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   Abstract 

 The astacins are a family of multi-domain metallopepti-
dases with manifold functions in metabolism. They are 
either secreted or membrane-anchored and are regulated 
by being synthesized as inactive zymogens and also by co-
localizing protein inhibitors. The distinct family members 
consist of N-terminal signal peptides and pro-segments, zinc-
dependent catalytic domains, further downstream extracellu-
lar domains, transmembrane anchors, and cytosolic domains. 
The catalytic domains of four astacins and the zymogen of 
one of these have been structurally characterized and shown 
to comprise compact  ∼ 200-residue zinc-dependent moieties 
divided into an N-terminal and a C-terminal sub-domain by 
an active-site cleft. Astacins include an extended zinc-binding 
motif (HEXXHXXGXXH) which includes three metal ligands 
and groups them into the metzincin clan of metallopeptidases. 
In mature, unbound astacins, a conserved tyrosine acts as an 
additional zinc ligand, which is swung out upon substrate or 
inhibitor binding in a  ‘ tyrosine switch ’  motion. Other char-
acteristic structural elements of astacin catalytic domains are 
three large  α -helices and a fi ve-stranded  β -sheet, as well as 
two or three disulfi de bonds. The N-terminal pro-segments 
are variable in length and rather unstructured. They inhibit 
the catalytic zinc following an  ‘ aspartate-switch ’  mechanism 
mediated by an aspartate embedded in a conserved motif 
(FXGD). Removal of the pro-segment uncovers a deep and 
extended active-site cleft, which in general shows prefer-
ence for aspartate residues in the specifi city pocket (S 1  ′ ). 
Furthermore, astacins undergo major rearrangement upon 
activation within an  ‘ activation domain, ’  and show a slight 
hinge movement when binding substrates or inhibitors. In this 
review, we discuss the overall architecture of astacin catalytic 
domains and their involvement in function and zymogenic 
activation.  

   Keywords:    bone morphogenetic protein;   catalytic domain; 
  meprin;   metzincin;   tolloid;   zinc metallopeptidase.     

  Introduction: a short historical background 

 The fi rst report on the digestive protease astacin from the 
European freshwater crayfi sh,  Astacus astacus  L.  –  then 
termed  ‘ crayfi sh small-molecule protease ’  or  ‘  Astacus  pro-
tease ’   –  dates back to the late 1960s (Sonneborn et al. , 1969 ). 
Protein sequencing by Zwilling and co-workers in the 1980s 
did not reveal homology to any other protein (Titani et al. , 
1987 ). Shortly after, the enzyme was identifi ed as a zinc met-
allopeptidase (St  ö cker et al., 1988 ), and other family mem-
bers emerged. The fi rst of these was bone morphogenetic 
protein 1 (BMP1), a protease co-purifi ed with TGF β -like 
growth factors termed bone morphogenetic proteins due 
to their capacity to induce ectopic bone formation in mice 
(Wozney et al. , 1988 ). Later, prompted by the discovery of 
vertebrate meprins, the term  ‘ astacins ’  was coined in 1991 
to refer to a family of extracellular zinc endopeptidases 
encompassing them all (Dumermuth et al. , 1991 ; St  ö cker 
et al., 1991b ). In the following years, cloning and sequence 
analysis of a variety of other astacins was reported, and most 
of them showed a multi-domain structure. They were shown 
to be involved in developmental processes, tissue differen-
tiation, and embryonic hatching, as exemplifi ed by UVS.2 
from claw frog (Sato and Sargent , 1990 ), tolloid from fruit fl y 
(Shimell et al. , 1991 ), the low (LCE) and high (HCE) chori-
olytic enzymes from medaka fi sh (Yasumasu et al. , 1992 ), and 
SPAN and blastula protein BP10 from sea urchin (Lepage 
et al. , 1992 ; Reynolds et al. , 1992 ).  

  Physiological background 

 In the human and mouse genomes, there are six genes encod-
ing astacin proteases, namely,  bmp1 ,  tll1 ,  tll2 ,  mep1a ,  mep1b , 
and  astl  (see http://degradome.uniovi.es/met.html). The fi rst 
three code for the tolloid subgroup, which includes pro-
tein BMP1 and its major splice variant, mammalian tolloid. 
These two are also known as procollagen C-proteases and are 
important for extracellular matrix assembly (Kessler et al. , 
1996 ; Li et al. , 1996 ). Closely related to them are mamma-
lian tolloid-like proteins 1 and 2 (TLL1 and TLL2), whose 
genes are differentially expressed when compared with that 
of BMP1. Knock-out mice for  bmp1 ,  tll1 , and  tll2  have severe 
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defects in connective tissue assembly and heart and skeletal 
muscle development (for reviews, see Ge and Greenspan , 
2006 ; Hopkins et al. , 2007 ). These enzymes cleave precur-
sors of fi brillar procollagens for proper matrix assembly. 
They also process other matrix proteins including proteogly-
cans, laminins, and anchoring fi brils. In addition, tolloids also 
cleave growth factors and their antagonists, which are crucial 
for dorso-ventral patterning during gastrulation in the embryo 
(Shimell et al. , 1991 ; Holley et al. , 1996 ; Ge and Greenspan , 
2006 ). 

 Genes  mep1a  and  mep1b  encode the multi-domain pro-
teins meprin  α  and meprin  β , respectively. These are trans-
lated as membrane-bound proteins containing C-terminal 
MAM domains ( m eprin,  A 5 protein, and receptor protein 
tyrosine phosphatase  μ ) (Beckmann and Bork , 1993 ), TRAF 
domains ( t umor necrosis factor  r eceptor- a ssociated  f actor) 
(Rothe et al. , 1994 ; Zapata et al. , 2001 ), and EGF-like, 
transmembrane, and cytosolic domains (Figure  1  A). The 
 α  subunit is post-translationally cleaved within a unique I 
(inserted) domain (Figure 1A) during the passage through 
ER and Golgi, and therefore is found as high-molecular-
weight solu ble multimers. By contrast, meprin  β  homodi-
mers and  α / β  heterodimers remain cell-surface-bound 
unless shed proteolytically (Hahn et al. , 2003 ). Meprins are 
involved in tissue differentiation and pericellular signaling. 
In this context, a variety of meprin substrates have been 
reported in vitro, including biologically active peptides such 
as gastrin and cholecystokinin, substance P, cytokines, and 
chemokines (reviewed by Sterchi et al. , 2008 ). Of special 
interest is the fact that meprins cleave components of the 
extracellular matrix, in particular the basal lamina but also 
adhesion proteins at the cell-cell interface (Sterchi et al. , 
2008 ; Ambort et al. , 2010 ; Vazeille et al. , 2011 ). Recent pro-
teomics approaches have identifi ed previously known and 
new physiologically relevant  in vivo  substrates such as vas-
cular endothelial growth factor (Sch  ü tte et al., 2010 ), amy-
loid precursor protein (Jefferson et al. , 2011 ), procollagens 
I and III (Kronenberg et al. , 2010 ), interleukin-1 β  (Herzog 
et al. , 2005 ), interleukin 18 (Banerjee and Bond , 2008 ), pro-
kallikrein 7 (Ohler et al. , 2010 ), and fi broblast growth factor 
19 (Becker -Pauly et al., 2011 ). 

