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Intensity-modulated proton therapy

1.1 I -

Cancer is still a leading cause of death worldwide, with more than 3.7 million new
patients and 1.9 million deaths each year in Europe (World Health Organization). A
widely used treatment modality is radiation therapy. Radiation therapy, or radio-
therapy, is a form of cancer treatment in which ionizing radiation is used to eradicate
the tumor cells by damaging their DNA. Prior to the radiation treatment of a patient,
a personalized treatment plan is constructed. A treatment plan consists of the indi-
vidualized treatment unit settings and a simulated dose distribution resulting from
these settings, projected on a 3-dimensional CT scan (planning CT scan). Due to un-
avoidable dose received by healthy tissues surrounding the tumor (organs at risk),
severe side effects may be induced, which can have a long-lasting negative impact on
the patients’ quality of life. The goal during the construction of the treatment plan is
to ind the optimal balance between delivering an adequate dose to the target volume
(including the tumor) and sparing of the organs at risk (OARs).

Intensity-modulated proton therapy (IMPT) is a type of radiotherapy in which the
patient is irradiated using high-energy protons. Groups of protons, so-called pencil-
beams or spots, are aimed at the tumor from different directions. Protons are pos-
itively charged particles, depositing most of their dose at the end of their range in
a so-called Bragg peak. This is illustrated in Figure 1.1. The main advantage of this
localized dose deposition is a better sparing of the healthy tissue surrounding the tu-
mor. Better sparing can result in fewer side effects, thereby limiting the impact on
the patients’ quality of life.
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Figure 1.1: Bragg peak of a 200 MeV proton beam: integral dose as a function of depth in water.
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1.2 1.2 U IMPT

Although IMPT can deposit the dose very locally due to its characteristic Bragg peak,
this same characteristic makes it very sensitive to variations in the daily anatomy
[1–3], as illustrated in Figure 1.2. The depth of each Bragg peak within the body is
dependent on the energy of the pencil-beam and to a large part on the electron dens-
ity of the tissues the pencil-beam encounters along its path. Due to anatomical vari-
ations the densities along the pencil-beam paths can change, altering the depths of
the individual Bragg peaks and changing the overall shape of the dose distribution.
This possibly results in local over- and under-dosage. When considering the ana-
tomical variations, one can distinguish between inter-fraction variationwhich occurs
between the treatment fractions, and intra-fraction variation which occurs during a
single treatment fraction. An example of inter-fraction variation is changes in bowel
illing. Intra-fractionally the anatomy can change for example by breathing. In addi-
tion, gradual changes, e.g. causedby tumor regressionorweight loss,may also impact
the location of the Bragg peaks.
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Figure 1.2: Illustration showing the effect of different anatomical variations on IMPT. Each
pencil-beam is individually affected by the variations, leading to an overall change in shape and
intensity of the dose distribution. Courtesy of M.S. Hoogeman.

In this thesis we focused on inter-fraction variations in the pelvis. The inter-fraction
variations that have been investigated include variations in shape and location of fe-
male andmale pelvic organs and the resulting density changes along the pencil-beam
paths. An example of the impact these changes have on a dose distribution is shown
in Figure 1.3 for a prostate cancer case.
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Intended Degraded

Figure 1.3: Illustration showing the dosimetric effects of anatomical variations on IMPT. Targets
are depicted by solid lines, OARs by dotted lines.

1.3 A

To mitigate the effect of the anatomical variations on the dose distribution, several
motion management strategies can be considered. The simplest strategy aims to ac-
count for the anatomical variations during the initial treatment planning, by enlar-
ging the tumor region with a margin and generating the treatment plan using this
enlarged target volume (so called planning target volume, PTV). In IMPT, however,
the dose distribution may not be conserved after an anatomical change, making this
approach inadequate [4]. Amore advanced strategy is tominimize the impact of ana-
tomical variations by explicitly including those as error scenarios in the optimization
of the treatment unit settings [5, 6]. This approach of robust treatment planning [7–
9] has proven to be more effective than the PTV margin approach. Still, the more the
treatment plan is made robust, the less healthy tissue can be spared [10].

A third approach to account for inter-fraction variations is to adapt the treatmentplan
online to it the daily anatomy, i.e. adaptive planning. It is expected that this approach
results in a smaller treated volume and improved sparing of healthy tissues.

A possible work low for adaptive proton therapy is described in the project descrip-
tion of ADAPTNOW – High-Precision Cancer Treatment by Online-Adaptive Proton
Therapy. In this work low, one would prior to each treatment fraction:

1. use an in-room CT scanner to generate an image of the daily anatomy, followed
by automated delineation of the tumor and OARs,

2. automaticallymove the patient to the treatment unit, in which time in the back-
ground the computations for treatment plan adaptation are performed, and
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3. treat the patient while using prompt gamma pro iles to monitor the delivered
dose for comparison against the planned dose as part of treatment delivery
quality assurance (QA).

The describedwork low is illustrated in Figure 1.4. Ideally the automateddelineation
and the automated plan adaptation should be completedwithin 30 seconds, in which
time frame the patient can bemoved from the in-roomCT scanner to the gantry. Lim-
iting the delineation and adaptation to this time frame limits possible intra-fraction
variation, ensuring that the anatomy towhich the plan gets adaptedmatches the ana-
tomy at start of the dose delivery. Short adaptation times will furthermore ensure
that the fraction time is not prolonged, adding to patient comfort.

Robot

CT

P
T

Step 1 Step 3Step 2

Detection Intervention Safety

Time = 30 seconds

Figure 1.4: Illustration of the proposed online-adaptive workflow. A CT scan is made of the pa-
tient, after which the robotic manipulator moves the treatment couch from the CT to the treat-
ment position. During the movement, the treatment plan is adapted to the daily anatomy. Cour-
tesy of M.S. Hoogeman.

In this thesiswe focused on themethods required for the second step of thework low,
i.e. the adaptation of the treatment plan (Chapters 2 to ??). We have developed and
investigated different adaptive planning strategies focusing on daily target coverage,
organ sparing and adaptation times.

Chapters 6 and 7 describe the work regarding the automated delineation method
(step 1) and treatment delivery QA using prompt gamma pro iles (step 3).
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1.4 T

The aim of this thesis was to investigate feasibility of online-adaptive IMPT. To this
end, we used high-risk prostate cancer and locally advanced cervical cancer asmodel
system. These tumor siteswere selected as they both show challenging inter-fraction
variations. For high-risk prostate cancer, daily tissue density variations occur due to
changes in bowel, bladder and rectum illing. The changes in rectum illing also cause
variation in the position and orientation of the prostate. Another challenge lies in the
motion of the nodal target volume, which is independent from that of the prostate. In
locally advanced cervical cancer the target region can show large day-to-day variation
in shape due to changes in rectum, bladder and sigmoid illing. Proving that adapt-
ation is feasible for these challenging tumor sites will therefore imply feasibility for
other sites. To achieve this goal the following research questions were answered in
this thesis.

1.4.1 Can the dosimetric effects of density varia ons along the pencil-beam paths be
reversed to restore the prior treatment plan?

An IMPT treatment plan can be described by the lateral location, energy and intensity
of the individual pencil-beams. Density variations along the pencil-beam paths affect
the depth and shape of the Bragg peaks, resulting in a distorted dose distribution.
This suggests that the dose distribution can be restored to its initial state by restoring
the depth of the Bragg peaks. This can be done by adjusting their energy. In Chapter
2, we describe a simple dose restoration strategy based on this idea. The method
starts by adapting the pencil-beams’ energy of the prior plan to the correct water
equivalent path lengths. After this, a fast re-optimization of the spot intensities is
performed using a fast quadratic solver, which minimizes residual dose differences
between the prior plan and the restored plan. The developed method was tested on
80 repeat CT scans of 10 prostate cancer patients.

1.4.2 What is the benefit of using a prior plan as a warm-start for full plan adapta on
instead of applying dose restora on?

The simple dose restoration described in Chapter 2 restores a prior treatment plan by
accounting for density variations along the pencil-beampathswhile ignoring changes
in the shape and location of the organs and targets. The restoration method con-
sequently does not allow the restored treatment plan to yield a ‘better’ plan than the
original, or even to restore tumor dose in cases with high anatomical variations. In
Chapter 3 we investigated whether it would be possible to take the complete daily
anatomy into account by expanding the dose restoration method, and what the ad-
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ded value of this would be. Taking the simple restoration strategy as a starting point,
Chapter 3 describes an automated adaptation strategy which accounts for density
variations as well as changes in organ shapes and locations. After adapting the ener-
gies of the prior plan as in Chapter 2, this adaptation method continues to add new
spots to the optimization and performs a fast multi-criteria optimization using the
Reference Point Method (RPM). The result is a Pareto optimal treatment plan for the
daily anatomy, with the same trade-offs as were made in the prior treatment plan.
The developed method was tested on 88 repeat CT scans of 11 prostate cancer pa-
tients. Results were amongst others compared to the restoration method of Chapter
2 to determine the added value of this full adaptation.

1.4.3 Can the addi on of a plan-library improve the automated adapta on method
for tumor sites showing large day-to-day varia ons?

Large day-to-day variations in shape and location of the target are seen in locally ad-
vanced cervical cancer. In photon beam radiotherapy, the use of a patient-speci ic
plan-library has been clinically introduced for this reason. Prior to each fraction, a
daily image is used to select the best itting treatment plan from the plan-library. For
IMPT however, it has been shown that this approach is not always suf icient [11]. In
Chapter 4, a patient-speci ic plan-librarywas therefore combinedwith the automated
adaptation method from Chapter 3, allowing for a prior plan to be selected from the
plan-library at each fraction. To investigate the added value of the plan-library in the
plan adaptation, the results were compared to applying the adaptation method with
a single prior plan for all fractions. The comparison was done using the repeat CT
scans of six cervical cancer patients.

1.4.4 What is the benefit of online-adap ve IMPT compared to robust treatment
planning?

In Chapters 2 –4 the feasibility of the simple dose restorationmethodand the full plan
adaptation method has been demonstrated. In Chapter 5 we investigated the gain
of these methods compared to a non-adaptive robust treatment planning approach.
To this end, we irst derived the robustness settings and safety margins required to
obtain adequate target coverage in the repeat CT scans of the prostate dataset. We
then adapted non-robust prior plans using the simple dose restoration method from
Chapter 2 and the full adaptation method from Chapter 3. For each fraction the ad-
apted treatment plans were compared to the recomputed robust treatment plans in
terms of target coverage and OAR sparing.
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1.4.5 What is the effect of varying the parameter se ngs in the online-adap ve
methods?

The simple dose restoration method and the full plan adaptation method both re-
quire a prior treatment plan to start the adaptation. The amount of motion mitiga-
tion that is included in the prior plan can affect the results of the adaptation. Full plan
adaptation furthermore requires several parameter settings, namely the sample size
describing how many spots are to be added in each iteration, the stopping criteria
describing how many iterations are to be performed and the optimization approach
to be used for the spot-intensity optimization. In the previous chapters choices re-
garding these settings have been made, but the full effect of these choices has not yet
been investigated. In Chapter ?? we therefore systematically varied the parameter
settings to evaluate the effect on the output of the two adaptive methods. The effect
of all variationswas evaluated in terms of dosimetric results and calculation times on
88 repeat CT scans of 11 prostate cancer patients.

1.4.6 Can a combina on of deep-learning and image registra on be applied for
contour propaga on for daily CT scans?

To run the full plan adaptation method contours of the daily CT scans are required.
The irst step of the proposed online-adaptive work low is thus to obtain contours
of the daily CT scan. In Chapter 6 we describe an automated contour propagation
approach which combines deformable image registration (DIR) with deep-learning.
The approach starts with automatically segmenting the bladder of a daily CT scan us-
ing a deep-learning network. In the second step, possible gas pockets in the rectum
and intestines are detected and inpainted ( illed) with a realistic content using a Gen-
erative Adversarial Network (GAN). Finally, using the corrected image and the ob-
tained bladder segmentation, DIR is applied to propagate the manual contours of the
planning CT scan onto the daily CT scan. The method was trained and evaluated on
CT scans of prostate cancer patients. Evaluation was done both geometrically and
dosimetrically.

1.4.7 Can prompt gamma ray emission profiles be used tomonitor dosimetric changes
with respect to the planned dose distribu on during IMPT?

The inal step of the proposed online-adaptive work low is to monitor treatment de-
livery using prompt gamma (PG) ray pro iles as part of treatment delivery QA. PG
rays result from nuclear interactions between the incoming protons and the patients’
tissue, and emission pro iles can be measured outside the patient. PG ray emission
pro iles have been shown to correlatewith the depth-dose pro ile of the primary pro-
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ton beam [12]. In Chapter 7 we investigated whether PG ray emission pro iles can be
used to detect changes in target coverage due to inter-fraction anatomical variations
with respect to the planning CT scan. Using Monte Carlo, dose delivery on repeat CT
scans of prostate cancer patientswas simulated andPG ray emissionpro ileswereob-
tained. Correlations were evaluated between the observed dosimetric changes and
the changes in PG emission pro iles.
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Abstract

Purpose: Proton therapy is very sensitive to daily density changes along the pencil-

beam paths. The purpose of this study is to develop and evaluate an automated method

for adaptation of IMPT plans to compensate for these daily tissue density variations.

Methods and materials: A two-step restoration method for ’densities-of-the-day’ was

created: (1) restoration of spot positions (Bragg peaks) by adapting the energy of each

pencil-beam to the new water equivalent path length; and (2) re-optimization of pencil-

beam weights by minimizing the dosimetric difference with the planned dose distribu-

tion, using a fast and exact quadratic solver. The method was developed and evaluated

using 8 – 10 repeat CT scans of 10 prostate cancer patients.

Results: Experiments demonstrated that giving a high weight to the PTV in the re-

optimization resulted in clinically acceptable restorations. For all scans we obtained

V95% ≥ 98% and V107% ≤ 2%. For the bladder, the differences between the restored

and the intended treatment plan were below +2 Gy and +2%-point. The rectum differ-

ences were below +2 Gy and +2%-point for 90% of the scans. In the remaining scans

the rectum was filled with air, which partly overlapped with the PTV. The air cavity dis-

torted the Bragg peak resulting in less favorable rectum doses.
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Near real- me dose restora on in IMPT

2.1 I

Intensity-modulated proton therapy (IMPT) allows for highly localized dose delivery,
but is also sensitive to inter-fraction variations in the location of the Bragg peak [1, 2].
Such variations can be induced by variations in the tissue density along the pencil-
beampath for example caused by changes in organ illing or by relativemovements of
organs, and may cause large discrepancies between the planned and delivered dose
distribution [13]. A strategy toprevent this passively is the generationof robust treat-
ment plans [14]. This strategy can, however, lead to increased doses to organs at risk
(OARs) [10]. Ideally, adapting for the variations at time of treatment should be sub-
minute after imaging. This is currently not feasible using a normal treatment plan-
ning work low, where a full treatment plan is generated from scratch.

This study is part of a project which aims to reduce the time for a re-optimization of
the treatment plan by greatly simplifying the optimization problem. The approach is
to create in the treatment planning phase an individualized library-of-plans for pos-
sible patient anatomies capturing relatively large inter-fraction organ motion. The
library can be derived from the patients’ planning CT scans or a population-based
statistical model describing anatomical variations [15, 16]. Just prior to each treat-
ment fraction and based on in-room volumetric imaging, the treatment plan that best
its the anatomy-of-the day will be selected for delivery. Density changes along the
beam paths will in general still occur, and need to be corrected, which is the topic of
this study. Because generating fully optimized treatment plans for prostate cancer
patients as described below takes on average about 25 min, a full optimization is not
possible. Therefore we focus on correction for density changes only. The aim of this
study is to develop and evaluate a re-optimization method that quickly and automat-
ically restores a proton therapy dose distribution that has been distorted by density
changes along the path of the beams. Applying this restoration method right before
treatment is a step towards online-adaptive IMPT. The use of the restoration method
is not exclusive to library-of-plans strategies but can also be applied to a static treat-
ment plan to mitigate the impact of daily density changes. In this latter case, it would
be assumed that (moderate) inter-fraction organmotion is accounted for by amargin
around the clinical target volume (CTV).

Zhang et al. [17] also investigated a procedure to restore the planned dose to the
prostate. In this procedure, the energy of every proton beam is adjusted according to
the newwater equivalent path length (WEPL) calculated from the daily CT scan. The
intensities of the proton pencil-beams remained as planned. The method was tested
on a phantom prostate patient, for which they assumed that the prostate would only
shift rigidly inside the phantom from fraction to fraction. Two treatment techniques
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were evaluated; one using distal edge tracking (DET), a type of IMPT placing spots
only at the distal edge of the target, and one using 3D IMPT (which in this paper is
abbreviated to IMPT), where spots are placed in the whole target volume. Effective-
ness of this method was evaluated by comparing the adapted and non-adapted dose
distributions for both treatment types. Good restorations were achieved for the DET
plans, but the method did not work for IMPT plans, which is currently considered as
the state-of-the-art treatment technique.

In our restoration method we also start with WEPL correction, but we proceed with
a re-optimization of the pencil-beam weights. Evaluations were performed using CT
scans of 10 patients. Four re-optimization methods have been compared to ind the
one resulting in the best restorations. For all patients we checked whether these res-
torations indeed resulted in clinically acceptable dose distributions and recorded the
re-optimization time.

2.2 M M

Pa ent data

For the 10 study patients we had a planning CT scan takenwith contrast and 8-10 re-
peat CT scans without contrast available, which were acquired during the course of a
fractionated photon radiotherapy treatment. To avoid that the results would be per-
turbed by arti icial density changes caused by the contrast we ignored the planning
CT scan and used the irst repeat CT scan as planning CT scan in this study. A total
of 80 repeat scans were used. In each scan, the prostate, seminal vesicles, and lymph
nodes were delineated as target structures. The delineated OARs in the planning CT
were the rectum, bladder, small and large intestines, and the femoral heads.

Treatment planning

Dosewas prescribed according to a simultaneously integrated boost scheme inwhich
the high-dose PTV (prostate + 4 mm margin) was assigned 74 Gy and the low-dose
PTV (lymph nodes and seminal vesicles + 7 mmmargin) 55 Gy, to be delivered using
two laterally opposed beams. We selected this treatment group for evaluation as a
theoretical bene it of proton therapy has been demonstrated for the treatment of lar-
ger volumes associated with advanced-stage disease [18]. Note that in this study we
used for each patient, instead of a library-of-plans, a static treatment plan with tight
CTV-to-PTVmargins that were supposed to account for inter-fraction geometrical er-
rors due to internal organ motion, but not to account for density changes along the
paths of the pencil-beams. The latter will be accounted for by the dose restoration
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method proposed in this study. The PTV-intermediate is a 15 mm transition region
between the expanded prostate and the expanded lymph nodes and seminal vesicles
and was added to obtain the desired dose fall-off. The PTV-low consists of the expan-
ded seminal vesicles and lymph nodes, excluding the transition region. To achieve
the dose fall-off outside the target areas, conformity rings were created (see Figure
2.1).

PTV-high

Conformity Ring

PTV-high

PTV-interm. 

PTV-low

Figure 2.1: The PTV-high is an expansion of the prostate. The PTV-intermediate is a 15 mm
transition region between the high-dose and low-dose PTV. The PTV-low consists of the expan-
ded seminal vesicles and lymph nodes, excluding the transition region. The PTV-full consists of
the PTV-high with a 15 mm expansion and PTV-low. The conformity ring around the PTV-high
is the PTV-full excluding the PTV-low. The red area represents the 0 – 10 mm conformity ring of
PTV-full.

All IMPT plans were generated using ‘Erasmus-iCycle’, our in-house developed treat-
ment planning system for fully automated plan generation [19, 20], combined with
the ’Astroid’ dose engine [21]. Erasmus-iCycle uses a multi-criteria optimization to
generate a clinically desirable Pareto optimal treatment plan on the basis of awishlist
consisting of hard constraints and objectives (see Table 2.1). This wishlist is created
by physicians and is often used for the entire patient group (i.e. all prostate cancer
patients). Constraints are never violated in the plan generation. Based on their as-
signed priorities, the objective functions are minimized sequentially. The achieved
objective value is set as an additional hard constraint that has to be respected during
the minimization of the lower priority objective functions (lexicographic optimiza-
tion). More details on Erasmus-iCycle can be found in [19, 20, 22–24]. The wishlist
used for plan generation in this study is shown in Table 2.1, combined with Figure
2.1. More details about the use of a wishlist are given in [22]. Generating treatment
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plans using Erasmus-iCycle with this wishlist takes on average about 25 min.

To investigate theperformanceof thedose restorationmethoddeveloped in this study,
the intended treatment plans were generated without including patient setup and
range robustness in the optimization. If the restoration method works well, the de-
gree of robustness included in the treatment plan can be reduced, as the coverage loss
due to density changes can bemitigated by ourmethod of dose restoration. Reducing
the degree of robustness, is expected to reduce the dose in OARs [10].

Table 2.1: The ’wishlist’ with planning constraints and objectives used for automated IMPT plan
generation. Constraints will always be met. The priority numbers of the objectives indicate the
order in which objectives are to be optimized. A low number corresponds to a high priority. The
PTV structures are shown in Figure 2.1. The objectives with priorities 4 – 8 were assigned a limit
of 1 Gy in order to obtain very low dose values while at the same time not imposing an impossible
goal.

Constraints Structure Type Limit
PTV-high Minimum 0.97×74 Gy
PTV-intermediate Minimum 0.99×74 Gy
PTV-low Minimum 0.99×55 Gy

Objectives
Priority Structure Type Limit
1 PTV-high Maximum 1.07×74 Gy
1 PTV-intermediate Maximum 1.07×74 Gy
1 PTV-low Maximum 1.07×55 Gy
2 Conformity ring PTV-high Maximum 1.07×74 Gy
2 Conformity ring PTV-full 0 – 10 mm Maximum 1.07×55 Gy
2 Conformity ring PTV-full 10 – 15 mm Maximum 0.90×55 Gy
3 Femoral heads Maximum 50 Gy
4 Rectum Mean 1 Gy
5 Small and large intestines Mean 1 Gy
6 Bladder Mean 1 Gy
7 Femoral heads Mean 1 Gy
8 All conformity rings Mean 1 Gy
8 All conformity rings Maximum 1 Gy
9 Total spot-weight Sum 1 Gp

Abbreviations: PTV = planning target volume; Gp = Gigaprotons

Dose restora on

The proposed restoration method assumes that a repeat CT scan acquired just prior
to dose delivery is available and that the prostate is aligned to the treatment beams by
a couch translation using implanted intra-prostaticmarkers. The restorationmethod
takes this image-guidance procedure into account by aligning each repeat CT scan
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to the planning CT using the implanted markers. Furthermore, we take as a starting
point that repeat CT scansdonot have automatically ormanually delineated contours,
meaning that only the structures projected from the planning CT to the repeat CT
scans, i.e. the projected planning structures, are available for the re-optimization (see
Figure 2.2, middle).

Planning Structures
Planning CT scan

Projected Planning Structures
Repeat CT scan

Actual Repeat Structures
Repeat CT scan

Figure 2.2: This study uses three combinations of CT scans and contour sets. Left: a planning CT
scan with structures contoured in the planning CT scan. Middle: a repeat CT scan with structures
projected from the planning CT to the repeat CT scan. Right: a repeat CT scan with structures
contoured in the repeat CT scan.

The proposed restoration method restores the dose for all voxels of the structures
that are used in the full optimization and hence are mentioned in the wishlist (see
Table2.1). For these voxels thedosedepositionmatrices are requiredas thesematrices
hold the dosimetric effect of every pencil-beam to every selected voxel. Multiplied
with the pencil-beam weights this obtains the dose distribution in these selected
voxels. For the planning CT with the planning contours, the matrices are already ini-
tialized due to the full optimization, using the energies chosen during optimization.
As the dose depositionmatrices depend on the path towards the voxels and the ener-
gies of the pencil-beams, they need to be recalculated for the new paths based on the
repeat CT scan with the projected planning contours. When the pencil-beam ener-
gies are changed during restoration, the matrices need to be recalculated once more.
Voxels of structures that are not included in the wishlist, i.e. which are not used in
the full optimization, are therefore not included in the restoration to limit the calcu-
lation time. The order of importance of the structures of the planning CT scan, i.e. the
planning structures, can be used to adjust the weight or importance factor of speci ic
voxels in the re-optimization in order to improve the results. The advantage of this
methods is that it does not require a time-consuming contouring step and can imme-
diately commence after the alignment of the repeat CT scan to the planning CT scan.
The de inition of these importance factors is given in the next section.

The proposed restoration method consists of two steps. In the irst step the spot
positions (Bragg peaks) are restoredby adapting the energy of eachpencil-beamsuch
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that the coordinates of the Bragg peaks in the planning CT scan and in the repeat scan
are equal. Pencil-beam directions remain unchanged. Figure 2.3 shows a schematic
representation of this procedure. The result of this step is the energy-restored dose
distribution.

Body Body

Air

Body

Air

Intended Distorted Restored

Figure 2.3: Restoring spot positions. Left: the spot positions as intended. Middle: an air cavity
causes a displacement and deformation of the upper spot. Right: The energy of the pencil-beam
has been adapted to restore the spot position. Note that the restoration of spot positions does
not adapt for changes in shape and location of the target. If the target shows large geometric
changes, the energy-restored spots will not necessarily end up in the target.

Restoring the Bragg peak changes its intensity and shape. Hereto we require to re-
optimize the pencil-beam weights to match the intended dose as much as possible.
The change in shape depends on the structures and air cavities along the pencil-
beampath. Figure 2.4 illustrates the change in shapewhen a pencil-beammoves fully
(middle) or partly (bottom) through an air cavity. We will refer to the changed Bragg
peaks as distorted Bragg peaks.
Due to the changes in intensity and shape due to the energy-restoration, the dose de-
position matrices need to be recalculated prior to the pencil-beam re-optimization.
Instead of a full multi-criteria optimization as used for generation of the intended
dose distributions with Erasmus-iCycle, the differences between the actual and in-
tended dose distribution are used to de ine a quadratic objective function. This ob-
jective function contains all structures that are included as constraints or objectives
in the wishlist. This re-optimization method uses the BOXCQP algorithm [25, 26].

The quadratic objective function is given by

s(f) = (Af−dint)T W (Af−dint)+κS. (2.1)

Here Af is the actual dose, calculated as the product of the dose deposition matrix A

and the spot-weight vector f. At the start of a pencil-beam weight re-optimization,
Af is the energy-restored dose (see above), dint is the intended dose. W is a diagonal
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Figure 2.4: When a pencil-beam moves through an air cavity, the shape of the Bragg peak
changes.

matrix containing importance factors of the voxels (see below). κS is a smoothing
term that is also further explained below.

The quadratic objective function can be written in canonical form as

s(f) = 1

2
fT H f+ fT b+ c, (2.2)

where

H = AT W A+κS, b = AT q, c = 1

2
(dint)T (W dint),

W =∑
ν
ην, q =−W dint.

More information on these equations can be found in [26]. The smoothing term κS

was introduced to keep the Hessian H positive de inite at all times. Without this term
the Hessian is not positive de inite when for instance the same dose can be achieved
in two different ways. This can happen if two similar proton spots are included in the
treatment plan. A simple approach which changes the solution minimally is to take κ
small (O (10−4)) and S the identity matrix.

The BOXCQP algorithm searches for the optimal spot-weight vector f byminimization
of the function s(f).

Assignment of voxel importance factors in s(f) (Equa ons 2.1 and 2.2)

Four different approaches for assigning importance factors to the voxels were eval-
uated. Table 2.2 contains the details of the different approaches. Approaches B –
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D could be applied with 1 – 5 iterations (denoted as B1 – B5, C1 – C5 and D1 – D5),
yielding a total of sixteen different re-optimization methods.

Table 2.2: Overview of the investigated approaches for assignment of voxel importance factors.

Method A (1 iteration) All voxels in the structures in the wishlist (Table
2.1) have importance factor 1 throughout the re-
optimization; W is the identity matrix.

Method B (1 – 5 iterations) In the first iteration all voxels in the targets have im-
portance factor 1000. The other voxels have factor 1.
In each subsequent iteration the dose distribution is
evaluated. Target voxels receiving either too little or
too much dose, i.e. less than 95% or more than 107%
of the prescribed dose, will get their factor doubled.

Method C (1 – 5 iterations) All voxels in the targets have importance factor 1000.
In the remaining structures the dose is evaluated. All
voxels in the structure receiving the highest dose get a
factor 500. In every iteration the next structure receiv-
ing the highest dose also gets factor 500. Each struc-
ture can only be selected once.

Method D (1 – 5 iterations) In every iteration the difference between the intended
dose and the actual dose is determined for each struc-
ture. The structure with the highest mean difference
will get a factor 1000 for every voxel. In every iteration
a new structure with factor 1000 is added.

Evalua on and comparison of intended and restored plans

All intended and restored treatment plans were evaluated by visual inspection of the
dose distributions, the DVHs of the target volumes and OARs, and the clinical con-
straints. Visual inspection of the restored dose distribution was used to check for
hotspots. For the PTV and CTV structures (see Table 2.1), we report the V95% and
V107%. The rectum was evaluated using the Dmean, V45 Gy, V60 Gy and V75 Gy, and the
bladder using the Dmean, V45 Gy and V65 Gy.

For evaluation of the restored dose distribution, both the projected planning struc-
tures and the actual repeat structures were used. First we evaluated the restored
dose distribution on the projected PTV and the actual repeat CTV. Secondly, the re-
stored dose distribution was evaluated on the projected OARs and the actual repeat
OARs. Besides the evaluation of the obtained treatment plans, the calculation times
of the restoration methods were compared.
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2.3 R

Distor on for the projected planning structures due to density changes

Figure 2.5 shows boxplots depicting the differences of the distorted dose distribu-
tion in the repeat CT scans minus the intended dose distribution of the planning CT
scans for all 80 repeat CT scans. The differences are calculated for the projected plan-
ning structures showing the starting point for dose restoration. For all scans the tar-
get coverage deteriorates due to the density changes, whereas the OARs dose remain
similar on average.

Figure 2.5: Boxplots depicting the difference in dosimetric parameters of the distorted minus
the intended dose distributions for all 80 scans based on the projected planning structures. Each
boxplot indicates the median and the 25th and 75th percentiles of the obtained differences. The
dashed lines depict the remaining differences which are not outliers. Values are defined outliers
if they are more than 1.5 times the distance between the 25th and 75th quartiles away from the
quartiles. The plus marks indicate the outliers.

Results for projected planning PTV of all restora on methods

The intended treatmentplanswereoptimized to ensure that at least 98%of thevolume
of the PTV structures given in thewishlist (Table 2.1 and 2.1) receives 95%of the pre-
scribed dose and no more than 2% of the volume receives more than 107%. For the
result of the restoration method to be clinically acceptable, we required that these
objectives should still be met for 98% of the scans (i.e. for 98% of the scans V95% ≥
98% and V107% ≤ 2%). Table 2.3 shows the percentage of the scans for which V95%
≥ 98% and V107% ≤ 2% for the intended and distorted treatment plans as well as for
each restoration method.
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It can be seen that only in methods B4 and B5 (in which a higher importance factor
is given to certain voxels in the targets) the constraints are met for all PTV structures
for at least 98% of the scans. Method B5 shows the best results and is therefore pre-
ferred at this point. It can be seen that for methods B1 – B2 and C1 – C5 (in which also
the OARs get a higher importance factor)most constraints aremet for at least 95% of
the scans, but this is not the case for the V107% of the low-dose PTV region. The res-
ults of methods A and D (with respectively no higher importance factors and higher
importance factors for the voxels with the highest difference from the intended dose)
meet the requirements for only a few patients, which means that these methods will
be neglected in further analyses.

