater than 5 % in at least one of 

the samples, whereas 29 % have abundances of 1-5 %, and the rest <1 %. Four diatom 

zones were identified (Fig. 6) – see table IV of the supplementary material for further 

description of the diatom zones-: 

The lower part of the sequence (core ARR04-2A-1K: 500 - 412 cm, BC 620- AD 

160, unit D) is sterile. DZ4 (Core ARR04-2A-1K: 412-349 cm, AD 160-465) is 

dominated by periphytic taxa of the genus Fragilaria (F. brevistriata and F. pinnata) 

reaching their maximum abundance in DZ 4b (412-383 cm, AD 160-300). Achnanthes 

minutissima also occur in smaller percentages. A significant increase in planktonic 

(Cyclotella distingüenda up to 33%) and dystrophic (Gomphonema angustum up to 39 

%) species occur in DZ4a (383-349 cm, AD 300- 465) 

DZ 3 (Core ARR04-2A-1K, 349-30 cm, core ARR04-1A-1K 679-613 cm; AD 

465-820) shows an increase in the P:B index. Epiphytic Epithemia adnata and Cymbella 

helvetica (0-30%) dominate the lower interval DZ 3b (349-180 cm, AD 465-610) and 

planktonic Cyclotella distingüenda is the species in the lower part of DZ 3a (core 

ARR04-2A-1K: 180-30 cm, and core ARR04-1A-1K: 679-613 cm; AD 610-820). 

DZ 2 (AD 820-1180) is characterized by low values of Cyclotella distingüenda 

and an increase in the genus Fragilaria. The shallow-water environment (core ARR04-

2A-1K: 30-0 cm) is dominated by periphytic Fragilaria brevistriata (3-75%) and a 

decrease of Gomphonema angustum. The deep-water environment (core ARR04-1A-

1K: 613-545 cm) shows the highest percentages of littoral taxa Cocconeis placentula, 

and Achnanthes minutissima (low P:B ratio). The planktonic species Cyclotella 
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distingüenda dominates DZ 1 (core ARR04-1A-1K, 545-0 cm, AD 1180- Present) with 

the highest percentages up to 96% of the total at DZ 1b (414-130 cm, AD 1600-1800). 

Benthic species decrease progressively although Achnanthes minutissima slightly 

increase towards the top of the sequence DZ 1a (130-0 cm: 1800-Present). P:B ratio 

increase in DZ-1c, displaying the highest values in DZ-1b, and progressively decrease at 

the top of the sequence (DZ-1A). 

 

5- DISCUSSION 

The Lake Arreo sedimentary sequence illustrates the climate and environmental 

variability over the last 2.5 kyr in a transitional Atlantic-Mediterranean lowland area. It 

also provides an opportunity to evaluate the impact of human activities in the landscape 

since the Late Iron Age (5
th

-3
rd

 centuries) because of the intense anthropogenic pressure 

and the exploitation in the Salinas de Añana salt work (Figs. 7 and 8).  

5.1- Depositional evolution of Lake Arreo during the last 2,500 years 

Five main depositional stages are distinguished for Lake Arreo for the last 2,570 cal. yr 

BP, based on the evolution of the sedimentary facies, diatoms and some palynological 

data (aquatics and hydrophytes)  (Figs 7 and 8): 

5.1.1- Stage I (Unit D): Alluvial – influenced wetland (BC 630- AD 150) 

Deposition of conglomerate facies (unit D) and non-preservation of pollen and diatoms 

reflect dominant alluvial processes in the southern margin of the lake during BC 630-

415. During this period, the lake was restricted to the deep hole, and the littoral areas 

were dominated by palustrine - alluvial deposition. At around 400 BC, a progressive 
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transition towards a shallow wetland environment started, marked by increasing 

accumulation of organic matter up to 150 AD (unit D). 

5.1.2- Stage II (Unit C): Wetland - lacustrine environment (AD 150-465) 

After a period of a shallow carbonate-producing lake between AD 150 and 300 (unit C, 

facies 7.1), wetland conditions characterized by high terrestrial organic matter 

production and accumulation (unit C, subfacies 7.2) dominated the shallow-water 

environment. The low P:B index, the dominance of periphytic diatom species 

Fragilaria brevistriata and Fragilaria pinnata, and, to a lesser extent, the benthic 

Achnanthes minutissima (DZ-4b, Fig. 6) corroborate the establishment of a shallow, 

turbid wetland/shallow-lake ecosystem. The maximum percentages of Cyperaceae 

pollen for the whole sequence occurred during this interval indicating that a sedge fen at 

the littoral margin of the lake was well developed. The dominance of fine-grained facies 

with higher clay content could also be influenced by the presence of this wide palustrine 

vegetation belt acting as a buffer for coarser material from the watershed. 