 The third subgroup of astacins in vertebrates comprises the 
so-called hatching enzymes, represented by just one mem-
ber in mammals termed ovastacin by Carlos L ó pez-Ot í n and 
colleagues (Quesada et al. , 2004 ). The protein is encoded by 
the gene  astl  and expressed in the oocyte and in the devel-
oping embryo. A recent report (Sachdev et al. , 2012 ) sug-
gested a role in sperm-egg interaction reminiscent of that of 
non-proteolytic members of the ADAM ( a   d isintegrin  a nd 
metalloproteinase) family of metalloproteases (Wolfsberg 
et al. , 1993 ; Takeda , 2009 ; Takeda et al. , 2012 ), which, like ast-
acins, belong to the metzincin clan (Bode et al. , 1993 ; St  ö cker 
et al., 1995 ; Gomis -R ü th, 2003  , 2009 ) (see chapter  ‘ Overall 
structure of mature astacin catalytic domains ’  below). 

 Surprisingly, the genomes of lower vertebrates and inverte-
brates generally contain more astacin genes than mammalian 
genomes according to the MEROPS database ( http://merops.
sanger.ac.uk ): 7 – 18 in amphibians and fi sh, at least 4 in 

cnidarians, 13 – 25 in insects, and up to 40 in nematodes such 
as  Caenorhabditis elegans  ( M ö hrlen et al., 2003 ). The large 
number in the latter example can at least partially be attri-
buted to the parasitic lifestyle of nematodes, which requires 
an array of proteases to break down host connective tissue. 
Characterized examples are enzymes from  Trichinella spi-
ralis  (Lun et al. , 2003 ) and  Onchocerca volvolus  (Borchert 
et al. , 2007 ). Also abundant in lower vertebrates and inver-
tebrates are hatching enzymes, which degrade embryonic 
envelopes during the free water developmental stage of crus-
taceans, fi sh, frogs, and birds. The peptidases of this heteroge-
neous group often contain C-terminal cysteine-rich and CUB 
domains (complement  C 1r/C1s, U  egf, and  B MP1) (Bork and 
Beckmann , 1993 ), yet some consist of just a single catalytic 
domain. Examples include crayfi sh embryonic astacin (Geier 
and Zwilling , 1998 ), fi sh alveolin (Shibata et al. , 2000 ), fi sh 
proteins LCE and HCE (Yasumasu et al. , 1996 ), nephrosin 
from carp head kidney (Hung et al. , 1997 ), protein UVS.2 
from frog (Fan and Katagiri , 2001 ), and protein CAM1 from 
bird (Elaroussi and DeLuca , 1994 ).  

  Modular organization of astacins and 

evolutionary aspects 

 The minimal structure of an astacin protease is a catalytic 
domain of approximately 200 amino acid residues as found in 
bacteria. In eukaryotes, this minimal structure is extended by 
at least an N-terminal pro-peptide which confers latency, so 
that most astacins, including the prototypical crayfi sh enzyme 
(Yiallouros et al. , 2002 ), are secreted as inactive zymogens 
(Figure 1B). Additional downstream domains include EGF-
like modules and/or one or more copies of CUB modules 
(Bond and Beynon , 1995 ; St  ö cker and Bode, 1995 ). These 
domains may be involved in calcium-binding and protein-
protein or enzyme-substrate interactions. It has been demon-
strated that the C-terminal CUB- and EGF-like domains of 
procollagen C-peptidase are important for selectivity in sub-
strate recognition (Sieron et al. , 2000 ; Garrigue -Antar et al., 
2004 ; Hintze et al. , 2006 ; Wermter et al. , 2007 ). By virtue of 
their similar, but not identical, domain composition, sea urchin 
astacins like SPAN and BP10 are related to tolloids (Lepage 
et al. , 1992 ; Reynolds et al. , 1992 ). They likewise contain a 
unique serine/threonine-rich region, which could be the target 
of  O -glycosylation. Interestingly, some  C. elegans  astacins 
contain thrombospondin type 1 repeats, which are also found 
in another family of metzincins, the ADAMTS peptidases 
(Apte , 2009 ). Further C-terminal domains described include 
the ShK toxin domain of some coelenterate astacins. Such 
domains  –  also called six-cysteine (SXC) domains  –  were 
originally identifi ed in metridin, a toxin from sea anemone, 
and several hypothetical  C. elegans  proteins. Other notable 
domains are the aforementioned TRAF and MAM domains 
(see section  ‘ Physiological background ’ ), found in meprins 
(see above) but also in HMP2 from hydra (Yan et al. , 2000a,b ) 
and LAST-MAM from the horseshoe crab (Becker -Pauly et 
al., 2009 ). Furthermore, regions of generally low composi-
tional complexity and similarity to other protein modules 
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 Figure 1    Architecture and evolution of astacins. 
 (A) Scheme depicting the distinct domains observed in astacins. In addition to N-terminal signal peptides and pro-peptides, most astacins 
contain further domains C-terminally attached to the catalytic protease domain. These are termed EGF (epidermal growth factor-like; PFAM 
accession number PF00008); CUB (named after their occurrence in complement component C1r/1s, embryonic sea urchin Uegf, and BMP1; 
PF00431); TSP (thrombospondin type 1 repeats; PF00090); ShK (ShK toxin domain; PF01549); EB (associated with Kunitz domains and 
found in several  C. elegans  proteins; PF01683); MAM (meprin, A5 receptor protein, tyrosine phosphatase  μ ; PF00629); TRAF (found in 
intracellular signaling proteins; PF00917); bacterial TT domains (PF02957); LC (low complexity domains); C (cytosolic domains); I (inserted 
domain); and TM (transmembrane anchor). (B) Sequence alignment of the pro-domains and catalytic domains of selected astacins. Over black 
background: the Met-turn, the zinc binding motif, cysteines, the aspartate-switch residue in the pro-peptide, and the activation site (scissors); 
in pink: residues chiefl y shaping the S 1  ′  sub-site. (C) Family tree based on the catalytic domains of astacins. The numbers indicate the relative 
probability of branching. UniProt database accession numbers: AAS AEA (O44072); AAS AST (P07584); ACA TBL1 (P91972); ATE_TLL 
(Q75UQ6); CEL NAS35 (P98060); CEL NAS36 (Q18206); CEL NAS37 (Q93243); CEL NAS39 (Q20176); CJA CAM1 (P42662); DME TLD 
(P25723); DME_AST (CG11864); DME_CG11864 (Q9VJN9); DRE_AST (  =  ZHE1) (Q75NR9); DRE MEP α 1 (Q5RHM1); DRE MEP α 2 
(Q5RHM2); DRE MEP β  (Q08CC4); HEC AST2 (Q2MCX8); HEC AST3 (Q2MCX7); HSA BMP1 (P13497); HSA MEP α  (Q16819); HSA 
MEP β  (Q16820); HSA OVAST (Q6HA08); HSA TLL1 (O43897); HSA TLL2 (Q9Y6L7); HVU HMP1 (Q25174); HVU HMP2 (Q9XZG0); 
LBL MYOI (Q8IU47); LBL MYOIII (Q8IU44); LIN AST (A0FKN6); LPO LAST (B4F319); LPO LAST_MAM (B4F320); NVE MAM 
(A7SJ13); NVE TLD (Q27W05); OLA HCE1 (P31580); OVO ONCHAST (Q2YFS7); PCA PMP1 (O62558); LVA AST (Q20AS7); SPU_
SPAN (P98068); TPA MYOI (Q8IU46); TPA MYOII (Q8IU45); TSP MP (Q8T5Z5); and XLA UVS2 (P42664).    