Results for actual repeat CTV structures of restora on methods B and C

Table 2.4 shows the results of the restoration methods B and C for the actual repeat
CTV structures. Note that the restoration was done based on all voxels of the projec-
ted PTV and OAR structures. We required that for the CTVprostate at least 98% of the
volume obtains at least 95% of 74 Gy, and at most 2% of the volume receives 107%
of 74 Gy. The CTVlymph nodes and CTVseminal vesicles both fall into the PTV-intermediate
and the PTV-low (Figure 2.1). They should therefore receive at least 95% of 55 Gy
and no more than 107% of 74 Gy.

To verify that the margin applied was suf icient to account for shape and position
variations of theCTV structures,we irstmeasured theseparameters for the actual re-
peat structures without recalculating the dose distributions (without distortion due
to density changes). For all scans the objectives are met, showing that the margins
are indeed suf icient to account for the shape and position variations.
In Table 2.4, the percentages of repeat CT scans that meet the target constraints be-
fore and after restoration are listed. It shows that as expected target coverage was
compromised due to density changes in the repeat CT scans (Distorted). It can be
seen that starting restoration methods B or C from a static treatment plan with CTV-
PTV margins results in a suf icient and acceptable target coverage for over 92.5% of
the scans. When looking at the V107%, methods B give better results than methods
C, where method B5 obtains the best results. Both methods B and C however obtain
acceptable results when compared to the distorted results.

Results for projected planning OAR structures of restora on methods B and C

The results of restorationmethods B1 – C5 for the projected planning OAR structures
are shown in Figures 2.6 and 2.7. The results can be comparedwith Figure 2.5, which
is showing the results of the distorted dose distribution for the projected contours.
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Table 2.3: Percentages of the 80 dose distributions that meet the target constraints for the invest-
igated restoration methods based on the projected planning structures.

V95%≥ 98% V95%≥ 98% V95%≥ 98% V107%≤ 2% V107%≤ 2% V107%≤ 2%

PTV-high PTV-
interm.

PTV-low PTV-high PTV-
interm.

PTV-low

Intended 100 100 100 100 100 100
Distorted 45.0 77.5 31.3 45.0 91.3 0.0
Energy-
restored

77.5 95.0 58.8 33.8 95.0 0.0

A 100 98.8 93.8 90.0 100 6.3
B1 100 100 100 98.8 100 58.8
B2 100 100 100 98.8 100 83.8
B3 100 100 100 100 100 96.3
B4 100 100 100 100 100 98.8
B5 100 100 100 100 100 100
C1 100 100 100 96.3 100 53.8
C2 100 100 100 95.0 100 46.3
C3 100 100 100 95.0 100 38.8
C4 100 100 100 95.0 100 26.3
C5 100 100 96.3 95.0 100 26.3
D1 83.8 93.8 36.3 65.0 100 0.0
D2 78.8 92.5 17.5 50.0 100 1.3
D3 78.8 93.8 10.0 53.8 97.5 1.3
D4 83.8 97.5 10.0 55.0 100 1.3
D5 85.0 98.8 16.3 60.0 100 0.0

Figure 2.6 shows that for the rectum the differences of the restored minus intended
dose distributions are very small for most patients, with a total of 21 outliers for
method B5. Only 14 of these values were positive, meaning that the intended do-
simetric parameter value was lower and hence better than the restored value. Using
methodC5 decreased the total number of outliers to 11, ofwhich only 9were positive.
Figure 2.6 shows that even thoughde ined as outliers, someof these difference values
are still very low. When using method B5 only 8 scans show differences larger than
or equal to +2 Gy for the Dmean and +2%-point for the V45 Gy, V60 Gy and V75 Gy. Using
method C5 none of the scans obtain difference values larger than +2 Gy and +2%-
point.

Figure 2.7 shows that on average the differences for all dosimetric parameters of the
bladder are larger for the results of methods B. However, for both methods B and
C the differences for the bladder are very small. Most scans differ less than +1 Gy
for the Dmean, and +1%-point for the V45 Gy and V60 Gy. The outliers reach maximum
differences of approximately +1.6 Gy and +1.6%-point.
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Table 2.4: Percentages of the 80 dose distributions that meet the target constraints for the invest-
igated restoration methods based on the actual repeat structures.

V95%≥ 98% V95%≥ 98% V95%≥ 98% V107%≤ 2% V107%≤ 2% V107%≤ 2%

CTVprost CTVln CTVsv CTVprost CTVln CTVsn

Distorted 70.0 66.3 80.0 40.0 100 83.8
Energy-
restored

87.5 92.5 90.0 35.0 100 95.0

B1 96.3 92.5 95.0 86.3 100 96.3
B2 96.3 92.5 95.0 87.5 100 96.3
B3 96.3 92.5 95.0 88.8 100 96.3
B4 96.3 92.5 95.0 92.5 100 96.3
B5 96.3 92.5 95.0 92.5 100 96.3
C1 96.3 92.5 96.3 81.3 100 96.3
C2 96.3 92.5 96.3 82.5 100 96.3
C3 96.3 92.5 96.3 83.8 100 96.3
C4 96.3 92.5 96.3 82.5 100 96.3
C5 96.3 92.5 96.3 81.3 100 96.3

Abbreviations: CTVprost = CTVprostate, CTVln = CTVlymph nodes, CTVsv = CTVseminal vesicles

When comparing the results of methods B to the results of methods C, it can be seen
that similar values are obtained. The largest differences are seen in the V45 Gy of the
rectum, where for method B5 seven scans have a difference larger than +2%-point.
Two of these scans also have a difference larger than 2 Gy for the Dmean. A scan of
another patient has a difference larger than +2%-point for the V60 Gy of the rectum.
For these 8 scans, the PTV overlaps with a gas pocket in the rectum of the repeat.
Closer inspection revealed that the air cavity distorted the Bragg peak resulting in
less favorable rectum doses. To verify this assumption, we performed a full multi-
criteria optimization using this repeat CT scan and the projected planning structures
and compared the rectum dose values to the ones obtained from restoration. We
found that in the fully optimized treatment plan the rectum Dmean was 28.1 Gy and
the rectum V45 Gy 31.9%. The values obtained from the restoration were 28.1 Gy and
32.1% for respectively the Dmean and the V45 Gy. As the differences between these
values are very small we conclude that our assumption is correct and the high dose
values are indeed caused by a distorted Bragg peak.

When using methods C, the rectum was restored better, but a larger part of the pro-
jected PTV received dose values higher than 107%of the prescribed dose (Table 2.3).
It should be noted that the dose of the distorted Bragg peak was partly calculated in-
side the air cavity. Although this dose was contributing the rectum dose in the DVH
calculation, in reality this dose will not be deposited in rectal tissue.
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Figure 2.6: Boxplots showing differences of the restored minus the intended rectum dose para-
meters for all 80 scans for restoration methods B1 – C5, based on the projected planning struc-
tures. Positive values point at higher values for the restored dose distribution. Each boxplot
indicates the median and the 25th and 75th percentiles of the obtained differences. The dashed
lines depict the remaining differences which are not outliers. Values are defined outliers if they
are more than 1.5 times the distance between the 25th and 75th quartiles away from the quartiles.
The plus marks indicate the outliers.

Results for actual repeat OAR structures of restora on methods B and C

The results in Table 2.4 indicate that the target coverage can be effectively restored
when evaluating on the actual repeat contours. Figure 2.8 shows the difference of
the restored dose distributions for methods B5 and C5 minus the distorted dose dis-
tributions, i.e. without any restoration, for the actual repeat rectum (top) and bladder
(bottom).

When looking at the results for the rectum (top Figure 2.8) it can be seen that both
methods B5 and C5 havemedian differences close to zero when comparing to the dis-
torted dose distribution. In all plots it can be seen that the largest outliers have neg-
ative difference values, meaning that for those scans the restored dose distribution
obtains lower dose values in the rectum than the distorted dose distribution. When
looking at theV75 Gy after restoration, over 70%of the scans showdifferences equal to
or smaller than zero. As can be seen in the boxplots, the remaining scans obtain very
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Figure 2.7: Boxplots showing differences of the restored minus the intended bladder dose para-
meters for all 80 scans for restoration methods B1 – C5, based on the projected planning struc-
tures. Positive values point at higher values for the restored dose distribution. Each boxplot
indicates the median and the 25th and 75th percentiles of the obtained differences. The dashed
lines depict the remaining differences which are not outliers. Values are defined outliers if they
are more than 1.5 times the distance between the 25th and 75th quartiles away from the quartiles.
The plus marks indicate the outliers.

low difference values. For the Dmean, V60 Gy and V75 Gy all difference values remain
below +4 Gy and +4%-point. For the V45 Gy there are 7 and 6 scans in respectively
method B5 and C5 with a difference value larger than +4%-point.

For the bladder (bottom Figure 2.8) we see that the differences between distorted
and restored are very small for the V65 Gy. For the Dmean and V45 Gy the differences
are larger, though over 92% of the scans obtain difference values below +4 Gy and
+4%-point.

Though the dosimetric parameter values of the OARs can for some scans increase
after restoration, this loss remains smaller than the gain that is found for the target
structures (Table 2.4).
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Figure 2.8: Boxplots showing differences of the restored minus the distorted dose parameters of
the rectum (top) and bladder (bottom), for all 80 scans for restoration methods B5 and C5, based
on the actual repeat structures. Positive values point at higher values for the restored dose dis-
tribution. Each boxplot indicates the median and the 25th and 75th percentiles of the obtained
differences. The dashed lines depict the remaining differences which are not outliers. Values are
defined outliers if they are more than 1.5 times the distance between the 25th and 75th quartiles
away from the quartiles. The plus marks indicate the outliers.

Calcula on mes

The time needed for the energy adaptation, i.e. the restoration of the spot positions
is independent of the restoration method and was on average 5.4 s (3.5 – 10.6). The
re-optimization time includes the creation of the quadratic objective function, ad-
apting the weight matrix and performing the minimization. Table 2.5 shows the re-
optimization times for methods B1 – B5 and C1 – C5.

The mentioned calculation times do not include loading of the CT scans, the original
plans and the dose calculations. The most time-consuming and limiting operation
was the calculation of the dose deposition matrix A (mean 4.3 min (range 2.4 – 9.6)),
which occurs once between the spot restoration (i.e. energy adaptation) and the
weight re-optimization. Optimization of the dose calculation speed was not part of
this study.
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Table 2.5: Calculation times for the different B and C restoration methods. The mean is taken
over all 80 scans.

Weight re-optimization (seconds)
Mean Range

B1 0.7 0.4 – 1.7
B2 1.5 0.9 – 3.6
B3 2.2 1.3 – 4.5
B4 3.1 1.8 – 5.9
B5 3.8 2.2 – 7.7
C1 0.9 0.4 – 2.5
C2 1.8 0.9 – 4.0
C3 2.7 1.3 – 5.6
C4 3.7 1.6 – 7.5
C5 4.5 2.3 – 9.0

2.4 D

In this study several re-optimization methods were compared, all aimed at restoring
the dose distribution thatwas distorted due to density changes. All restorationmeth-
ods were designed for near real-time performance enabling online-adaptive proton
therapy. The goal of the restoration was to get dose distributions as close as possible
to the intended dose distributions in the structures used for treatment planning. We
found that the restorationmethod that best restores the dose in the target structures
is B5, which focuses on the target voxels. In every iteration, the target voxels that re-
ceived either too much or too little dose were given a higher importance factor in the
re-optimization. Using thismethod, all 80 scans had a restored dose distributionwith
a V95% ≥ 98% and a V107% ≤ 2% for the projected PTV structures used in the wish-
list (Table 2.1). When using method B5 the dosimetric parameters of the projected
planning OARs showed on average very small differences from the intended values
(≤ +1 Gy and ≤ +1%-point). Eight outliers were found with differences larger than
+2 Gy and +2%-point. These outliers can all be explained by an air cavity partly over-
lapping the PTV. The air cavity negatively affected the shape of the Bragg peak (see
Figure 2.4), leading to a higher dose to the rectum after the restoration of the distor-
ted dose distribution. For the worst outlier we generated a fully optimized treatment
plan based on the repeat CT scan. The full optimization did not improve the dose to
the rectum compared to the restoration, suggesting that the worsened rectum dose
is due to the changed properties of the Bragg peak and that the restoration is close
to the optimal result, i.e. a full re-optimization. An advantage of our method is that it
can be applied using only the structures as contoured in the planning CTwhichmeans
as soon as the daily CT scan has been aligned to the planning CT scan the restoration
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can start.

Besides method B5 method C5 also performed well. Although slightly better results
for the target structures were obtained with methods B, methods C achieved lower
dose values to the OARs. Using the methods C, the target coverage was slightly com-
promised, obtaining V95% values of less than 98%and V107% values ofmore than 2%.
For example, for the projected PTV-low 67 scans had a V107% higher than 2% when
using restoration method C5. However, the V107% was limited to 5.7%, which still
may be considered clinically acceptable. As shown in Table 2.5, the calculation time
is similar for both methods. When comparing the use of 1 iteration with the use of
more iterations, we found that the increased computation time usingmore iterations
is negligible. However, using more iterations obtained fewer hotspots in the targets
whenusingmethodB (as shown inTable 2.3) and lowerdose values to theOARswhen
using method C (Figures 2.6 and 2.7).

In addition to the projected planning PTV and OAR structures, we also evaluated the
restored dose distributions for the actual CTV and OAR structures in the repeat CT
scans. We found that for the coverage of the CTV structures of the prostate, lymph
nodes and seminal vesicles, the number of patients receiving acceptable V95% and
V107% values for the targets, increased when applying a restoration method (Table
2.4). Note that the intended treatment plan on the planning CT was optimized on a
PTV volume, i.e. the actual target expanded by a margin, already anticipating some
changes in shape and location. Performing a restoration on this PTV allowed for the
CTVprostate to be suf iciently irradiated at each treatment day without having to in-
clude robustness in the optimization a priori. Similar as to the evaluation on the PTV,
the best results were obtained when using method B5. For the OARs we compared
the results of the distorted dose distribution, i.e. without restoration to the results of
the dose distribution obtained with methods B5 and C5 (Figure 2.8). We found that
the volumes receiving a high dose were reduced a little, and only small differences
were found in the mean dose of the organs. Overall we can conclude that performing
the restoration has no negative effect on the dosimetric values of the OARs.

Taken together, our indings prove the principle that clinically acceptable restora-
tions fordensity changes canbeobtained forprostate cancerpatientswithin10 seconds,
when excluding the calculation of the dose deposition matrices. The calculation of
these matrices currently takes several minutes. We believe that with some improve-
ments of the dose engine this calculation time can be signi icantly reduced.

Though many more re-optimization methods are possible, as well as methods of up-
dating the weight matrix W between iterations (see Equation (2.1)), only four main
methods (A – D) were considered during this investigation. Method A was selected
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to see the effect of minimal effort; by not using any importance factors, the method
is very general and very fast. Methods B and C, in which we focus on the targets
and OARs, were selected on the basic principle that in treatment planning the goal
is always to get a high dose in the targets and a low dose in the OARs. Method D,
in which higher importance factors are given to structures with higher differences,
was inspired by our re-optimization method which aims to minimize the differences
between the intended and the achieved dose.

In this study we analyzed the mean dose to OARs. To test whether the method also
works for more serially responding organs, we applied a maximum dose objective to
the rectum in the generation of the intended treatment plan. The results of applying
restorationmethods A, B5, C5 and D5 on these cases were similar to the results of the
previously discussed prostate cancer cases. Methods A and D yielded coldspots and
hotspots, while methods B5 and C5 obtained acceptable results. Other approaches
have not been investigated, as clinically suf icient resultswere already obtained using
the methods developed and evaluated in this study. However, it is possible that for
other treatment sites other restoration methods are more suitable.

Looking at the results of the restorations the dif iculty seems to be in the restoration
of the PTV-low as projected on the repeat CT scan. A possible explanation is that less
degrees of freedom are available for the optimizer to restore the dose distribution as
the dose to each lymph node is mostly delivered by one of the beams.

The developed restorationmethod aims to return to a clinically acceptable treatment
planwhich has already been through some level of quality assurance (QA). One could
therefore assume that returning to this plan yields acceptable results. Some level of
QA is however still required, as errors are alwayspossible. This should involve a check
on indicators that identify successful restorations. These indicators are for example
PTV coverage and thedifferencebetween the intended and restoreddosedistribution
e.g. using gamma evaluation if gamma analysis can be performed suf iciently fast.
Also lagging large changes in spot-weights and WEPL corrections will be important
as indicator of unsuccessful restorations. Furthermore, online QA of dose delivery
errors is also required, as pre-treatment patient-speci ic QA cannot be performed in
the online-adaptive setting. This is being developed in a project closely linked to this
work,which aims at developing proton range veri ication for onlineQAusing prompt-
gamma imaging.

In generating the intended treatment plans, CTV-to-PTV margins were used to ad-
apt for inter- and intra-fraction motion of the structures. With these margins, the
developed dose restoration method based on the projected contours has shown to
obtain clinically acceptable restorations for prostate cancer patients. Evaluating on
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the actual contours obtained suf icient CTV coverage for most CT scans (Table 2.4)
and acceptable values for the OARs (Figure 2.8). The intended treatment plans were
generated using normal margins and no additional robustness settings. This shows
that the re-optimization method can quickly adapt for changes, even if the treatment
plan is not robust. If greater daily shape changes are expected, for instance in cer-
vical cancer, the method will still work, but the PTV or internal target volume be-
comes very large. Therefore the aim will then be to irst reduce the PTV, which can
be achieved by implementing a plan-of-the-day approach based on a pretreatment
established library-of-plans. After selecting the most tight itting plan, our dose res-
toration method can be used to correct for density changes. We believe that will also
work for other tumors in the pelvic region such as bladder cancer. To determine with
howmuch the PTV can be reduced andwhether thisworks for tumor sites outside the
pelvic region needs further research.

In prostate cancer inter-fraction and intra-fraction variations in position and shape
of the target volume and density changes along the proton beam paths can contrib-
ute to loss of coverage. Various studies have shown that the contribution of intra-
fraction motion is much less than inter-fraction motion if treatment times are kept
suf iciently short. The speed of the dose restoration is therefore of great importance.
Residual shape changes of the target volume caused by intra-fraction motion can be
accounted for by adding a small extra margin. If robustness is included in the initial
plan we expect that due to the restoration of the spot positions the robustness will to
some extent be preserved. The re-optimization of the spot-weights however might
reduce the amount of preserved robustness. To what extent the robustness will be
preserved and whether it is necessary to include robustness to tackle intra-fraction
density changes requires further investigation.

The treatment plans generated in this study used two laterally opposing beams tra-
versing through the hip bones. Rotational variation of the hip bone gives rise to dens-
ity variations along the pencil-beam paths. On top of this, for the aligned scans shifts
of the lymph nodes in the direction of the beam of at most 5 mm were detected, as
well as anatomical changes of the seminal vesicles and prostate below 5 mm and 3
mm respectively. The small changes in the anatomy of the prostate itself can be ex-
plained by the scan alignment on the intra-prostatic markers. Andersen et al. [27]
investigated plan robustness for different beam angles for prostate cancer patients.
In their study they found that for the lymphnodes a lowWEPLvariationwas found for
beam angles around 40°and around 150°– 160°for the left and corresponding angles
for the right lymph nodes. Our method starts by correcting theWEPL, obtaining clin-
ically acceptable restorations for all target structures. As the detected movement of
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the lymph nodes has the same dosimetric effect as movement of the hip bones, we
can assume that themethodwill also successfully adapt for the changing positions of
the hip bones.

Zhang et al. [17] described a dose-adaptation method using only an energy adapta-
tion. For the original DET treatment plan the adaptation obtained restorationswhich,
when averaged over ive shift datasets, differed less than 1% for the prostate D98%,
D50% and D2%. For the IMPT plan the restorations did not show suf icient improve-
ments. These results were obtained with a phantom prostate patient in which only
the prostate and femoral headswere delineated. In our studywe used real patient CT
scans and the rectum and bladder were used for evaluation. For all patients the tar-
gets V95% and V107% were restored to clinically acceptable values. Zhang et al. [17]
did not report on hotspots in the restored dose distributions. In the present study the
restored dose distributions with respect to hotspots were evaluated visually. Though
the restored dose distributions were less homogeneous than the planned distribu-
tions, no clinically signi icant hotspots were observed. This, however, does not guar-
antee they will never occur. Our restoration method could be improved by including
a quality-check and intervention system to prevent adverse effects on the dose dis-
tribution.

Bert et al. [28] created a method that adapts the pencil-beam positions as well as the
beam energy (WEPL) during the treatment. To our knowledge they however did not
change the pencil-beam weights.

The difference between the method of Bert et al. [28] and the method described in
this work is in the steps that the methods use. Bert et al. adapt the pencil-beam
positions and the beam energies, while this method adapts the beam energies and
the beam weights. The difference between the two methods can be explained by the
difference in application; Bert et al. compensate for intra-fraction targetmotionwhile
we compensate for inter-fraction density changes.

For fractionated treatments it can be assumed that the impact of density changes are
to some extent averaged out. However, this cannot be guaranteed for hypo-
fractionated treatments. This method may therefore help to safely implement hypo-
fractionated IMPT treatments by reducing the impact of the density changes before
each treatment fraction. Another advantage of this restoration method is that it can
replace the use of a rectal balloon. These balloons are sometimes inserted in prostate
cancer patients in order to reduce the density changes and prevent large air cavities.
These balloons however have to be inserted at each treatment day and can be a dis-
comfort to the patients. In some cases the balloons are not even tolerated [29]. In
this light our proposed restoration method may be an attractive alternative.
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2.5 C

The impact of density variations on the pencil-beam paths in IMPT can be reduced by
performing an automated dose restoration procedure consisting of a WEPL correc-
tion of the pencil-beams, followed by a re-optimization of the pencil-beam weights.
Only performing theWEPL correction does not yield clinically acceptable results. The
fast performance of the restoration method paves the way to future near-real time
online-adaptive proton therapy.

2.6 A

The CT-data with contours were collected at Haukeland University Hospital, Bergen,
Norway andwere provided to us by responsible oncologist Svein IngeHelle and phys-
icist Liv Bolstad Hysing.

This study was inancially supported by ZonMw, the Netherlands Organization for
Health Research and Development, grant number 104003012 and by Varian Medical
Systems. Erasmus MC Cancer Institute also has research collaborations with Elekta
AB, Stockholm, Sweden and Accuray Inc, Sunnyvale, USA.
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Abstract

Purpose: Proton therapy plans are very sensitive to anatomical changes such as dens-

ity changes along the pencil-beam paths and changes in organ shape and location.

Previously, we developed a restoration method which compensates for density changes

along the pencil-beam paths but which is unable to adapt for anatomical changes. This

study’s purpose is to develop and evaluate an automated method for adaptation of

IMPT plans in near real-time to the anatomy of the day.

Methods and materials: We developed an automated treatment plan adaptation

method using (1) a restoration of spot positions (Bragg peaks) by adapting the energies

to the new water equivalent path lengths; and (2) a spot addition to fully cover the target

of the day, followed by a fast reference point method optimization of the spot-weights

resulting in a Pareto optimal plan for the daily anatomy. The method was developed

and evaluated using 8 – 10 repeat CT scans of 11 prostate cancer patients, prescribing

55 Gy(RBE) (seminal vesicles and lymph nodes) with a boost to 74 Gy(RBE) (prostate).

Results: Applying the automated adaptation method resulted in a clinically acceptable

target coverage (V95% ≥ 98% and V107% ≤ 2%) for 96% of the scans after a single iteration

of adding 2500 spots. The other scans obtained target coverages with V95% ≥ 98% and

2 < V107% ≤ 5%. When using two spot-addition iterations, all scans obtained clinically

acceptable results. Compared to the restoration method the adaptation lowered the

mean dose to rectum and bladder with median values of 6.2 Gy(RBE) and 4.7 Gy(RBE)

respectively. The largest improvements were obtained for V45 Gy(RBE) for both rectum

and bladder, with median differences of 10.3%-point and 10.8%-point respectively, and

maximum differences up to 22%-point. The two adaptation steps took on average 7.3

seconds and 1.7 minutes respectively. No user interaction was needed, making this fast

and fully automated method a first step towards online-adaptive proton therapy.
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3.1 I

The advantage of intensity-modulated proton therapy (IMPT) is that it deposits the
dose very locally as most of the dose is deposited in the Bragg peak. This same char-
acteristic however also makes the treatment modality prone to uncertainties, as the
inal position of the Bragg peak is very sensitive to variations in daily anatomy [1,
2]. These daily variations include density changes along the pencil-beam paths and
variations in shape and location of all organs.

In previous work, we developed an automated restoration method that can adapt a
treatment plan to compensate for density variations along the pencil-beam paths by
restoring a dose distribution to the optimized distribution of the planning CT [30].
This restoration method starts by restoring the individual spots of a prior treatment
plan generated on the planning CT scan to the correct water equivalent path length
(WEPL) by adapting the spot energies. This step is then followed by a fast optimiza-
tion of the spot-weights, which minimizes the difference between the obtained dose
distribution and the intendeddosedistributionona voxel base. To steer the optimiza-
tion, additionalweight is added to thosevoxelswhichdonotmeet thedose criteria. To
apply this method, the planning contours were propagated onto the repeat CT scans,
leaving only density variations along the pencil-beam paths to be restored. Combin-
ing theWEPL correction with the spot-weight optimization can restore the distorted
dose distributions to their intended form. Both steps are fully automated, requiring
no user interaction. A limitation however, is that this method does not compensate
for variations in target shape and therefore substantial internal margins are still re-
quired to account for internal target motion. Additionally, the previous method does
not optimize the dose to the new shape and position of the OARs. Another down-
side of the previous method is that the WEPL correction adds new energy layers in
between the planned ones thereby increasing treatment delivery time.

The purpose of this study is to develop and evaluate a method to automatically adapt
an IMPT plan in near real-time to the anatomy of the day. This will allow the use of
tight dose distributions around the target. Our method simultaneously aims for tar-
get dose restoration, as well as minimizing the dose to the OARs, while maintaining
themulti-criteria trade-offs of the treatment plan generated for the original planning
CT scan. We hypothesize that the adaptation method will hence improve on the pre-
vious method as it will not only take into account the inter-fraction density changes
but also the inter-fraction changes in organ shape and location. As the goal is to apply
this method just prior to treatment, it should be fast. Therefore, a full multi-criteria
optimization is unfeasible due to its long calculation time (about 25min for prostate).
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In addition, the method should be completely automated, meaning that it should be
able to perform the required adaptations without any user interaction.

In our proposed method we start with a WEPL correction with a ixed number of en-
ergy layers, limiting the number of energy layers included in the problem. After this,
we add new spots and optimize all spot-weights using the reference point method
(RPM). The results of the automated adaptation method were compared with four
other strategies, ranging from non-adapted to a full multi-criteria optimization.

3.2 M M

Pa ent data

This study included 11 prostate cancer patients, each having 8-10 available repeat
CT scans. The original planning CT scans were generated using contrast luid, mak-
ing dose calculation on these scans inaccurate. These scans were therefore excluded.
Instead, the irst repeat CT scan of every patient was used as planning CT and the
remaining in total 88 CT scans were used as repeat CT scans. The prostate, seminal
vesicles and lymph nodes were de ined as target structures, and the rectum, blad-
der, small and large intestines, and the femoral heads were de ined as organs at risk
(OARs). Delineations of the target volumes and OARs were available in all repeat CT
scans.

Treatment planning volumes and prescrip on

In this study, the aim was to develop an automated method for fast online adapt-
ation of the treatment plan prior to each fraction. Applying this method mitigated
the effects of inter-fraction organ motion, but not of intra-fraction uncertainties. An-
other uncertainty that was not accounted for is the delineation uncertainty, and in
the case of online-adaptive proton therapy especially, the auto-segmentation uncer-
tainty. Therefore, to account for both uncertainties, the high-dose CTV (prostate) in
each CT scanwas expandedwith a small margin of 2mmand the low-dose CTV (sem-
inal vesicles and lymphnodes)with3.5mm. Here the low-doseCTVwasgivena larger
margin primarily to account for the intra-fraction motion of the seminal vesicles, as
well as the larger uncertainty in the auto-segmentation of these structures [31]. Sim-
ilar to our previous work [30], dose was prescribed according to a simultaneously
integrated boost scheme in which the high-dose PTV was assigned 74 Gy(RBE) and
the low-dose PTV 55 Gy(RBE), to be delivered using two laterally opposed beams.
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Figure 3.1: The workflow of the automated adaptive treatment planning method. The adaptation
starts with a restoration of the spot positions with a fixed number of energy layers, in which
all Bragg peaks are restored to their new water equivalent path length. After this the methods
enters a loop in which iteratively new spots are added, the intensities are optimized and the non-
contributing spots are deleted. The output is a Pareto optimal treatment plan.

The automated adap ve treatment planning method

Figure 3.1 illustrates the steps of the automated adaptive treatment planningmethod.
In short, weperforma restoration of the spot positions by adapting the energy of each
spot to the new water equivalent path length, followed by the addition of new spots
to fully cover the target volume. We then run a fast RPM optimization of the spot-
weights resulting in a Pareto optimal plan for the daily anatomy. In the following
sections we describe in more detail each step of the method.

Ini aliza on of the automated adap ve treatment planning method

To initialize the automated adaptive treatment planning method, an IMPT treatment
planwas created on the planning CT scan. Weused the spots from these prior plans as
a basis for each fraction. To ensure suf icient spot coverage for most target deforma-
tions in the repeat CT scans an additional spot-margin was added to the PTV regions,
being an additional +5 mm for the high-dose PTV and +6.5 mm for the low-dose PTV.
These plans were thus generated with total margins of +7 mm for the prostate and
+10mmfor the lymphnodes and seminal vesicles. By adding a limitednumber of new
spots in the re-optimization, we expect to add suf icient freedom in dose-shaping to
compensate for all changes in anatomy between the fractions. Important to note is
that these prior treatment plans are not intended for dose delivery. They are only
used as a basis for daily re-optimization.

As in our previous work [30], several arti icial structures were de ined in the optim-
ization. To steer the dose fall-off between the high-dose PTV and the low-dose PTV,
a 15 mm transition region called the PTV-intermediate was de ined between them.
The PTV-low consists of the expanded seminal vesicles and lymph nodes, excluding
the transition region, as shown in Figure 3.2.
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Initial treatment plans were generated using ‘Erasmus-iCycle’, our in-house devel-
oped treatment planning system for fully automated plan generation [19, 20], com-
bined with the ‘Astroid’ dose engine [21]. These multi-criteria optimizations were
done according to the wishlist shown in Table 3.1 to generate clinically acceptable
Pareto optimal plans in a fully automated way. The constraints in the wishlist, which
in this case enforce a minimum dose to the targets, will never be violated, whilst the
objective functions are minimized sequentially according to their priorities. Such an
optimization takes on average about 25 min for prostate cancer patients. More de-
tails on Erasmus-iCycle and the use of a wishlist can be found in [19, 20, 22–24].

Table 3.1: The wishlist with planning constraints and objectives used for automated IMPT plan
generation for prostate cancer patients. Constraints will always be met. The priority numbers
of the objectives indicate the order in which objectives are to be optimized. A low number cor-
responds to a high priority. The objectives with priorities four to eight were assigned a limit of
1 Gy(RBE) in order to obtain very low dose values while at the same time not imposing an im-
possible goal. This wishlist is adapted from previous work [30].