5.1.3- Stage III (Units B and 5): Deep, meromictic oligotrophic lake with well-

developed shallow carbonate platform (AD 465-790) 

During this stage laminated facies were deposited in the deep areas of the lake and 

carbonate–rich sediments accumulated in the shallows. A shallow carbonate-producing 

platform was well developed in the southern littoral margin of the lake (unit B, core 

ARR04-2A-1K) and meromictic sub-environments occurred in the central, deepest 

areas, with formation of biogenic varves (unit 5, core ARR04-1A-1K). The increase in 

the diatom Gomphonema angustumi, a species characteristic of low-trophic-state 
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waters, in both sub-environments suggests reduced nutrient input and oligotrophic lake 

waters during this period. 

In the littoral area, the increase of benthic diatoms and the absence of 

hydrophytes, along with the presence of organic-rich facies (unit B.IV), suggest low 

lake levels until AD 500. Later, the increase in hydrophytes and P:B ratio marks a 

progressive increase in the lake level up to AD 580. The abundance of Chara sp. 

suggests water depths oscillating between 0.5 and 3 m in these littoral areas (Hannon 

and Gaillard, 1997). Lake level continued to increase as banded carbonate facies 

without gastropods and less Chara remains (facies 9) were deposited until AD 790 (unit 

B.II).  

5.1.4- Stage IV (Unit 5, 4 and 3): Fluctuating, saline to brackish lake (AD 790-1600) 

The development of a saline lake started at AD 790 when gypsum precipitation 

increased. Lower lake level occurred as reflected by the low P.B ratio (Fig 8). The well– 

developed carbonate platform could have become an erosional site providing sediment 

to the deep-water areas. At around AD 890, laminated facies deposition was replaced by 

fine, clay-rich facies 2 (Unit 4). An increase in the clastic input also occurred in the 

shallow-water core ARR04-2A-1K at the top of Unit A (facies 6 with less carbonate and 

higher clastic and organic content) suggestive of a return to wetland or littoral type 

deposition. The lower percentages of Cyclotella distingüenda (Fig. 6) indicate more 

frequent mixing conditions and shorter periods of anoxia in the deeper areas of the lake. 

The sharp increase of Botryococcus in unit 5 may be related to increased salinity and 

dystrophic conditions in the lake (Davis et al., 1977; Medeanic et al., 2003). The high 

Sr/Ca values between AD 900-970 and AD 1040-1300 mark the period of highest 
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salinity in Lake Arreo. The increase in Pediastrum and Fragilaria brevistriata in both 

shallow and deep-water environments (Figs. 5 and 6) may indicate a change to 

mesotrophic conditions at around AD 800, and the subsequent increase in Achnantes 

munitissima and Cocconeis placentula, and disappearance of Gomphonema angustum 

reveal a higher trophic state of the lake until AD 1300 (Fig. 6). The high sediment 

delivery to the lake ended in AD 1180 (Fig. 8).  

Fluctuating but generally higher lake levels and meromictic conditions prevailed 

in Lake Arreo since AD 1300, characterized by low Sr/Ca values, increasing 

hydrophytes percentages at LPAZ 4 and a progressive increase in the P:B ratio (Fig. 8). 

Lake waters recovered mesotrophic to oligothrophic levels, as indicated by an increase 

of Gomphonema angustum and the decrease in Cocconeis placentula (DZ-1c, Fig 6). 

During the period AD 1450 – 1600, coarse clastic sediments reached the distal areas of 

the lake (facies 1). 

5.1.5- Stage V (Units 2 and 1): Meromictic lake with high clastic input (AD 1600- 

Present-day) 

This stage is defined by the dominance of biogenic varves and fine clastic facies 2. 