have been discovered and termed LC domains. Such regions 
have been observed in  C. elegans  astacins and sea urchin 
astacins SPAN and BP10 (Lepage et al. , 1992 ; Reynolds et 

al. , 1992 ). Moreover, mouse and human ovastacin contain 
a distinct C-terminal domain of approximately 150 residues 
with little similarity to other reported proteins (Figure1A); 
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this domain might be heavily  O -glycosylated (Quesada et al. , 
2004 ). Several other domains can be inferred from the more 
than 1000 astacin entries in the MEROPS database but they 
are not dealt with here as they have not been characterized at 
the protein level. Examples are the EB module found in some 
 C. elegans  proteins and the TT domain of bacterial astacins, 
which has been named after the viral ORF2 of the TT virus. 
The interested reader is referred to http://merops.sanger.ac.uk 
(Rawlings et al. , 2010 ). 

 Alignment of representative pro- and catalytic domains of 
astacin peptidases reveals characteristic structural features 
which are associated with conserved functions (Figure 1B). 
There is the typical  ‘ aspartate-switch ’  region in the pro-peptide 
(see chapter  ‘ Zymogen structure and activation mechanism ’ ), 
the zinc-binding consensus sequence, the  ‘ Met-turn ’  (both dis-
cussed in the following section), and the unique S 1  ′  sub-site, 
responsible for cleavage specifi city (see chapter  ‘ Active-site 
cleft, substrate specifi city, and zinc-binding site ’ ). A phylo-
genetic analysis based merely on the catalytic domains, and 
thus omitting pro-peptide regions and C-terminal domains, 
shows the interrelationships of astacin proteases (Figure 1C). 
There are several clusters of astacins. Some, like the tolloids, 
are present throughout the animal kingdom. Others, such as 
meprins, which have only been observed in vertebrates so far, 
are confi ned to distinct taxonomic groups. By contrast, hatch-
ing enzymes have diverged into many paralog lineages, espe-
cially in amphibians and fi sh. Other specialized subgroups of 
astacins seem to exist in nematodes, cnidarians, insects, and 
molluscs.  

  Overall structure of mature astacin catalytic 

domains 

 The fi rst structure solved of a family member was that of 
crayfi sh astacin (Bode et al. , 1992 ; Gomis -R ü th et al., 1993 ; 
St  ö cker et al., 1993 ). It was the fi rst metalloendopeptidase 
prototype to be structurally analyzed after thermolysin from 
 Bacillus thermoproteolyticus  (Matthews et al. , 1972 ) and two 
closely related thermolysin-family members (Pauptit et al. , 
1988 ; Thayer et al. , 1991 ). In contrast to other metallopepti-
dase (MP) groups such as matrix metalloproteinases (Tallant 
et al. , 2010b ), funnelin and cowrin metallocarboxypeptidases 
(Gomis -R ü th, 2008 ), the aforementioned thermolysins, and 
adamalysins/ADAMs (Takeda et al. , 2012 ), few structures 
of astacins have been reported. To date, only human BMP1, 
human TLL1, and hatching enzyme 1 from the zebrafi sh 
 Danio rerio  (ZHE1) have been described in addition to the 
crayfi sh enzyme (Mac Sweeney et al. , 2008 ; Okada et al. , 
2010 ). Furthermore, the structure of the astacin zymogen has 
also been published recently (Guevara et al. , 2010 ). Overall, 
astacin catalytic domains (CDs) show a compact ellipsoidal 
shape, reminiscent of a kidney or a Pac-Man, with maximal 
dimensions of approximately 55  ×  45  ×  35  Å  (Figure  2  A). A 
deep and narrow active-site cleft divides the CDs into two 
sub-domains of approximately 100 residues when viewed 
in standard orientation (Gomis -R ü th et al., 2012 ), an upper 
N-terminal (NTS) and a lower C-terminal sub-domain (CTS; 

Figure 2A – C). Superposition of BMP1, ZHE1, and TLL1 
onto astacin reveals very similar chain traces, and this results 
in low overall  rmsd  values between these structures and 
astacin: 1.3  Å  for BMP1 (for 174 – 180 equivalent C α -atoms 
deviating   <  3  Å ), 1.1  Å  for TLL1 (175 equivalent C α -atoms), 
and 1.0  Å  for ZHE1 (178 equivalent C α -atoms; Figure 2C). 
Accordingly, the main structural features, as well as residue 
numbering, will hereafter refer to astacin (see Bode et al. , 
1992 ; Gomis -R ü th et al., 1993 ) unless otherwise stated. 