Constraints Structure Type Limit
PTV-high Minimum 0.97×74 Gy(RBE)
PTV-intermediate Minimum 0.99×74 Gy(RBE)
PTV-low Minimum 0.99×55 Gy(RBE)

Objectives

Priority Structure Type Limit

1 PTV-high Maximum 1.07×74 Gy(RBE)
1 PTV-intermediate Maximum 1.07×74 Gy(RBE)
1 PTV-low Maximum 1.07×55 Gy(RBE)
2 Conformity ring PTV-high Maximum 1.07×74 Gy(RBE)
2 Conformity ring PTV-full 0−10 mm Maximum 1.07×55 Gy(RBE)
2 Conformity ring PTV-full 10−15 mm Maximum 0.90×55 Gy(RBE)
3 Femoral heads Maximum 50 Gy(RBE)
4 Rectum Mean 1 Gy(RBE)
5 Small and large intestines Mean 1 Gy(RBE)
6 Bladder Mean 1 Gy(RBE)
7 Femoral heads Mean 1 Gy(RBE)
8 All conformity rings Mean 1 Gy(RBE)
8 All conformity rings Maximum 1 Gy(RBE)
9 Total spot-weight Sum 1 Gp

Abbreviations: PTV = planning target volume; Gp = Gigaprotons
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PTV-high
PTV-intermediate  

PTV-low

Conformity Ring

PTV-full 0-10 mm

Conformity Ring

PTV-high

Figure 3.2: The PTV-high is an expansion of the prostate. The PTV-intermediate is a 15 mm
transition region between the high-dose and low-dose PTV. The PTV-low consists of the expan-
ded seminal vesicles and lymph nodes, excluding the transition region. The PTV-full consists of
the PTV-high with a 15 mm expansion and PTV-low. The conformity ring around the PTV-high
is the PTV-full excluding the PTV-low. The red area represents the 0 – 10 mm conformity ring of
PTV-full. This Figure is adapted and re-used from previous work [30].

Spot-posi on restora on with a fixed number of energy layers

In previous work [30] we developed a method to restore spot positions to the new
WEPL. In this method the spots could be restored to any available energy, causing
the number of energy layers after spot-restoration to be higher than before, result-
ing in longer treatment delivery. To limit the number of energy layers after spot-
restoration, the adaptive treatment planning method proposed in this study will set
an upper limit to the number of energy layers. To this end, the energy of each spot
can only be restored to one of the available energies that were used in the prior plan.

Spot addi on and dose computa on

As the restoration of spot positions does not adapt for changes in shape and location
of the target, the energy restoration followed by a spot-weight optimization will not
automatically result in an adequate coverage of the target. For this reason random
new spots which will deposit dose to the target region are (iteratively) added to the
weight optimization. New energy layers will be allowed in this step as long as the
number of available energy layers is below a certain threshold.

Due to the changes in position and shape due to the energy-restoration and the addi-
tion of new spots, the dose deposition matrices need to be recalculated prior to the
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optimization of the spot-weights. After this, the intensities will be optimized using
the reference point method (RPM) (see below), which will optimize the intensities
in a single optimization, while respecting the planning multi-criteria trade-offs made
in the prior plan. The combination of adding new spots and doing the weight re-
optimization can be repeated. To limit the number of spots in the inal plan, a spot
reduction technique is applied in this process to eliminate the non-contributing spots
[23].

Objective 1 (𝑓1(𝑥))
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Figure 3.3: A visual explanation of the RPM for two objectives. The dashed lines are the indiffer-
ence curves with ρ = 0, the dotted lines are the indifference curves with ρ > 0.

The reference point method

The RPM is a way of modeling a multi-criteria problem. The objective is to de ine the
modelingparameters such that solving thismodel results in clinically favorable trade-
offs between the objectives. A visual representation of the RPM is given in Figure 3.3.
The principal idea of the RPM is to use the achieved clinical objective values of the
prior plan as reference point, for guidance towards a Pareto optimal solution for the
new anatomy.

More speci ically, the RPM needs a reference point r = (r1,r2, ...,rn), which has a value
for all n prioritized objectives fi (x) for i ∈ {1,2, ...,n}. In the optimization the goal is
to get all the objective values fi close to their reference values ri simultaneously, and
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lower these further if possible, while still meeting the hard constraintsh(x). From the
reference point a reference path can then be described going through the reference
point and the ideal but unachievable goal, i.e. a value of zero for all objectives in case
of minimization. The reference path is parameterized by z , which is minimized in the
optimization. A lower value of z corresponds to a lower point on the reference path.
The method minimizes the value of z in a single optimization to the Pareto front by
following the reference point down. The shape of the reference path is modeled by
the constraint wi ( fi (x)− ri ) ≤ z .
In this case when minimizing all objectives fi , the RPM can be written as

minimize z

subject to wi ( fi (x)− ri ) ≤ z i = 1, ...,n (3.1)

h(x) ≤ 0.

In the optimization problem given in equation (3.1) the trade-offs can be steered us-
ing the weights wi . However, it is not always possible to ind general values of wi

for which the optimization results in good results for multiple patients, due to overly
simple indifference curves. For this reason trade-off parameters ρi are added for
every objective, which de ine the angles of the indifference curves (see Figure 3.3).
Though these trade-off parameters are usually used to ensure that the generated
solution is not in the outer parts of the Pareto front, we will use them to optionally
steer the RPM to a clinically more relevant solution. Including the trade-off paramet-
ers can be done by adding an additional term to the optimization problem (3.2):

minimize z +∑n
i=1ρi wi ( fi (x)− ri )

subject to wi ( fi (x)− ri ) ≤ z i = 1, ...,n (3.2)

h(x) ≤ 0.

This problem is then solved by a generalmathematical solver [32]. The RPMhas been
applied successfully in photon intensity-modulated radiotherapy [33, 34]. For more
details on the RPM we refer the reader to [35] and [36].

RPM-parameter tuning

As shown above the RPM contains several parameters, namely the reference point
and for each objective the weight wi and the trade-off parameter ρi . For the refer-
ence point we chose to use the objective values that were obtained from the prior
treatment plan that was based on the planning CT scan. This means that a unique
reference point was calculated for each patient. The tuning of the weight and trade-
off parameters was performed on a subset of six out of the 88 CT scans. Those six
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CT scans were selected by applying the adaptation on all 88 scans with ρi = 0, w14 =
1×10−4 (for f14 (Total spot-weight)) and wi = 1 for all other objectives, and then com-
paring with the outcome of the restoration method. The six selected CT scans were
from six different patients, where two scans improved when compared to the restor-
ation method, two scans obtained similar results, and two scans obtained worse res-
ults. The comparison was done based on the dosimetric parameter values on targets
and OARs. The parameters were tuned such that all six scans met the target criteria.
We then selected the parameters for which the lowest OAR doses were obtained.

Op miza on and spot addi on strategy

The number of iterations in which new spots are added randomly and the number
of new spots has to be set. These settings involve a trade-off between improved plan
quality (if more re-optimization iterations and spots are allowed) and longer optim-
ization times. To limit optimization time the number of iterations was set to a max-
imum of two and the number of new spots to 2500 based on the trade-off between
calculation time per iteration and the number of required iterations [20]. New en-
ergy layers were added as long as the number of energy layers was less than 20 for
a certain beam direction. The upper limit of the number of energy layers was set to
200 for all beams together.

Comparison and benchmarking of the adap ve strategies

In this study we compared the novel RPM adaptive treatment planning approach
to the spot-restoration method reported previously (spot-position restoration with
weight optimization) [30]. In addition, the RPM adaptive method was benchmarked
against a full multi-criteria optimization. This benchmark treatment plan was gen-
erated using ‘Erasmus-iCycle’ according to the wishlist shown in Table 3.1, with the
tight margins to account for intra-fraction and automatic delineation uncertainties.
We also recalculated the dose distribution as if the prior plan (generated for the plan-
ning CT scan) would have been delivered on the repeat CT scans. This is only to illus-
trate the impact of density variations and anatomical changes if the treatment plan
is not optimized to the anatomy in the repeat CT scan. Table 3.2 gives an overview of
the methods which were included in the evaluation.

Evalua on of the methods

For each repeat CT scan, the dose distributions of all methods (prior, spot-restored,
RPM adaptive and benchmark) were checked to see whether they ful illed the plan-
ning criteria (V95% ≥ 98% and V107% ≤ 2% for the PTVs). In addition, we checked all
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Table 3.2: An overview of the different treatment plans that are compared.

Method Explanation

Prior plan only Treatment plan optimized from scratch using Erasmus-iCycle
for the planning CT scan using large margins. For evalu-
ation purposes, the dose distribution was recalculated for each
aligned repeat CT scan as if the prior plan would have been de-
livered to that scan.

Spot-restoration Prior treatment plan adapted by performing a full WEPL correc-
tion on the spots of the prior plan, followed by a spot-weight op-
timization [30].

RPM adaptive Prior treatment plan adapted for each repeat CT scan by an en-
ergy layer constrained WEPL correction followed by one or two
iterations of spot addition and RPM optimization.

Benchmark Treatment plan optimized from scratch using Erasmus-iCycle
for each repeat CT scan using tight margins. Currently the best
achievable plan if no time constraints would apply. This plan
was included as benchmark of plan quality.

dose distributions visually on hot spots inside and outside the target volumes. For
the PTV and CTV structures (see Table 1), we report the V95% and V107%. The rectum
was evaluated on the V75 Gy(RBE), V60 Gy(RBE), V45 Gy(RBE) and Dmean, and the bladder
on the V65 Gy(RBE), V45 Gy(RBE) andDmean. As the number of energy layers could change
by the adaptation of the treatment plan, which impacts the delivery time [23], we also
report the number of energy layers of each treatment plan.

3.3 R

Parameter tuning

Based on the training set of six scans, we found that the best results were obtained
with ρ3 = 0.5 for f3 (PTV-low), while the trade-off parameters for the other objectives
could be kept zero. Regarding the weights, good results were obtained with w1 = 10,
w3 = 2 and w14 = 1×10−4 for f1 (PTV-high), f3 (PTV-low) and f14 (Total spot-weight),
respectively, while wi = 1 for all other objectives.

Results for the targets

The automatically generated prior treatment plans all ful illed the planning criteria
that at least 98% of the wide-margin PTV on the planning CT scan is covered by 95%
of the prescribed dose, and no more than 2% of this PTV receives more than 107%.
Table 3.3 shows the percentage of repeat CT scans for which the different methods
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met the planning criteria for the PTV structures in the repeat CT scans (V95% ≥ 98%
and V107% ≤ 2%). The results of the RPM adaptive treatment plans that are reported
were obtained after a single iteration of adding new spots and applying RPM optim-
ization. In this case 85 out of 88 scans met the PTV criteria. This is a substantial
improvement with respect to the spot-restoration method, for which only 45 repeat
CT scansmet all planning criteria. Of the remaining three scans, twoobtained aV107%
value of the PTV-high between 2% and 2.5% and the other scan obtained a PTV-low
V107% value of 4.1%. After a second iteration of adding new spots and RPM optimiz-
ation, the planning criteria were also met for these three scans.

Table 3.3: Percentages of the 88 dose distributions that meet the target constraints for the PTV
structures for the investigated methods. The RPM adaptive treatment plans are obtained using a
single iteration of adding new spots.

Prior
(%)

Spot-
restoration (%)

RPM
adaptive (%)

Benchmark
(%)

V95% ≥ 98% PTV-high 78.4 97.7 100 100

V95% ≥ 98% PTV-intermediate 95.5 95.5 100 100

V95% ≥ 98% PTV-low 72.7 96.6 100 100

V107% ≤ 2% PTV-high 48.9 88.6 97.7 100

V107% ≤ 2% PTV-intermediate 87.5 96.6 100 100

V107% ≤ 2% PTV-low 1.1 58.0 98.9 100

Dose distributions
meeting all criteria

1.1 51.1 96.6 100

Similar resultswere obtained for the CTV structures (seeTableA.1.1 in appendixA.1).

Results for the OARs

Figure 3.4 shows scatterplots of the dosimetric parameters of the rectumandbladder,
comparing the spot-restorationmethodwith the RPMadaptivemethod. For all scans,
the rectum dose was lower for the RPM adaptive method.

For the bladder mean dose there were six repeat CT scans for which spot-restoration
performed better than RPM adaptive. The maximum difference was 3.4 Gy(RBE),
which could be reduced to 1.1 Gy(RBE) by applying a second iteration of adding spots
followed by RPM optimization.

Compared to the spot-restoration method, the RPM adaptive method reduced the
mean bladder and rectum dose by 6.2 Gy(RBE) and 4.7 Gy(RBE), respectively. The
largest reductionswere obtained for the bladder and rectumV45 Gy(RBE), withmedian
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reductions of 10.3%-point1 and 10.8%-point, respectively and amaximum reduction
of 22%-point.

Figure 3.5 shows boxplots of the differences between the spot-restoration method
and the benchmark and between the RPM adaptive method (one and two iterations)
and the benchmark. The RPM adaptive results were much closer to the benchmark
than the spot-restoration results. In particular, for the high-dose DVH parameters of
the rectum, the RPM adaptivemethod yielded results close to the benchmark. For the
mean dose to the rectum and bladder respectively, the benchmark further reduced
the dosewith 6.7 Gy(RBE) and 9.1 Gy(RBE)with respect to the RPMadaptivemethod.
Small improvements were obtained by adding a second iteration of spot-addition fol-
lowed by another RPM optimization.

Figure 3.4: Scatterplots depicting the differences in dosimetric parameters of the rectum and
bladder between the spot-restoration method and the RPM adaptive method with 1 iteration.
Dots below the line represent plans with lower dose values for the RPM adaptive treatment plans.

1This value provides the absolute difference. For example, if a value increases from 10% to 15%, it is a
relative increase of 50%, but an absolute increase of 5%-point.
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Figure 3.5: Boxplots depicting the differences in dosimetric parameters of the rectum and blad-
der between the spot-restoration method and the benchmark, and between the RPM adaptive
method and the benchmark for 1 and 2 iterations. Differences of zero indicate that the value
is equal to that of the benchmark. Larger differences indicate that the value is larger than the
benchmark value, leaving room for improvement. Both improvements from spot-restored to
RPM adaptive with 1 iteration and from RPM adaptive with 1 iteration to 2 iterations were statist-
ically significant for all dosimetric parameters (Wilcoxon signed-rank test, 5% significance level,
p < 0.01).

Number of energy layers

Table 3.4 shows the mean number of energy layers in the treatment plans. As in the
spot-restorationmethod the number of energy layerswas not constrained, it was sig-
ni icantly higher than in the RPM adaptive method and in the benchmark. Note that
for the RPM adaptive method the maximum number of energy layers was below 180,
although the maximumwas set to 200.

Table 3.4: The number of energy layers (mean and range) for all dose distributions.

Mean Range

Spot-restored 371 323 – 400

RPM adaptive with one iteration 135 82 – 179

RPM adaptive with two iterations 119 79 – 160

Benchmark 72 56 – 84
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Calcula on mes

The calculations were performed on a dual Intel Xeon E5-2690 server. The time
needed for the irst step of the RPM adaptive method, i.e. the spot-restoration, was
on average 7.3 s. The second step including a single spot addition and one RPM op-
timization took on average 1.7 min (1.2 – 2.0). If a second iteration of adding spots
was performed, the total average calculation time of the second step increased to 3.4
min (2.5 – 4.0). In contrast, a benchmark plan took on average 25 min. A detailed
overview of the running time of the different steps is shown in Table 3.5.

Table 3.5: An overview of the running time of every step.

Average time Range

First step
Spot-position restoration with a

fixed #energy layers
7.3 s 5.7 – 9.0

Dose calculation 1.1 min 0.9 – 1.2

Second step
one iteration

Spot addition and dose
computation (1x)

1.1 min 0.7 – 1.4

RPM optimization (1x) 0.6 min 0.5 – 0.8

Second step
two iterations

Spot addition and dose
computation (2x)

2.2 min 1.4 – 2.5

RPM optimization (2x) 1.2 min 1.0 – 1.8

Benchmark
Erasmus-iCycle full multi-criteria

optimization
25 min

3.4 D

In this study we developed and evaluated an automated planning method for near
real-time adaptive IMPT in prostate cancer that accounts for daily density changes
along the pencil-beam paths and shape changes of target and organs at risk. The
method obtained clinically acceptable treatment plans for 85 out of 88 scans after a
single iteration of adding spots, and for all 88 scans after two iterations. Large im-
provements were seen for the rectum and the bladder with respect to a previously
published spot-restoration method ([30], Table 3.2). The average optimization time
was limited to 2.9 or 4.6 min, for one and two iterations, respectively.

Figures 3.4 and 3.5 show that when compared to the spot-restoration method, the
novel RPM adaptive method yields a substantial reduction in doses to the OARs, es-
pecially in the high-dose region of the rectum. This can be explained by the fact that
this method optimizes the spot positions and weights for the daily anatomy, subject
to all objectives that were included in the wishlist. The spot-restoration method on
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the other hand only restores the dose distribution of the initial treatment plan and ig-
nores the new position and shape of the OARs. The use of the RPM also ensures that
a Pareto optimal treatment plan is generated with similar trade-offs to those used in
the prior treatment plan.

Another improvement with respect to our previous spot-restoration method is that
in the RPM adaptive method we restricted the number of possible energy layers to
200. This was done to lower fraction duration, as changing between energy layers
takes time [23]. Higher limits did not further improve the results. Even with the
limit of 200 the number of selected energy layers remainedwell below this limit. The
second iteration of the RPM adaptive method reduced the mean number of energy
layers from 135 to 119. This is due to the spot reduction which is included between
the irst and second iteration. Spots with a low contribution are removed from the
problem as well as energy layers that no longer contribute any spots. In the second
iteration spots can only be added to the remaining existing energy layers.

The results of the benchmark plans show that the adapted treatment plans can be
further improved. The differences between benchmark and RPM adaptive treatment
plans can be explained by the use of resampling in the generation of the benchmark
treatment plan [20]. For the benchmark treatment plan new spot positions and en-
ergies were iteratively added and removed to ind an optimal set of spots. In the RPM
adaptive plan, however, we allowed the addition of only one or two sets of spots in or-
der to restrict optimization time. Using two iterations of adding spots instead of one
resulted in lower doses to OARs, but at the cost of increased optimization times. An-
other explanation of the difference between the benchmark and adapted treatment
plans lies in the use of the reference point. The reference point was taken from the
treatment plan optimized on the planning CT using the large CTV-to-PTVmargins in-
cluding additional spot-margins. This reference point might not be optimal for the
tight margin plan on each of the repeat CT scan. Note, that the benchmark plans uses
lexicographic optimization, which does not need a reference point. A possible im-
provement could be to make another prior plan using small margins, such that the
objective values to determine the reference point are more representative.

The prior plan is also used to generate a set of spots as starting point for the ad-
aptive treatment planning. To account for changes in target shape and position, an
additional spot-margin was used. Together with the spot addition step this yielded
acceptable results. Future research is needed to ind the optimal balance between the
spot-margin and the number of spots added during the adaptive treatment planning.
The ef iciency of the spot addition step could also be improved by aiming new spots
at for example cold spots in the dose distribution of the PTV.
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As the addition of new spots is time-consuming, we also tested the method without
this step, i.e. only performing the spot-restoration with a ixed number of energy
layers, followed by an RPM optimization.

Without adding new spots the treatment plans were often not clinically acceptable
because of hot spots in the PTV. These hot spots re lected an insuf icient spot set by
the RPM optimization. We found that in most cases (>96%) only adding new spots
once was suf icient. This means that in only about 4% of the CT scans a longer op-
timization time is needed. An automatic check can be included to decide whether the
second iteration is needed.

A limitation of the current study is that we did not perform an exhaustive search to
ind the optimal set of parameter values (e.g. the weights and trade-off parameters)
for the proposed method. Because of the limited training set, we took the approach
of minimally changing the parameters, while obtaining clinically acceptable results.
Future research will focus on the optimization of the parameters in terms of plan
quality and optimization speed. Furthermore, it should be noted that even though
with these parameters acceptable results were obtained for this dataset, there is no
guarantee that they will work for other sets.

The method proposed in this study assumes that manual or automatic delineations
are available for all repeat CT scans. For the method to be used for adaptive proton
therapy, thiswouldmean that delineationswould have to be obtainedwithin seconds
after the daily CT scan has been acquired. As manually delineating all organs can be
time consuming, in practice this will only be possible with automated delineations.
Work has been done in this area, amongst others by [31]. Using a fast and automatic
deformable image registration (DIR) method, automatic delineations could be gen-
erated within 13 s with a success rate of about 80%. The deformation ield of the
DIR could also be used to adapt the spot positions after the WEPL correction to the
new anatomy. A disadvantage of this approach is that the dose proximal to the Bragg
peak (at the plateau region) will also be displaced, which may not be optimal for the
proximally located target volumes and/or OARs.

The method in this study assumes that daily CT images are obtained. It should how-
ever be noted that most daily imaging is done using cone beam CT. Thus far these
images are mostly used in photon therapy as setup correction, veri ication or plan-
library selection. For proton therapy, the quality of the cone beam CT is insuf icient
for accurate dose computation (see e.g. [37]). To enable online adaptation, various
proton therapy centers, have installed an in-room CT scanner for this purpose. In the
future, improved cone beam CT reconstruction algorithms may overcome the hurdle
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of dose computation. In case of absence of a CT scanner, a two-step approach is pro-
posed by Veiga et al. [38], where the planning CT scan is deformed using DIR to the
CBCT scan. The dose computation is then performed on the deformed CT scan.

To account for both the intra-fractionmotion and the uncertainty in the auto-
segmentation, the high-dose CTV (prostate) and low-dose CTV (lymph nodes and
seminal vesicles) in each CT scan were expanded with a tight margin. In this study
we used a 2mmmargin for the high-dose CTV and a 3.5 mmmargin for the low-dose
CTV.Whether thesemargins are suf icient needs to be further investigated. Note that
the selected values for themargins do not affect the results of themethod, as the same
values were taken into account in all steps of the method. To account for range un-
certainties, equation (3.2) could be modeled using robust objectives fi . By including
robustness into the optimization we could also account for the intra-fractionmotion,
decreasing the need of CTV-PTV margins. Future research is required to see if this
would give better dosimetric results than using a margin and to what extent it would
impact optimization time.

Due to the time constraints a physical quality assurance (QA) of the RPM adapted
plan cannot be performed prior to delivery. Alternatively, various QA methods can
be combined to achieve an equivalent safety level. One is to perform an independent
dose calculation of the adapted plan prior to delivery. By using a different dose al-
gorithm, possible failures can be detected. During the fraction, dose delivery can be
checked by measuring prompt-gamma emission pro iles and comparing these to the
pro iles derived from the planning CT scan [39]. Another possibility is to recalculate
the dose distribution after the treatment fraction, based on the log- ile information
of the proton therapy delivery system. The information obtainedwith thesemethods
can then be used to improve the adaptation for the next treatment fraction.

The current time to run the RPM adaptive method is about 3 min on average when
applying one iteration of adding spots, including all calculations for the new dose
deposition matrices. Though this might not be suitable for online-adaptive proton
therapy yet, it is already a great improvement compared to the time it took to generate
the benchmark treatment plan (25 min on average).

Most time is consumed in the addition of new spots and the recalculation of the dose
matrices. This recalculation is irst done after the spot-restoration step, taking on av-
erage 1.1min. In the adaptation step the addition of 2500 spots and the calculation of
the dose deposition matrices of these spots again takes 1.1 min on average. The op-
timization time took only 37 s. Therefore future work should focus on making dose
calculation faster. This can be done by making dose calculations algorithms faster,
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using faster computer hardware, or both. Various groups are working on dose cal-
culation algorithms including both pencil-beam algorithms and Monte Carlo, which
are faster than the ‘Astroid’ dose engine [21] used in our study. An example is the
work of Silva et al. [40, 41], in which an analytical dose engine running on a GPU is
described. They reported dose calculation times of less than half a second for the
treatment of a skull base tumor. Other groups, amongst others [42] and [43], work
on fast GPU-based Monte Carlo dose engines. They reported processing times in the
order of seconds per million particles, while obtaining dosimetric results similar to
those of CPU-based simulations.

3.5 C

IMPT treatment plans can be re-optimized for new daily anatomies by performing
an automated adaptation method consisting of a WEPL correction of the spots, fol-
lowed by a combination of adding new spots and doing a spot-weight optimization.
The high acceptance rate, speed, and automation of the adaptive planning method
demonstrates the feasibility of daily adapted treatment plans thatmaximally conform
the dose to the target.

3.6 A

The CT-data with contours were collected at Haukeland University Hospital, Bergen,
Norway andwere provided to us by responsible oncologist Svein IngeHelle and phys-
icist Liv Bolstad Hysing.

This study was inancially supported by ZonMw, the Netherlands Organization for
Health Research and Development, grant number 104003012 and by Varian Medical
Systems. Erasmus MC Cancer Institute also has research collaborations with Elekta
AB, Stockholm, Sweden and Accuray Inc., Sunnyvale, USA.
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Abstract

Purpose: Intensity-modulated proton therapy is sensitive to inter-fraction variations,

including density changes along the pencil-beam paths and variations in organ shape

and location. Large day-to-day variations are seen for cervical cancer patients. The

purpose of this study was to develop and evaluate a novel method for online selection

of a plan from a patient-specific library of prior plans for different anatomies, and ad-

apt it for the daily anatomy.

Methods and materials: The patient-specific library of prior plans accounting for

altered target geometries was generated using a pretreatment established target mo-

tion model. Each fraction, the best fitting prior plan was selected. This prior plan was

adapted using (1) a restoration of spot-positions (Bragg peaks) by adapting the ener-

gies to the new water equivalent path lengths; and (2) a spot addition to fully cover the

target of the day, followed by a fast optimization of the spot-weights with the reference

point method (RPM) to obtain a Pareto-optimal plan for the daily anatomy. Spot ad-

dition and spot-weight optimization could be repeated iteratively. The patient cohort

consisted of six patients with in total 23 repeat CT scans with a prescribed dose of 45

Gy(RBE) to the primary tumor and the nodal CTV. Using a 1-plan-library (one prior

plan based on all motion in the motion model) was compared to choosing from a 2-

plan-library (two prior plans based on part of the motion).

Results: Applying the prior-plan adaptation method with one iteration of adding spots

resulted in clinically acceptable target coverage (V95% ≥ 95% and V107% ≤ 2%) for 37/46

plans using the 1-plan-library and 41/46 plans for the 2-plan-library. When adding

spots twice, the 2-plan-library approach could obtain acceptable coverage for all scans,

while the 1-plan-library approach showed V107% > 2% for 3/46 plans. Similar OAR res-

ults were obtained.

Conclusion: The automated prior-plan adaptation method can successfully adapt for

the large day-today variations observed in cervical cancer patients.
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4.1 I

Highly localized dose deposition is possible in intensity-modulated proton therapy
(IMPT) using the characteristic Bragg peak. At the same time, this treatmentmodality
is sensitive to inter-fraction variations, including density changes along the pencil-
beam paths and variations in organ shape and location [1, 2].

Large day-to-day variations canbe seen in the shape andposition of the cervix-uterus,
mostly due to changes in illing of bladder, rectum and sigmoid. Displacements of the
tip of the uterus of more than 3 cm between an empty-bladder and a full-bladder
anatomy are common. In photon beam radiotherapy, a plan-of-the-day approach has
been clinically implemented in several centers, inwhich a daily image is used to select
the best itting treatment plan from a plan-library [15, 16].

For cervical cancer IMPT, such an approach has been investigated by Schoot et al.
[11]. The cervix-uterus positions of a full- and empty-bladder CT scan were used to
create an internal target volume (ITV) encompassing all possible positions. This ITV
wasdivided into subITVswithwhich apatient speci ic plan-librarywas generated. All
library plans were robustly optimized using 8mm setup errors and 3% range errors.
For each simulated fraction, the library plan encompassing the daily CTV was selec-
ted, and recalculated on the daily anatomy without further (re-)optimization. Des-
pite the generous robustness settings, the selected plan resulted in inadequate CTV
coverage in about 10% of the repeat CT scans, due to ‘substantial deviating anatomy
compared to the pretreatment derived full range ITV’ [11]. This shows that when
the daily anatomy greatly deviates from the pretreatment observed motion, using a
plan-library with robust treatment plans is insuf icient to guarantee target coverage.

In this study we therefore propose to automatically adapt the treatment plan that is
selected from the plan-library using our automated plan adaptation method devel-
oped for prostate cancer in previous work [44]. In this proposed prior plan strategy,
the plan selected from a library of prior plans is adapted by an energy adaptation of
the pencil-beams, followed by adding spots and a weight optimization using the ref-
erence point method (RPM) using automatically tuned RPM-parameters. Outcomes
were compared to forward dose calculation of the prior plans on the repeat CT scans
(no replanning), and to full, time-consumingmulti-criteria optimizations for the daily
scans (benchmark). To investigate the effect of using a prior plan as a warm-start for
optimization, outcomes were also compared to a time-constrained non-prior- plan
strategy in which a new plan is generated from scratch for the daily scans.
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4.2 M M

Pa ent data

This study included data of six patients with locally advanced cervical cancer selec-
ted from an institutional review board approved prospective study designed to in-
vestigate inter-fraction motion in cervical cancer patients. For each patient, a full-
and empty-bladder CT scan was acquired pretreatment as well as four weekly repeat
CT scans, resulting in a total of 23 repeat CT scans. More detailed background of the
patient data can be found in the Supplementary Materials (Appendix A.2).

Treatment planning volumes and prescrip on

The goal was to obtain clinically acceptable daily treatment plans for the repeat CT
scans. In the foreseen online-adaptive work low, we assume that the structures are
daily segmented automatically orwithminimal user interaction. To account for intra-
fraction uncertainties and inevitable uncertainties in the structure segmentation of
the adaptive work low, the daily targets were expanded with a margin: a PTVOAPT
(PTVOnline-Adaptive Proton Therapy)was created by adding a 5mmmargin around
the primal CTV and a 2 mm margin around the nodal CTV [45, 46]. Prescribed dose
to the PTVOAPT was set to 45 Gy(RBE), using an RBE of 1.1, which was delivered by
four beams (0°, 90°, 180°and 270°).

The automated adap ve treatment planning method

The proposed strategy starts by selecting the best prior plan from a plan-library. The
spot-positions are then restored by adapting the energy of each spot to the new wa-
ter equivalent path length (WEPL). To adapt for changes in shape and location of the
target, 3000 new spots are added prior to the optimization with the RPM. The com-
bination of the spot addition and spot-weight optimization can be repeated. In this
study, we evaluated using the spot-position restoration in combination with zero (i.e.
only optimize the restored spots), one and two iterations of adding spots and spot-
weight optimization. Figure A.2.1 in the Supplementary Materials (Appendix A.2),
illustrates the work low of the proposed strategy. A detailed description of this ap-
proach is given in [44]. The two extensions of the existingmethod, namely the library
of prior plans and RPM-parameter tuning, are discussed below.

Plan-library genera on for the prior-plan strategy

Due to potentially large day-to-day variations in the shape and location of the cervix-
uterus, prior plans generated solely on either the full- or empty-bladder CT scan will
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likely result in insuf icient spot coverage for the observed target deformations in the
repeat CT scans. For this reason, an in-house, non-rigid registration was used to de-
rive for each patient a motion model describing the cervix-uterus shape for every
possible bladder volume [15]. Using this pretreatment establishedmotion model we
created a ‘Complete ITV’ including all observedmotion, as well as a ‘Full’ and ‘Empty’
subITV, focusing on parts of the observed motion. The ‘Empty ITV’ ranges from the
cervix-uterus corresponding to the empty-bladder to the cervix-uterus correspond-
ing to a ‘half-full-bladder’ structure and the ‘Full ITV’ ranges from the cervix-uterus
corresponding to this half-full-bladder to the cervix-uterus corresponding to the full-
bladder. Figure A.2.2 in the Supplementary Materials (Appendix A.2) shows an ex-
ample of the three ITV structures in the sagittal view.