Increased sediment delivery with coarser deposition occurred between AD 1600-1730 

(unit 2.c) followed by an increase in deposition of clay-rich facies 2 (unit 2.b) and the 

dominance of biogenic varves since AD 1790 (unit 2.a). The relatively high Sr/Ca ratio 

in the sediment during the periods AD 1600-1640 and AD 1730-1790 suggest a 

relatively higher salinity, although without reaching gypsum saturation as during the 

previous stage. The dominance of biogenic varves suggests relatively high lake levels 

and more frequent anoxic conditions for the last two centuries. The last 30 years are 

characterized by a significant increase in the sediment delivery to the lake with 
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abundant clastic facies 1 and 3 (AD 1964-Present day, unit 1). 

5.2- Climate variability and human impact in NE Spain during the Late Holocene 

5.2.1- The Iberian - Roman Era (BC 6
th 

- AD 5
th

 centuries)  

The presence of coarse alluvial facies at the base of the Arreo Lake sequence points to 

more arid condition prior to the 6
th

 century BC. Although clastic facies dominated in 

Arreo until 150 AD, the fining upward textures and the increase in organic matter 

indicate progressive higher water availability during this period. The establishment of a 

well-developed carbonate platform at 150 AD marks a significant increase in humidity. 

Lake level continued high until the end of the Roman period in the 5
th

 century, with a 

small decline between AD 300 and AD 465.  

The Lake Arreo sequence supports the regional significance of the pre-Roman 

arid period in the Iberian Peninsula and the regional extent of the large hydrological 

change occurred in the Peninsula during Iberian-Roman times (3
rd

 century BC- 5
th

 

century AD), although the timing shows some discrepancies. In the central Ebro Basin, 

relatively more humid conditions started around 2 kyr ago (González-Sampériz et al., 

2008) whereas in the central Pre- Pyrenees higher lake levels started around the 1-3
rd

 

centuries AD - Lake Estanya (Morellón et al., 2008), Lake Montcortès (Corella et al., 

2011a) -. The increase in humidity during the Iberian – Roman times seemed more 

intense in southern Spain as recorded in Lake Zoñar (Martín-Puertas et al., 2009) with 

an earlier onset at 5
th

 century BC, an arid pulse around 1st century AD, and a final 

humid pulse occurred between AD 150 and AD 450. Fluvial records also show 

increased river activity in NE Spain between BC 50– AD 120 (Benito et al., 2008). 

The presence of several Roman archaeological sites in the vicinity of the Añana 

diapir suggests an early salt exploitation. One of these sites, known as Las Ermitas is 
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located 5 km away, near a branch of the Via Iter XXXIV that connected Astorga (NW 

Spain) and Burdeaux (SW France). Archaeological research documented an important 

human occupation of the region between the 1
st
 and 5

th
 century AD (Filloy Nieva and 

Gil Zubillaga, 2000). In our lake sequence, several indicators suggest human occupation 

in the lake Arreo surroundings during the Roman Era. The high percentages of charcoal 

and low percentages of deciduous and evergreen oaks in the pollen spectra between AD 

0-150 (top of unit D, Figs 5 and 8) indicate a high frequency of fires most likely caused 

by anthropogenic activities. Pinus dominates the pollen diagram probably because of 

over-representation and preservation processes frequently associated with fire events. 

The anthropogenic origin of such fires is consistent with what is known about 

traditional forest management during the Roman Period, as widely documented in 

Europe - e.g. (Küster, 1994) -.  

Presence of F. brevistriata and F. pinnata (DZ-4, Fig. 6) in diatom assemblages, 

taxa which can tolerate disturbance and higher nutrient levels (Van Dam et al., 1994), 

also suggests an increase in human activities in the watershed as these taxa are directly 

related to the clastic input to the lake (Corella et al., 2011b). The existence of a large fen 

around the Lake Arreo palustrine area (unit C and LPAZ 1) would have favored the 

expansion of pastures between the 2
nd

 and the 5
th

 centuries AD as it is well-known that 

Roman used fens as wet pastures in the subalpine woodland (Ejarque et al., 2010). 

Contrary to the decrease in grazing activities documented in the Western Pyrenees 

between AD 250-550 (Mazier et al., 2009), anthropogenic activities in the lowlands 

around Lake Arreo continued during this period, suggesting the importance of the local 

economy based on the need of livestock to transport salt in the Salinas de Añana (Plata 

Montero, 2008). 
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5.2.2- The Dark Ages Cold Period (DACP) and the Early Middle Ages (5-9
th

 centuries 

AD) 

Relatively high lake levels dominated in Lake Arreo between AD 580 and 790. 