 The NTS consists of a strongly twisted fi ve-stranded 
 β -sheet ( β 1 –  β 5; connectivity -1  ×  ,  + 2  ×  ,  + 2, -1), whose strands 
parallel the active-site cleft except for its lowermost strand 
( β 4) which creates the  ‘ upper-rim ’  of the active-site cleft (see 
also the section  ‘ Active-site cleft, substrate specifi city, and 
zinc-binding site ’ ) and runs antiparallel (Figure 2B). The 
sheet is fl anked on its top convex side by a long characteris-
tic  l oop, which connects strands  β  2  and  β  3  (L β 2 β 3), and by 
two helices on its bottom concave side, the  ‘ backing helix ’  
( α A) and the  ‘ active-site helix ’  ( α B), which run nearly par-
allel to the strands of the sheet. Helix  α B includes the fi rst 
three residues of the long zinc-binding consensus sequence 
H 92 EXXHXXGXXH 102  (amino-acid one-letter code; X stands 
for any residue), which is characteristic of astacins but also 
metzincins in general (Bode et al. , 1993 ; St  ö cker et al., 
1993, 1995 ; Gomis -R ü th, 2003, 2009 ). G 99  within the con-
sensus sequence is the endpoint of both helix  α 2 and NTS. 
This glycine allows for a sharp turn in the trajectory of the 
polypeptide in order to enter the CTS, and the values of its 
main-chain angles in the different structures ( Φ   =  122 °  – 140 ° ; 
 Ψ   =  10 °  – 23 ° ) indicate that any other amino acid would be in a 
high-energy conformation (Davis et al. , 2007 ). The CTS con-
tains the third zinc-binding residue H 102 , which is followed 
by the  ‘ family-specifi c ’  residue of astacins (E 103 ) (St  ö cker 
et al., 1993 ) (see also section  ‘ Active-site cleft, substrate spec-
ifi city, and zinc-binding site ’ ). The rest of the CTS is char-
acterized by few regular secondary structure elements, and 
only three short 3 10 -helices ( η 1 –  η 3) and two short strands ( β 6 
and  β 7) are found in addition to the major  ‘ C-terminal helix ’  
( α C; Figure 2B). Special mention should be given to a tight 
1,4-turn situated below the catalytic zinc-site, the Met-turn, 
which is characterized by a strictly conserved methionine 
(M 147 ), both in sequence and side-chain conformation, within 
astacins and also all other metzincins structurally analyzed to 
date (Gomis -R ü th, 2009 ; Goulas et al. , 2010 ; Waltersperger 
et al. , 2010 ). It has been proposed that the Met-turn acts as a 
plug that inserts laterally into a core structure created by the 
protein segment engaged in zinc binding, thus contributing to 
the structural integrity that is indispensable for function, but 
there is still debate on its signifi cance in metzincins (Pieper 
et al. , 1997 ; Boldt et al. , 2001 ; Hege and Baumann , 2001 ; 
Butler et al. , 2004 ; Walasek and Honek , 2005 ;  P é rez et al., 
2007 ; Oberholzer et al. , 2009 ; Tallant et al. , 2010a ). Finally, a 
tyrosine two positions downstream of the methionine (Y 149 ) is 
also engaged in zinc binding and catalysis (see also the chap-
ter  ‘ Active-site cleft, substrate specifi city, and zinc-binding 
site ’ ).  
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 Figure 2    Overall structure of astacin catalytic domains. 
 (A) Mature astacin catalytic domain displayed with its Connolly surface in standard orientation according to Gomis -R ü th et al. (2012)  (left) 
and after a vertical rotation of 90 °  (right). The NTS is shown in green, the CTS in salmon, and the zinc ion in magenta. (B) Richardson plot in 
stereo of astacin in standard orientation depicting its regular secondary structure elements as green arrows ( β -strands  β 1 –  β 7) and orange ribbons 
( α -helices  α A –  α C and 3 10 -helices  η 1 –  η 3). The two disulfi de bonds are shown as yellow sticks and labeled, as are the catalytic zinc in magenta 
and its protein ligands, the termini, the Met-turn methionine, and the family-specifi c glutamate (E 103 ). (C) Superposition in stereo of the C α -traces 
of astacin (red; pink disulfi de bonds), BMP1 (cyan; dark blue disulfi de bonds), TLL1 (green; dark green disulfi de bonds), and ZHE1 (white; gray 
disulfi de bonds). The four possible disulfi de site locations are indicated by ➀  –  ➃. The 170-loop is marked with an orange arrow.    
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  Disulfi de bonds 

 The CD of astacins is cross-linked by two or three disulfi de 
bonds. Roughly common to all structures are the two found 
between C 42  and C 198  and between C 64  and C 84  in the crayfi sh 
prototype (Figure 1B and 2C; ➁ and ➂). The former links the 
C-terminal segment of the CD to the NTS at the loop con-
necting helix  α A with strand  β 2; the latter links L β 3 β 4 and 
the beginning of  β 4 to L β 5 α B and thus contributes to shaping 
the active-site cleft at its primed site and to substrate bind-
ing (see also chapter ‘Active-site cleft, substrate specifi city, 
and zinc-binding site’). Sequence alignment with structurally 
non-characterized astacin family members (see Figure 1B 
and St ö cker et al., 1993) indicates that these two bonds 
are likely to be conserved among all astacins. In addition, 
selected members may show additional SS-bridges. ZHE1, as 
a member of the hatching subgroup, shows a unique cross-
link between two cysteine residues in the N-terminal seg-
ment of the CD [C 5  – C 10  according to ZHE1 numbering; see 
Protein Data Bank (PDB) access code 3LQB; Okada et al. , 
2010 ; Figure 2C; ➀]. This may be required to fi x the very 
N-terminus in a competent position (see next section). BMP1 
and TLL1, in turn, show a slight displacement of the disulfi de 
bond at position ➂ in Figure 2C and a further unique bond 
between two consecutive residues of the upper-rim strand  β 4 
enabled by a  cis -peptide bond between them (C 64  – C 65  accord-
ing to BMP1 numbering; PDB 3EDH; Figure 2C; ➃). This 
segment, termed  ‘ cysteine-rich loop, ’  is unique for the tol-
loid subfamily (Figure 1C) and has implications for substrate 
binding (see section  ‘ Active-site cleft, substrate specifi city, 
and zinc-binding site ’ ).  