We investigated two library types for the prior-plan strategy:

• 1-plan-library: One prior plan, based on the ‘Complete ITV’.

• 2-plan-library: Two prior plans, based on the ‘Full’ and ‘Empty’ subITVs.

All prior treatment plans were generated based on a PTVPrior which encompassed
the Complete ITV or Full/Empty subITV enlarged with a 5 mmmargin and the nodal
CTV enlarged with a 4 mm margin. Anatomical differences not accounted for by the
PTVPrior are expected to be handled by adding new spots during replanning.

The prior treatment plans were generated using ‘Erasmus-iCycle’, our in-house de-
veloped treatment planning system for fully automated plan generation, combined
with the ‘Astroid’ dose engine. The optimization iteratively adds and removes spots
to the target, without time restrictions, see [19–24] and the SupplementaryMaterials
(Appendix A.2) for more details. It is important to note that these prior plans were
not intended as the de initive treatment plan, but serve as a warm-start for daily re-
planning.

Library plan selec on strategies

In the case of a 2-plan-library, a selection had to bemade between the two prior plans
in the library. Traditionally this is done by comparing the bladder volume to a half-
full-bladder structure. In this work we selected based on the daily anatomy and the
restored spot-positions, without assuming the cervix-uterus motion to be linked to
bladder illing. The percentages of the total spots of the library plans that ended up
in the daily target region after spot-position restorationwere compared. If the differ-
ence was more than 1%-point, the plan with the highest percentage was selected as
prior. If not, both plans it the daily anatomy equally well. In that case, the plan with
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the most spots ending up in the daily target region after restoration was selected as
prior.

RPM-parameter tuning

The RPM is used in this study to automatically optimize the spot-weights in a single
optimization. The output is a Pareto-optimal solution, with objective trade-offs in
line with the original (i.e. prior) plan. To get these trade-offs, the required RPM-
parameters were automatically tuned. As the results of the prior-plan adaptation
method might depend on the RPM-parameters, three-fold cross validation was ap-
plied. For each fold, two different patients were used for parameter tuning. The plan-
ning strategies using the found parameters were tested on the other four patients of
each fold. Evaluation was done on all folds simultaneously: i.e., on 46 plans (two
plans for each scan). More information on the RPM, the RPM-parameter tuning and
the individual folds can be found in the Supplementary Materials (Appendix A.2) and
[33–36, 44, 47].

Comparison and evalua on of the methods

In this study, we benchmarked the results of the prior-plan strategy against fully
multi-criteria optimized plans. These benchmark planswere generated for each frac-
tion on the PTVOAPT with the same approach as was used for the prior plans (above).

Besides the time-consuming full multi-criteria benchmark optimization, we investig-
ated a replanning strategy that does not require a prior plan. New spots are placed in
the target region, which are then optimized using the RPM. Two approaches for the
non-prior-plan strategy were investigated:

• New-Spots-E3: New spots were positioned in a regular grid, using a 5 mm lat-
eral spacing and an energy spacing three times the longitudinal width of the
Bragg peak (at 80% of the peak height).

• Sampled-New-Spots-3x: New spots were iteratively added as was done for the
benchmark andprior plans. To limit the calculation times, the optimizationwas
stopped after three iterations.

We compared the prior-plan strategy to the non-prior-plan strategy to see whether
the use of a prior plan as a warm-start is bene icial for either plan quality or calcu-
lation time. More details on the non-prior-plan strategy approaches can be found in
the Supplementary Materials (Appendix A.2). Other strategies, energy spacings and
number of iterations are also reported there.
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Table 4.1 gives an overview of the differentmethodswhichwere included in the eval-
uation.

For each repeat CT scan, the dosedistributions of all strategies (forward calculation of
the prior, prior-plan strategy, non-prior-plan strategy and benchmark) were checked
to see whether they ful illed the planning criteria (V95% ≥ 95% and V107% ≤ 2%) for
the PTVOAPT. In addition, all dose distributions were visually checked for hotspots
inside and outside the target volumes.

For the PTV, we report the V95% and V107%. For rectum, bladder and bowelbag, we
report the V30 Gy(RBE), Dmean and Dmax. For the sigmoid, femoral heads and whole
body (patient) we report the Dmax.

All calculations were performed on a dual Intel Xeon E5-2690 server.

Table 4.1: Overview of the different treatment plans that are compared.

Method Explanation
No replanning: Prior treatment plan selected from a plan-library,

Forward dose calculation
of prior plan on daily CT

recalculated for each aligned repeat CT scan as if
it would have been delivered to that scan. Note
that as these prior plans were not intended for
treatment, the results are only shown to illustrate
that replanning is required.

1-plan-library/2-plan-library: Prior treatment plan selected from a plan-library,
Prior-plan strategy adapted for each repeat CT scan by an energy

layer constrained WEPL correction followed by
zero, one or two (0x, 1x, 2x) iterations of spot ad-
dition (adding 3000 spots per iteration) and RPM
optimization.

Sampled-New-Spots-3x/New-
Spots-E3:

Treatment plan generated by placing only new
spots in the target region and using the RPM to

Non-prior-plan strategy optimize the spot intensities on the PTVOAPT for
each repeat CT scan. Spots were either positioned
in a regular grid, or randomly selected from a very
fine regular grid using a limited number of itera-
tions.

Benchmark Treatment plan optimized from scratch using
Erasmus-iCycle on the PTVOAPT for each repeat
CT scan. Currently the best achievable plan if no
time constraints would apply. This plan was in-
cluded as a benchmark of obtainable plan quality.
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4.3 R

Results for the targets

All prior plans achieved the V95% and V107% requirements for the respective PTVPrior
volumes. Table 4.2 shows for each treatment strategy the number of plans that met
the target demands. It can be seen that forward calculation of the prior plans, i.e.,
without replanning, always resulted in inadequate target coverage. Replanning using
the prior-plan approaches without the addition of new spots (0x) achieved suf icient
V95% values, but too high V107% values. Adding spots once (1x) yielded acceptable
target coverage for more than 80% of the plans. Acceptable coverage was only ob-
tained for all plans with the 2-plan-library-2x approach.

For the non-prior-plan strategy, Table 4.2 shows that while using a ine regular grid
(New-Spots-E3) always resulted in acceptable target coverage, iteratively sampling
new spots (Sampled-New-Spots-3x) achieved the demands in only 84% of the plans.

Table 4.2: For each treatment strategy, the number of plans that meet the prescribed target de-
mands.

V95% ≥ 95% &
V107% ≤ 2%

Calculation times (min.)
mean (min – max)

1-plan-library No replanning 0/46 –

2-plan-library No replanning 0/46 –

1-plan-library-0x 2/46 1.9 (1.6 – 2.4)

2-plan-library-0x 0/46 2.1 (1.7 – 2.5)

1-plan-library-1x 37/46 4.2 (3.2 – 5.2)

2-plan-library-1x 41/46 4.2 (3.4 – 5.4)

1-plan-library-2x 43/46 6.4 (5.1 – 8.3)

2-plan-library-2x 46/46 6.6 (5.3 – 8.4)

Sampled-New-Spots-3x 39/46 7.1 (5.7 – 8.4)

New-Spots-E3 46/46 40.7 (25.0 – 78.4)

Benchmark 46/46 56.4 (25.3 – 85.1)

Results for the OARs

In Figure 4.1, the OAR results obtained using the 1-plan-library-2x approach and the
2-plan-library-2x approach are compared to the OAR results of the benchmark plans.
The highest prioritized criteria (Dmax) deteriorated less than 5 Gy(RBE) compared
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to the benchmark plans, where some resulted in even lower doses (bowelbag, sig-
moid Dmax). For the 2-plan-library-2x approach, the largest deviation (+14%-point)
was seen for the rectum V30 Gy(RBE); obtaining a value of 63%, where the benchmark
plan had a value of 49%. In Figure 4.2, the OAR results of the best approach of the
prior-plan strategy (2-plan-library-2x) and the two approaches of the non-prior-plan
strategy are compared to benchmark. Similar OAR results were obtained for the 2-
plan-library-2x and the New-Spots-E3 approaches, while the Sampled-New-Spots-3x
approach showed slightly larger deviations from benchmark.

Figure 4.1: Boxplots depicting the OAR differences between the prior-plan strategies with two
iterations of adding spots and benchmark. Results are shown for the prior-plan strategy using
the 1-plan-library approach and the 2-plan-library approach. Negative deviations depict scans
for which the OAR value is lower in the RPM plan than in benchmark. Statistically significant
differences (Wilcoxon signed-rank test, 1% significance level, p < 0.01) are indicated by asterisks.

Calcula on mes

Generating the library of prior plans took on average 1.5 h per plan, including dose
calculation. Table 4.2 shows the total calculation times required for all treatment
strategies, excluding the inal dose calculation. In the prior-plan strategy, the spot-
position restoration step took on average 5.9 seconds (range 4.4 – 7.4) per restored
plan. After restoration, the dose deposition matrix was recalculated in on average
1.2 min (1.0 – 1.4). Without the addition of spots, the RPM spot-weight optimization
took on average 28.0 s (19.7 – 54.8). Adding new spots and calculating their dose
deposition matrices was completed in on average 1.4 min per iteration (0.9 – 2.5).
With the addition of new spots, the average calculation time of the RPM spot-weight
optimization increased to 1 min (0.6 – 1.7) per iteration.
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Figure 4.2: Boxplots depicting the OAR deviations from benchmark for the best prior-plan
strategy approach and the non-prior-plan strategy approaches. The prior-plan strategy is shown
using the 2-plan-library-2x approach, the non-prior strategy is shown using the Sampled-New-
Spots-3x approach and the New-Spots-E3 approach. Negative deviations depict scans for which
the OAR value is lower in the RPM plan than in benchmark. Statistically significant differences
(Wilcoxon signed-rank test, 1% significance level, p < 0.01) are indicated by asterisks.

4.4 D

In this study, we combined a plan-library approach with a previously developed RPM
adaptive method in a prior-plan strategy. The combination of selecting a prior plan
and adding new pencil-beams could account for density changes along the pencil-
beam paths and large inter-fraction shape changes of targets and OARs. Clinically
acceptable treatment planswere obtained for all planswhenusing the 2-plan-library-
2x approach. One iteration of spot additionwas already suf icient formore than 80%
of the plans.

Plans were considered acceptable if they achieved V95% ≥ 95% and V107% ≤ 2%.
As all discussed strategies were completely automated, these demands were strictly
checked, even though slight deviations might be clinically acceptable. The latter can
be incorporated by automatically notifying the user when the plan is within a pre-
scribed bandwidth of the demands.

Applying the prior treatment plans without replanning resulted in inadequate tar-
get coverage, while in [11], most scans obtained acceptable target coverage. The
differences can be explained by the fact that our prior plans were not intended for
actual dose delivery, but only as a warm-start for daily replanning. For this reason,
no robustness was used in the optimization of the prior plans. In the Supplementary
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Materials (Appendix A.2), we show that robustness against uncertainties in stopping
power prediction can be added at the cost of a limited increase in optimization time.

Comparing the 1-plan-library with the 2-plan-library approaches, Table 4.2 shows
that the 2-plan-library performed slightly better, but the differences in success rate
in terms of target coverage were small. Using a 2-plan-library-2x approach always
resulted in clinically acceptable target coverage. Similar OAR results were obtained
with the 1-plan-library-2x and the 2-plan-library-2x approaches (Figure 4.1).

We showed that a non-prior-plan strategy in which no warm-start is used can result
in clinically acceptable treatment plans when suf icient spots are included. Figure
4.2 and Table 4.2 show that the plans from New-Spots-E3 obtain similar OAR res-
ults as the 2-plan-library-2x approach, while requiring over six times longer calcu-
lation times. This makes this option infeasible for online replanning. Although the
New-Spots-Sampling-3x approach requires similar calculation times as the proposed
prior-planmethodwith two iterations of spot addition, only 39/46 plans ful illed the
target demands (Table 4.2). To obtain good results for all plans would require more
iterations of spot addition, again indicating that without a warm-start (i.e., a non-
prior-plan approach) calculation times increase.

Several approaches of adaptive IMPT have been reported in the literature. An of line
approachwas proposed by Kurz et al., in which a new plan is generated to serve as an
update for the next fraction [48]. One hour was required for deformable image regis-
tration (DIR), optimization and dose calculation. Adaptation reduced over-dosage in
the targets and partially improved OAR sparing. Bernatowicz et al. compared dose
restoration methods using new spots (no prior plan) aiming to restore a given refer-
ence dose distribution [49]. Without restoration less than 45%of the repeat CT scans
achieved adequate target coverage; with restoration this improved to 100%. The dif-
ference is that ourmethod optimizes the dose distribution to the daily anatomy, while
their restoration methods intend to only restore a prior dose distribution. Botas et
al. [50] developed online-adaptation approaches based on cone beam CTs (CBCTs) in
which only spots from the prior plan were used. A spot restoration was applied us-
ing DIR and, if necessary, this was followed by a weight tuning. Applying only a spot
restoration was found to be insuf icient; combined with a weight tuning acceptable
results were obtained. Calculations were done using GPU-based Monte Carlo.

For conventional radiotherapy, the combination of a restoration followed by aweight
optimization was reported by Ahunbay et al. [51]. Segment aperture morphing com-
binedwith segmentweight optimization showed to improve target coverage andOAR
sparing. Adaptation was possible in 10 min. Recently adaptive planning methods
for the MR-Linac have been described by Winkel et al. [52]. Two main categories
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Disclosure statement

of the adaptation methods are described as ’adapt to position’ and ’adapt to shape’.
Our replanning method would belong to the latter. Other centers have implemented
a stereotactic MR guided adaptive work low (SMART) [53–56]. Generating online-
adaptive plans when target and OAR aims were not met resulted in adequate target
coverage and better OAR sparing.

In this study, we decided to ignore the simultaneously integrated boost that is re-
commended in the EMBRACE II protocol. Including the boost would not alter the
work low. If more spots are needed to cover the boost this could slightly increase
the calculation times. For the prior plan selection approach, a threshold of 1%-point
was used for the initial selection criterion. While this setting is admittedly ad hoc,
it demonstrated good results. Also, the proposed replanning methods currently add
3000 new spots to the optimization per iteration, which is the same number as was
used in the optimization of the benchmark and prior plans. It is possible that using a
different number in the replanning could result in acceptable results after fewer iter-
ations. Fewer iterations might also be achieved by using a different beam setup (i.e.,
not 0°, 90°, 180°, and 270°), as other beam setups could be more robust against the
daily anatomical variations. Finally, this proof of principle study was conducted on a
small dataset consisting of six patients. Further investigation based on more data is
necessary.

In conclusion, large day-to-day variations such as seen in cervical cancer radiother-
apy can be accounted for in IMPT by applying a fast and automated prior-plan adapt-
ationmethod. Selecting a prior plan from a plan-library, adapting its pencil-beams to
the newWEPL, adding new spots and optimizing the spot-weights resulted in clinic-
ally acceptable treatment plans on daily anatomies. The use of a library of prior plans
signi icantly reduced the optimization times to obtain clinically acceptable treatment
plans.
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Abstract

Purpose: Intensity-modulated proton therapy (IMPT) is highly sensitive to anatom-

ical variations which can cause inadequate target coverage during treatment. Available

mitigation techniques include robust treatment planning and online-adaptive IMPT.

This study compares a robust planning strategy to two online-adaptive IMPT strategies

to determine the benefit of online adaptation.

Methods and materials: We derived the robustness settings and safety margins needed

to yield adequate target coverage (V95% ≥ 98%) for > 90% of 11 patients in a prostate

cancer cohort (88 repeat CTs). For each patient, we also adapted a non-robust prior

plan using a simple restoration and a full adaptation method. The restoration uses

energy-adaptation followed by a fast spot-intensity re-optimization. The full adapta-

tion uses energy-adaptation followed by the addition of new spots and a range-robust

spot-intensity optimization. Dose was prescribed as 55 Gy(RBE) to the low-dose target

(lymph nodes and seminal vesicles) with a boost to 74 Gy(RBE) to the high-dose target

(prostate). Daily patient set-up was simulated using implanted intra-prostatic mark-

ers.

Results: Margins of 4 and 8 mm around the high- and low-dose target regions, a 6

mm setup error and a 3% range error were found to obtain adequate target coverage

for all repeat CTs of 10/11 patients (94.3% of all 88 repeat CTs). Both online-adaptive

strategies yielded V95% ≥ 98% and better OAR sparing in 11/11 patients. Median OAR

improvements up to 11%-point and 16%-point were observed when moving from ro-

bust planning to respectively restoration and full adaption.

Conclusion: Both full plan adaptation and simple dose restoration can increase OAR

sparing besides better conforming to the target criteria compared to robust treatment

planning.
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5.1 I

Due to its characteristic Bragg Peak, intensity-modulated proton therapy (IMPT) can
deliver dose locally, avoiding low dose baths and improving dose conformality. These
BraggPeakshowever alsomake IMPTsensitive to anatomical variations suchas changes
in density, organ-shape and location [1–3]. Two mitigation strategies accounting for
such uncertainties are robust treatment planning and online-adaptive IMPT. Robust
treatment planning is a passive strategy which preemptively includes errors scen-
arios in the optimization possibly combined with safety margins to account for ana-
tomical variations [7–9]. Conversely, online-adaptive IMPT is an active strategy tak-
ing the optimized plan and adapting it to better it the daily anatomy and undo the
effects of density variations prior to each fraction [30, 44, 48–50, 57, 58].

Making a treatment planmore robust inevitably results in increased doses to healthy
tissues [10]. Conversely, online-adaptive planning aims at maintaining an adequate
target volume coverage, while minimizing the dose to the organs at risk (OARs) for
each fraction. In previous work, we developed online-adaptive treatment planning
methods which are feasible for clinical implementation. Starting with the develop-
ment of a dose restorationmethod [30], we could restore the initial dose distribution
from a dose distribution distorted due to differences in density. Subsequently, we
extended this into a full, but suf iciently fast, automated plan adaptation method to
adapt the plan to the daily shape and position of the target volume and OARs [44,
57]. We demonstrated that both methods can achieve acceptable target coverage
for (most of) the fractions and simultaneously yield OAR doses close to what can be
achieved with a fully optimized treatment plan generated without time constraints
[30, 44, 57].

So far, however, the proposed adaptive treatments have not been compared to non-
adaptive treatments for which robust treatment planning is used to mitigate uncer-
tainties in the daily patient anatomy. Such a comparison is complex, because although
individual uncertainties such as intra-fractionmotion andpositioning variationshave
been described in literature, information on how to combine these in robustness
settings and safety margins in robust optimization is still lacking. A comparison is
nevertheless recommendable to establish the value of online-adaptive treatment ap-
proaches and to determine whether the bene its outweigh the costs.

In this work, we therefore evaluated the dosimetric bene it of the two developed
methods for online-adaptive IMPT by comparing them to a robust treatment plan-
ning approach. To this end, we irst derived the robustness settings and magnitude
of the safetymargins needed to yield adequate target volume coverage in a set of pro-
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state cancer patients with repeat CT scans. Secondly, for each fraction we compared
the online-adaptive approaches to the recomputed robust treatment plans in terms
of target coverage and OAR dose.

5.2 M M

Pa ent data

This study included data of 11 prostate cancer patients, with 8-10 available repeat
CT scans per patient selected from a phase II dose-escalation trial approved by the
western Norway regional committee for medical and health research ethics (2006-
15727). The original planning CT scanswere excluded, as thesewere generated using
contrast luid, making dose calculation inaccurate. Taking instead the irst repeat CT
scan as planning CT scan (pCT), 88 repeat CT scans (rCTs) remained for evaluation.
From here on, pCT refers to the irst repeat CT scan being used as planning CT.

Treatment planning volumes and prescrip on

Dose was prescribed according to a simultaneously-integrated boost scheme com-
prising a high-dose region of 74 Gy(RBE) and a low-dose region of 55 Gy(RBE), to be
delivered in 37 fractions, using an RBE of 1.1. An intermediate target dose-region,
generated as the 15 mm transition between the high- and low-dose regions, was as-
signed a dose between 55 and 74 Gy(RBE) to steer dose fall-off. On each scan two
clinical target volumes (CTVs) were delineated. For the high-dose region, a CTVHigh
was de ined as the prostate, a CTVLow was de ined for the low-dose region as the
lymph nodes and seminal vesicles. From here on we will denote the combination of
the CTVHigh and the CTVLow as CTV. The rectum, bladder, small and large intestines,
and the femoral headswere de ined as OARs. Target delineationswere available in all
rCTs, OAR delineations in most. For scans missing the delineations of the intestines
or femoral heads the pCT delineations were projected onto the rCT. Dose was to be
delivered with two laterally opposed beams.

All rCTs were aligned to the corresponding pCT by a translation based on implanted
intra-prostatic markers.

Both adaptation strategies require a prior treatment plan generated on the pCT to
start the adaptation. These prior plans were generated using the PTVPrior structures,
which were generated by enlarging the CTVHigh of the pCT by 7 mm, and the CTVLow
by 10 mm. Relatively large margins were selected to ensure suf icient spot coverage
for most target deformations seen in the rCTs, as was done in previous work [44].
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Mi ga on strategies

Three mitigation strategies were compared in this study, all aiming for a clinically
acceptable dose in all treatment fractions.

• Strategy A – Robust treatment planning: On each pCT a robust treatment plan
was generated. To account for internal organ motion with respect to the daily
alignment on the markers, targets were expanded by safety margins creating
internal target volumes (ITVs). Subsequently, robust optimization was applied
using the ‘minimax’ worst-case approach [7–9], including range robustness to
account for uncertainties in the conversion from Houns ield units to proton
stopping power and including setup robustness to account for patient shifts
relative to the daily alignment. Nine error scenarios were optimized simultan-
eously (nominal, ±setup, ±range). We derived the robustness settings andmag-
nitude of the safety margins required for this dataset to ensure adequate cov-
erage in all target regions of all rCTs for at least 90% of the patients. This was
done by systematically increasing themargins (0 – 8mm in steps of 2 mm) and
the setup error (2 – 8 mm in steps of 2 mm), while evaluating the effect on the
rCTs. The range error, related to uncertainties in the stopping power predic-
tion, was ixed at 3%. For more details see appendix A.3. CTV coverage of the
rCTs was evaluated by a forward dose calculation of the robust treatment plan
on each rCT.

• Strategy B – Plan restoration: For each rCT the dose distribution of the prior
treatment plan, optimized on the pCT, was restored. This was done using the
delineations of the pCT projected onto the rCT. The restoration method uses
energy-adaptation followedby a fast spot-intensity re-optimization focusing on
the targets. Details on this method can be found in [30]. Evaluation was done
on the CTV structures of the rCTs.

• Strategy C – Full plan adaptation: For each rCT, the prior plan optimized on
the pCT was used as a warm-start for adaptation. The method starts with an
energy-adaptation, followed by adding 2500 new spots and a spot-intensity op-
timization using the reference point method (RPM). To account for uncertain-
ties in stopping power prediction the optimization is robust to a ± 3% range.
Adaptation is done based on the available contours in the rCTs. To account for
inevitable segmentation errors as well as intra-fraction motion uncertainties,
the CTV contourswere expanded by smallmargins creating PTVOAPT structures
(Online-Adaptive Proton Therapy). Aswas done in previouswork, a 2mmmar-
gin was added around the CTVHigh of the rCT and a 3.5 mm margin was added
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around the CTVLow [44]. Parameter tuning for this strategy was done using
three-fold cross validation, where one third of the patients (selected randomly)
was used for tuning and the remaining two thirds for testing. Evaluation was
done on all folds simultaneously, i.e. 176 plans (two per scan). A brief explan-
ation of the RPM and the tuning is shown in appendices A.5 and A.6. Details on
the full adaptation method can be found in [44, 57]. Evaluation was done on
the PTVOAPT structures of the rCTs.

Note that evaluation of the three strategies is done on different target de initions,
i.e. the daily CTVs for robust planning (A) and simple dose restoration (B) and the
PTVOAPT for full plan adaptation (C). This was done to include segmentation errors
that are inevitable in an online-adaptive approach, thereby avoiding a too optimistic
evaluation for strategy C.

The prior and robust treatment plans were generated using our in-house developed
multi-criteria treatment planning system ‘Erasmus-iCycle’ combined with the ‘As-
troid’ dose engine. All planswere optimized to obtain clinically acceptable target cov-
erage de ined as V95% ≥ 98% while simultaneously aiming for V107% ≤ 2% for their
respective PTV and ITV. Here V95% and V107% are the percentages of the volumes re-
ceiving respectively 95% and 107% of the prescribed dose. Dose to the OARs was
minimized according to the objectives shown in Table A.4.1 in the appendices. More
details can be found in [19–24].

Figure 5.1 summarizes the compared methods.

Comparison and evalua on of the methods

For each rCT, the dose distributions obtained with the three strategies were checked
visually andwhether they ful illed the targets planning criteria. We report the targets
V95%, V107% and V110%. In case of hotspots we also report the D2% and Dmax. For
the rectum, we report the V75 Gy(RBE), V60 Gy(RBE), V45 Gy(RBE), Dmean and D2% and for
the bladder the V65 Gy(RBE), V45 Gy(RBE), Dmean and D2%. For the whole body (patient)
we report the V10 Gy(RBE) and D2%. Here Vx Gy(RBE) is the percentage of the volume
receiving x Gy(RBE), Dmean is the average dose and Dmax is the maximum dose.

All calculations were performed on a dual Intel Xeon E5-2690 server.

Sta s cal analysis

Wilcoxon signed-rank testswereperformedusingMATLAB(Mathworksversion
2017a) to evaluate the differences between the strategies. A p-value < 0.05 was con-
sidered to be statistically signi icant.
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Figure 5.1: Summary of the compared strategies.

5.3 R

For robust treatment planning (A), expanding the CTVHigh and CTVLow with a 4 mm
and 8 mm safety margin, respectively and applying a range error of 3% and a setup
error of 6 mm to the targets during robust optimization yielded adequate target cov-
erage (V95% ≥ 98% for all target regions) for all rCTs in 10/11 patients. The other
patient had 98% > V95% ≥ 95.5% for the CTVLow for 3/8 rCTs.

Applying the robust treatment plans on the rCTs resulted in a population-meanV107%
of the CTVLow of 44.8% (19.5% – 60.9%) and a population-mean V110% of 19.9%
(5.6% – 37.6%). D2% values up to 65.8 Gy(RBE) and Dmax values up to 75.1 Gy(RBE)
were obtained (respectively 119.6% and 136.5% of 55 Gy(RBE)). These high values
are due to the proximity of the ITVHigh and ITVLow, as during robust optimization
the dose in the ITVLow is increased to achieve adequate ITVHigh coverage in the error
scenarios.
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For the CTVHigh all scans obtained V107% ≤ 2% and V110% = 0%. No combination of
margins and robustnesswas found obtaining suf icient coverage for all target regions
for all rCTs of all patients.

Applying plan restoration (B) yielded V95% ≥ 98% for all scans. For the CTVHigh
all scans obtained V107% ≤ 2%, but for the CTVLow 21/88 scans obtained V107% >
2%, with values up to 3.7%. D2% values up to 59.6 Gy(RBE) and Dmax values up to
71.7 Gy(RBE)were obtained (respectively 108.4%and 130.4%of 55Gy(RBE)). All 88
scans obtained V110% = 0% for the CTVHigh, but 0% < V110% < 1.6% for the CTVLow.

Applying the full plan adaptationmethod (C) yielded V95% ≥ 98% for all plans for the
PTVOAPT_High and PTVOAPT_Low. For the PTVOAPT_High 54/176 plans obtained V107%
> 2% (up to 37.3%) and 9/176 plans V110% > 0% (up to 15.2%). D2% values up to
84.0 Gy(RBE) and Dmax values up to 85.3 Gy(RBE) (respectively 113.5% and 115.3%
of 74 Gy(RBE)) were obtained. For the PTVOAPT_Low 20/176 plans obtained V107%
> 2% (up to 13.7%), with D2% and Dmax values up to 59.9 Gy(RBE) (108.9% of 55
Gy(RBE)). All plans obtained V110% = 0%.

In terms of OAR sparing the adaptive strategies (B and C) outperformed strategy A
for all patients. Figure 5.2 shows boxplots depicting the obtained OAR values for the
three strategies. Largest differences between the strategies were observed for the
V45 Gy(RBE) of both rectum and bladder. For the rectum the median value improved
with 11.1%-point when moving from robust treatment planning to plan restoration
(A to B) and 16.3%-point when moving to full plan adaptation (A to C). For the blad-
der these improvements were respectively 6.9%-point and 9.9%-point. For the high
dose criteria (V75 Gy(RBE), D2% and Dmax) smaller differences between the strategies
were observed. For all evaluation criteria of the OARs the differences between robust
treatment planning (A) and plan restoration (B), as well as the differences between
plan restoration (B) and full plan adaptation (C) were statistically signi icant.

Figure 5.3 shows an example of a slice of the dose distributions obtained for one of
the rCTs using the three different strategies. It can be seen that the high-dose region
is largest for robust treatment planning (A) and smallest for plan adaptation (C).

Plan restoration (B) took on average 1.7 minutes (1.4 – 2.1) and full plan adapta-
tion (C) took on average 6.6 minutes (5.0 – 9.8). These times include the adaptation
steps and intermediate dose calculations, but exclude initialization and inal dose cal-
culation, thus re lecting the additional time required compared to recalculation of a
static plan on the rCT (strategy A). For both methods, the initialization consumed on
average 1 minute. The inal dose calculation takes on average 3.9 minutes for plan
restoration (2.1 – 5.5) and 7.0 minutes for full adaptation (3.1 – 11.3).
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Figure 5.2: Boxplots depicting the obtained dosimetric parameter values for the three strategies.

A – Robust Plan B – Restored Plan C – Fully Adapted Plan

Figure 5.3: An example of the dose distributions obtained using the different strategies for one
repeat CT scan. The red contour indicates the daily CTVHigh.

5.4 D

In this study, robust treatment planning combined with safety margins (A) was com-
pared to two adaptive strategies (B and C). Plan restoration and full plan adaptation
both achieved V95% ≥ 98% for all rCTs, while robust treatment planning did notmeet
this criteria for one patient. Applying adaptive treatment planning always resulted in
lowerOARdoses than robust treatment planning, with largestmedian improvements
observed for the rectum (up to 16.3%-point). Several studies have shown OAR dose
to be correlated to toxicity [59], so lowering these with online-adaptive IMPT can
potentially reduce the expected toxicities compared to a strategy that fully relies on
robust treatment planning.

For the robust treatment planning approach we derived required margins and ro-
bustness settings to achieve adequate target coverage for all rCTs in at least 90% of
the patients. We obtained ive combinations of margins and robustness settings all
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yielding adequate target coverage for all rCTs of 10/11 patients. For this study, we se-
lected the combination with the smallest margins and robustness settings. It should
be noted that these settings are speci ic to the investigated dataset and the number
of robustness scenarios and have not been validated on other datasets. The observed
bene it of adaptive planning likely depends on the dataset and robustness settings
that are used.

In this study both targets were robustly optimized using the same values for setup
and range robustness to stay close to clinical practice. More research is needed to de-
termine whether OAR doses could be reduced by applying target-speci ic robustness
settings. The effect of fractionation has not been considered in this study. Fraction-
ation can potentially average out underdosage or overdosage in the target volume.
Hence, the evaluation criteria applied in this study for the three strategies might be
too conservative. However, while uncertainties in photon radiotherapy mostly result
in dose deviations around the target-edges, IMPT can result in underdosage in the
center of the target. Whether an underdosage in the center of the target volume can
be effectively compensated by an overdosage in another fraction is unclear. Besides
this, treatments are increasingly delivered in fewer fractions reducing the averaging
effect [60].