Although charcoal peaks are smaller than during Roman times, the increase in the 

helyophytic pioneers Ericaceae and Corylus after charcoal peaks, along with the 

expansion of ruderals and cultivated plants next to a first peak of Sporormiella around 

5
th

 century AD, indicate intensive land use during the onset of the Visigoth period (450 - 

600 AD). Moister conditions are also reflected in a small forest recovery dominated by 

deciduous oaks and a Fagus expansion (Figs. 6 and 8).  

The decrease in pastures and Sporormiella during the Early Middle Ages (5-9
th

 

centuries) indicates lower grazing activities in the watershed. The reduction of livestock 

was most probably linked to the decrease in the salt production and transport during the 

Visigoth period (5- 6
th

 centuries AD) (Plata Montero, 2008). The combination of 

reduced human activities in the lake watershed and the forest recovery that took place 

during this period lead to a decrease in sediment delivery to the lake (units 5 and B), as 

well as to oligotrophic waters (DZ-3a). The small decrease in AP values and the 

charcoal peak recorded at around AD 800 (Figs. 5 and 8) may be related to the 

documented fires in the area during the Arab incursions between AD 770 and AD 885 

(Martínez-Díez, 2005). Forest burning was a common strategy used during the Christian 

and Muslim wars and is also documented in other Pre-Pyrenean lake records, e.g. from 

Lakes Estanya (Riera et al., 2004) and Lake Montcortès (Rull et al., 2011) -  

The increase in cultivated lands, pastures, ruderals and Sporormiella and an 

increase of sediment input to the lake, mark more intense human pressure in the lake 

catchment since AD 830 (unit A) that can be related to the first Medieval settlements in 
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the area between the 8 and 10
th

 centuries (i.e. Arreo and Los Lagos) (Pastor Díaz de 

Garayo, 2004).  

5.2.3- The Medieval Climate Anomaly and the High and Late Middle Ages (9-13
th

 

centuries):  

The most intense arid phase reflected by increased salinity and lower lake levels 

occurred between AD 890 and 1300 characterized by the Sr/Ca ratio increase and low 

P:B index (Fig. 8). The decreasing trend in deciduous Quercus and Fagus (Figs. 5 and 

8) since the 8
th

 century can be interpreted as a progressive increase in arid conditions, 

although the intense human activities during this period should also have had a strong 

impact on the forest.  

This arid period occurring during the MCA time (AD 900 -1300) has also been 

described in previous paleoclimatic reconstructions in NE Spain and the western 

Mediterranean area (Magny, 2004; Martín-Puertas et al., 2010; Morellón et al., 2012; 

Moreno et al., 2012). A unique phase of lower salinity occurred between AD 970 and 

1040 (blue band in Fig. 8). This short humid phase is synchronous to an increase of 

precipitation events per year in Lake Montcortès (Corella et al., 2012) and increased 

frequency in large magnitude floods in the IP between AD 950 -1150 (Thorndycraft and 

Benito, 2006). 

The High Middle Ages (10-12
th

 centuries) witnessed the most intense land use of 

the last two millennia, with the highest clastic input to the lake between AD 890 and 

1180. Deforestation and farming activities could have triggered a dramatic increase in 

run-off and deposition of clastic material in the distal areas of the lake (Unit 4, fig 8). 

The increase in ruderals, cultivated taxa and Sporormiella, the presence of Glomus and 

the large peaks of charcoal also indicate intense land use during the High Middle Ages. 
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The occurrence of fire events and deforestation practices can be linked to expansion of 

crops and pasture areas and to the use of wood for fuel and construction material 

(Aizpuru et al., 1990). 

Changes in the lake during the late 12
th

 century (run-off reduction, mesotrophic 

lake conditions) are consistent with the abandonment of the medieval settlements in the 

lake watershed during the first half of the 12
th

 century when a massive emigration to the 

village of Salinas de Añana occurred, and numerous fields located in the catchment 

were abandoned (Plata Montero, 2008) (Fig. 7) 

5.2.4- The Little Ice Age, from the Middle Ages to the Modern Period (14-18
th

 

centuries): 

Decreasing lake salinity and forest recovery after AD 1300 (Fig. 8) indicate a 

progressive increase in effective moisture in the area that lasted until AD 1870. 