  A buried N-terminus in mature astacins 

 In general, proteins that undergo proteolytic maturation and 
possess additional fl anking domains have their chain termini 

located on the molecular surface. While this is the case for 
the C-terminus of the CDs of mature astacins, the N-terminus 
is buried within the molecule for its fi rst three or four resi-
dues (Figure 2B and C). In astacin, the fi rst three residues 
A 1 -A 2 -I 3  are inserted like a plug in an internal cavity framed 
by segments D 131 -Q 142 , F 100 -M 107 , and T 185 -Q 189 . Residues 
from these segments, together with eight solvent molecules 
and the aforementioned N-terminal residues, are involved in 
an intricate, completely buried hydrogen-bonding network 
that is key for structural integrity of the enzyme (see Figure 3 
of Bode et al. , 1992 ) and incompatible with N-terminally 
elongated polypeptide chains. Most importantly, the  α -amino 
group of A 1  establishes a solvent-mediated salt bridge with 
E 103 , which is the  ‘ family-specifi c ’  residue found immediately 
after the third zinc-binding residue (H 102 ; Figure  3  ). The sol-
vent molecule further hydrogen-bonds the side chain of Q 189 . 
These interactions contribute to structure and stability in 
astacin CDs. Mutants of pro-astacin, in which E 103  had been 
replaced with glutamine and alanine, displayed unaltered cat-
alytic effi ciency but much lower thermal stability (Yiallouros 
et al. , 2002 ). This structural rather than functional importance 
is supported by a superposable position and conformation of 
E 103  in the zymogen and the mature structures (see also sec-
tion  ‘ Zymogen structure and activation mechanism ’ ). 

 By contrast, in both BMP1 and TLL1 structures, the fi rst 
residue is an N-acetylated alanine. This means that the bridg-
ing solvent molecule is replaced by the carbonyl oxygen of 
the acetyl group, which is within hydrogen-binding distance 
of both Q 189  and E 103  (same numbering as in astacin; Mac 
Sweeney et al. , 2008 ). In ZHE1, in turn, the structure of the 
mature enzyme starts at the position equivalent to A 2  of astacin, 
likewise with an alanine, so that its  α -amino group is too far 
away from the E 103 -equivalent to establish an interaction, and 
the empty space is occupied by six solvent molecules (Okada 
et al. , 2010 ). However, the latter glutamate is maintained in a 
very similar side-chain conformation to that in astacin, TLL1, 
and BMP1, although in this case, an interaction takes places 

 Figure 3    The mature N-terminus. 
 Stereographic picture centered on the buried N-terminus of the structure of astacin as a stick model colored according to atom types. For the 
N-terminal tail, carbons are shown in pink, otherwise in yellow. The zinc ion is depicted as a magenta sphere and labeled, and the eight solvent 
molecules of the internal cavity are shown as blue spheres. Selected residues are labeled for reference.    
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with an arginine at position 189, which replaces Q 189  in the lat-
ter three proteins. This scenario also explains why ZHE1 pos-
sesses a unique disulfi de bond that bridges the cysteine residues 
at positions 5 and 10 (see chapter  ‘ Disulfi de bonds ’  above), 
as this maintains the plugging function of the N-terminal 
segment despite the lack of the pivotal salt bridge with the 
family-specifi c residue. Inspection of the mature N-termini 
of representative astacin family members (Figure 1B and 
Figure 7 in St  ö cker et al., 1993 ) shows that most structures 
should be compatible with the termini of either astacin/BMP1/
TLL1 or ZHE1. N-terminal residues are almost exclusively 
alanine or asparagine, which is also compatible with the afore-
mentioned structural features of a direct or water-mediated 
interaction with the family-specifi c residue. Overall, the pres-
ence of a buried N-terminus is unique to astacins within MPs 
and does not allow for variation in the length of the N-terminal 
segment which is essential for the maintenance of this spe-
cifi c structural feature. The latter fi nding is reminiscent of the 
internal salt bridge observed between the mature N-terminus 
of trypsin-like serine proteinases and an aspartate immedi-
ately adjacent to the catalytic serine residue (Fehlhammer 
et al. , 1977 ; Huber and Bode , 1986 ).  

  Active-site cleft, substrate specifi city, and zinc-

binding site 

 In MPs, substrate hydrolysis proceeds via a high-energy reac-
tion intermediate centered on a tetrahedral carbon bound to two 
 gem -diolate oxygens, the scissile-bond nitrogen, and the pre-
ceding C α  atom; the tetrahedral carbon itself is derived from 
the original scissile-bond carbonyl group by the nucleophilic 
attack of a solvent molecule polarized by a general base/acid 
glutamate (Matthews , 1988 ; Bay  é s et al., 2007 ; Gomis -R ü th, 
2008 ). A complex of astacin with a reaction-intermediate ana-
logue of peptide Phe-Pro-Lys-Phe-✄-Ala-Pro, in which the 
tetrahedral carbon and the downstream nitrogen fl anking the 
scissile bond are replaced by a phosphinic group (Figure  4  ), 
allows us to delimit the deep and extended active-site cleft, 

which horizontally traverses the catalytic domains of astacins. 
It explains why only elongated substrates  –  ideally longer that 
seven residues  –  are effi ciently cleaved (St  ö cker et al., 1990 ). 
In addition, comparison of this and other complexed forms of 
astacins with unbound enzymes further shows that astacins may 
undergo a slight overall hinge motion upon substrate, inhibitor, 
or ligand binding, which brings the CTS and the NTS closer by 
approximately 1  Å  (Grams et al. , 1996 ), in a fashion similar to 
that described for thermolysins (Holland et al. , 1992 ). 

