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Simultaneous super-resolution and blind

deconvolution

F. Sroubek1, G. Cristobal2 and J. Flusser1

1 Academy of Sciences, Pod vodárenskou věž́ı 4 Prague, Czech Republic
2 Instituto de Óptica (CSIC), Serrano 121, 28006 Madrid, Spain

Abstract. In many real applications, blur in input low-resolution images is a nuisance, which
prevents traditional super-resolution methods from working correctly. This paper presents a
unifying approach to the blind deconvolution and superresolution problem of multiple degraded
low-resolution frames of the original scene. We introduce a method which assumes no prior
information about the shape of degradation blurs and which is properly defined for any rational
(fractional) resolution factor. The method minimizes a regularized energy function with respect
to the high-resolution image and blurs, where regularization is carried out in both the image and
blur domains. The blur regularization is based on a generalized multichannel blind deconvolution
constraint. Experiments on real data illustrate robustness and utilization of the method.

1. Introduction
Imaging devices have limited achievable resolution due to many theoretical and practical
restrictions. An original scene with a continuous intensity function o(x, y) warps at the camera
lens because of the scene motion and/or change of the camera position. In addition, several
external effects such as atmospheric turbulence, camera lens, relative camera-scene motion,
etc, can cause images to be blurred. We will call these effects volatile blurs to emphasize their
unpredictable and transitory behavior, yet we will assume that we can model them as convolution
with an unknown point spread function (PSF) h(x, y). This is a reasonable assumption if the
original scene is flat and perpendicular to the optical axis. Finally, the CCD discretizes the
images and produces a digitized noisy image g(i, j), which we refer to as a low-resolution (LR)
image, since the spatial resolution is too low to capture all the details of the original scene. For
one single observation g(i, j) the problem of reconstructing o(x, y) is heavily underdetermined
and lacks stable solution. To partially overcome the equivocation of the problem, we can take K
(K > 1) images of the original scene and face the so-called multichannel (multiframe) problem.
The acquisition model then becomes

gk(i, j) = D([hk ∗Wk(o)](x, y)) + nk(i, j) , (1)

where k = 1, . . . , K is the acquisition index, nk(i, j) is additive noise and Wk denotes the
geometric deformation (warping), in general different for each acquisition. D(·) is the decimation
operator that models the function of CCD sensors. It consists of convolution with a sensor PSF
followed by a sampling operator, which we define as multiplication by a sum of delta functions
placed on a grid. The above model is the state of the art as it takes all possible degradations
into account.
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Superresolution (SR) is the process of combining a sequence of LR images in order to produce
an image or sequence of higher resolution. It is unrealistic to assume that the superresolved image
can recover the original scene o(x, y) exactly. A reasonable goal of SR is a discrete version of
o(x, y), which has higher spatial resolution than the resolution of the LR images and which is
free of the volatile blurs (deconvolved). In this paper, we will refer to this superresolved image
as a high resolution (HR) image f(i, j) and the ratio between the size of the sought HR image
and input LR image will be called a SR factor. The standard SR approach consists of subpixel
registration, overlaying the LR images on an HR grid, and interpolating the missing values.
The subpixel shift between images thus constitutes an essential feature. We will demonstrate
that considering volatile blurs in the model explicitly brings about a more general and robust
technique, with the subpixel shift being a special case thereof.

The acquisition model in (1) embraces three distinct cases frequently encountered in the
literature. First, removal of the geometric degradation Wk is a registration problem. Second,
if the decimation operator D and the geometric transform Wk are not considered, we face a
multichannel (or multiframe) blind deconvolution (MBD) problem. Third, if the volatile blur vk

is not considered or assumed known, and Wk is suppressed except to subpixel translations, we
obtain a classical SR formulation. In practice, it is crucial to consider all three cases at once.
We are then confronted with a problem of blind superresolution (BSR), the topic of this paper.

Proper registration techniques can suppress large and complex geometric distortions but
usually a small between-image shift is still observable. There have been hundreds of methods
proposed; see e.g. [1] for a survey. Here we will assume that registration parameters can be
calculated by one of the methods, and if applied, the LR images are registered except to small
translations.

Research on intrinsically MBD methods has begun fairly recently; refer to [2, 3, 4, 5, 6] for
a survey and other references. The MBD methods can directly recover the blurring functions
from the degraded images alone. We further developed the MBD theory in [7] by proposing a
blind deconvolution method for images, which might be mutually shifted by unknown vectors.
To make this brief survey complete, we should not forget to mention a very challenging problem
of shift-variant blind deconvolution, that was considered in [8, 9].