Particularly during the period AD 1640-1730 and AD 1790–1870 with no deposition of 

gypsum laminae, an increase in the P:B index values and low Sr/Ca ratios (Fig. 8), 

moister conditions would have prevailed. The oscillating but relatively humid nature of 

this period in Arreo synchronous with the LIA (AD 1300 -1870) is consistent with the 

dendroclimatic and lacustrine paleohydrological reconstructions in the Pyrenees 

(Morellón et al., 2012), the Alps (Magny et al., 2008) and southern Spain (Martín – 

Puertas et al., 2009), and with the higher flood frequency that occurred in Spain 

between AD 1430-1685 (Thorndycraft and Benito, 2006). The Lake Arreo record also 

supports a complex paleohydrological structure for the LIA as evidenced in other areas 

in the IP (Morellón et al., 2012) and the Alps (Magny et al., 2008). In particular, the arid 

pulse in Lake Arreo at AD 1730-1790 occurs synchronically in several sites of the NE 

Spain (Barriendos and Llasat, 2003; Morellón et al., 2011; Corella et al., 2012)  
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The expansion of AP clearly indicates a decrease of human activity in the 

watershed during the Late Middle Ages (13
th

 – 15
th

 centuries) (Figs. 7 and 8). This could 

be a reflection of non-favorable climatic conditions during the first part of the LIA or 

the so-called “low medieval crisis” responsible for a decline in population in this area 

(Díaz de Durana, 1986). Since AD 1600 an increase in the sediment delivery to the lake 

occurred (unit 3.c, Fig. 8), synchronous to the onset of the Modern period characterized 

by renewed agricultural activities in the area. Forest dominated during the Modern 

Period (15
th

 – 18
th

 centuries) (Fig. 7), although the expansion of evergreen Quercus, 

Pinus and Juniperus during the LIA (see pollen diagram) is not consistent with colder 

and more humid conditions. Thus, anthropogenic factors also seem to have influenced 

local forests during this period. A plausible hypothesis would link deforestation of oak 

forest and beech to a source for material construction for the salt work, enabling the 

dispersal of Pinus pollen. Another possible explanation is related to the colonizing and 

heliophilic nature of some of these taxa, such as Juniperus and Quercus ilex after the 

anthropogenic fires that occurred during the modern period. The abrupt increase in 

Sporormiella was linked to grazing activities during the second half of the 18
th

 and the 

first decades of the 19
th

 century (Fig. 5). The increase in cattle raising is consistent with 

the period of maximum salt production in the Salinas de Añana salt work throughout its 

history (Plata Montero, 2008), when abundant livestock for salt transport was needed. 

During the Modern period, the salt mines experienced a progressive increase from 2500 

salt evaporation pans in 1401 to 3367 at the beginning of the 19
th

 century (Plata 

Montero, 2008) because the Spanish Crown monopolized and centralized production, 

enhancing productivity and sales. The decrease in grazing and pastoral activities 

documented in the nearby Iraty Mountains between AD 1750 and 1825 (Mazier et al., 

2009) highlights again the local nature of this increase in pasture areas in Lake Arreo 
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watershed, dependent on the salt production dynamics.  

5.1.5 From the end of the Little Ice Age to the present (19-20
th

 centuries). 

A decrease in Fagus and deciduous Quercus since AD 1870 (Figs. 5 and 8) suggest 

more arid conditions in the area after the end of the LIA and during the warmer 20
th

 

century. Nevertheless, the presence of calcite biogenic varves (units 2.a and 1) indicates 

that meromictic conditions prevailed until the second half of the 20
th

 century (Corella et 

al., 2011b). 

During the last century arboreal pollen remained high, likely as a result of the 

use of concrete instead of timber for the salt work structures during the 20
th

 century 

(Plata Montero, 2008). In addition, the occurrence of Pinus radiata pollen at AD 1870 

marks the onset of the reforestation in the Basque country with this American pine 

(Espinel et al., 1995). Since the 1960s, the loss of economic competitiveness against 

coastal salt mines resulted in an abrupt reduction from 5648 salt evaporation pans in 

1960 to 40 pans in 2000. As occurred in most mountain areas in the Pyrenees, the 

economic changes during the mid 1950s forced people to migrate to the cities and the 

area was depopulated (Plata Montero, 2008). The high sediment delivery to the lake 

during the last 30 years reflects the increase in cultivated areas due to mechanization 

and different small-holding activities (Corella et al., 2011b). 