 In astacin and ZHE11, the upper-rim strand  β 4 frames 
the top of the cleft on its primed side, together with L β 5 α B 
and the disulfi de bond at site ➂ in Figure 2C. By contrast, in 
BMP1 and TLL1, this disulfi de bond is slightly displaced and 
a further, unique SS-bridge is found between two consecutive 
cysteines within a cysteine-rich loop that replaces the upper-
rim strand of astacin and ZHE1 (see section  ‘ Disulfi de bonds ’  
above). This gives rise to an eight-membered, largely hydro-
phobic ring above the S 1  pocket (Figure 2C), which prevents 
substrate binding to the cleft and causes the upper rim to no 
longer be a  β -strand. This cysteine-rich loop is disordered in 
the unbound structures, and it has been proposed to act as a 
mobile fl ap that clamps substrates into a competent position 
for a Michaelis complex (Mac Sweeney et al. , 2008 ). On its 
non-primed side, the cleft is delimited in astacins by the end of 
strand  β 4 and the subsequent L β 4 β 5, as well as the N-terminal 
segment at E 7 -Y 8 . At its bottom, the cleft is constrained on its 
non-primed side by I 4 -G 5  and the loop after  α B, and, on its 
primed side, by the Met-turn and the subsequent segment up to 
W 158 , and, importantly, the  ‘ 170 loop ’  mainly at T 174 -D 178 . 

 A substrate binds to astacins in an extended conformation 
and is anchored to the cleft in an antiparallel manner by the 
upper-rim strand  β 4 through inter-main-chain interactions, on 
both the primed and non-primed sides (Figure 4). The reaction-
intermediate complex further reveals that cleft sub-site S 4  is 
framed in astacin by I 71 , Y 8 , I 3 , V 68 , and Y 67 . In contrast, sub-
strate residues in P 3  and P 1  protrude from the cleft toward the 
bulk solvent and lie up against the side chains of the upper-rim-
strand residues W 65  and Y 67 . Sub-site S 2  is shaped by H 96 , H 102 , 
V 68 , and Y 101 . On the opposite side of the cleft, S 2  ′  is created by 

 Figure 4    Substrate binding and enzymatic reaction. 
 Detail of the active-site cleft of astacin in stereo (pink ribbons with stick models of selected side chains colored according to atom types; 
carbons in gray) with the bound reaction-intermediate analog BOC-Pro-Lys-Phe Ψ (PO 2 )-CH 2 -C(CH 3 )CO-Pro-OCH 3  (PDB 1QJI; Grams et al. , 
1996 ) likewise colored according to atom types (carbons in green, phosphorous in orange).    
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Y 149 , D 175 -P 176 , and S 153 -F 154 ; and additional downstream sub-
sites are likely to be conditioned by D 175 , Y 177 , and W 158 . As is 
usual for MPs, the most relevant sub-site for specifi city is S 1  ′ , 
which is delimited in astacin by H 92  and the fi rst helical turn of 
helix  α B, in particular through the side chain of T 89 . The most 
important structural element for primed sub-sites in astacins 
is the 170-loop, which shows disparate chain traces in ZHE1, 
TLL1, and BMP1, on the one hand, and astacin, on the other 
(see Figures 2C, 4 and Figure 7 in Okada et al. , 2010 ). This 
leads to a conserved arginine (R 182  in ZHE1 and R 176  in BMP1/
TLL1) shaping the bottom of a deep S 1  ′  pocket in ZHE1, TLL1, 
and BMP1, while the rather shallow pocket in astacin is shaped 
by P 176 . This explains why most family members, including 
ZHE1, BMP1, TLL1, meprins  α  and  β , and horseshoe-crab 
LAST-MAM, prefer aspartate residues in P 1  ′  while astacin pre-
fers small aliphatic residues (St  ö cker et al., 1990 ; Okada et al. , 
2010 ; Becker -Pauly et al., 2011 ). Accordingly, astacins, with 
the notable exception of their founding prototype and a minor-
ity of other family members, are the only eukaryote proteases 
to cleave N-terminal to an aspartate in proteins (Becker -Pauly 
et al., 2011 ). This preference is seen even more strongly in 
enzymes like meprin  β  and tolloids (e.g., BMP1), in which the 
S 2  ′  sub-site (see above) also contributes to the binding of acidic 
substrate side chains with basic residues. 

 The catalytic zinc ion resides at the bottom of the active-
site cleft (Figure 2A and B). The active-site helix  α B provides 
two histidine ligands of the metal (H 92  and H 96 ), separated 
by a single helical turn that allows a concerted approach to 
the metal together with the third zinc-binding histidine, H 102 . 
In unbound astacin, the N ε 2 atoms of these residues coordi-
nate the metal together with a catalytic solvent molecule, also 
anchored to the general base/acid E 93 , and Y 149  O η  (Gomis -
R ü th et al., 1993 ). The overall metal coordination is trigonal-
bipyramidal, with H 96  N ε 2 and Y 149  O η  at apical, somewhat 
larger distances (2.2 – 2.5  Å ), and the remaining three ligands 
on a plane with the metal,  ∼ 2  Å  apart (Figure 12 in Gomis -
R ü th et al., 1993 ). In ligand- or inhibitor-bound astacins, the 
catalytic solvent is replaced by one or two oxygens, and the 
Y 149  ligand is pulled away from its metal-binding position. 
In the complex with the reaction-intermediate analogue, the 
O η  atom stabilizes one of the  gem -diolate oxygen atoms 
of the tetrahedral carbon (Figure 4). This motion has been 
termed a  ‘ tyrosine switch ’  and is also found in serralysins and 
 –  most likely  –  pappalysin family members within the metz-
incins (Gomis -R ü th, 2003, 2009 ; Baumann , 2004 ; Tallant 
et al. , 2006 ). Finally, studies on apo-astacin and metal-re-
placed enzyme revealed that the metal site is preformed and 
that it can accommodate the ligand requirements of distinct 
divalent metals through minor rearrangement and recruitment 
of a variable number of solvent molecules. Overall, this gives 
rise to bipyramidal-trigonal, tetrahedral, or octahedral coordi-
nation spheres (Gomis -R ü th et al., 1994 ).  