For the adaptation methods prior plans including large margins were used, as these
have shown to be effective in previous work [44]. Changing these prior margins and
changing the PTVOAPT margins may in luence the observed gain of adaptive plan-
ning. Furthermore, due to the used optimizationmethod, the plans obtained through
simple dose restoration are not explicitlymade robust against range errors caused by
uncertainties in stopping power prediction. While setup errors should be negligible
in the daily adaptive work low, range errors arising from Houns ield Unit to proton
stopping power conversion remain present. For full plan adaptation, we have there-
fore included range robustness in the spot-weight optimization. The tuning of the
RPM-parameters however has been done without including range robustness. This
could be an explanation for the elevated V107% values obtainedwith full plan adapta-
tion. Including range robustness in the tuning could possibly reduce these, although
from a clinical perspective these values are acceptable.

In this study the three methods have been compared for a dataset of high-risk pro-
state cancer patients. This treatment group is interesting for online-adaptive plan-
ning due to the challenges which are related to the size of the target volume, its loca-
tion in the pelvic region, and the differential motion between the low-dose and high-
dose target volumes. Investigating the bene it of online-adaptive planning in other
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treatment sites such as head and neck cancer and locally advanced cervical cancer
and lung cancer is part of ongoing and future research.

All treatment plans were made using two laterally opposed beams. While more com-
plex beam geometries might improve all three methods, inding such a geometry re-
quires further research. For allmethods theCTswere alignedbasedon intra-prostatic
markers. This approachmaydiffer between centres. The accuracyof alignmentmight
in luence the required setup robustness andmargins. However, as the alignmentwas
the same for all methods, no effect on the comparison is expected.

Intra-fraction variations have not been addressed in this study. However, we included
a small margin (2.0/3.5 mm) to account for the extra intra-fractional motion poten-
tially occurring between the start of the full adaptation and beam delivery and to
account for segmentation uncertainties. Intra-fraction motion during beam deliv-
ery was ignored for all three methods, but could easily be included by expanding the
PTV or ITV or increasing robustness. Whether the included margins are suf icient or
whether larger margins or more robustness is required was outside the scope of this
study and should be investigated before clinical implementation.

General challenges of introducing online-adaptive IMPT into the clinic include ad-
aptation time, user interaction time, the need for daily delineations and plan quality
assurance (QA). Considering the adaptation time, the fully automated process now
takes on average 2.9minutes for dose restoration, and 7.5minutes for full adaptation.
As anatomical variations could occur during this time span, calculation times should
be further reduced. The intermediate dose calculations are themost time consuming.
Dose calculation time can be shortened considerably for example by parallelization
and running the calculations on a GPU, as shown by Silva et al. [40, 41] and Matter et
al. [58]. This was however outside the scope of this study. Regarding the user inter-
action time, as both investigated adaptive strategies are fully automated, user inter-
action is only required once in advance to tune the parameters for an entire patient
population, and once prior to each fraction to verify and approve the adaptation. The
latter can be automated aswell by automatically computing relevant dosimetric para-
meter values of the adapted plan and checking these against prede ined limits. Prior
to adaptation however the delineations of the rCT should be generated. When done
manually, this step requires time-consuming user interaction. This can be largely
avoided by (partly) generating the daily delineations automatically. For prostate can-
cer patients, an auto-propagationmethod combining deep-learning with deformable
image registration has for example been developed with which already 80% of the
automatically propagated pCT contours onto the rCT could be used without manual
corrections [61]. Without deep-learning, contour propagation was used in for ex-
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that daily delineations are only needed for full plan adaptation, as plan restoration
uses the pCT contours. Another challenge lies in daily plan QA, for which little to no
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Abstract

Purpose: To develop and validate a robust and accurate registration pipeline for auto-

matic contour propagation for online-adaptive intensity-modulated proton therapy

(IMPT) of prostate cancer using elastix software and deep learning.

Methods and materials: A 3D convolutional neural network was trained for automatic

bladder segmentation of the CT scans. The automatic bladder segmentation alongside

the CT scan are jointly optimized to add explicit knowledge about the underlying ana-

tomy to the registration algorithm. We included three datasets from different institutes

and CT manufacturers. The first was used for training and testing the ConvNet, where

the second and the third were used for evaluation of the proposed pipeline. The system

performance was quantified geometrically using the dice similarity coefficient (DSC),

the mean surface distance (MSD), and the 95% Hausdorff distance (HD). The propag-

ated contours were validated clinically through generating the associated IMPT plans

and compare it with the IMPT plans based on the manual delineations. Propagated

contours were considered clinically acceptable if their treatment plans met the dosi-

metric coverage constraints on the manual contours.

Results: The bladder segmentation network achieved a DSC of 88% and 82% on the test

datasets. The proposed registration pipeline achieved a MSD of 1.29±0.39, 1.48±1.16,

and 1.49±0.44 mm for the prostate, seminal vesicles, and lymph nodes, respectively on

the second dataset and a MSD of 2.31± 1.92 and 1.76± 1.39 mm for the prostate and

seminal vesicles on the third dataset. The automatically propagated contours met the

dose coverage constraints in 86%, 91%, and 99% of the cases for the prostate, seminal

vesicles, and lymph nodes, respectively. A conservative success rate (CSR) of 80% was

obtained, compared to 65% when only using intensity-based registration.

Conclusion: The proposed registration pipeline obtained highly promising results for

generating treatment plans adapted to the daily anatomy. With 80% of the automatic-

ally generated treatment plans directly usable without manual correction, a substantial

improvement in system robustness was reached compared to a previous approach. The

proposed method therefore facilitates more precise proton therapy of prostate cancer,

potentially leading to fewer treatment related adverse side effects.
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6.1 I

Prostate cancer is one of the leading causes of mortality and the most common can-
cer among men. The National Cancer Society (NCS) estimates around 164,690 new
cases and 24,430 deaths from prostate cancer in the United States only for 2018
[65]. Due to its slow progress, individuals could develop prostate cancer for many
years without explicit signs. There are treatment options for prostate cancer includ-
ing surgical removal of the prostate, hormone therapy, and radiotherapy. Intensity-
modulated proton therapy (IMPT) is able to deliver a highly localized dose distri-
bution to the target volume, while minimizing collateral damage to the surrounding
healthy tissues [66]. IMPT is however more sensitive to daily changes than photon
therapy, which may result in distortion of the delivered dose distribution [1, 17].
These changes could arise from anatomical variations in the shape and position of
both target volumes and organs at risk (OARs) or amisalignment in the patient setup.
In order to compensate for these changes, a margin is added to the clinical target
volume (CTV) to generate the planning target volume (PTV) in addition to robust
treatment planning. These margins result in extra dose to the OARs, leading to an
increase in the treatment-related toxicities that may prevent dose escalation. Tra-
ditionally, motion-induced variations are minimized by implanting iducial markers
in the prostate, subsequently compensating for the daily prostate motion using on-
line imaging [67]. However, such correction strategies are invasive and only capable
of correcting for translational motion and limited amount of rotational motion [68].
Online imaging and replanning should be able to handle this problem without using
iducial markers [69]. These online CT scans have to be delineated irst in order to
update the treatment plan. Usually this task is done by radiation oncologists accord-
ing to certain guidelines [70, 71]. However, intra and inter-observer inconsistency
has been noted due to different preferences and experience among radiation onco-
logists [72, 73]. Typically, daily manual recontouring is not performed because it is
time consuming andnewanatomical variationsmay be introduced in the time it takes
to delineate the scan [74]. Automatic recontouring algorithms can alleviate these is-
sues, but robust methods are required, because otherwise still time consuming fall-
back strategies are needed.

Automatic recontouring could be accomplished effectively using deformable image
registration (DIR) by deducing the correspondence between the daily CT scan and
the planning CT scan. Using the generated deformation vector ield (DVF), manual
contours can be propagated from the planning CT scan to the daily CT scan. The
automatically generated contours togetherwith fast re-optimization of the treatment
plan [44] could compensate for the daily variation and ensure the delivery of the pre-
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scribed dose distribution at small margins and robustness settings. DIR is a crucial
step towards developing online-adaptive IMPT alongside replanning and personal-
ized dose quality assurance (QA). Currently, these steps are time consuming, thus
severely limiting online procedures.

There are commercially available applications for automatic recontouring such as at-
las based auto segmentation (ABAS), Mirada, and RayStation. These applications are,
however, considered a black box for the end-users and therefore limit the parameter
choices and tuning. Open source DIR packages provide a high level of lexibility with
a concrete scienti ic evidence and reproducibility. Qiao et al. [75] reported a mean
surface distance (MSD) of 1.36±0.30 mm, 1.75±0.84 mm, 1.49±0.44 mm for the pro-
state, seminal vesicles, and lymph nodes, respectively for 18 patients using the open
source elastix software. A clinical success rate of 69%was achieved, which means
that 31% of the delineations have to be corrected, leading to increased costs and a
suboptimal patientwork low. In 2011, Thor et al. deployedDIR to propagate the con-
tours of the prostate and OARs from CT to cone beam CT [76]. The system achieved
a mean dice similarity coef icient (DSC) of 0.80 for the prostate, 0.77 for the rectum,
and 0.73 for the bladderwith a relatively high variance. Moreover, the systemwas not
qualitatively evaluated in terms of dosimetric coverage. Recently, Woerner et al. [77]
investigated the error between different radiologists and both DIR and rigid registra-
tion in different body regions. They only reported the results for the prostate, which
were 0.90, 0.99 mm, and 8.12 mm for the DSC, MSD, and Hausdorff distance (HD),
respectively. Thörnqvist et al. [78] used two different demons-based registration al-
gorithms, with one more conservative than the other. They achieved an average DSC
of 0.88, 0.85, 0.89, 0.78 for the lymph nodes, prostate, bladder, and rectum, respect-
ively.

In spite of the existence of quite accurate registration algorithms, they still suffer from
a lack of robustness, which is a critical aspect for clinical application. Therefore, in
this paper we focus on the robustness aspect of the registration pipeline. The main
challenges in Qiao et al. [75] were the presence of gas pockets and large deforma-
tions surrounding the seminal vesicles, bladder, and rectum. Hence, we propose to
tackle these challenges by inpainting the rectum gas pockets as well as embedding
the bladder segmentation in the registration pipeline using deep learning to enhance
the system’s robustness. The proposed registration pipeline was evaluated geomet-
rically and dosimetrically for generating clinically acceptable IMPT plans. Compared
to our conference paper [79], we made several improvements, such as the inclusion
of more datasets, dealing with gas pockets, data normalization, and multi-stage re-
gistration. Moreover, we carried out an extensive dosimetric validation for the auto-
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Figure 6.1: The proposed multi-stage registration process using elastix software and deep
learning. The red boxes denote the contours finally used as output of the algorithm.

matically generated contours to verify its clinical viability.

6.2 M

Theprostate and seminal vesicles arepositionedbetween thebladder and the rectum,
therefore prostate motion is mainly in luenced by the illing and motion of both the
bladder and the rectum [80]. Hence, we hypothesize that embedding an explicit prior
knowledge about the deformation of either organs to the intensity-basedDIRmethod
may improve the accuracy and robustness of the registration. Here, we considered
the bladder because it has a well-de ined shape that could be more easily delineated
in a fully automaticmanner than the rectum. Since the registration is intensity-based,
the quality of the registration process is correlated to the quality of the input images.
Hence, we introduced multiple data preprocessing steps to enhance the quality of
the input images. These steps include rectum gas pocket detection and inpainting
and contrast clipping as shown in Figure 6.1.

6.2.1 Bladder segmenta on using deep learning

In this study, we automatically segment the bladder using a 3D U-net convolutional
neural network (3D-CNN) similar to the architecture introduced in [81]. The net-
work consists of encoding and decoding branches connected with skip connections
as shown in Figure 6.2. In order to represent the volumetric information and tissue
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Figure 6.2: The architecture for the 3D-CNN network, where the numbers on the blocks denote
the number of feature maps.

homogeneity of the CT volume, 3D convolution layers followed by non-linear leaky
recti ied linear units were used. The original maxpooling layers were replaced by
strided convolution in both encoder and decoder branches. Negative dice similarity
coef icient (DSC) [82] is deployed as a cost function and the network is trained using
the Adam optimizer [83] with a ixed learning rate of 10−4. The network has 64,320
trainable parameters which enables network inference of the entire CT image in ap-
proximately 2 seconds. The network was designed to output the same size as input,
however the input size should be divisible by 16. Largest connected component ana-
lysis was applied as a post-processing step to eliminate irrelevant activations.

6.2.2 Gas pocket detec on and inpain ng

A problem that usually arises for intensity-based DIR of the pelvic region is the pres-
ence of gas pockets in the bowel and rectum. These pockets appear as dark areas
surrounded by soft tissue. Usually the size and position of these pockets are not the
same in the planning and the daily CT scans. In such situations, physical correspond-
ence between images at different sessions does not exist because of the insertion or
occlusion of image content. Only few studies addressed this issue in the literature.
Gao et al. [84] proposed introducing a virtual gas pocket to the planning CT scan that
follows the pocket in the daily CT scan. They tested it on 15 prostate cancer patients
with distended rectum. Foskey et al. [85] proposed to de late the pocket to a virtual
point. In both papers, the authors assumed no gas pockets in the planning CT scan,
which is not usually the case.

Recently, deep learning based algorithms have revolutionized themedical image ana-
lysis ield [86]. One category of deep learning architectures is generative adversarial
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(a) (b) (c)

Figure 6.3: Different inpainting algorithms, where (a), (b), and (c) represent the original CT, the
result from simple-inpainting, and the result from GAN-inpainting, respectively.

networks (GANs) introducedbyGoodfellow et al. [87] in 2014. GANshavebeengrow-
ing since then in generating realistic natural and synthetic images. As formedical im-
ages, GANs have been used in image segmentation [88], synthesis [89], registration
[90], and denoising [91]. Recently Yu et al. [92] proposed a 2D GAN network with a
contextual attentionmodel to restore and inpaint occluded regions in natural images.
The network also blends the restored region with the surrounding texture to make
it look more realistic. The proposed model has two successive networks for image
generation in order to generate patches with ine quality. The irst ’generator’ net-
work generates a coarse result through a dilated convolution network. This result is
then fed to the second network. The second ’discriminator’ network has two routes,
one goes to a dilated convolution network while the other goes through a contextual
attention model. Finally, the results from these two routes are concatenated and fed
to a prediction network. This network has shown an improvement over a similar net-
work proposed by Iizuka et al. [93]. In this paper, we retrained this network so that it
can inpaint ( ill) gas pockets of different shapes and sizes with a more sophisticated
and realistic content rather than a ixed value. The same implementation and hyper
parameters were used as in the original paper.

Alternatively, we also experimented with a simpli ied method for inpainting. Follow-
ing the idea proposed by Rodriguez-Vila et al. [94] we ill the gas pockets with a ixed
value and smooth the output to blend it with the surrounding tissues. A threshold of
-200 is used to generate a binary mask of the gas pockets. This mask is then dilated
with a kernel of size 7x7x1 voxels (M) while the CT image is illed with a ixed HU
number of 60 (the average HU number for faeces), and smoothed with a sigma of 4
mm (Ismoothed ). Equation (6.1) shows the simple-inpainting process:

Iout = Ii nput × (1−M) + Ismoothed × M (6.1)

Figure6.3 shows a comparisonbetweengas pocket inpainting using theGANnetwork
and simple-inpainting.
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(a) (b)

Figure 6.4: The effect of contrast clipping, where (a) and (b) represent the image before and after
intensity clipping, respectively.

6.2.3 Contrast Enhancement

Toenhance the soft tissue contrast, theCT intensitywas clipped to the rangeof [−300,300].
This clipping is similar to viewing the soft tissue with an appropriate window level.
Moreover, suchenhancement improves the registration convergence. Figure6.4 shows
the effect of intensity clipping.

6.2.4 Image Registra on

For carrying out the DIR experiments, we used the open software package elastix
[95]. For more details, see the website http://elastix.isi.uu.nl. All the ex-
periments were performed on a cluster of workstations operated on the oracle grid
engine (OGE), which has 500 nodeswith a total of 800 cores. Testing time is reported
using a PC with 16 GBmemory, Windows 7 Professional 64 bit operation system and
an Intel Xeon E51620 CPU with 4 cores at 3.6 GHz, utilizing only the CPU.
In this study, the planning CT scan (moving image)was alignedwith the daily CT scan
( ixed image) of each patient. The registrations were initialized based on the center-
of-gravity of the bony anatomy de ined by a Houns ield number larger than 200. A
mask of the body torsowas generated using Pulmo software [96] to remove the effect
of the CT table. The registration process is done in three stages. First, themoving and
ixed images are registered using a single resolution af ine transformation using 200
iterations as de ined in Equation (6.2):

∧
µ1 = arg min

µ
C1

(
IF , IM , MF , MM ;Tµ1

)
, (6.2)

where IF is the daily scan, IM is the planning scan, MF is the torso mask of the daily
scan, MM is the torsomask of the planning scan, andC1 is themutual information cost
function. The af ine transformation aligns the bones and large structures. Second, a
deformable registration is applied to tackle the local deformations of the organs. In
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this stage, the planningCT scanof eachpatient combinedwith themanual delineation
of thebladder are considered themoving images,while the repeat CT scanof the same
patient accompaniedwith the bladder segmentation resulting from the proposed 3D-
CNN are the ixed images. Equation (6.3) de ines the optimization problem for this
stage:

∧
µ2 = arg min

µ
{C1

(
IF , IM , MF , MM ,Tµ1 ;Tµ2

)+αC2
(
DT (SF ) ,DT (SM ) ,Tµ1 ;Tµ2

)
}, (6.3)

whereC2 is themean squared difference (MSD) cost function, α is a weight for balan-
cing these two cost functions, DT (SF ) is the distance transform of the 3D-CNN blad-
der segmentation, and DT (SM ) is the distance transform of the manual annotation
of the planning scan. The distance transform (DT) of the bladder segmentations is
used instead of the binary segmentations themselves, to ensure a smooth and stable
optimization process. The generated deformation vector ield (DVF) from this step
is then used to propagate the contours of the prostate, lymph nodes, bladder, and
rectum from the planning CT scan to the repeat CT scan. Because the seminal ves-
icle is a small irregular structure, which is highly affected by the deformation in the
rectum, we introduce a third stage to focus the registration on the rectum and sem-
inal vesicle region. In this stage, the rectum contour of the planning CT scan and the
rectumcontour of thedaily CT scan (from theprevious stage) aredilatedwith a kernel
of 45x45x1 voxels and used as a registration mask together with the ixed and mov-
ing CT scans. The contours of the rectum and seminal vesicles are then propagated
using the generated DVF from the inal stage. Equation (6.4) de ines the optimization
problem for this stage:

∧
µ3 = arg min

µ
C1

(
IF , IM , M̃F , M̃M ,Tµ1 ,Tµ2 ;Tµ3

)
, (6.4)

where M̃M is the dilated rectum mask of the planning CT scan and M̃F is the dilated
rectum mask of the daily CT scan. A fast recursive implementation of the B-spline
transformationwas employed forDIR [97] in stage 2 and3. Adaptive stochastic gradi-
ent descent was used for optimization [98] in all three stages. For the DIR stage we
used a three level Gaussian pyramidwith smoothing factors of 4, 2, and 1mm. Figure
6.1 illustrates the proposed registration pipeline in detail.

6.3 E R

6.3.1 Dataset

This study includes threedatasets representing threedifferent institutes andCTscan-
ners from three different vendors for patients who underwent intensity-modulated
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Table 6.1: Details of the datasets reported in this study. LUMC, EMC, and HMC are abbrevi-
ations for Leiden University Medical Center (Netherlands), Erasmus Medical Center (Nether-
lands), and Haukeland Medical Center (Norway), respectively. SV and LN denote Seminal Ves-
icles, and Lymph Nodes, respectively.

Institute Scanner #Patients
#Scans/
patient

Image
size

Voxel
spacing (mm)

Manual
delineations

LUMC Toshiba 418 1 512x512x(68-240) ∼1.0x1.0x3.0 bladder, rectum

EMC [99] Siemens 14 4 512x512x(91-218) ∼0.9x0.9x1.5
prostate, SV

bladder, rectum

HMC [100] GE 18 8-11 512x512x(90-180) ∼0.9x0.9x2.0
prostate, SV, LN
bladder, rectum

radiation therapy for prostate cancer. Table 6.1 shows detailed information about
these datasets. The LUMC dataset was used to train and validate the neural network
for segmenting the bladder (Section 6.2.1) as well as the inpainting network (Sec-
tion 6.2.2), while the EMC and HMC dataset were used as independent test sets for
the complete registration pipeline. Geometric evaluation was performed on both the
EMC and HMC dataset. Eleven out of the eighteen HMC patients were considered
for dosimetric evaluation due to the availability of not only the manual delineations
for the target organs (prostate, seminal vesicles, lymph nodes) and OARs (bladder,
rectum), but moreover the manual delineations of the bowels and femoral heads
needed for planning.

6.3.2 Evalua on measures

The quality of the registration is quanti ied in terms of geometric aspects and dosi-
metric coverage. The geometric quality is measured by comparing the manual con-
tours and the automatically propagated contours of the daily CT scan for the prostate,
lymph nodes, seminal vesicles, rectum, and bladder. The dice similarity coef icient
(DSC) measures the overlap between the segmentations, while the mean surface dis-
tance (MSD), and the 95% Hausdorff distance (HD) measure the residual distance
between the contours in 3D space.

DSC =∑ 2 | F ∩M |
| F | + | M | , (6.5)

where F and M are the propagated contour and the ground truth contour, respect-
ively.

MSD = 1

2

(
1

n

n∑
i=1

d (ai , M)+ 1

m

m∑
i=1

d (bi ,F )

)
, (6.6)

HD = max

{
max

i
{d (ai , M)} ,max

j
{d (bi ,F )}

}
, (6.7)
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where {a1, a2, ..., an} and {b1,b2, ...,bm} are the surface mesh points of the ixed and
moving contours, respectively and d (ai , M) = min j || b j − ai ||. The geometrical suc-
cess rate, as a marker for geometric robustness, is de ined as the percentage of regis-
trations with MSD < 2 mm (slice thickness): γ = n

N {MSD < 2mm}, where (N) is the
total number of registrations performed.

IMPT plans were generated for 11 patients from the HMC dataset using both the
manual and the automatic delineations. Theplanswere then evaluated on themanual
delineations to investigate the clinical effect of the error between these two delin-
eations. Erasmus-iCycle, an in-housedeveloped treatmentplanningoptimization sys-
tem, [19, 20, 22–24] together with the Astroid dose engine were used to generate the
IMPT plans. Erasmus-iCycle uses amulti-criteria optimization to generate a clinically
desirable Pareto optimal treatment plan on the basis of a wishlist consisting of hard
constraints and objectives. A small margin of 2 mm around the prostate and 3.5 mm
around the lymph nodes and seminal vesicles is used to compensate for the marginal
error of the propagated contours and to account for intra-observer variations in the
manual contouring. These margins alone can not account for variations in shape and
location of the target volumes. Dose was prescribed according to a simultaneously-
integrated boost scheme in which the high-dose PTV (prostate + 2 mmmargin) was
assigned 74 Gy and the low-dose PTV (seminal vesicles and lymph nodes + 3.5 mm
margin) 55 Gy, to be delivered using two laterally opposed beams. In order to avoid
under-dosage, the optimization ensures that at least 98% of the target volumes re-
ceive at least 95%of the prescribed dose (V95% ≥ 98%). To avoid over-dosage the op-
timization ensures that less than 2% of the target volumes receive more than 107%
of the highest prescribed dose (V107% ≤ 2%). To achieve a clinically acceptable result,
automatically generated treatment plans from the propagated contours should still
ful ill these goals. Hence, IMPT plans from the propagated contours are evaluated
based on the manual contours. The clinical success rate, as a marker for geometric
robustness, is de ined as the percentage of registrations for which the prostate dir-
ectly meets the dose treatment criteria: η = n

N

{V95% ≥ 98%}. conservative success
rate (CSR) is amore conservativemeasure of clinical success when all target volumes
(the prostate, seminal vesicles and lymph nodes) meet this dosimetric criterion. For
dosimetric coverage calculation N = 99.

6.3.3 Network training and performance

We implemented the 3D-CNN and GAN-inpainting networks using Tensor low [101].
For training these networks, we used the LUMC dataset. This dataset was a suf i-
ciently large dataset to be able to train the neural networks. Since the LUMC dataset
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only had one CT scan per patient, it was not used for registration evaluation. From
the 418 LUMC patients, 350 patients were used for network training, and 68 patients
for validation. The trained network was then applied without modi ication to the CT
scans in the EMC and HMC datasets. In order to account for the variations in voxel
size between datasets and scans, all scans were resampled to a ixed voxel size of
1.0x1.0x2.0mm. For the 3D-CNN, 100,000 patches of size 96x96x96 voxels were ran-
domly extracted from the training volumes, making sure they are equally distributed
between foreground and background. For the GAN-inpainting network, all the slices
with gas pockets were eliminated from training. Moreover, all slices were resampled
to a pixel size of 1.0x1.0 mm and centrally cropped to 256x256 pixels so that more
patches could it intomemory aswell as itwouldbebene icial for thenetwork to learn
themost relevant contextual information to the rectum. Randomly selectedwindows
of size 64x64 pixels were occluded in order to train the network to inpaint these
regions with a realistic content. Both the 3D-CNN and the 2D-GAN-inpainting net-
work were trained for 100,000 iterations on the raw CT patches without any prepro-
cessing except for resampling. All the experiments were carried out using an NVIDIA
GTX1080 Ti with 11 GB of GPUmemory. The 3D-CNN bladder segmentation network
obtained a DSC of 85.4%±1.4% on the validation scans. Moreover, the network was
tested on the EMC andHMCdatasets and achieved an averageDSC of 82.3%±1.5% and
87.9%±1.2%, respectively. Using a single GPU, the average inference time of the seg-
mentation and inpainting networkswere approximately 2 seconds and 3 seconds per
volume depending on the number of slices per volume. Figure 6.5 shows examples of
the network output.

6.3.4 Parameter op miza on and preprocessing analysis

For a fair comparison, the same registration parameters as in [75] were used. For
the weight α that balances the contribution of the bladder segmentation in the cost
function (6.3), we investigatedmultiple settings based on initial experiments on EMC
and HMC datasets. The weight was set for the coarse ( irst) resolution only and was
set to zero for the other two resolutions, in order to avoid over itting issues. Here
we compared four settings for α: 0.2, 0.1, 0.05, and 0.01. For this experiment we
did not use inpainting. The results are shown in Table 6.2 for the HMC dataset where
”Af ine” refers to the af ine registration de ined in Equation (6.2), which is considered
a reference method. The weights 0.05 and 0.20 yielded very similar performance.
We opted for a weight of 0.05 to avoid over itting on the bladder. Since the target
areas (prostate, lymph nodes, and seminal vesicles) obtained slightly better accuracy
for a lower weight and these are important for radiotherapy planning, we selected
0.05. For the EMC dataset a similar experiment gave a weight of 0.01 (not reported).
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(d) DSC=71% (e) DSC=93% (f) DSC=91%

Figure 6.5: Examples of the automatic bladder segmentation using the 3D-CNN alongside the
DSC of the volume. First and second rows represent samples from HMC and EMC, respectively.
(a) and (d) are suboptimal results and the rest are good results. The red line represents the ground
truth and the blue line is the network output.

Table 6.2: MSD (mm) of the target volumes and OARs of the HMC dataset for different regis-
tration and weight settings after the third stage of registration. Registrations using 100 and 500
iterations were both tested.

Prostate
Seminal
vesicles

Lymph
nodes

Rectum Bladder

Method α µ±σ µ±σ µ±σ µ±σ µ±σ

Affine, 200 1.63±0.74 2.92±1.74 1.23±0.49 3.89±1.62 4.37±2.11

B-spline, 100
0.20 1.55±0.90 1.70±0.74 1.63±0.58 2.70±1.12 1.85±1.85
0.10 1.53±0.82 1.72±0.73 1.58±0.50 2.72±1.11 1.85±1.71
0.05 1.50±0.75 1.74±0.79 1.55±0.46 2.75±1.16 1.86±1.56
0.01 1.41±0.36 1.75±0.86 1.57±0.38 2.76±1.15 1.98±1.19

B-spline, 500
0.20 1.49±0.90 1.76±0.80 1.65±0.64 2.87±1.39 1.74±1.63
0.10 1.45±0.77 1.77±0.93 1.59±0.52 2.78±1.19 1.77±1.58
0.05 1.43±0.77 1.78±0.90 1.55±0.47 2.79±1.19 1.81±1.57
0.01 1.36±0.47 1.76±0.82 1.56±0.48 2.81±1.18 1.84±1.24

Therefore, for the remainder of the paper these weights have been used.
In order to investigate the difference between simple-inpainting and GAN-
inpainting, we run the registration on HMC dataset using both techniques as shown
in Table 6.3. The results shows a very similar performance for simple-inpainting and
GAN-inpainting. Hence, the simple-inpainting is used for gas pocket inpainting for
the remainder of the paper.

From the aforementioned experiments and analysis (Table 6.2 and 6.3), we noticed
a similar performance between 100 and 500 iterations and in order to reduce the

95



666666

Experiments and Results

Table 6.3: MSD (mm) of the target volumes and OARs for different registration settings and in-
painting methods at α = 0.05. Registrations using 100 and 500 iterations were both tested.

Prostate
Seminal
vesicles

Lymph
nodes

Rectum Bladder

# It.
Inpainting

Method
µ±σ µ±σ µ±σ µ±σ µ±σ

100
Simple 1.29±0.39 1.48±1.16 1.49±0.44 2.39±1.92 1.72±1.17

GAN 1.29±0.41 1.70±2.12 1.49±0.44 2.65±2.17 1.71±1.16

500
Simple 1.28±0.42 1.36±0.40 1.49±0.44 2.19±1.03 1.67±1.22

GAN 1.28±0.42 1.36±0.38 1.48±0.45 2.33±0.95 1.67±1.22

registration time, we considered only the results from 100 iterations for the inal ex-
periments.

6.3.5 Registra on performance

Since the LUMC dataset did not have any follow-up scans, we only consider the EMC
and HMC datasets for evaluating the registration performance. Figure 6.6 shows ex-
ample results of the automatically propagated contours. We compared the proposed
method with the intensity-based registration approach of Qiao et al. [75]. For the
HMC data we directly compare with the results reported in [75], as the same dataset
was used. For the EMCdatawe applied their algorithm, and comparewith our results.
The DSC overlap of the proposed algorithm is presented in Table 6.4. For the HMC
dataset, the prostate, lymphnodes, and bladder performed similarly for the proposed
method and Qiao et al., while the seminal vesicles and rectum showed substantial im-
provements. The median DSC values of the prostate, seminal vesicles, lymph nodes,
rectum, and bladder were 0.88, 0.70, 0.89, 0.78, and 0.91, respectively for Qiao et al.,
while theywere0.89, 0.73, 0.89, 0.85, and0.94, respectively for the proposedmethod.
For the EMCdataset, the proposed algorithm showed consistent improvement for the
seminal vesicles, rectum, and bladder. The median DSC values of the prostate, sem-
inal vesicles, rectum, and bladder were 0.91, 0.80, 0.76, and 0.86, respectively for
Qiao et al. and 0.89, 0.81, 0.81, and 0.90, respectively for the proposed method. For
the MSD results shown in Table 6.5, the proposed method outperformed Qiao et al.
for all the target areas and OARs. The MSD of most of the targets and the OARs was
less than one voxel (2 mm). The geometrical success rate was 97%, 93%, and 87%
for the prostate, seminal vesicles, and lymph nodes, respectively for the HMC dataset
and67%and71% for the prostate and seminal vesicles for the EMCdataset. Table 6.6
shows the 95%HD, yielding a signi icant improvement for the proposedmethod over
Qiao et al. on the HMC dataset, but less improvement for the EMC dataset. Moreover,
Qiao et al. and the proposed method show a signi icant improvement from the af ine
method except for the lymph nodes. Figure 6.7 shows scatterplots depicting the ef-
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Table 6.4: DSC value of the target volumes and the OARs of the HMC and EMC datasets for dif-
ferent registration methods. † represents a significant difference (at p = 0.05) between Qiao et al.
and the proposed algorithm.