 

6- CONCLUSIONS 

The multiproxy study carried out for the Lake Arreo sediment sequence provides a 

paleohydrological and paleoenvironmental reconstruction of the area since BC 600 and 

a remarkable example of the interactions between the impact of human activities in the 
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catchment and local and regional climate fluctuations. The Lake Arreo record shows an 

arid period prior to 6
th

 century BC, a large increase in water availability during the 

Roman Humid Period, particularly during the 1
st
-4

th
 centuries AD, higher lake levels 

and less saline conditions during the Dark Ages Cold Period (AD 580-790) and the 

Little Ice Age (AD 1300-1870). Lower lake levels, a response to increasing regional 

aridity, were recorded during the Medieval Climate Anomaly (AD 890-1300) and the 

20
th

 century. Comparison of the main hydrological phases in Lake Arreo with other 

Iberian records demonstrates the coherence of the main climatic phases in the Iberian 

Peninsula during the last 2500 years, at the same time highlighting the spatial and 

temporal variability and some latitudinal differences. 

Human activities have also played a dynamic role in the transformation of the 

regional environment as the landscape provided natural resources (wood, land for crops 

and pastures) for the exploitation of the Salinas de Añana inland salt work, closed to 

Lake Arreo, since the Roman Period. Periods of intense human pressure on the lake 

watershed occurred during the High Middle Ages (AD 890-1180) and the Modern 

Period (AD 1605-1830)  
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FIGURE CAPTIONS 

Figure 1. Location map of Lake Arreo: (1a) Map of mean annual rainfall in the IP 

(Ninyerola et al., 2005) and geographical location of the study area. (1b) Detailed 

geological map of the Lake Arreo and the Añana salt diapir. (1c) Bathymetric map of 

Lake Arreo and core location. (1d) Vegetation map based on CORINE land cover 2000 

(EEA, 2000) and the Spanish National Forest Inventory (Villanueva Aranguren, 2007). 

Figure 2. Sedimentary facies and lithostratigraphic units and correlation of Arreo cores. 

Continuous and noncontinuous lines represent the correlation between the limits of the 

main sedimentary units and subunits respectively. Red dashed line shows the correlation 

between the shallow-water and deep-water cores. Asterisks indicate the location of 

radiocarbon dates shown in Table 1. 

Figure 3. Chronological model of a) deep-water core ARR04-1A-1K and b) shallow-

water core ARR04-2A-1K based on mixed effect regression function (Heegaard et al., 

2005) of 12 AMS 
14

C dates.  The continuous lines represent the age-depth function, and 

the dashed lines display the standard deviation values.  

Figure 4. Core images, sedimentary facies, elemental composition (TIC, TOC, C/N 

ratio), mineralogy and selected XRF profiles for deep-water ARR04-1A-1K (top) and 

shallow-water ARR04-2A-1K (bottom) cores. From left to right: MS: Magnetic 

susceptibility; TIC: Total Inorganic Carbon; TOC: Total Organic Carbon; Qz+Plag: 

Quartz+plagioclase; Cc: Calcite; Gy: Gypsum; Py: Pyrite; Ca/Ti: Calcium/Titanium 

ratio; Sr/Ca: Strontium/Calcium ratio. Facies legend is shown in Figure 2. 

Figure 5. Pollen diagram of selected pollen taxa diagram for the a) deep-water core 

ARR04-1A-1K and b) shallow-water core ARR04-2A-1K with lithostratigraphical units 

1 to 5 (in core ARR04-1A-1K) and A to D (in core ARR04-2A-1K) and local pollen 
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zones (LAPZ) 1 to 5 in both cores. Pinus sp includes pollen of P. sylvestris and P. nigra. 

The pollen type deciduous Quercus includes Q. pyrenaica, Q. faginea, Q. robur, and Q. 

petrea. Evergreen Quercus includes pollen of Q. ilex. Cultivated taxa include 

Triticum/Avena, Secale, Cerealia, Cannabis-type, and Polygonum aviculare-type.  

Ruderals include Artemisia, Chenopodiaceae, Plantago major, P. media, and Urtica. 