  Zymogen structure and activation mechanism 

 Virtually all eukaryotic astacins are synthesized as inactive 
precursors, which prevents the occurrence of temporally and 

spatially inappropriate proteolytic activity. As an example, 
pro-astacin is only transiently found within the ducts between 
the hepatopancreas  –  where it is synthesized  –  and the stom-
ach, where it is activated in order to participate in collagenoly-
sis and gelatinolysis during digestion (Yiallouros et al. , 2002 ). 
Comparison of the pro-segments of distinct family members 
(see Figure 1B and Figure 1 in Guevara et al. , 2010 ) revealed 
that these vary greatly in length (from 34 to 393 residues) and 
that only a short consensus sequence F 18P XGD 21P  (residues of 
the astacin pro-segment carry the suffi x  ‘ P ’ ) is revealed by 
sequence alignments. 

 The only structure of an astacin-family zymogen reported 
to date is that of the crayfi sh enzyme (Guevara et al. , 2010 ; 
PDB 3LQ0; Figure  5  A). With merely 34 residues, pro-asta-
cin possesses the shortest pro-segment structurally analyzed 
for an MP and, in contrast with other peptidases, it is not 
required for proper folding in the crayfi sh enzyme, which 
could be purifi ed from  Escherichia coli  inclusion bodies 
and correctly folded as a recombinant mature protease, 
devoid of the pro-peptide (Reyda et al. , 1999 ; Yiallouros 
et al. , 2000, 2002 ). Of course, this might be different in 
pro-astacins with longer pro-domains, which in some cases 
like  Drosophila  tolloid-like are much longer than the cata-
lytic protease domain itself. In pro-astacin, the pro-segment 
is elongated and structured by means of several intra-
molecular interactions, and it runs across the front surface 
of the mature enzyme moiety in the opposite orientation to 
that of a substrate (Figure 5A – C). This contributes to the 
prevention of self-cleavage, as found in cysteine-protease 
and matrix metalloproteinase zymogens (Khan and James , 
1998 ). The N-terminus of the pro-segment at S 1P  is anchored 
to the mature part through a hydrophilic interaction with the 
main chain of I 156 , within the segment connecting the Met-
turn and the C-terminal helix  α C. The polypeptide runs along 
the molecular surface toward the active-site cleft and adopts 
a helical conformation from E 6P  to Y 12P  (helix  α 1 in Figure 
5A). This segment nestles in the primed side of the cleft 
approximately until sub-site S 1  ′ , which is partially occupied 
by the side chain of L 11P , and this contributes, together with a 
fl exible segment within the CTS of the mature moiety of the 
zymogen (the  ‘ activation-domain ’ ; D 129 -G 138 ; see below), to 
a larger separation between the two sub-domains than in the 
unbound mature enzyme. At N 14P , the chain projects toward 
bulk solvent and enters a wide loop that ends at D 21P  (Figure 
5A). This loop comprises two successive 1,4-turns, which 
together with hydrophobic interactions of M 17P  with both 
K 23P  and W 65  give rise to a small globular nucleus, which 
places D 21P  in contact with the catalytic zinc ion (Figure 
5B and C). The loop structure is further stabilized by elec-
trostatic interactions of E 19P  with the zinc-binding residue 
H 102 , T 105 , and, most relevantly, the penultimate residue of 
the pro-segment (R 32P ; Figure 5C). D 21P  approaches the cata-
lytic metal from the top in a bidentate manner and its O δ 2 
atom substitutes for the zinc-bound solvent molecule in the 
unbound mature enzyme. Overall, the zinc ion shows a dis-
torted octahedral coordination sphere (Figure 5B), which is 
unusual for zinc (McCall et al. , 2000 ) and is reminiscent 
of the structure of the catalytically inert nickel-substituted 
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astacin (Gomis -R ü th et al., 1994 ). By contrast, the side 
chain of tyrosine-switch residue Y 149  is closer to the com-
petent conformation of the unbound mature structure than 
to the structure bound to the reaction-intermediate analog, 
although somewhat further from the metal ion (see Figure 
5B and Figure 12 in Gomis -R ü th et al., 1993 ). The four resi-
dues after D 21P  run in extended conformation along the cleft 
between sub-sites S 2  and S 5  and bind the upper-rim strand 
(strand  β 6 in the pro-astacin structure; see Figure 5A and C). 
The polypeptide chain reaches the molecular surface after 
R 25P , whose side chain is anchored to the mature enzyme 
backbone, and thereafter, a fl exible segment leads to a short 
 β -hairpin structure made up by  β 1 (A 31P -V 33P ) and  β 2 (A 2 -L 4 ) 
(see Figure 5A and C). The main maturation cleavage point 
(G 34P -✄-A 1 ), which is buried within the molecular structure 

of the zymogen like the N-terminus of the mature form (see 
section  ‘ A buried N-terminus in mature astacins ’ ), is found 
at the tip of this hairpin. 

 Activation of pro-astacin entails removal of the inhibit-
ing pro-segment through successive cleavage events, which 
eventually replace the zinc-binding aspartate with the cata-
lytic solvent molecule following an aspartate-switch mecha-
nism and render the mature N-terminus at A 1  (Yiallouros 
et al. , 2002 ; Guevara et al. , 2010 ). In the fi rst activation step, 
successive exogenous cleavages render an intermediate spe-
cies starting at V 33  (according to Yiallouros et al. , 2002 ), 
which disrupts the aforementioned salt bridge (R 32P -E 19P ) (see 
above), and triggers removal of most of the pro-segment. 
This causes major rearrangement of the subjacent  ‘ activation 
domain, ’  which adopts the rigid and competent conformation 