A countless number of papers address the standard SR problem. A good survey can be found
for example in [10, 11]. Maximum likelihood, maximum a posteriori (MAP), the set theoretic
approach using projection on convex sets, and fast Fourier techniques can all provide a solution
to the SR problem. Earlier approaches assumed that subpixel shifts are estimated by other
means. More advanced techniques, such as in [12, 13, 14], include the shift estimation in the
SR process. Other approaches focus on fast implementation [15], space-time SR [16], SR with
complex image priors for joint image and segmentation estimation [17], or SR of compressed
video [13]. Most of the SR techniques assume a priori known blurs. However, in many cases,
such as camera motion, blurs can have wild shapes that are difficult to predict; see examples
of real motion blurs in [18]. Authors in [19, 20, 21] proposed BSR that can handle parametric
PSFs, i.e., PSFs modeled with one parameter. This restriction is unfortunately very limiting
for most real applications. In [22] we extended our MBD method to BSR in an intuitive way
but one can prove that this approach does not estimate PSFs accurately. The same intuitive
approach was also proposed in [23]. To our knowledge, first attempts for theoretically correct
BSR with an arbitrary PSF appeared in [24, 25]. The interesting idea proposed therein is to use
so-called polyphase components. We will adopt the same idea here as well. Other preliminary
results of the BSR problem with focus on fast calculation are given in [26], where the authors
propose a modification of the Richardson-Lucy algorithm.

Current MBD techniques require no or very little prior information about the blurs, they are
sufficiently robust to noise and provide satisfying results in most real applications. However,
they can hardly cope with the decimation operator, which violates the standard convolution
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model. On the contrary, state-of-the-art SR techniques achieve remarkable results of resolution
enhancement in the case of no blur. They accurately estimate the subpixel shift between images
but lack any apparatus for calculating the blurs.

Recently in [27], we proposed a unifying method that simultaneously estimates the volatile
blurs and HR image. The only prior knowledge required are estimates of the blur size and level
of noise in the LR images, which renders it a truly BSR method. The key idea was to determine
subpixel shifts by calculating volatile blurs. As the volatile blurs are estimated in the HR scale,
positions of their centroids correspond to sub-pixel shifts. Therefore by estimating blurs we
automatically estimate shifts with sub-pixel accuracy, which is essential for good performance
of SR. We show that the blurs in the HR scale can be recovered from the LR images up to small
ambiguity, which is a generalization of results obtained for blur estimation in the MBD case and
which we have proposed earlier in [22, 27]. This complex SR problem was solved by minimizing
a regularized energy function, where the regularization was carried out in both the image and
blur domains. The image regularization is based on variational integrals, and a consequent
anisotropic diffusion with good edge-preserving capabilities. The blur regularization term is
based on our generalized result of blur estimation in the SR case. To tackle the minimization
task, we used an alternating minimization approach consisting of two simple linear equations.

In this work, we extend the BSR method by incorporating registration parameters. In
Section 2 we present the regularized energy functional and derive the regularization terms.
The alternating minimization scheme and parameter estimation is given in Section 3. Finally,
Section 4 illustrates applicability of the proposed method to real situations.

2. Blind Superresolution
In order to solve the BSR problem, i.e, determine the HR image f and volatile PSFs hk, we
adopt an approach of minimizing a regularized energy function. This way the method will be
less vulnerable to noise and better posed. The energy, using vector-matrix notation, consists of
three terms and takes the form

E(f ,h) =
K∑

k=1

‖DkHkf − gk‖2 + Q(f) + R(h) , (2)

where h = [hT
1 , . . . ,hT

K ]T , Dk represents the discrete case of D that includes Hk (the warping)
and Wk denotes a matrix that represents convolution with hK . The first term measures the
fidelity to the data and emanates from our acquisition model (1). The remaining two are
regularization terms that attract the minimum of E to an admissible set of solutions. The form
of E very much resembles the energy proposed in [7] for MBD. Indeed, this should not come as
a surprise since MBD and SR are related problems in our formulation. Regularization Q(f) is a
smoothing term of the form

Q(f) = αfTLf , (3)

where L is a high-pass filter and α is a positive regularization parameter. A common strategy
is to use convolution with the Laplacian for L, which in the continuous case, corresponds to
Q(f) =

∫ |∇f |2. Recently, variational integrals Q(f) =
∫

φ(|∇f |) were proposed, where φ is a
strictly convex, nondecreasing function that grows at most linearly. Examples of φ(s) are s (total
variation),