Meadows and pastures include Aster-type, Cirsium, Chichorioideae, Apiaceae, 

Heracleum, Campanula-type, Filipendula, Potentilla, Gallium-type, Lathyrus, 

Trifolium-type, Lotus-type, Ranunculaceae, Ranunculus acris-type, Hypericum, Lotus-

type, Rumex acetosa, R. acetosella, Plantago lanceolata. Hygrophytes include 

Sparganium, Potamogetom, Utricularia, Myriophyllum and Lemna. 

Figure 6. Selected taxa (>5% relative abundance) of the diatom record from ARR04-

1A-1K (top) and ARR04-2A-1K (bottom) cores. P/B ratio is based on the total sum of 

diatom taxa. Sedimentary units are also indicated. 

Figure 7. Synthesis diagram showing the resumed information from the sedimentary 

facies, pollen and diatom zones, limnological stages, historical records and 

paleohydrological reconstruction from Lake Arreo. 

Figure 8. Paleohydrological evolution of Lake Arreo record during the last 2600 Cal. yr 

based on selected proxies and main vegetation and land uses changes in the area. 

Comparison with Lake Estanya (Morellón et al., 2008; 2011) paleosalinity record and 

Lake Montcortès paleotemperature record (Corella et al., 2012). 
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TABLES 

 

Parameters 

  Value 

Units Minimum   Maximum 

Elevation m 

 

657 

 Lake surface Ha 

 

6.57 

 Catchment area Ha 

 

491.5 

 Max. depth m 

 

24.8 

 Volume: Hm
3
 

 

0.35 

 Temperature ºC 1.4 

 

27.4 

Oxygen content mg/l 0 

 

18.9 

Conductivity µS/cm 703 

 

1410 

pH 

 

5.13 

 

8.98 

Alkalinity meq/l 1.3 

 

5.42 

PO4 µgP-PO4/l 0.1 

 

31.9 

Total P µg/l 5.8 

 

167.8 

NO3 

µgN-

NO3/l 8.1 

 

2370 

Total N µg/l 313 

 

6550 

Chlorophyll_a µg/l 0.2 

 

245.5 

Secchi disk m 1.33 

 

8.13 

 

Table 1. General limnological and hydrological characteristics from Lake Arreo (December 2001-August 

2012) 
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Core Depth 

(m) 

Lab code Material 14
C ages Cal years BP 

(1σ range) 

AD years Unit 

ARR04-1A-1K 

0.74m CNA145 Macrorest (root) Modern Modern Post 1950 2 

1.38m CNA146 Macrorest (phragmites) 80 ± 60 85 ± 55 1865 ±55 2 

2.09m CNA147 Macrorest 330 ± 70 405 ± 55 1545 ± 55 2 

3.58m CNA148 Macrorest (phragmites) 80 ± 60 85 ± 55 1865 ± 55 2 

4.72m POZ33481 Terrestrial wood+charcoal 370 ± 35 465 ± 35 1485 ± 35 2 

5.015m* POZ33482 Hygrophyte* 145 ± 30* 200 ± 25* 1750 ± 25* 3 

5.7m* CNA149 Macrorest* 130 ± 70* 105 ± 45* 1845 ± 45* 4 

6.01m CNA150 Macrorest (terrestrial plant) 1130 ± 70 1025 ± 65 925 ± 65 4 

6.73m POZ33484 Hygrophyte+charcoal 1465 ± 35 1345 ± 30 605 ± 30 5 

ARR04-2A-1K 

0.17m CNA151 Macrorest 1170 ± 70 1110 ± 60 840 ± 60 A 

1.56m CNA152 Macrorest  1400 ± 60 1320 ± 40 630 ± 40 B 

3.05m* CNA153 Macrorest (terrestrial 

plant)* 

1140 ± 60* 1030 ± 60* 920 ± 60* B 

3.065m* POZ33485 Hygrophyte+Terrestrial 

wood* 

1380 ± 35* 1300 ± 20* 650 ± 20* B 

3.5m POZ33486 Seed capsule 1550 ± 35 1465 ± 50 485 ± 50 B 

4.1m POZ33487 Hygrophyte 1860 ± 40 1780 ± 45 170 ± 45 C 

5m CNA155 Macrorest (terrestrial plant) 2480 ± 70 2545 ± 80 BC 595±80 D 

Table 2. Radiocarbon dates obtained in the Lake Arreo ARR04-1A-1K and ARR04-2A-1K 

cores.  The ages labelled with an asterisk have not been included in the age model. 