Prostate
Seminal
vesicles

Lymph
nodes

Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 0.84±0.11 0.46±0.26 0.90±0.08 0.71±0.10 0.77±0.11
Qiao et al. 100 0.87±0.08 0.65±0.18 0.88±0.07 0.77±0.09 0.88±0.11
Proposed 100 0.87±0.08 0.70±0.13† 0.87±0.07 0.82±0.12† 0.89±0.12

E
M

C

Affine 200 0.78±0.20 0.49±0.32 - 0.62±0.18 0.66±0.25
Qiao et al. 100 0.87±0.13 0.70±0.26 - 0.72±0.16 0.78±0.22
Proposed 100 0.87±0.12 0.75±0.18† - 0.78±0.15† 0.83±0.17†

Table 6.5: MSD (mm) of the target volumes and the OARs of the HMC and EMC datasets for
different registration methods. † represents a significant difference (at p = 0.05) between Qiao et
al. and the proposed algorithm.

Prostate
Seminal
vesicles

Lymph
nodes

Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 1.70±0.96 3.02±1.96 1.26±0.51 3.92±1.59 4.47±2.27
Qiao et al. 100 1.40±0.47 1.85±1.26 1.51±0.44 3.13±1.38 2.38±1.79
Proposed 100 1.29±0.39 1.48±1.16 1.49±0.44 2.39±1.92† 1.72±1.17†

E
M

C

Affine 200 2.82±3.18 4.42±6.03 - 4.63±3.01 8.03±6.46
Qiao et al. 100 1.41±0.76 2.24±3.14 - 3.21±1.85 5.42±5.84
Proposed 100 1.54±0.67 1.67±1.38† - 2.67±1.76† 3.89±4.00†

fect of the bladder distension (volume difference between planning and daily CT) on
the mean surface distance (MSD) of different target organs of the HMC dataset. The
igure shows that the MSD of the proposed method is less than the slice thickness (2
mm) for most of the cases, and that there is little correlation between registration
performance and bladder distensibility. Figure 6.8 shows the comparison of the re-
gistration performance betweenQiao et al. (intensity only) and the proposedmethod
(intensity and bladder segmentation), both using 100 iterations for the HMC dataset.
The comparison illustrates the performance in termsofDSC,MSD, and95%HD for the
target volumes and OARs. The igure shows a similar pattern between the proposed
method using themanually annotated contours of the bladder and the contours from
the 3D-CNN network. This pattern emphasizes that the proposed method achieved
the upper limit of the system. The average runtime for the proposed pipeline is 98.3
seconds for each registration at 100 iterations.
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(a) The MSD of the prostate, lymph nodes, and seminal vesicles is 0.8, 1.6, and 1.0 mm, respectively.
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(b) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.4, 1.8, and 1.2 mm, respectively.
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(c) The MSD of the prostate, lymph nodes, and seminal vesicles is 2.1, 1.6, and 1.5 mm, respectively.
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(d) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.5, 1.6, and 11.0 mm, respectively.
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(e) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.3, 1.3, and 1.1 mm, respectively.
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(f ) The MSD of the prostate, lymph nodes, and seminal vesicles is 0.9, 1.4, and 0.9 mm, respectively.
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(g) The MSD of the prostate, lymph nodes, and seminal vesicles is 1.3, 1.1, and 1.1 mm, respectively.

Figure 6.6: Examples from the automatic contours propagation of the HMC dataset and the cor-
responding dose volume histograms evaluated on the manual contours. The solid line represents
the manual contouring results while the dotted line is the automatically propagated one.
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(c) Seminal vesicles

Figure 6.7: Scatterplots showing the effect of the bladder volume change between planning and
daily scans of the HMC dataset on the performance of the proposed method in terms of MSD.
Red line represents the slice thickness.

Table 6.6: %95HD (mm) of the target volumes and the OARs of the HMC and EMC datasets for
different registration methods. † represents a significant difference (at p = 0.05) between Qiao et
al. and the proposed algorithm.

Prostate
Seminal
vesicles

Lymph
nodes

Rectum Bladder

Method # It. µ±σ µ±σ µ±σ µ±σ µ±σ

H
M

C Affine 200 3.97±1.96 6.61±3.70 3.12±1.27 11.8±5.98 12.5±7.06
Qiao et al. 100 3.31±1.16 4.59±2.95 3.73±1.02 10.4±5.99 7.41±6.85
Proposed 100 3.07±1.30 3.82±3.19† 3.74±1.02 8.66±6.92† 5.11±4.38†

E
M

C

Affine 200 5.98±6.19 8.11±7.66 - 13.2±6.88 21.3±16.3
Qiao et al. 100 3.65±2.31 4.80±5.09 - 11.3±6.77 16.5±17.2
Proposed 100 3.93±2.24 4.92±5.13 - 10.4±7.77 11.5±12.5†

6.3.6 Dosimetric performance

Figure 6.6 shows theDoseVolumeHistogram (DVH) of the target organs andOARs for
some examples. The clinical constraints in terms of V95% and V107% were calculated
for the prostate, seminal vesicles, and lymph nodes based on the manual contours.
In order to monitor the accumulated dose for the OARs, we calculated V45 Gy, V60 Gy,
V75 Gy, and Dmean for the rectum, as well as V45 Gy, V65 Gy, and Dmean for the bladder.
Here Dmean is the structure’s average dose and Vx Gy is the percentage of volume re-
ceiving a dose of x Gy. Table 6.7 shows a comparison between the propagated con-
tours fromQiao et al. and the proposed algorithm in terms of the percentage of scans
that achieved the clinical criteria of V95% ≥ 98% and V107% ≤ 2%. The table shows a
signi icant improvement for the seminal vesicles, which is a small and dif icult target
organ, while the performance of the prostate and lymph nodes was very similar. The
boxplots in Figure 6.9 illustrate the difference between the dosimetric parameter val-
ues of the manual delineations, calculated by using either the treatment plan based
on the automated delineations or the manual delineations. We can see that the dif-
ference for all dosimetric parameters of all the target organs and OARs is almost 0%
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Figure 6.8: Boxplot comparison between Qiao et al. and the proposed algorithm for image regis-
tration on the HMC dataset versus the number of iterations. The columns show the DSC, MSD,
and 95%HD from left to right. Prostate, seminal vesicles, lymph nodes, rectum, and bladder are
shown from top to bottom rows, respectively. The red box is the method from Qiao et al., the blue
box is the proposed method, while the green box is an upper bound of the proposed method us-
ing manual daily contours.

or Gy except for the lymph nodes, which is approximately 1%.

6.4 D

In this study, we developed and evaluated an automatic contour propagation pipeline
using DIR, while considering the robustness, accuracy, and clinical acceptance rate
for the target organs and the OARs of prostate cancer. Online-adaptive IMPT is a cru-
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Figure 6.9: Boxplots depicting the difference in dosimetric parameters of the manual delin-
eations, calculated by using either the treatment plan based on the automated delineations or
the manual delineations for 99 scans of the HMC dataset.

cial step towards treatment with small margins for target organs. In this study we
usedmargins of 2mm for the prostate and 3.5mm for the seminal vesicles and lymph
nodes, respectively. Such small margins are only viablewhen online and daily replan-
ning is performed. This replanning procedure should be accurate as well as robust to
avoid any subsequent adverse side effects. The automatically propagated contours
were validated geometrically on the EMC and HMC datasets as well as dosimetrically
on the HMC dataset in order to investigate whether or not the propagated contours
meet the clinical acceptance criteria for dose coverage. DSC, MSD, and 95%HD were
chosen for geometric validation while V95% ≥ 98% and V107% ≤ 2% were used for
dosimetric coverage validation. Here, V95% ≥ 98% ensures that at least 98% of the
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Table 6.7: Percentage of registrations that meets the dose constraints for different registration
iterations. conservative success rate (CSR) refers to the percentage of registrations for which all
target volumes (the prostate, seminal vesicles and lymph nodes) meet the dose constraints.

V95% ≥ 98% V107% ≤ 2%
Prostate SV LN CSR Prostate SV LN

Qiao et al. 83.8% 75.7% 97.9% 65% 100% 100% 100%
Proposed 85.8% 90.9% 98.9% 80% 100% 100% 100%

target volumes receive at least 95% of the prescribed dose and V107% ≤ 2% ensures
that less than 2% of the target volumes receive more than 107% of the highest pre-
scribed dose.

In order to enhance the registration robustness, the segmentation of the bladder was
introduced to steer the optimization. Since the registration process is partially driven
by the bladder segmentation, this segmentation should be as accurate and robust as
possible. Hence, we chose a 3D-CNN for bladder segmentation, and obtained a DSC
of 87.9% and a Jaccard index of 80.2%, which is very comparable to the reported Jac-
card index of 81.9% in [102], where the authors developed a CNN network alongside
level-sets to segment the bladder in CT urography. Moreover, our proposed network
outperformed the 2D-CNN network developed by Zhou et al. [103], where the au-
thors reported a DSC of 72%. The high performance of the proposed networkmay be
attributed to the use of a large receptive ield aswell as replacing the 2D convolutions
with 3D convolutions, which helps the network to embed depth information.

Applying contrast clipping to the CT scans before registrationwas bene icial to the re-
gistration process, since the registration is intensity-based, which is consistent with
the indings in [104]. Inpainting gas pockets in the rectum enhanced the registration
of the rectumaswell as the seminal vesicles. Thepresence of these pocketswere chal-
lenging for the registrationdue to thephysical non-correspondencebetween thedaily
and planning CT scans. Although the inpainting results from the GAN-inpainting net-
work were more realistic than the simple-inpainting procedure, a similar perform-
ance with respect to the registration was obtained. Our explanation for this inding
is that the mutual information similarity metric pays more attention to the overall
intensity distribution and since the results from the simple-inpainting were blended
and smoothedwith respect to its neighbors, it produces a similar histogram distribu-
tion to theGAN-inpainting and subsequently gives a similar registrationperformance.

The initialization of the registration algorithm on the bony structures is a crucial
step for optimal performance, which is consistent with the reported results in [75].
Moreover, masking out the couch using a torso mask removed its disrupting effect
on the registration. Increasing the number of iterations had a minimal effect on the
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registration performance while increasing the registration time. We found that the
effect of adding a third registration step focussing on the rectal area, boosted the per-
formance regarding the rectum and seminal vesicles while there was no detrimental
effect for the prostate, lymph nodes, and bladder.

In this study, we focused on the generalizability and robustness of the registration
represented by performance on different datasets and the number of failed regis-
trations according to geometrical and dosimetric criteria. This target is achieved
through several steps. First, inpainting the rectum gas pockets. Second, enhancing
the CT image contrast by contrast clipping. Third, introducing the bladder segmenta-
tionwith an optimizedweights (α = 0.05 and 0.01) to steer the optimization problem
to a better local minimum while avoiding over itting to the bladder. Fourth, using a
third stage for registration to focus on the rectum and consequently the seminal ves-
icles byusing adilatedmask for the rectum. Overall, these steps yielded amore robust
registration and substantially decreased the number of registrationswith insuf icient
quality, especially for the seminal vesicles, rectum, and bladder. Improving the MSD
for the seminal vesicles, which is an important target volume, resulted in a more pre-
cise targeting with potential bene its in terms of local control (lower probability of
recurrences). Moreover, both the rectum and the bladder improved in terms of MSD
and 95%HD, thereby avoiding treatment-induced complications after the therapy, so
a higher probability of better quality of life after treatment. For the bladder, 11 of the
18 registrations with an MSD larger than the top whisker in Figure 6.8, were belong-
ing to two patients. For these two patients the 3D-CNN achieved an average DSC of
0.65, explaining the suboptimal performance of the proposedmethod on these cases.
From the CT images no apparent reason for this was found. In terms of the geometric
success rate de ined by the number of registrations that achieved anMSD lower than
2 mm (slice thickness), the system achieved 97%, 93%, and 87% for the prostate,
seminal vesicles, and lymph nodes, respectively. This compares to a success rate of
95%, 78%, and 86% for Qiao et al., i.e. especially improving the performance for the
seminal vesicles. Moreover, the proposed system showed robustness to the change in
bladder distension between planning and daily CT scans as shown in Figure 6.7. The
proposed registration method achieved quite similar results on the EMC and HMC
datasets, except for the bladder. We suspect this is partially due to the difference
in bladder segmentation performance of the neural network, which was 82% on the
EMC data and 88% on the HMC data. It could also be related to the af ine registration
results for the EMC dataset (Table 6.5) being slightly less than HMC dataset. We visu-
ally checked the af ine results and noticed that the ield of view for some cases were
cropped or zoomed. The average runtime for the proposed pipeline is 98.3 seconds
for each registration at 100 iterations, comparing to 13.5 seconds reported by Qiao
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et al. However, the pipeline could be further optimized and adapted for GPU acceler-
ation.
For validating the clinical acceptance of the proposed algorithm, we considered V95%
≥ 98%, V107% ≤ 2%, and CSR for dosimetric coverage for 99 registrations. All the
scans meet the V107% ≤ 2% constraint. Fourteen out of the 99 registrations (14.1%)
did not directly meet the V95% ≥ 98% constraint for the prostate. After visual in-
spection of these failure cases, we found inconsistencies between the manual delin-
eations for the planning and daily CT scans for 7 cases. These cases had a V95% of
92.5%± 0.1%, meaning that these cases were still close to be dosimetrically accept-
able. The proposed algorithm improved the contouring quality and robustness espe-
cially for the seminal vesicles, which directly increased the percentage of acceptable
scans from 75.5% to 90.9% for this important target organ. These success rates im-
ply that the automatically generated contours have the potential to be employed for
online-adaptive IMPT.Moreover, the typical 7mmmargins [78]may be replacedwith
smaller daily margins, which means delivering an effective dose with potentially less
adverse effects.
The reported performance of the proposed pipeline could be further improved by
correcting the inconsistency present in the manual contouring. Also, the weighting
parameter α could be selected automatically by introducing it as a trainable para-
meter. Moreover, the current 3D-CNN was trained using CT scans without contrast
material, and therefore is unlikely to perform well on scans acquired with contrast.
In case the clinical protocol dictates contrast-enhanced CT acquisitions, the network
could be easily retrained. Wemay further investigate the effect on segmentation per-
formance of CT clipping as a preprocessing step for the 3D-CNN for bladder segment-
ation. We also consider developing an end-to-end neural network to jointly optimize
the registration and segmentation tasks to further improve the system robustness
and accuracy.

6.5 C

In this study we proposed a registration pipeline for automatic contour propagation
for online-adaptive IMPT of prostate cancer using the open source package elastix
software in combination with deep learning. The proposed pipeline achieved a geo-
metrical success rate of 97%, 93%, and 87% for the prostate, seminal vesicles, and
lymph nodes, respectively for the HMC dataset as well as 67% and 71% for the pro-
state and seminal vesicles, respectively for the EMC dataset. The HMC automatic-
ally propagated contours meet the dose coverage constraints in 86%, 91%, and 99%
of cases for these targets. A conservative success rate (CSR) of 80% was achieved,

105



666666

Acknowledgments

meaning that 80% of the automatically generated treatment plans can be directly
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Abstract

Purpose: The aim of this study was to investigate the feasibility of using prompt gamma

(PG) ray emission profiles to monitor changes in dose to the planning target volume

(PTV) during pencil-beam scanning (PBS) proton therapy as a result of day-to-day vari-

ations in patient anatomy.

Methods and materials: For 11 prostate patients, we simulated treatment plan delivery

using the patients daily anatomy as observed in the planning CT and 7 – 9 control CT

scans, including the detected PG profiles resulting from the 5%, 10%, and 20% most in-

tense proton pencil-beams. For each patient, we determined the changes in dosimet-

ric parameters for the high- and low-dose PTVs between the simulations performed

using the planning CT scan and the different control CT scans and correlated these to

changes in the PG emission profiles.

Results: Changes in coverage of the high- and low-dose PTV correlated most strongly

with the median and mean absolute PG emission profile shifts of the 5% most intense

pencil-beams, respectively. With a mean Pearson correlation coefficient of -0.76 (SD:

0.17) for the high-dose PTV and of -0.60 (SD: 0.51) for the low-dose PTV.

Conclusion: We showed, as a proof of principle, that PG emission profiles obtained

during PBS proton therapy could be used to detect changes in PTV coverage due to

day-to-day anatomical variation.
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7.1 I

Proton therapy can be negatively affected by errors in proton range prediction and
by day-to-day anatomical variations, both resulting in a variation in the Bragg peak
location, this study focuses on the latter. The sensitivity of proton therapy accuracy
to small daily anatomical variations, as well as the corresponding effects on the dose
distribution, have been previously described [105]. The detection of secondary ra-
diation exiting the patient has been proposed as a potential tool for day-to-day dose
monitoring, so as to ensure patient safety and an effective treatment [12, 106–110].

Prompt gamma (PG) rays resulting from nuclear interactions between the incom-
ing protons and the patients’ tissue can be used for proton range monitoring during
treatment [12]. PG emission pro iles have been shown to correlate strongly with the
depth-dose pro ile of the primary proton beam [12]. Detecting changes in the loca-
tion of the fall-off region of the PG emission pro iles to estimate the change in proton
range has been shown to be feasible in both Monte Carlo simulations as well as in
in-situ and in-vivo measurements [107, 111–113]. Different techniques have been
proposed, such as using spectral or timing information [114–117] or neutron back-
ground suppression by applying time-of- light discrimination [107].

PG emission pro ile measurements have been used in a clinical setting and in com-
bination with patient data [112, 118–121]. However, information was provided on
range shifts of individual pencil-beams or energy layers only, not on clinically relev-
ant dosimetric parameters, which is needed to ensure daily target coverage and to
increase treatment effectiveness.

If PG emissionpro iles are to beused for (near) real-timedosemonitoring during pro-
ton therapy, the deviation between the detected and expected PG emission pro iles
should be determined. In addition, a translation from the simple detection of range
shifts for a set of pencil-beams to the quantitative assessment of clinically relevant
changes in the dose distribution should be established. To our knowledge, it has not
yet been shown whether changes in PG emission pro iles correlate with changes in
clinically relevant dosimetric parameters such as target coverage.

The goal of this study is to investigate the feasibility of using detected PG emission
pro iles for the daily monitoring of dosimetric changes during pencil-beam scanning
(PBS) proton therapy. We used Monte Carlo to simulate dose delivery on multiple
control CT scans to determine the changes in dose to target volumes and in PG emis-
sion pro iles, detected outside the patient, as a result of day-to-day variations in pa-
tient anatomy. Weestablished the correlationsbetweendosimetric changes and changes
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in the PG emission pro iles to determine what observables could potentially be used
for day-to-day dose monitoring.

7.2 M M

Clinical dataset and treatment plans

Our dataset consisted of 11 prostate cancer patients, previously treatedwith conven-
tional intensity-modulated radiotherapy (IMRT) without a bladder illing protocol
or rectal balloon. For each patient we had a planning CT scan and 7 – 9 control CT
scans (Appendix Table A.7.1), obtained during the course of treatment (99 CT scans
in total). The available CT scans represented the day-to-day anatomical variations as
were observed for this patient group in daily practice. These anatomical changes can
result in density changes along the pencil-beam path affecting the dose distribution.

For each planning CT scan, we had a structure set delineated by an experienced radi-
ation oncologist. We generated the high-dose planning target volume (PTVHigh; pro-
state + 4 mm) and the low-dose PTV (PTVLow; seminal vesicles + lymph nodes + 7
mm). In addition, there was the intermediate-dose PTV (PTVInter), which consisted
of part of the PTVLow that was situated in the 15 mm ring surrounding the PTVHigh
that was used to regulate the dose gradient around the PTVHigh during plan optimiza-
tion [30]. The PTVInterwas excluded from the PTVLow, thus these two volumes did not
overlap. The PTVHigh was prescribed 74 Gy in 37 fractions of 2 Gy, the PTVLow and
PTVInter were prescribed 55 Gy but the PTVInter will partially receive a higher dose
since it is situated in the dose gradient surrounding the PTVHigh. For each patient, a
PBS proton treatment plan was made using the Erasmus-iCycle treatment planning
system [20, 30] and the dosewas calculated using the ‘Astroid’ dose engine [21]. This
system generates Pareto optimal plans by using a multi-criteria optimization based
on constraints and objectives. All planning constraints and objectiveswere in accord-
ance with the work from Jagt et al. [30]. On average, a plan contained 1417 (range:
1247 – 1540) pencil-beams and a total of 2.8×1012 to 3.6×1012 protons (appendix
Table A.7.1), divided over two opposing lateral ields. The plans were not robustly
optimized.

Monte Carlo simula on of dose delivery and PG detec on

Dose delivery using the proton therapy planswas simulated using theTOPAS (version
3.1.p1) (Geant4 10.3.p01 based) Monte Carlo code [122] and was performed on the
Dutch national computing cluster LISA (SURFsara, Amsterdam, the Netherlands). We
used the TOPAS default physics list, which has been shown to compare well to lists

112



7777777

Detec ng changes in target coverage through prompt gamma emission profiles

that were proposed for proton therapy in earlier versions of Geant4 [123]. Geant4
has been shown to overestimate PG yields, while the PG emission pro ile length was
accurately simulated [124].

We extracted the treatment parameters (e.g. pencil-beam energies and locations re-
lative to the isocenter) from the treatment plans and used these to generate the ini-
tialization iles required to perform the simulations. The pencil-beam weights were
determined by dividing the number of monitor units (MUs) per pencil-beam by the
number of MUs of themost intense pencil-beamwithin that treatment plan. For each
plan, the most intense pencil-beam was simulated using 2.8×106 protons and the
number of protons of the other pencil-beamswere scaled by the corresponding beam
weight. This resulted in an approximate downscaling of the actual number of planned
protons by a factor of 5000 and on average 3.3×105 – 5.3×105 simulated protons per
pencil-beam per patient. The maximum number of protons was used to evenly dis-
tribute the available calculation time over all patients. The number of pencil-beams
and the number of planned and simulated protons per treatment plan are given in
appendix Table A.7.1.

For each patient, dose delivery was simulated on both the planning and control CT
scans to obtain dose distributions and PG emission pro iles corresponding to the ana-
tomy represented on all CT scans. The extracted dosimetric values from the simu-
lated planned dose distributions (i.e. treatment plans simulated on the correspond-
ing planning CT scans) were used as reference values for each patient. This was done
to negate any differences between the dose calculation engine of Erasmus-iCycle and
TOPAS. The extracted values from the simulated dose distributions on the control CT
scans were compared to the reference values to establish how the dose changed due
to day-to-day anatomical variations.

In daily clinical practice, the patient is positioned based on a registration of the intra-
prostatic markers. In this study, the isocenter of each CT, which was de ined as the
center of mass of the prostate, was placed at the origin of our coordinate system,
mimicking perfect daily patient positioning. No positioning uncertainty of an envi-
sioned PG emission detector was taken into account since we assumed a ixed de-
tector position with respect to the isocenter of the treatment unit. The conversion
from Houns ield units to proton stopping power was performed using the Schneider
(stoichiometric) conversion [125]. The used Houns ield look-up table was not op-
timized for the used CT scanner and conversion uncertainties were not taken into
account, but this should not in luence the relative difference between the different
simulations.
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For each simulation, we scored the dose (i.e. dose to water) deposited within the
CT volume on a 200×200 grid for each CT slice, resulting in slightly different voxel
sizes per patient. However, this will not in luence the results since no inter-patient
comparison will be performed. All photons exiting the patient were scored on a cyl-
indrical surface around the CT volume, coaxially to the treatment ields. For each
photon, the position, direction, energy and which pencil-beam generated the photon
were scored. This allowed us to analyze PG emission pro iles per pencil-beam. The
scoring cylinder encompassed the complete CT and would intersect with the patient
in real life, but was used to increase the number of detected PG photons compared to
using a scoring surface with an area similar to that of clinically used detectors [107].
The creation of the initialization iles as well as all data analysis was performed in
MATLAB (The MathWorks Inc., Natick, MA, USA).

Data analysis

The simulated dose iles were linearly interpolated to the same grid as the planned
dose distribution. All dose distributions were evaluated on the planning CT scan of
that patient, which means that all dosimetric parameters were determined for the
PTVs as de ined on the planning CT scan. This ensured that observed dosimetric
changeswere solely caused by changes in the dose distributions resulting from dens-
ity changes observed along the pencil-beam path. If the PTV, as delineated on the
control CT scan, would be used, changes in dose could also be due to delineation vari-
ations and this would then not be observed in the prompt gamma emission pro iles.
The aim of this study was to show the feasibility of using PG emission pro iles to de-
termine changes in volumetric dosimetric parameters.

For each dose distribution, we created dose volume histograms (DVHs) for the dif-
ferent PTVs. We then calculated the mean dose (Dmean), median dose (Dmedian), the
maximum dose received by ≥ 2% of the volume (D2%), the minimum dose received
by ≥ 98% of the volume (D98%), and the volume percentage receiving ≥ 95% of the
prescribed dose (V95%).

To determine the PG emission pro iles, we discriminated the scored photons based
on energy (≥ 1 MeV) and angle of incidence (87°≤ θ ≤ 93°), as were used in other
studies as well [118, 126]. The latter was done to select photons that were emitted
close to perpendicular to the treatment beam, simulating a simple multi-slit collim-
ator. We tallied the photons within 4 mm wide spatial bins resembling the pixel size
of a realistic scintillation detector [107]. Next, we selected the PG emission pro iles
corresponding to the 5%, 10%and20%most intense pencil-beams (i.e. highest num-
ber of protons) per plan, regardless of the pencil-beam locations or proton energy.
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To reduce noise, each pro ile was iltered using a third-order median ilter. The total
number of protons in the selectedpencil-beams corresponded to approximately 18%,
30%and 49%of the total number of protons in the treatment plans, respectively. The
total numbers of simulated protons in the selected pencil-beams and the total num-
ber of PG photons used for analysis are given in appendix Table A.7.2. For each PG
emission pro ile, we calculated ive parameters that could each be used to compare
the pro iles from the simulated planned dose to those from the simulations on the
control CT scans. For the irst and second parameters, we automatically selected the
point closest to the 50%-point of the fall-off region of the PG pro ile. Next, we selec-
ted 10 points in both directions and these 21 points were considered as the fall-off
region of the PG pro ile. We itted a sigmoid function to the fall-off region and used
the 50%-point of the sigmoid curve (X50) as a measure for the fall-off location of the
pro ile (Figure 7.1) [118]. This point is known to correlate strongly with the Bragg
peak location of the corresponding pencil-beam [12]. For each analyzed pencil-beam,
we determined the difference as well as the absolute difference between the X50 of
the simulation on the planning CT scan and the X50 of that same pencil-beam when
simulated on the control CT scan (i.e. ∆X50 and |∆X50|). For the third parameter, we
summed the squared differences of the fall-off region between the PGpro iles belong-
ing to the same pencil-beams of the different simulations (i.e. local summed-squared
differences). For the fourth and ifth parameters, we summed the squared differences
and the chi-squared differences over the entire pro iles (i.e. overall summed-squared
and chi-squared differences). As a result, for each simulation on a control CT scan, we
had three distributions of values for each of the ive parameters, namely for the 5%,
10% and 20%most intense pencil-beams, respectively.

To investigate the feasibility of using these distributions for dose monitoring during
treatment, we calculated the mean, median, and standard deviation (SD) of each dis-
tributionanddetermined, perpatient, thePearson correlation coef icients (r ) between
these values and the calculated dosimetric parameters. The Pearson correlation coef-
icient is a measure of the linear correlation strength between two variables and can
range from -1 ≤ r ≤ 1, where a negative value of r stands for a negative correlation
and a positive value for a positive correlation. Small errors in the sigmoid its to the
fall-off regions of the PG emission pro iles due to low counting statisticswill only have
a minor in luence on the results since for each simulation we averaged over ±70 to
±280 pencil-beams, depending onwhether 5%, 10%or 20%of the pencil-beamswas
used.

No comparisonwasmade between the ive parameters used to determine the PG pro-
ile shifts and the individual Bragg peak shifts since we did not score the dose per
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Figure 7.1: Prompt gamma emission profile corresponding to a simulated proton pencil-beam,
with fitted sigmoid curve and X50 point.

pencil-beam. We were only interested in the PG pro ile shifts of a subset of pencil-
beams and the clinically relevant dosimetric changes. 

7.3 R

Figure 7.2 exemplarily shows the planned dose distribution, the simulated planned
dose distribution, the dose distribution obtained from the simulation on control CT
scan 4, and the same dose distribution shown on the planning CT scan, all for patient
1. The situations shown in Figures 7.2a, b and d were used for the calculation of
the dosimetric parameters, the situation in Figure 7.2c is purely illustrative of what
was simulated. In addition, Figure 7.3 shows the DVHs of patient 4, illustrating the
agreement between the planned and simulated planned dose for this patient.
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Figure 7.2: Illustration of (a) the planned dose, (b) the simulated planned dose, (c) the dose based
on a simulation on control CT scan 4 and (d) the simulated dose of (c) projected on the planning
CT scan, all for patient 1.

Correla ons between changes in PG emission profiles and in dosimetric parameters

Figure 7.4 shows the ∆X50 and |∆X50| distributions when using the 5%most intense
pencil-beams for patient 4. For this particular patient, the Pearson correlation coef-
icients between the change in V95% of the PTVHigh, PTVInter and PTVLow (Figure 7.3)
and the mean ∆X50 (Figure 7.4a) were 0.29, 0.10 and 0.20, respectively. When using
the mean |∆X50| (Figure 7.4b), the coef icients were -0.97, -0.81, -0.99. In general,
stronger correlations were observed when using the absolute shifts of the PG pro-
iles (i.e. disregarding whether a pro ile shifts in one direction or the other). The
calculated correlation coef icients over all patients when using |∆X50| are illustrated
in Figure 7.5 in the formof boxplots. The strongest correlationswere observed for the
V95% of the PTVHigh and PTVLow. This is because the deposited dose was optimized
to be conformal to and uniform within these PTVs. Therefore, a disturbance in dose
compromises this conformality or could create cold-spots, decreasing the V95%. The
PTVInter is positioned completely in the dose gradient from 74 Gy to 55 Gy, thus re-
ceiving a non-uniform dose higher than the prescribed 55 Gy. Therefore, the V95% is
less sensitive to disturbances, hence the weak correlations. In general, the strongest
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Figure 7.3: Dose volume histograms of (a) the high-dose PTV (PTVHigh), (b) the intermediate-
dose PTV (PTVInter) and (c) the low-dose PTV (PTVLow) for all available dose distributions of
patient 4.
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Figure 7.4: The (a) ∆X50 and (b) |∆X50| distributions when using the 5% most intense pencil-
beams for patient 4.

correlations were observed when using the 5%most intense pencil-beams.

Figure 7.6 shows the linear its used to calculate the correlation coef icients r and
the corresponding p-values between the V95% of the PTVHigh and the median |∆X50|
when using the 5% most intense pencil-beams, for all patients. We observed strong
correlations inmost patients, but the relationbetween the twoparameterswashighly
variable between patients.