√
1 + s2 − 1 (hypersurface minimal function), log(cosh(s)), or nonconvex functions,

such as log(1 + s2), s2/(1 + s2) and arctan(s2) (Mumford-Shah functional). The advantage of
the variational approach is that while in smooth areas it has the same isotropic behavior as the
Laplacian, it also preserves edges in images. The disadvantage is that it is highly nonlinear and
to overcome this difficulty, one must use, e.g., half-quadratic algorithm [32]. For the purpose
of our discussion it suffices to state that after discretization we arrive again at (3), where this
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time L is a positive semidefinite block tridiagonal matrix constructed of values depending on the
gradient of f . The rationale behind the choice of Q(f) is to constrain the local spatial behavior
of images; it resembles a Markov Random Field. Some global constraints may be more desirable
but are difficult (often impossible) to define, since we develop a general method that should
work with any class of images. Our PSF regularization term R(h) consists of two terms. The
first one is the same smoothing term as for images but applied to blurs, which is a typical prior
that penalizes jagged blurs that are rare in real situations. The second term is a consistency
term that binds the different volatile PSFs to prevent them from moving freely and unlike the
fidelity term (the first term in (2)) it is based solely on the observed LR images. It takes the
form of ‖Nh‖2 (see [27]). The complete PSF regularization is then give by

R(h) = βhTLh + γ‖Nh‖2 , (4)

where β and γ are positive regularization parameters that give different weights to the terms.

3. Alternating minimization
The complete energy function reads

E(f ,h) =
K∑

k=1

‖DkHkf − gk‖2 + αfTLf + hT (βL + γN TN )h . (5)

To find a minimizer, we perform alternating minimizations (AM) of E over f and h. The
advantage of this scheme lies in its simplicity. Each term of (5) is quadratic and therefore
convex (but not necessarily strictly convex) and the derivatives w.r.t. f and h are easy to
calculate. This AM approach is a variation on the steepest-descent algorithm. The search space
is a concatenation of the blur subspace and the image subspace. The algorithm first descends
in the image subspace and after reaching the minimum, i.e., ∇fE = 0, it advances in the blur
subspace in the direction ∇hE orthogonal to the previous one, and this scheme repeats. In
conclusion, starting with some initial h0 the two iterative steps are:

step 1.

fm = arg min
f

E(f ,hm)

⇔ solve for f

(
K∑

k=1

HT
k DT

k DkHk + αL)f =
K∑

k=1

HT
k DT

k gk ,

(6)

step 2.

hm+1 = arg min
h

E(fm,h)

⇔ solve for h

([IK ⊗ FTDT
k DkF] + γN TN + βL)h

= [IK ⊗ FTDT
k ]g ,

(7)

where F represents the convolution with f, g := [gT
1 , . . . ,gT

K ]T , ⊗ is the Kronecker product, IK

the identity matrix of size k and m is the iteration step. Note that both steps consist of simple
linear equations.

Because it is a function of both variables f and h, the energy E is not convex due to coupling
of variables via convolution in the first term of (5). Therefore, it is not guaranteed that the

4th AIP International Conference and the 1st Congress of the IPIA IOP Publishing
Journal of Physics: Conference Series 124 (2008) 012048 doi:10.1088/1742-6596/124/1/012048

4



BSR algorithm reaches the global minimum, instead, one may get trapped in local minima. In
our experience, convergence properties improve significantly if we add feasible regions for the
HR image and PSFs specified as lower and upper bound constraints. To solve step 1, we use
the method of conjugate gradients (function cgs in Matlab) and then adjust the solution fm

to contain values in the admissible range, typically, the range of values of g. It is common to
assume that PSF is positive (hk ≥ 0) and that it preserves image brightness. We can therefore
write the lower and upper bounds constraints for PSFs as 0 ≤ hk ≤ 1. In order to enforce
the bound in step 2, we solve (7) as a constrained minimization problem (function fmincon in
Matlab) rather than using the projection as in step 1. Constrained minimization problems are
more computationally demanding but we can afford it in this case since the size of h is much
smaller than the size of f .

Parameters α, β and γ depend on the level of noise. If noise increases, α and β should increase,
and γ should decrease. One can prove that α and β are proportional to σ2

n, which is the noise
variance, assuming Gaussian white noise. Estimation techniques, such as cross-validation [19]
or expectation maximization [34], can be used to determine the correct weights. However, we
did not want to increase complexity of the problem any further and thus we set the values in
experiments manually according to our visual assessment. If the iterative algorithm begins to
amplify noise, we have underestimated the noise level. On the other hand, if the algorithm
begins to segment the image, we have overestimated the noise level.