 Figure 5    Structural determinants of zymogenicity. 
 (A) Richardson-type plot of pro-astacin in standard orientation (Gomis -R ü th et al., 2012 ) depicting the pro-segment in orange and the mature 
enzyme moiety in cyan. Repetitive secondary structure elements are shown as ribbons (helices  α 1 –  α 4) and arrows (strands  β 1 –  β 9), the cata-
lytic zinc ion as a magenta sphere, and the two disulfi de bonds as yellow sticks. The latter are labeled, as are the termini of the molecule. The 
fi nal activation cleavage site (G 34P -A 1M ; mature enzyme residues within the zymogen structure carry suffi x  ‘ M, ’  pro-segment residues carry 
suffi x  ‘ P ’ ) is shown by the scissors. For clarity, only one conformation has been displayed for segment D 129M -P 135M . (B) Close-up view of (A) 
depicting the catalytic zinc ion with its six ligands, which are labeled. The respective bonding distances (in  Å ) are shown below each residue 
label. The Met-turn methionine is also shown and labeled. (C) Close-up view of (A) in stereo to illustrate the major interactions between the 
pro-segment and the mature enzyme moiety. Participating residues are labeled (mature enzyme residues in blue, pro-segment residues in 
brown), except those already labeled in (B). Relevant solvent molecules are displayed as green spheres (reproduced from Guevara et al. , 2010  
 ©  The American Society for Biochemistry and Molecular Biology).    
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 Figure 6    Structural transitions upon activation. 
 (A) Superimposition in stereo of the C α -traces of pro-astacin (pro-segment in orange, catalytic moiety in cyan) and mature astacin (purple) 
in standard orientation (Gomis -R ü th et al., 2012 ). The catalytic zinc ion of pro-astacin is shown as a magenta sphere for reference. Segments 
involved in activation (magenta arrow) are indicated. Only one conformation is shown for segment D 129M -P 135M  (mature enzyme residues 
within the zymogen structure carry suffi x  ‘ M ’ ; pro-segment residues carry suffi x  ‘ P ’ ). (B) Close-up view of (A) in stereo showing only the 
fi rst residues of the mature moiety and the activation domain of both the pro-enzyme (cyan sticks; blue labels) and the mature enzyme (purple 
sticks and labels), as well as the four last pro-enzyme residues (orange sticks and labels). (C) Schematic representation illustrating the transition 
between the zymogen, with a fl exible activation domain in the lower sub-domain of the molecule, and the rigid mature enzyme (reproduced 
from Guevara et al. , 2010   ©  The American Society for Biochemistry and Molecular Biology).    
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found in the mature enzyme (Figure  6  A – C). This is analogous 
to serine proteinases, in which the activation domain likewise 
becomes rigid and functional upon activation (Bode and 
Huber , 1978 ; Khan and James , 1998 ). In addition, the initial 
multiple exogenous cleavages are reminiscent of matrix met-
alloproteinase activation during which trimming cuts by other 
proteinases in a so-called  ‘ bait region ’  are observed (Nagase , 
1997 ). This contrasts with funnelins and trypsin-like serine 
proteinases, in which the fi rst cut during activation generates 
the mature N-terminus (Avil  é s et al., 1993 ; Khan and James , 
1998 ). Subsequently, the pre-mature astacin variants, which 
are catalytically active (Yiallouros et al. , 2002 ), carry out fur-
ther autolytic cleavages, eventually giving rise to the com-
petent N-terminus at A 1  (see chapter  ‘ A buried N-terminus 
in mature astacins ’ ). In matrix metalloproteinases, similar 
trimming yields the competent N-terminus needed to form a 
salt bridge with a conserved aspartate (Reinemer et al. , 1994 ; 
Nagase , 1997 ). Finally, comparison of zymogenic and mature 
astacin further reveals that upon cleavage at G 34P -A 1 , the main 
chain must undergo a 180 °  rotation around the  Ψ  main-chain 
angle of the new N-terminal residue to allow segment A 1 -D 6  
to insert into the molecular moiety and fulfi ll the plugging 
function described in the chapter  ‘ A buried N-terminus in 
mature astacins ’  above.  

  Protein inhibitors 

 Astacins are not inhibited by tissue inhibitors of metal-
loproteinases (TIMPs). A natural inhibitor of astacin is the 
general protein scavenger  α  2 -macroglobulin (St  ö cker et al., 
1991a ; Meier et al. , 1994 ; Zhang et al. , 2006 ; Marrero et al. , 
2012 ). However,  α  2 -macroglobulin will only entrap endopep-
tidases of limited size. Larger oligomeric astacins, such as 
the meprins, are not inhibited by this regulator of vascular 
and interstitial proteolysis. Interestingly, there is a fi sh astacin 
from carp head kidney (a hematopoietic organ) which circu-
lates in the blood stream in complex with a specifi c protein 
inhibitor. Originally, this enzyme was termed  ‘ nephrosin ’  
(Hung et al. , 1997 ) and its inhibitor  ‘ nephrosin inhibitor ’  (Tsai 
et al. , 2004 ). The nephrosin inhibitor is a homolog of fetuin, 
a large plasma protein with many functions. Fish fetuin, like 
its mammalian counterpart fetuin A, contains cystatin-like 
domains and is related to cystatin C-like inhibitors of cysteine 
cathepsins. More recently, it has been demonstrated that the 
plasma proteins fetuin A and cystatin C act as physiological 
inhibitors of human astacin proteases such as meprins and 
also block crayfi sh astacin (Hedrich et al. , 2010 ).  

  Conclusions 

 Since the fi rst report on astacins back in 1991 (Dumermuth 
et al. , 1991 ), the family has expanded to several hundreds of 
animal and bacterial  –  though not plant or archeal  –  sequences 
(Sterchi et al. , 2008 ). Six are found in humans and up to 40 
in  C. elegans  ( M ö hrlen et al., 2003 ), and putative uncharac-
terized proteins from  Fusarium oxysporum  (UniProt entries 

F9FJL4, F9FJL6, and F9FF60),  Phaeosphaeria nodorum  
(Q0U0C2 and Q0UTK3),  Pyrenophora teres  (E3RUK5), 
 Pyrenophora tritici-repentis  (B2WI05), and  Unicarpus reesii  
(C4JMI3) may represent the fi rst fungal members. Through 
their degradatory potential, astacins are involved in embry-
onic development, tissue differentiation, and extracellular 
matrix assembly, and they are thus therapeutic targets (Mac 
Sweeney et al. , 2008 ; Sterchi et al. , 2008 ; Okada et al. , 2010 ). 
Physiologically, they are regulated by zymogenicity and co-
localizing protein inhibitors; however, to be able to act upon 
them from a therapeutic perspective, it will be necessary to 
design highly specifi c small-molecule inhibitors that target 
the catalytic moieties. This is where detailed knowledge of 
their three-dimensional structure, tentatively presented in this 
review, may prove helpful.   
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