Using either the |∆X50|, local summed-squared differences, overall summed-squared
differences or the overall summed chi-squareddifferences yielded similar results, but
the strongest correlations were observed when using the |∆X50|. This section there-
fore focused on the |∆X50| distributions; the other results are shortly discussed in the
Supplementary Materials (appendix Figures A.7.1 – A.7.4).
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7.4 D

This study is the irst to correlate the day-to-day changes in PG emission pro ileswith
the day-to-day volumetric dosimetric changes of the PTVs for fractionated PBS pro-
ton therapy of prostate cancer patients. The observed correlations indicate that PG
emission pro iles could be used to detect daily volumetric dosimetric changes. The
strength of the observed correlations and the relations between the changes in dose
and PG emission pro iles varied greatly. For example, weaker correlations were ob-
served for the mean, median and max dose to the PTVHigh and PTVLow. This was
to be expected since a shift of a subset of the pencil-beams within the volume does
not necessarily change these parameters, while it does shift the PG emission pro iles.
Therefore, we did not report on the exact relations between the parameters extrac-
ted from the PG pro iles and the dosimetric parameters. The large variation in cor-
relation strength indicates that the calculated relations, which could be established
through linear itting, would vary greatly in predictive value andwould have little ad-
ded value. In addition, population-based relations could also not be determined due
to the large variation between patients. This study was also limited by statistics in
terms of the number of incident protons that were simulated and this inhibited using
all pencil-beams for analysis because many would simply have a too low number of
detected PG photons. The aim of the current workwas to establish, as a proof of prin-
ciple, that correlations between the changes in PG emission pro iles and in dosimetric
parameters exist.

The simulated target coveragewas considerably lower compared towhatwasplanned
andwould not be clinically acceptable. This was due to the difference in dose calcula-
tion technique and an imperfect translation of the plan parameters (e.g. exact angles
of incidence), compromising the target coverage when compared to a fully optimized
dose distribution. However, this did not in luence the result since we only analyzed
the relative differences.

If the proposed technique is to be used for dose monitoring in clinical practice, a set
of reference PG emission pro iles should be determined before the irst treatment
fraction, which could be done through Monte Carlo simulations. However, the full
detector system (e.g. collimator and detector characteristics) should be considered
in the predictive model. It would also be possible to determine the reference pro iles
frommeasurements during the irst treatment fraction, but in this case no dosemon-
itoring could be done during this fraction. In addition, if there is a large difference in
patient anatomy during this irst fraction, all subsequent fractionsmight be classi ied
as incorrect.
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The presented approach for dose monitoring using PG is not suitable for treatment
plans that are re-optimized on a daily basis because there are no reference pro iles to
which the pro iles of that day can be compared. It could e.g. be possible to calculate
the new reference PG pro iles from a re-optimized dose distribution by using a ilter-
ing approach similar to the approach described by Parodi et al. for dose monitoring
using positron emission tomography techniques [127].

Only small differences were observed between the results when using the 5%, 10%
or 20%most intense pencil-beams. It thus appears that relatively little information is
addedwhen increasing the number of pencil-beams used for analysis when using the
current pencil-beam selection method (i.e. based on intensity). Other pencil-beam
selection methods (e.g. based on their contribution to speci ic dosimetric paramet-
ers) could bene it from using a greater number of pencil-beams for analysis. Other
factors that canhaveanevengreater effect on theperformanceof theproposedmethod
are the background signal caused by neutrons and including a realistic detector ef i-
ciency.

The pencil-beam selection method that was used in this study was purely based on
achieving thebest counting statistics for thePGemissionpro iles. Since the20%most
intense pencil-beams automatically included the 10%most intense pencil-beams and
again this included the5%most intensepencil-beams, the results from these three se-
lections were correlated. Future research should focus on deriving parameters from
the detected PG signals that have better speci icity. For example, by selecting pencil-
beams that speci ically contribute to the dose to a selected structure rather than the
most intense beams, and using these pencil-beams to determine dosimetric changes
for that structure. Then, itmight be possible to determine the exact relations between
the PG emission pro ile shifts and the dosimetric parameters and to determine exact
threshold values and action levels that can be used for dose monitoring in daily prac-
tice. This was not possible in the current work because of a too low number of simu-
lated protons per pencil-beam and a change in pencil-beam selection could result in
performing the analysis with PG emission pro iles that had a poor contrast-to-noise
ratio. In addition, devisingmethods to select pencil-beams that contribute to speci ic
dosimetric parameters was outside the scope of this study.

This study has a number of known limitations such as: relatively low counting stat-
istics, the use of a perfect and cylindrical detector surface, the rejection of neutrons at
thedetector surface, using only thePTVon theplanningCT to calculate thedosimetric
parameters, and not considering positioning uncertainties. Despite these limitations,
the obtained results are a next step in the advancement of PG treatment monitoring
research. The presented data shows that there is a correlation between the shifts of a
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set of PG emission pro iles and the change in volumetric dosimetric parameters. This
is a irst step in the clinical translation of the detection of range shifts of individual
pencil-beams to changes in clinically relevant dosimetric parameters.

7.5 C

It appears feasible touseprompt gammarayemissionpro iles, obtainedduringpencil-
beam scanning proton therapy, to detect dosimetric changes of the PTVs resulting
fromday-to-dayanatomical variations. Changes inPTVcoverage correlatewith changes
in PG emission pro iles, but more research is needed to establish the exact relation
between the changes in PG emission pro iles and in dosimetric parameters. PG based
treatmentmonitoring could thenbeused toobtain real-timequantitative information
on the dosimetric quality in a non-invasive manner.

7.6 A

This study was inancially supported by ZonMw, the Netherlands Organization for
Health Research and Development, grant number 104003012 and by Varian Med-
ical Systems. The calculation time on the SURFsara Lisa systemwas granted by NWO
Physical Sciences. The CT-data with contours were collected at Haukeland University
Hospital, Bergen, Norway and were provided to us by responsible oncologist Svein
Inge Helle and physicist Liv Bolstad Hysing.
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Limita ons and improvements of the online adapta on methods

In this thesis, we haveworked towards online adaptation in intensity-modulated pro-
ton therapy (IMPT). We have developed and evaluated two fully automated adapta-
tion methods, aiming to restore target coverage and increase organ at risk sparing
in the treatment fractions. With the dose restoration method, we managed to recon-
struct the prior dose distribution as made for the planning CT scan, increasing the
success rate in terms of target coverage. Consequently, using this method will allow
for less robustness to be included during treatment planning, which in turn can in-
crease healthy tissue sparing. The full adaptation method allowed for the daily ana-
tomy to be taken into account, thereby improving organ at risk (OAR) sparing. We
have investigated the feasibility of the latter method for tumor sites showing large
day-to-day variations, andwe compared both the dose restoration and the full adapt-
ation method to robust treatment planning.

In this chapter we will discuss the limitations of the methods developed throughout
this thesis, followed by a discussion of the general developments and the future of
(online-adaptive) IMPT.

8.1 L

In the development of the adaptation methods described in this thesis, the focus has
been on making the work low fully automated. To this end, we aimed for a success
rate of 100% in the adapted plans. This entails making them clinically acceptable
without any user alterations, thereby reducing the need for review. To achieve this,
we have been rather strict on certain plan characteristics.

In terms of target dose, the aim of adaptation was always to achieve an adequate
target coverage, with OAR sparing having a lower priority. In the dose restoration
method this aim was achieved by increasing the optimization-weight of the voxels
not conforming to the planning criteria. In the full plan adaptation, minimum target
dose was included as a hard constraint in the reference point method (RPM) optim-
ization. In some instances, however, it could be that slightly lower target coverage is
clinically desirable, as critical OARs could be better spared. If this holds for the entire
treatment course, obviously the solutionwould be to alter the planning criteria in the
RPM for this patient. For the plan restoration method, another solution could be to
leave the prior plan unchanged, but put more focus on the optimization-weights of
the OARs instead of the targets (see Chapter 2).

Besides the target coverage, we have invested in limiting the number of energy lay-
ers that are included in the adapted treatment plans. Limiting the number of energy
layers reduces the treatment time, and as the running time of our dose calculation
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[21] depends on the number of energy layers, the restrictions also reduce the cal-
culation times of the (intermediate) dose calculations. Instead of using all feasible
energy layers, we limited the number of energy layers by only allowing those energy
layers that were used in the prior treatment plan. Additional energy layers were only
allowed if these prior energy layers proved insuf icient or too few. Although restrict-
ing the number of energy layers could yield an imperfect spot-restoration and reduce
the number of degrees of freedom for spot addition, we have found that even with
these restrictions adequate treatment plans were obtained. It should be noted that
the arbitrary limit of 200 energy layers in the spot-addition step was actually almost
never limiting for the prostate cancer database. For other treatment sites it could be
limiting, so it should be evaluated whether a limit is actually necessary or should be
removed altogether.

The RPM makes trade-offs between planning objectives, which can be tuned by the
RPM-parameters. These parameters can be automatically obtained by training the
RPM on a set of clinically desirable plans [47]. Depending on the tuning protocol
and stopping criteria however, this training, though automated, can take in the or-
der of days to complete for a training set of ten treatment plans. Furthermore, the
evaluation of the parameter values is challenging, as their individual meaning can-
not be directly linked to a speci ic planning objective. In Chapter ??, we showed that
RPM-parameters trained on Erasmus-iCycle plans did not produce exactly the same
trade-offs as in the training set. Therefore, as discussed in Chapter ??, there is room
for improvement regarding the training and evaluation of the RPM-parameters. This
could for example be achieved by performing the RPM-parameter tuning on treat-
ment plans with various pencil-beam sets, avoiding over itting on a speci ic type of
pencil-beam set.

Possible improvements of the adaptation method could be in the handling of the re-
stored spots and the addition of new spots. The energy-adaptation of the prior plan
restores the prior spots to their initial position. As however different contours are
used, these restored spots might not end up in the new target region. In the cur-
rent method, such spots are still included in the optimization. As no real contribu-
tion of these spots is expected, they could be removed immediately after the energy-
adaptation. Whether this will result in changes in plan quality and calculation times
will have to be evaluated. For the new spots, the approach used for selecting the
new spots could be altered. Presently the spot addition is done by sampling a num-
ber of spots using latin hypercube sampling. This sampling method aims at taking
a homogeneous sample from all possible spot positions. Better results might be ob-
tainedwhen adding spots in a ine regular grid instead of sampling them. A downside
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would be the increased calculation times, asmore pencil-beamswould be added. An-
other possibility could be to irst determine where new spots are required. This is
not straightforward, because a pencil beam not only contributes dose to the dose dis-
tribution in the Bragg peak, but also proximally to it.

8.2 A

Themethods developed in this thesis were created to adapt IMPT treatment plans on
a daily basis. So far, the methods have only been evaluated on CT-data of a cohort of
prostate and cervical cancer patients. The results demonstrate that the adaptation
can be applied for relatively large target volumes exposing large day-to-day variation
in shape and location and with signi icant daily density variations along the pencil-
beam paths. This implies that the developed methods can also be applied to other
treatment sites. For example, tumors in the head and neck region would be interest-
ing to investigate as there are many organs at risk in close proximity. As was shown
by van de Water et al. [10], reducing the amount of robustness can reduce the nor-
mal tissue complication probability (NTCP) value. The amount of required robust-
ness can be reduced by accounting for density variations such as varying nasal cavity
illings using the dose restoration approach. Even more reduction of robustness can
beachieved, byusing the full plan adaptationapproach to account for gradual changes
such as weight loss and residual positional variations caused by spine bending.

Obviously, the daily variations in shape and location of the target volume and OARs
do not only occur in IMPT, but may also happen in conventional radiotherapy. The
dose distribution, however, is less affected as the static dose cloud approximation
holds. Therefore, adding a margin around the target is usually suf icient. However,
applying full plan adaptation on a daily basis can reduce margins in conventional ra-
diotherapy as well, thereby improving OAR sparing. Plan adaptation using a restora-
tion followed by a weight optimization was already described for prostate radiother-
apy by Ahunbay et al. [51]. Instead of the energy-adaptation step they described a
segment aperture morphing (SAM) technique. After this a segment weight optimiz-
ation is performed which optimizes the segment weights of the individual segments.
Similar techniques are also used in treatments with an MR-Linac, where a reference
plan is either restored after an isocenter shift, or fully adapted to new daily contours
(adapt to position and adapt to shape, respectively) [52]. While the restoration steps,
such as the SAMand the energy-adaptation, are speci ic to the treatmentmodality, the
subsequentweight optimization techniques can be used interchangeably. It would be
interesting to see how the RPM optimization would perform when used for optimiz-
ing these segment weights.
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Although the dose restoration method was described here as a method to restore
a plan to its initial state, this method could also be applied to generate plans for a
new anatomy. Skipping the energy adaptation step and instead positioning pencil-
beams in a regular grid, any dose distribution could be given as input for the restora-
tion method. The input could for example be a predicted dose distribution, based on
the daily anatomy. Three dimensional predictions of photon dose distributions have
already been generated by several groups using knowledge-basedmodeling anddeep
learning [128]. Taking such a dose prediction as input for a restoration method can
result in a feasible treatment plan, as has already been shown by Fan et al. [129].
It should however be noted that while this could lead to clinically acceptable plans,
there is no guarantee that the restored plans will be Pareto optimal.

The online adaptation methods developed in this thesis can also be used to generate
new treatment plans, as already shown for IMRT by van Haveren et al. [33, 34]. In
the SupplementaryMaterials of Chapter 4 (Appendix A.2) we have also evaluated the
use of the full plan adaptation to generate plans from scratch. For an online setting,
we found that the required calculation timeswere too long. Applying themethod as a
tool to generate new treatment plans in an of line setting would however be feasible.

8.3 T ( - ) IMPT

8.3.1 Restora on, full plan adapta on or something else?

Considering the future of online-adaptive IMPT, the question arises whether daily
plan adaptation is possible, and whether it is actually necessary.

In Chapter 2 we have seen that applying the dose restoration can return a dose dis-
tribution to its intended state. The restoration method aims for a similar dose distri-
bution in each treatment fraction, by only adapting for density variations along the
pencil-beam paths. Applying this dose restoration method to a prior plan effectively
overcomes the limitation of the static dose cloud approximation in proton therapy.
Therefore, by adding planning target volume (PTV) margins to the prior plan, it can
be used in a similar way as is currently done in photon therapy where PTV margins
are used to account for geometrical errors. As nonewcontours are required, applying
thismethod on a daily basis is feasible, as long as daily volumetric imaging is available
that can be used for accurate proton dose calculation.

In Chapters 3 – 5 we evaluated themore complex full plan adaptation approach. This
method has the bene it of optimizing the treatment plan for the actual daily anatomy.
Thismeans that when using this method, the degree of included robustness/margins
can be further reduced as the prior plan no longer has to account for all possible
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shapes and locations of the target. Furthermore, using this approach we can adapt
the dose to the OARs depending on their position with respect to the target, and also
adapt for shape changes of the target and possible tumor shrinkage. However, for this
method to become feasible, daily contours are required. Differentmethods of obtain-
ing such contours are of course possible, including (combinations of) manual delin-
eation, delineationpropagation and full auto-delineation. Full use of auto-delineation
is obviously preferable (for example as described in Chapter 6), where at most a
manual check needs to be performedprior to the plan adaptation. If suchmethods, or
other combinations, can be run in a limited time, then applying full plan adaptation
is feasible as was demonstrated in this thesis.

InChapter5wehave shown thatwhencompared to robust treatmentplanning, online-
adaptive IMPT can lead to reductions in OAR doses in prostate cancer treatments.
The amount of bene it will however depend on the treatment site and individual pa-
tient. To determine whether daily adaptation is truly necessary, an essential step is
to evaluate whether these dose reductions are clinically relevant. Determiningwhich
patients or patient groups are likely to bene it from the plan adaptation is therefore
required. In line with the Dutch model-based approach of patient selection for pro-
ton therapy (for more details see section 8.3.4), an interesting approach would be to
trigger an adaptation based on a change in NTCP. Bijman et al. showed that some
NTCP models are more affected by dose uncertainties than others [130]. This illus-
trates that, while less dose is preferable, the clinical impact of dose changes depends
on other factors as well.

Besides determiningwhether a patient will bene it fromplan adaptation, the optimal
frequency of adaptation should be determined. For treatment sites with small day-
to-day variations, but signi icant weekly changes, a weekly plan adaptation could be
suf icient. Combinations of differentmitigation approaches could also be considered,
such as daily dose restoration combined with weekly plan adaptation. Important to
note is that the daily plan adaptation as described throughout this thesis is based on
daily acquired CT scans. If implemented in the clinical work low, the additional dose
that is given to the patient during these scans should be acknowledged [131]. Fur-
thermore, in-room CT scanners are not widely available. Alternatively, other groups
have shown that daily adaptation may also be achieved using cone beam CT (CBCT)
scans [48, 50].

Prior to performing an actual comparison study, some patient groups and treatment
schedules can already be expected to greatly bene it from daily adaptation. Treat-
ments using hypo-fractionation will likely bene it from online plan adaptation, as
there is less chance for random daily errors to be averaged out in other treatment
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fractions and higher daily doses are delivered per fraction. Treatment sites for which
density changes frequently occur, could also bene it from online adaptation. An ex-
ample is tumors in the thoracic region. In terms of patient groups, online plan adapt-
ation is an attractive option for pediatrics. Due to their longer survival, children are
at a higher risk of secondary cancers caused by dose to the healthy tissues. Online
plan adaptation can reduce these doses and thereby reduce the risks.

8.3.2 Towards clinical implementa on of online-adap ve IMPT

In this thesis methods for online adaptation were developed and tested. The next
step will be to move towards clinical implementation. The clinical implementation
of automated online-adaptive proton therapy will be pursued in a research project
within theHollandPTC-consortium, at the ErasmusMCCancer Institute and the Tech-
nical University of Delft (the IMAGINATION project, ‘Improved healthy-tissue sparing
by automated daily online plan adaptation in proton therapy for head and neck can-
cer’). This project will also focus on automated quality assurance of adapted plans
and online patient-speci ic quality assurance based on the actually delivered treat-
ment.

The success of the implementation will critically depend on the used parameter set-
tings for the adaptation (Chapter ??). For dose restoration for instance, additional
research is needed to determine the settings for an optimal prior plan. Full plan ad-
aptation requires daily contours as input. For some treatment sites, e.g. with large
day-to-day variations, such as cervical cancer, obtaining new contours in a short time
frame is currently still very dif icult. For these type of treatment sites, dose restora-
tion could be a better option to start with. For treatment sites with large day-to-day
variations, the dose restoration can be combined with a library of prior plans, as was
done for the full plan adaptation in Chapter 4. Chapter ?? has shown that taking a
smaller prior plan for restoration can result in lower doses to the OARs. Based on this
result, dose restoration is likely to bene it of using such a plan-library. This approach
is pursued in the PROTECT (‘Online-adaptive proton therapy for cervical cancer to
reduce the impact onmorbidity and the immune system’) project for online-adaptive
proton therapy in locally advanced cervical cancer.

Another important aspect is to establish howmuch the degree of robustness and/or
margins can be reduced for those patients receiving daily adaptation. Adaptations
in the presence of shrinking targets should be carried with restraint as remaining
microscopic tumor could be missed, which could result in loss of tumor control and
increased recurrence rates.
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In the daily online-adaptive work low, the adapted plan has to be veri ied to determ-
ine whether it can be delivered. For both methods the planning criteria should obvi-
ously be checked, to ensure that target coverage is adequate andwhether constraints
onhealthy tissues aremet. If not, theuser should automatically bewarnedandprefer-
ably be provided with an alternative. For example, when a dose-limiting OAR has
moved closer to the target in a certain fraction, a target under-dosage could be re-
quired in that fraction. An automatic warning of this could be send to the user, and
with a prede ined alternative set of planning criteria, an alternative treatment plan
could then be generated.

Besides verifying the clinical treatment planning constraints, it could be checked
whether the adaptation actually performs better than (or similar to) the prior plan.
For plan restoration, this can for example be done by computing the dosimetric para-
meter values of the restored plan and comparing these to the prior plan. As the aim
was to restore the dose distribution, and the same contours are being used for eval-
uation, this comparison can provide a good indication whether the restored plan is
acceptable. By de ining thresholds for the differences per criteria, this check can then
be fully automated. An automatic warning can be issued, allowing the user to for ex-
ample try an alternativeweighting. For the full plan adaptation, the evaluation is done
on the newdaily contours,meaning that a comparisonwith the prior valuesmight not
be conclusive. While it might provide an indication of what kind of values would be
considered acceptable, a comparisonwith the distorted plan, i.e. the prior plan recal-
culated on the new anatomy, would be more meaningful. Parallel to the adaptation
a forward calculation of the prior plan can be performed, and the dosimetric para-
meter values of the distorted plan can be automatically computed and compared to
the adapted plan. For both online-adaptive methods, comparing to the prior (or dis-
torted) plan can provide an indication of the plan quality compared to non-adaptive
treatment. No information is however obtained on how good the plan is for the spe-
ci ic anatomy of the day. To include a check such as this, a knowledge-based approach
could be implemented which gives a prediction of obtainable dose distributions for a
speci ic anatomy [128].

Another important aspect of the clinical implementation of a daily online-adaptive
work low is patient-speci ic plan quality assurance (QA). With the limitation of avail-
ableQA time, alternative solutions, preferably automated,will have tobe investigated.
Checking the viability of the adapted plan in terms of MU can be fully automated. Al-
ternative QA methods could include real-time monitoring of the dose delivery and
retrospective control through machine log iles. In Chapter 7 we have shown that
dosimetric changes caused by anatomical variations can be correlated to changes in
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measured prompt-gamma pro iles. The use of this methodology as an online monit-
oring measure, however, is still far from routine clinical use. QA through the use of
machine log iles on the other hand has been proposed as an alternative and may be
more straightforward to implement [63, 64]. The drawback of this method is that it
yields the results after the delivery of the treatment fraction. Secondary independent
calculations of the proton therapy machine settings compared to the actual machine
settings can be used to verify the treatment plan prior to delivery.

8.3.3 Future innova ons of (online-adap ve) IMPT

Whenonline-adaptive IMPT gets introduced into the clinic togetherwith technical in-
novations improving speed, applications can go beyond daily plan adaptation. Where
the work in this thesis focused solely on adapting for inter-fractional variations, the
next step would be to also adapt for intra-fractional variations. This would be es-
pecially interesting in moving targets such as tumors in the chest and abdomen. To
achieve this, the irst step would be to reduce the running times, with in particular
those of the intermediate dose calculations. Adaptation could then be done after each
beam, or even continuously. A method for dose accumulation should be included to
check whether the prescribed fraction dose has been achieved.

The methods we developed in this thesis are able to adapt for setup uncertainties
and changing anatomies. To account for uncertainties in the conversion from Houn-
s ield unit to proton stopping power, the full plan adaptation can robustly optimize
for range errors. These uncertainties could also be eliminated by applying transmis-
sion beam proton therapy. In this technique a single suf iciently high energy is se-
lected, such that the proton beams do not stop in the patient. Currently a popular re-
search ield for this application is lash therapy, where treating tissuewith a very high
dose-rate induces the so-called ‘ lash-effect’ [132–135]. So far obtaining these high
dose-rates only seems possible when using the highest energy. As no Bragg peaks are
used in these types of plans, range uncertainty and the effects of density changes are
eliminated.

Daily treatment plans obtained from scratch are expected to become available in the
future with further improvements on dose calculation and optimization speed. Run-
ning the calculations on a GPU and making certain assumptions and simpli ications,
Matter et al. [58] already showed that a simple treatment plan can be generated
within 10 seconds. It is important to consider that the simpli ications used do not
compromise on treatment plan quality.
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8.3.4 The future of (online-adap ve) IMPT in the Netherlands

When considering the Netherlands speci ically, proton therapy is still a very new
treatment modality, with the irst patients only treated in 2018. As proton therapy is
more expensive than conventional radiotherapy, theDutch health authorities decided
that currently only 2200 patients per year will get their treatment reimbursed. Be-
sides a limited number of standard indications, which automatically qualify for pro-
ton therapy, patients will pre-dominantly be selected by the model-based approach
[136, 137]. This model-based approach has been introduced to objectively select pa-
tients for whom a clinically relevant bene it of proton therapy can be expected. Pro-
spective observational cohort studies are used to validate this approach.
For patients with a potential bene it of IMPT, two treatment plans are generated.
One simulating a state-of-the-art photon therapy plan, and one simulating a state-
of-the-art proton therapy plan. For these plans NTCP values are calculated for one
or multiple side effects of the treatment. Patients for whom the proton NTCP value
is considerably lower than the photon NTCP value (the threshold is dependent on
the grade of the side effect), are then referred to proton therapy. The NTCP values
are calculated using models based on parameters such as delivered dose to speci ic
organs but also on patient and tumor characteristics. Generally speaking, the NTCP
value increases with increasing dose. For some tumor sites such as brain, for which
no validated NTCP models are available, the actual dose levels to critical organs are
used for selection.
The NTCP models are derived from dose distributions calculated on the planning CT
scan. Currently, in robust treatment planning, the results obtained for the nominal
planning scenario are used to calculate the NTCP values. When using full plan adapt-
ation, the plan will be adapted throughout the treatment, changing the dose at each
fraction. That is why one may wonder whether the standard NTCP models used for
patient selection are still valid for online-adaptive treatments. Therefore, it is neces-
sary to validate the NTCP models separately for online-adaptive treatments and to
develop methods to calculate the expected NTCP value before the start of the adapt-
ive treatment.
The use of online-adaptive treatment planning can assist in the clinical validation of
proton therapy. The main claim regarding proton therapy is that it can better spare
healthy tissues than photon therapy at the same tumor control probability. For this
to be validated, the claimed dose reduction to healthy tissues needs to be realized,
and clinical relevance of the dose reduction needs to be demonstrated. This claim
implicitly urges the need for the development and implementation of motion mitiga-
tion, which is known to reduce the OAR sparing ability of IMPT [10, 138]. In Chapter

136



88888888

Discussion

5 we have observed that online plan adaptation can reduce the required motion mit-
igation and can increase OAR sparing compared to current passivemotionmitigation
strategies such as robust treatment planning. The claimed dose reduction compared
to photon therapy will hence be easier to realize using online adaptation instead of
using the current robust treatment planning approaches.

In conclusion, this thesis shows that online-adaptive IMPT iswithin reach and that the
transition to clinical implementation of online-adaptive IMPT is themost logical step.
Ultimately this development should lead to reduced radiation-induced side effects
and to improved patients’ quality of life.
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A.1 S M –A
-

Table A.1.1: Percentages of the 88 dose distributions that meet the target constraints for the CTV
structures for the investigated methods. The RPM adaptive treatment plans are obtained using
a single iteration of adding new spots. Scans that meet these criteria do not necessarily have the
ability to account for intra-fraction motion.

Prior
(%)

Spot-
restoration (%)

RPM
adaptive (%)

Benchmark
(%)

V95% ≥ 98% CTVprostate 78.4 97.7 100 100

V95% ≥ 98% CTVseminal vesicles 90.9 96.6 100 100

V95% ≥ 98% CTVlymph nodes 79.6 98.9 100 100

V107% ≤ 2% CTVprostate 63.6 92.1 94.3 100

V107% ≤ 2% CTVseminal vesicles 32.0 94.3 100 100

V107% ≤ 2% CTVlymph nodes 100 100 100 100

Dose distributions
meeting all criteria

36.4 87.5 94.3 100
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Pa ent data

All patients were treated at the Leiden University Medical Center between 8 April
2015 and 3 May 2017. Written informed consent was obtained for all patients. For
each patient, a full- and empty-bladder CT scan was acquired as well as four weekly
repeat CT scans, resulting in a total of 23 repeat CT scans. All scans were acquired
in supine position. For one patient no empty-bladder CT scan was available. For this
patient the repeat CT scan with the smallest bladder volume was used as the empty-
bladder CT scan. The remaining 23 repeat CT scans were used as representations
of the daily anatomies. The low-risk primary tumor related clinical target volume
(CTV-TLR) and the lymph nodes (CTV-E) were de ined as target structures according
to the EMBRACE II protocol [139, 140], and the rectum, bladder, bowelbag (outer
extension), sigmoid and the femoral heads were de ined as organs at risk (OARs).
Delineations of the target volumes and OARs were available in all repeat CT scans.

The automated adap ve treatment planning method

Figure A.2.1 shows the work low of the prior-plan adaptationmethod investigated in
this study.

Spot-position 
restoration 
with fixed # 

energy layers

Pareto 
optimal 

plan 
(output)

Prior plan 
selection

Addition of 
new spots and 

dose 
computation

Spot-weight 
optimization 

(RPM) 

Spot reduction

Plan-library 
(input)

Figure A.2.1: The workflow of the automated prior-plan adaptive treatment planning method.
A library of prior plans is generated for the patient. Each fraction, the best fitting prior plan is
selected from the plan-library. A restoration of the spot-positions with a fixed number of energy
layers follows, in which all Bragg peaks are restored to their new water equivalent path length.
After this the method enters a loop in which new spots are added, the intensities are optimized
and the non-contributing spots are deleted. The loop can be repeated; we evaluated running the
loop zero, one or two times. The output is a Pareto-optimal treatment plan. Adapted from [44].
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Plan-library genera on for the prior-plan strategy

Figure A.2.2 shows examples of the ITV structures used for the library of prior plans,
in the sagittal view.

Full ITV

Complete ITV

Empty ITV

Figure A.2.2: An example of the ITV structures, shown in sagittal view. Top-left shows the cervix-
uterus corresponding to the empty-bladder CT scan in blue, and the cervix-uterus corresponding
to the full-bladder CT scan in orange. Top right shows the Complete ITV in green. Bottom left
and right show respectively the Empty ITV and Full ITV in green.

Mul -criteria op miza on for the benchmark and prior plans

Benchmark and prior planswere generated on their respective PTVOAPT andPTVPrior,
using our in-house developed fully automated treatment planning system ‘Erasmus-
iCycle’. Optimizations were done according to the wishlist shown in Table A.2.1. The
full multi-criteria optimization includes iteratively sampling 3000 spots to the target
region using latin hypercube sampling, optimizing the spot-weights and removing
non-contributing spots. Latin hypercube sampling is a sampling method that takes
the previously sampled spots into account when selecting the next spot, aiming at a
homogeneous sampling. Spots are sampled from a virtual grid with a 1 mm resolu-
tion; a lateral spacing of 1 mm, with the energy spacing set to the longitudinal width
of the Bragg peak (relative energy factor of 1).
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Table A.2.1: The wishlist with planning constraints and objectives used for automated IMPT plan
generation for cervical cancer patients. Constraints will always be met. The priority numbers of
the objectives indicate the order in which objectives are to be optimized. A low number corres-
ponds to a high priority.

Constraints Structure Type Limit
PTV Minimum 0.95×45 Gy(RBE)

Objectives

Priority Structure Type Limit

1 PTV Maximum 1.07×74 Gy(RBE)
1 Patient Maximum 1.07×74 Gy(RBE)
1 PTV-low Maximum 1.07×55 Gy(RBE)
2 Conformity ring PTV-high Maximum 1.07×74 Gy(RBE)
2 Conformity ring PTV-full 0−10 mm Maximum 1.07×55 Gy(RBE)
2 Conformity ring PTV-full 10−15 mm Maximum 0.90×55 Gy(RBE)
3 Femoral heads Maximum 50 Gy(RBE)
4 Rectum Mean 1 Gy(RBE)
5 Small and large intestines Mean 1 Gy(RBE)
6 Bladder Mean 1 Gy(RBE)
7 Femoral heads Mean 1 Gy(RBE)
8 All conformity rings Mean 1 Gy(RBE)
8 All conformity rings Maximum 1 Gy(RBE)
9 Total spot-weight Sum 1 Gp

Abbreviations: PTV = planning target volume; Gp = Gigaprotons

RPM-parameter tuning

In this study the RPM-parameters were automatically tuned on a subset of the data-
base. The parameters were obtained using themethod presented in [47], which aims
at minimizing the differences in plan objective values between the benchmark plans
and the plans obtained by the RPM with the found parameters. Tuning was stopped
when the differences complied the demands of the protocol shown in Table A.2.2.