4. Experiments
The following experiments with the proposed BSR method aim to first compare perfomance with
other techniques and second demonstrate its applicability to real scenarios with misregistered
input images.

4.1. Real data
The first experiment demonstrates a task of license plate recognition. With an Olympus C5050Z
digital camera we took eight photos, registered them with cross correlation and cropped each
to 156x56 pixels. Three of the LR images enlarged with zero-order interpolation is shown in
Fig. 1a. The described BSR method returned a well reconstructed HR image (Fig. 1b), which
is comparable to the ground truth acquired with the optical zoom (Fig. 1d). A SR-only method
provides lower performance (see Fig. 1c). In our case the SR-only method is a maximum a
posteriori (MAP) formulation of the SR problem proposed, e.g., in [12, 13]. This method
uses a MAP framework for the joint estimation of image registration parameters and the HR
image, assuming only the sensor blur and no volatile blurs. For an image prior, we used edge
preserving Huber Markov Random Fields (MRF) [35]. A potential pitfall that we have to take
into consideration is a feasible range of SR factors. As the SR factor increases we need to take
more LR images and the stability of BSR decreases. Hence we limit the SR factor between 1
and 2.5 in most practical applications.

The second group of three experiments demonstrate the advantage of using the decimation
operators Dk’s with registration instead of running BSR on registered LR images. Three video
sequences were taken from the Farsiu & Milanfar SR dataset[15] 1. Fig. 2(a) shows one frame
out of ten corresponding to the ”Disk” sequence. In a previous publication [31], we estimated
registration parameters and compared two approaches. First, we applied BSR on registered
images. Second, we used the registration parameters to construct Dk’s and applied BSR on
the original unregistered images. Some small details are better reconstructed in the second
approach, which indicates that using the registration parameters directly in BSR is preferable.
Fig. 2(b) shows the result of the second approach. Similarly, Fig. 2(c) shows one frame out of

1 http://www.soe.ucsc.edu/∼milanfar/DataSets/
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(a)

(b) (c) (d)

Figure 1. (a) Shown are three LR frames. (b) The BSR result. (c) The SR result. (d) Optical
zoom reference.

ten corresponding to the ”Text” sequence and Fig. 2(d) the BSR result. Finally, Fig. 2(e) shows
one frame out of ten corresponding to the ”Car” sequence and Fig. 2(f) the BSR result. In all
the cases the SR factor used was 2.

(a) (b) (c) (d) (e) (f)

Figure 2. Superresolution with registration. (a) Shown is one ”Disk” LR frame from the Farsiu
& Milanfar dataset. (b) BSR result. (c) Shown is one ”Text” LR frame from the same dataset.
(d) BSR result. (e) Shown is one ”Car” LR frame from the same dataset. (f) BSR result.

5. Conclusions
This paper presented a SR method which proved to be meaningful for cases when an insufficient
number of input LR images is available to perform SR with only integer factors, such as
two or three. To achieve truly robust methodology applicable in real situations, we adopted
the regularized energy minimization approach, which we solve by an alternating-minimization
scheme. The fundamental improvement on previously proposed SR methods is the notion of
estimating PSFs in the HR scale, which indirectly aligns LR images with subpixel accuracy.
Using registration parameters inside the algorithm instead of registering input images gives
better results and paves the way for including methods of making registration parameters more
accurate during reconstruction of the HR image [31, 36]
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[33] Tschumperlé, D. (2002) PDE’s Based Regularization of Multivalued Images and Applications. PhD thesis
University of Nice-Sophia Antipolis.

[34] Molina, R., Vega, M., Abad, J., and Katsaggelos, A. (2003) Parameter estimation in Bayesian high-resolution
image reconstruction with multisensors. IEEE Trans. Image Processing, 12, 1655–1667.

[35] Capel, D. (2004) Image Mosaicing and Super-Resolution. Springer, New York.
[36] Chung, J., Haber, E., and Nagy, J. (2006) Numerical methods for coupled super-resolution. Inverse Problems,

22, 1261–1272.

4th AIP International Conference and the 1st Congress of the IPIA IOP Publishing
Journal of Physics: Conference Series 124 (2008) 012048 doi:10.1088/1742-6596/124/1/012048

8