As the results of the prior-plan adaptation method might depend on the RPM-
parameters, a three-fold cross validation was applied. For each fold two different
patients were used for parameter tuning. The planning strategies using the found
parameters were evaluated on the other four patients of each fold.

To evaluate the RPM-parameters for the three tuning folds, RPM plans were gener-
ated on the scans not used for tuning, using the benchmark spots and the obtained
RPM-parameters. Sinceboth thebenchmarkplans andRPMplans arePareto-optimal,
differences are always observed. The preferences in the protocol de ine and limit
these trade-offs, but might not be optimal; changing the protocol can affect the res-
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ults of the method. For an acceptable con iguration, generated plans should achieve
adequate target coverage and the differences between the benchmark and RPMplans
should be small. For this study we achieved most differences being smaller than 1
Gy(RBE) and 1%-point. Further improvement of this protocol was outside the scope
of this study.

Results of the planning strategies for the individual folds

Table A.2.3 shows the number of scans that achieve the target demands for each plan-
ning strategy for the individual folds.
It can be seen that different success rates were obtained for the different folds. While
folds 1 and 2 show acceptable target coverage for all scans after one iteration of spot
addition, fold 3 requires a second iteration. Including more patients in the tuning
would probably result in more stable results, and possibly in acceptable coverage
for all scans after one iteration. When however only a small dataset is available for
the RPM-parameter tuning, running an additional iteration of adding spots could be
a solution. Another possibility is to check the target demands after each iteration
of spot addition and weight optimization, only running another iteration when ne-
cessary. Figure A.2.3 shows the differences for the OARs between the plans obtained
using the 2-plan-library approachwith two iterations of spot addition and the bench-
mark plans for the three different folds. For all folds, the highest prioritized criteria
(Dmax) deteriorated less than 1 Gy(RBE) compared to the benchmark plans, where
some resulted in even lower doses (bowelbag, sigmoid Dmax). For lower prioritized
criteria (Dmean), all folds obtained OAR values within 8 Gy(RBE) and 8%-point from
benchmark.

Non-prior-plan strategy

Two approaches of the non-prior-plan strategy were investigated in this study. In the
irst approach, which places the spots in a regular grid, different spacings between
the energy layers were investigated, while keeping a 5 mm lateral spacing. The spa-
cing between energy layers was set to vary with the energy by making it relative to
the longitudinal width of the Bragg peak (at 80% of the peak height). For evaluation,
besides taking a relative energy factor of three (i.e. New-Spots-E3), relative energy
factors of four and ive were considered. New-Spots-E4 and New-Spots-E5, respect-
ively. A larger relative energy factor corresponds to a larger energy spacing, resulting
in fewer spots.

In the second approach, the spots are iteratively sampled from a ine grid aswas done
for the benchmark plans: with the energy layer spacing set to the longitudinal width
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Table A.2.2: The protocol which was used in the RPM-parameter tuning. Includes the user pref-
erences for the population-based differences between the benchmark plans and the RPM gener-
ated plans (benchmark − RPM).

Plan objective Measure Lower bound

PTV Dmax Median -0.5
1st quartile -0.2
5th percentile -0.1

PTV rings Dmax, Dmean Median -1

1st quartile -0.5
5th percentile -0.2

Patient Dmax Median -1
1st quartile -0.5
5th percentile -0.2

Rectum Dmax, Dmean Median -1
1st quartile -0.5
5th percentile -0.3

Rectum V40 Gy(RBE), V30 Gy(RBE) Median -1

1st quartile -0.75
5th percentile -0.5

Bladder Dmax, Dmean Median -1
1st quartile -0.5
5th percentile -0.3

Bladder V40 Gy(RBE), V30 Gy(RBE) Median -1

1st quartile -0.75
5th percentile -0.5

Bowelbag Dmax, Dmean, V40 Gy(RBE), V30 Gy(RBE) Median -1

1st quartile -0.5
5th percentile -0.3

Sigmoid Dmax, Dmean Median -1

1st quartile -0.5
5th percentile -0.2

Femoral heads Dmax, Dmean Median -1
1st quartile -0.5
5th percentile -0.2

Total spot-weight Median -3

1st quartile -2
5th percentile -1

of the Bragg peak (relative energy factor of 1). Besides stopping this non-prior-plan
approach after taking three iterations, we also investigated stopping after one and
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Table A.2.3: For each treatment strategy, the number of evaluation scans that meet the pre-
scribed target demands for the individual folds.

Fold 1
V95% ≥ 95% &

V107% ≤ 2%

Fold 2
V95% ≥ 95% &

V107% ≤ 2%

Fold 3
V95% ≥ 95% &

V107% ≤ 2%

1-plan-library No replanning 0/15 0/16 0/15

2-plan-library No replanning 0/15 0/16 0/15

1-plan-library-0x 1/15 1/16 0/15

2-plan-library-0x 0/15 0/16 0/15

1-plan-library-1x 12/15 15/16 10/15

2-plan-library-1x 15/15 16/16 10/15

1-plan-library-2x 15/15 15/16 13/15

2-plan-library-2x 15/15 16/16 15/15

Sampled-New-Spots-3x 15/15 16/16 8/15

New-Spots-E3 15/15 16/16 15/15

Figure A.2.3: Boxplots depicting the OAR differences between the 2-plan-library-2x and bench-
mark plans for the three evaluation folds. Negative deviations depict scans for which the OAR
value is lower in the RPM plan than in benchmark.

two iterations. In between the iterations non-contributing spots are removed. The
results of these approaches will be denoted by respectively Sampled-New-Spots-1x
and Sampled-New-Spots-2x.

Table A.2.4 shows the number of plans which meet the prescribed target results for
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all investigated non-prior-plan approaches. It can be seen that stopping after fewer
iterations in the Sampled-New-Spots approachor taking a larger relative energy factor
in the New-Spots approach results in shorter calculation times, but also fewer scans
meeting the target demands. New-Spots-E4 however does meet the target demands
for all plans.

Table A.2.4: For each non-prior-plan approach, the number of evaluation scans that meet the
prescribed target demands. The last column shows the total calculation time excluding the final
dose calculation.

V95% ≥ 95% &
V107% ≤ 2%

Calculation times (min.)
mean (min – max)

Sampled-New-Spots-1x 0/46 2.7 (2.0 – 3.9)

Sampled-New-Spots-2x 24/46 4.8 (3.7 – 5.6)

Sampled-New-Spots-3x 39/46 7.1 (5.7 – 8.4)

New-Spots-E5 14/46 10.3 (6.5 – 15.6)

New-Spots-E4 46/46 18.9 (11.3 – 32.9)

New-Spots-E3 46/46 40.7 (25.0 – 78.4)

In Figure A.2.4 the OAR results of the 2-plan-library-2x approach and the New-Spots-
E4 and New-Spots-E3 approaches are compared to benchmark. It can be seen that
although the New-Spots-E4 approach meets the target demands, the OAR results dif-
fer more from benchmark than those obtained with the New-Spots-E3 approach and
the 2-plan-library-2x approach. Though faster than New-Spots-E3, the calculation
times of the New-Spots-E4 approach are still more than twice the calculation times
required for the 2-plan-library-2x approach.

Robustness in the prior-plan adapta on method

Theproposedprior-plan adaptationmethoddoesnot account for range errors arising
from Houns ield units to proton stopping power conversion. For this reason we also
evaluated the strategy with the inclusion of 3% range robustness applied to the
PTVOAPT on plan quality and calculation speed. Robustness was included using a
‘minimax’worst-case approach [7–9] optimizing three scenarios simultaneously (nom-
inal, +3%, -3%). Results showed that range robustness could easily be incorpor-
ated in the prior-plan adaptation method, with a limited increase in calculation time
compared to non-robust optimization. On average per iteration, the calculation time
needed for the spot additionandcalculationof thedosedepositionmatrices increased
from 1.4 to 2.7 minutes (1.5 – 5.2), and the calculation time of the RPM optimization
increased from 1 to 2 minutes (1.3 – 3.1).
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Figure A.2.4: Boxplots depicting the OAR deviations from benchmark for the best prior-plan
strategy approach and the non-prior-plan strategy approaches. The prior-plan strategy is shown
using the 2-plan-library-2x approach, the non-prior strategy is shown the using New-Spots-E4
approach and the New-Spots-E3 approach. Negative deviations depict scans for which the OAR
value is lower in the RPM plan than in benchmark. Statistically significant differences (Wilcoxon
signed-rank test, 1% significance level, p < 0.01) are indicated by asterisks.
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A.3 S M – O - IMPT
: ?

Deriving the robustness se ngs

As part of this studywe derived the robustness-parameters and themargins required
for this dataset to ensure suf icient coverage in both target regions of all repeat CT
scans (rCTs) for at least 90%of the patients (10/11). Obtaining the settingswas done
by methodically increasing the margins (0 – 8 mm in steps of 2 mm) and the setup
error (2 – 8mm in steps of 2mm), while evaluating the effect on the rCTs, until at least
10/11 patients obtained adequate target coverage for all rCTs. We investigated the
settings when applying the robustness to the target structures alone, and to both the
target structures and one or two arti icial rings around these target structures. The
irst ring was a 15 mm ring around the ITVHigh, excluding the ITVLow. The second
ring was a 10mm ring around the combined ITVs. In all 108 combinations, the range
robustness was kept at 3%.

Five combinations yielding suf icient target coverage for all rCTs of 10/11 patients
were found. We presented the settings achieving good results for 5/8 rCTs of the last
patient. The other four combinations achieved good results for respectively 7/8 (2x),
3/8 and 2/8 rCTs, but also involved larger margins and applied the robustness to
both the expanded target structures and arti icial rings. The irst three combinations
applied the robustness on the expanded target structures and the irst arti icial ring,
the last combination applied the robustness on the expanded target structures and
both arti icial rings. Consequently, weobservedhigherOARdoseswith these settings.

149



Appendices – Wishlist for prostate treatment plans

A.4 W

Table A.4.1: The wishlist with planning constraints and objectives used for automated IMPT plan
generation for prostate cancer patients. Constraints will always be met. The priority numbers of
the objectives indicate the order in which objectives are to be optimized. A low number corres-
ponds to a high priority. An artificial PTV-intermediate was generated as the 15 mm transition
between the high-dose PTV and the low-dose PTV, included to steer the dose fall-off.

Constraints
Structure Type Limit
PTV-high Minimum 0.97×74 Gy
PTV-intermediate Minimum 0.99×74 Gy
PTV-low Minimum 0.99×55 Gy

Objectives
Priority Structure Type Limit

f1 1 PTV-high Maximum 1.06×74 Gy(RBE)
f2 1 PTV-intermediate Maximum 1.06×74 Gy(RBE)
f3 1 PTV-low Maximum 1.06×55 Gy(RBE)

f4 2
Conformity ring

PTV-high
Maximum 1.07×74 Gy(RBE)

f5 2
Conformity ring

PTV-full 0 – 10 mm
Maximum 1.07×55 Gy(RBE)

f6 2
Conformity ring

PTV-full 10 – 15 mm
Maximum 0.90×55 Gy(RBE)

f7 3 Rectum Maximum 1.02×74 Gy(RBE)
f8 3 Bladder Maximum 1.02×74 Gy(RBE)
f9 3 Body Maximum 1.06×74 Gy(RBE)
f10 3 Femoral heads Maximum 50 Gy(RBE)
f11 4 Rectum Mean 0 Gy(RBE)

f12 5
Small and large

intestines
Mean 0 Gy(RBE)

f13 6 Bladder Mean 0 Gy(RBE)
f14 7 Femoral heads Mean 0 Gy(RBE)
f15 8 All conformity rings Mean 0 Gy(RBE)
f16 8 All conformity rings Maximum 0 Gy(RBE)
f17 9 Total spot-weight Sum 1 Gp

Abbreviations: PTV = planning target volume; Gp = Gigaprotons
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A.5 R P M

The reference point method (RPM) is used in this study to optimize the spot-weights
in a single iteration during the full plan adaptation. Detailed information canbe found
in [33–36, 44]. The main idea of the RPM is to guide the optimization to a Pareto op-
timal solution by using a reference path combined with carefully tuned indifference
curves of the objective functions. As a result, a single set of RPM-parameters (refer-
ence path and indifference curves) generates for each patient a Pareto optimal plan
with clinically desired trade-offs, within a single optimization run.
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A.6 RPM-

To run the reference point method, the desired trade-offs between objectives should
be de ined in the RPM-parameters. For this study the RPM-parameters were auto-
matically tuned using a three-fold cross validation, where one third of the patients
(selected randomly)wasused for tuning and the remaining two thirds for testing. The
tuning method that was used iteratively minimizes the differences in plan objective
values between prede ined benchmark plans and plans obtained using the RPMwith
the tuned parameters. The full tuning method is presented in [47] and has been ap-
plied before in [57]. Tuning was stopped after 20 iterations, or when the differences
complied the demands of the tuning protocol shown in Table A.6.1.

Table A.6.1: The protocol which was used in the RPM-parameter tuning for the prostate can-
cer database. Includes the user preferences for the population-based differences between the
benchmark plans and the RPM generated plans (benchmark − RPM).

Plan objective Measure Lower bound

PTV Dmax Median -0.5
1st quartile -0.3
5th percentile -0.1

PTV conformity rings Dmax, Dmean Median -1

1st quartile -0.8
5th percentile -0.5

Rectum Dmax, Dmean, V75 Gy(RBE) Median -0.8

V60 Gy(RBE), V45 Gy(RBE) 1st quartile -0.5

5th percentile -0.3

Bladder Dmax, Dmean, V65 Gy(RBE) Median -0.8

1st quartile -0.5
5th percentile -0.3

Bladder V45 Gy(RBE) Median -1

1st quartile -0.5
5th percentile -0.3

Small and large intestines Dmean Median -0.8

1st quartile -0.5
5th percentile -0.3

Femoral heads Dmax, Dmean Median -1.5
1st quartile -1
5th percentile -0.5

Total spot-weight Median -2

1st quartile -1.5
5th percentile -1
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A.7 S M –C

-

Table A.7.1: Distribution of control CTs, number of protons, and pencil-beams per patient and
treatment plan.

Pat
#
Control
CTs

# pencil-
beams
per plan

# P+
per plan

# P+ per
simulated
plan

Mean (SD) P+
per planned
pencil-beam

Mean (SD) P+
per simulated
pencil-beam

1 9 1521 3.4×1012 6.6×108 2.3 (2.1) ×109 4.4 (4.0) ×105

2 8 1407 3.2×1012 7.7×108 2.3 (2.0) ×109 5.5 (4.8) ×105

3 8 1438 3.0×1012 6.3×108 2.1 (2.0) ×109 4.4 (4.1) ×105

4 9 1247 2.9×1012 5.2×108 2.3 (2.1) ×109 4.2 (3.8) ×105

5 7 1361 2.8×1012 5.2×108 2.1 (2.0) ×109 3.8 (3.6) ×105

6 8 1540 3.5×1012 7.6×108 2.2 (2.0) ×109 4.9 (4.3) ×105

7 9 1476 3.2×1012 7.8×108 2.2 (1.9) ×109 5.3 (4.6) ×105

8 8 1297 3.1×1012 6.2×108 2.4 (1.9) ×109 4.8 (3.8) ×105

9 8 1409 3.4×1012 4.6×108 2.4 (2.2) ×109 3.3 (3.0) ×105

10 7 1399 3.1×1012 5.1×108 2.2 (1.8) ×109 3.6 (3.0) ×105

11 7 1496 3.6×1012 7.5×108 2.4 (2.1) ×109 5.0 (4.4) ×105

Abbreviations: Pat = Patient, P+ = proton; SD = standard deviation

Results from ∆X50, the local summed squared differences, overall summed squared
differences and overall summed chi-squared differences

As mentioned in the Results section, the results when using ∆X50, the local summed
squared differences, overall summed squared differences and overall summed chi-
squared differences are highly similar to the results obtained when using the |∆X50|
distributions. Figures A.7.1, A.7.2, A.7.3 and A.7.4 are the equivalents of Fig. 7.4 and
7.5, but when using the local summed squared differences, overall summed squared
differences and overall summed chi-squared differences, respectively.
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Table A.7.2: Total number of protons in the pencil-beams used for analysis and the percentage of
the total number of protons simulated in the complete treatment plan per patient. In addition,
the total number of PG photons used for analysis, after applying the angle of incidence selection
and averaged over the simulations on the planning and control CT scans.

Pat
5% most intense pencil-

beams
10% most intense pencil-

beams
20% most intense pencil-

beams

Protons
PG

photons
Protons

PG
photons

Protons
PG

photons

1 1.3×108 (19%) 1269293 2.1×108 (32%) 2051829 3.3×108 (50%) 3139781

2 1.4×108 (18%) 1381508 2.3×108 (30%) 2287554 3.8×108 (49%) 3552127

3 1.2×108 (19%) 1151009 2.0×108 (32%) 1947741 3.2×108 (51%) 3552127

4 9.6×107 (18%) 975779 1.6×108 (31%) 1595006 2.6×108 (50%) 2459828

5 9.8×107 (19%) 939255 1.7×108 (32%) 939255 2.7×108 (51%) 2352405

6 1.3×108 (18%) 1308651 2.3×108 (30%) 2161750 3.7×108 (49%) 3406027

7 1.4×108 (17%) 1293143 2.4×108 (30%) 2150725 3.8×108 (49%) 3432533

8 1.0×108 (16%) 1001286 1.7×108 (28%) 1656947 2.9×108 (47%) 2692195

9 8.4×107 (18%) 877776 1.4×108 (31%) 1424679 2.3×108 (50%) 2285463

10 8.8×107 (17%) 854818 1.5×108 (29%) 1373496 2.4×108 (47%) 2168823

11 1.3×108 (17%) 1369986 2.3×108 (30%) 2250886 3.7×108 (49%) 3565075

Abbreviations: Pat = patient, PG = prompt gamma
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Figure A.7.1: Distributions of Pearson correlation coefficients between the mean, median and
standard deviation (color coded) of the ∆X50 distributions and the dosimetric parameters when
using the (a) 5%, (b) 10% or (c) 20% most intense pencil-beams.
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Figure A.7.2: Distributions of Pearson correlation coefficients between the mean, median and
standard deviation (color coded) of the distributions of the summed local squared differences
and the dosimetric parameters when using the (a) 5%, (b) 10% or (c) 20% most intense pencil-
beams.
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Figure A.7.3: Distributions of Pearson correlation coefficients between the mean, median and
standard deviation (color coded) of the distributions of the summed overall squared differences
and the dosimetric parameters when using the (a) 5%, (b) 10% or (c) 20% most intense pencil-
beams.
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Figure A.7.4: Distributions of Pearson correlation coefficients between the mean, median and
standard deviation (color coded) of the distributions of the summed local chi-squared differ-
ences and the dosimetric parameters when using the (a) 5%, (b) 10% or (c) 20% most intense
pencil-beams.
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Summary
Intensity-modulated proton therapy (IMPT) is a type of radiotherapy inwhich the pa-
tient is irradiated using groups of high-energy protons called pencil-beams or spots.
Protons are positively charged particles with have inite range in tissue. Most of their
dose is deposited at the end of their range in a so-called Bragg peak, with no dose
being deposited after the Bragg peak. Due to these characteristic Bragg peaks a very
localized dose distribution can be generated, allowing for adequate target coverage
and sparing of the healthy tissues (organs at risk). However, the characteristic Bragg
peak alsomakes this treatmentmodality sensitive to daily anatomical variations such
as density changes along the pencil-beam paths and changes in organ shape and loc-
ation. These variations can cause the intended dose distribution to be distorted, pos-
sibly resulting in local over- and under-dosage.

To account for these daily anatomical changes, we have developed online adapta-
tion strategies to ensure suf icient dose in each treatment fraction, whilemaintaining
the bene it of healthy tissue sparing. With the development of these strategies, we
have proven the feasibility of online-adaptive IMPT and obtained answers to seven
research questions.

A treatment plan can be restored to its ini al state by applying an energy-adapta on
followed by a spot-weight re-op miza on.

In Chapter 2, we developed a two-step dose restoration method that can restore
a distorted dose distribution to its intended state by compensating for daily tissue
density variations. The restoration strategy considers the daily repeat CT scan to-
gether with the contours of the planning CT scan projected onto the repeat CT scan.
Taking a prior plan generated on the planning CT scan, it applies (1) a restoration of
the spot positions (Bragg peaks) by adapting the energy of each pencil-beam to the
new water equivalent path length; and (2) a re-optimization of pencil-beam weights
byminimizing the dosimetric difference with the prior dose distribution, using a fast
and exact quadratic solver. For 10 prostate cancer patients, with a total of 80 repeat
CT scans, we evaluated different approaches of assigning importance factors in the
spot-weight re-optimization. Results showed that giving a high weight to the plan-
ning target volume (PTV) in the re-optimization resulted in adequate restorations.
All scans obtained clinically acceptable target coverage (V95% ≥ 98% and V107% ≤
2%) for the projected PTV. Dosimetric parameter values of the rectum and bladder
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were mostly within 2 Gy and 2%-point of the intended values. Energy-adaptation
took on average 5.4 seconds, and the spot-weight re-optimization took on average
3.8 seconds.

Full plan adapta on can increase both target coverage and healthy ssue sparing com-
pared to dose restora on.

In Chapter 3 we expanded the dose restoration method to a full plan adaptation
method to be able to account for variations in shape and location of the target and
organs at risk (OARs). Thismethod considers the daily repeat CT scan combinedwith
the contours of this daily CT scan. Starting with a prior treatment plan, the method
uses (1) a restoration of spot positions as introduced in the dose restoration method
of Chapter 2; and (2) a spot addition to fully cover the target of the day, followed by
a fast reference point method (RPM) optimization of the spot-weights resulting in a
Pareto optimal plan for the daily anatomy. The method was developed and evalu-
ated using 88 repeat CT scans of 11 prostate cancer patients. For all scanswe applied
the simple dose restoration method and the new online adaptation method. Apply-
ing the simple dose restorationmethod resulted in a clinically acceptable coverage of
the target of the day (V95% ≥ 98% and V107% ≤ 2%) for 51.1% of the scans. Apply-
ing the automated online adaptationmethod resulted in a clinically acceptable target
coverage for 96.6% of the scans after a single iteration of adding 2500 spots and for
100% of the scans after two iterations. Full plan adaptation resulted in lower doses
to the OARs than dose restoration. The largest improvements between dose restor-
ation and full plan adaptation with two iterations were obtained for V45 Gy(RBE) for
both rectum and bladder, with median differences of 10.3%-point and 10.8%-point,
respectively (maximum 22%-point). The two steps of full plan adaptation took on
average 7.3 seconds and 1.7 minutes, respectively.

For treatment sites showing large day-to-day varia ons the full plan adapta on ap-
proach yields be er treatment planswhen combinedwith apa ent-specific plan-library.

The developed full plan adaptation method from Chapter 3 uses a prior treatment
plan as a warm-start for adaptation to the daily anatomy. In Chapter 4we evaluated
whether treatment sites showing large day-to-day variations could bene it from the
additionof a patient-speci ic plan-library to the full plan adaptationmethod. Thiswas
evaluated on the CT data of a patient cohort consisting of six cervical cancer patients
with in total 23 repeat CT scans, prescribing dose to the primary tumor and the nodal
clinical target volume (CTV). Instead of generating a single prior plan per patient, a
patient-speci ic library of prior plans accounting for altered target geometries was
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generated using a pretreatment established target motion model. Each fraction, the
best itting prior plan was selected. The selected prior plan was adapted according
to the method developed in Chapter 3. RPM-parameters were automatically tuned
for this study. Three-fold cross validation, i.e. tuning three times on a third of the
data and using the found parameters on the rest of the data, was used to remove any
dependency of the adaptation outcome on the tuning data. Spot addition and spot-
weight optimization were done once or twice. Using a 1-plan-library (one prior plan
based on all motion in the motion model) was compared to selecting a plan from a
2-plan-library (two prior plans based on part of the motion). Applying full plan ad-
aptationwith one iteration of adding 3000 spots resulted in adequate target coverage
(V95% ≥ 95% and V107% ≤ 2%) for 37/46 plans using the 1-plan-library and 41/46
plans for the 2-plan-library. Using two spot-addition iterations, the 2-plan-library
approach could obtain acceptable coverage for all plans, while the 1-plan-library ap-
proach showed V107% > 2% for 3/46 plans. The approaches yielded similar results
for theOARs. This shows that using a patient-speci ic plan-library (2-plan-library) in-
stead of a single prior plan (1-plan-library) is bene icial for treatment sites showing
large day-to-day variations.

Online plan adapta on can maintain high target coverage while increasing sparing of
the healthy ssues when compared to robust treatment planning.

Having shown in the earlier chapters that dose restoration and full plan adaptation
are feasible and can yield adequate treatment plans, the bene it compared to the
current standard approach of robust treatment planning had to be quanti ied. In
Chapter 5we therefore compared the three approaches for the prostate cancer data-
base of 11 patients (88 repeat CT scans). For this dataset we irst obtained the safety
margins and robustness settings required for the robust treatmentplanning to achieve
adequate target coverage for all repeat CT scans of at least 90% of the patients. For
each repeat CT scan we adapted the corresponding prior plan using the simple dose
restorationmethod and the full plan adaptationmethod. To account for uncertainties
in the conversion fromHouns ield units to proton stopping power the full plan adapt-
ation optimized the pencil-beam weights robustly using three scenarios (nominal,
±3% range). We found that adding margins of 4 and 8mm around the high- and low-
dose target regions and optimizing the targets robustly using a 6mm setup error and
a 3% range error yielded adequate target coverage (V95% ≥ 98%) for 10/11 patients.
Both online-adaptive planning strategies yieldedV95% ≥98%andbetter OAR sparing
in 11/11 patients. Largest improvements were seen for the rectum V45 Gy(RBE), with
improvements up to11%-point and16%-pointwhenmoving fromrobust planning to
respectively restoration and full adaption. Excluding the initialization and inal dose
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calculations, plan restoration took on average 1.7 minutes and full plan adaptation
took on average 6.6 minutes.

Dose restora on ismostly influenced by the choice of the prior plan, while the results of
full plan adapta on depend more on the stopping criteria and op miza on approach.

The effect of varying the parameter settings of the developed online-adaptive meth-
odswas investigated in Chapter ??. For each of the 88 repeat CT scans of the prostate
cancerdatabaseof 11patientsweadaptedapriorplanusingboth the simpledose res-
toration method and the full plan adaptation method. For all scans we evaluated the
plans generated using variations on the default settings for the following parameters:
1) The amount of motion mitigation included in the prior plan, 2) the spot-addition
sample size, 3) the spot-addition stopping criterion, and 4) the spot-intensity optim-
ization approach. The irst variation (prior plan) was evaluated for both simple dose
restorationmethod and the full plan adaptationmethod, the last threewere only eval-
uated for the full plan adaptation. For the dose restoration method, we found that
changing the amount of motion mitigation accounted for in the prior plans with re-
spect to the default can yield insuf icient target coverage or increased OAR doses. For
the full plan adaptation large effects were only observed when varying the stopping
criterion and the optimization approach. Increasing the number of spot-addition it-
erations and changing the optimization approach from RPM to the 2-phase-epsilon-
constraint (2pϵc) approach both resulted in similar target coverage but lower OAR
doses compared to the default settings. As increasing the stopping criterion rapidly
increases running times, and the 2pϵc approach is too time consuming for the online-
adaptive work low, efforts should be focused on improving the outcomes of the RPM
optimization. As the RPM optimization is steered through its RPM-parameters, more
elaborate tuning of these RPM-parameters is recommended.

Fully automated contour propaga on for daily CT scans can be achieved through a com-
bina on of deep-learning and image registra on.

For clinical use of the full plan adaptationmethod to be feasible, daily contours of the
repeat CT scans have to be acquired. Chapter 6 presents an automated method to
obtain these. The approach irst uses a deep-learning network to automatically delin-
eate the bladder of a daily CT scan. After this, gas pockets in the rectumand intestines
are detected and inpainted ( illed) using a generative adversarial network (GAN). Fi-
nally, using the inpainted image and the obtained bladder contour, the manual con-
tours of the planning CT scan are propagated onto the daily CT scan using deform-
abe image registration (DIR). Three different prostate cancer databases from three
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different institutes were used. The irst database was used to train and test the 3D
convolutional neural network for automatic bladder delineation. The remaining two
datasets were used for evaluation of the complete work low. The obtained contours
were evaluated by comparing them to the manual gold-standard contours using the
dice similarity coef icient (DSC), themean surface distance (MSD) and the 95%Haus-
dorff distance (95%HD). A clinical validation of the contours was performed for 88
repeat CT scans of 11 patients. The contours were considered clinically acceptable
if their treatment plans achieved clinically acceptable target coverage on the manual
contours. This evaluation showed that for 80% of these scans the automatically ob-
tained contours did not require user alterations, as adequate target coverage was
obtained for all targets using these contours.

Measured prompt gamma ray emission profiles can be used to detect changes in PTV
coverage due to day-to-day anatomical varia ons.

In Chapter 7 we investigated the inal step of the proposed online-adaptive work-
low, which is to monitor treatment delivery using prompt gamma (PG) ray emission
pro iles as part of treatment delivery quality assurance (QA). PG rays result fromnuc-
lear interactions between the incomingprotons and the patients’ tissue, and emission
pro iles can be measured outside the patient. We investigated whether PG ray emis-
sion pro iles can be used to detect changes in target coverage due to inter-fraction
anatomical variations with respect to the planning CT scan. A treatment plan was
generated for each planning CT scan of the prostate cancer database (11 patients,
88 repeat CT scans) using Erasmus-iCycle. Treatment plan delivery was then simu-
lated on the planning CT scan as well as all repeat CT scans using Monte Carlo. For
each dose distribution dosimetric parameter values (Dx%) describing target coverage
were determined, as well as the halfway-point of the falloff region of the PG emission
pro ile (X50). Differences between planned values and repeat CT values were then
evaluated and the Pearson correlation coef icients between functions of the∆X50 and
∆Dx% were determined. Strongest correlations were found between changes in the
coverage of the high- and low-dose PTV and the median and mean absolute values
of ∆X50 when including only the 5% most intense pencil-beams in the PG emission
pro ile. These correlations show as a proof of principle that it is feasible to use PG
ray emission pro iles to detect dosimetric changes. In order to determine the exact
relation between the emission pro iles and the dosimetric parametersmore research
is needed.
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Samenva ng
Intensiteitsgemoduleerde protonentherapie (IMPT) is een vorm van radiotherapie
waarin de patiënt wordt bestraald met groepen protonen met een hoge energie, zo-
genoemde protonenbundels of spots. Protonen zijn positief geladen deeltjes met een
beperkte dracht in het weefsel. De meeste dosis wordt afgegeven aan het eind van
de dracht in een zogenoemde Braggpiek, waarna geen dosis meer wordt afgegeven.
Met behulp van de karakteristieke Braggpiek kan een gelokaliseerde dosis worden
afgegeven, met een hoge dosis in het doelvolume en sparing van de gezonde weef-
sels (kritieke organen) eromheen. De Braggpiek maakt de bestralingsvorm echter
ook gevoelig voor dagelijkse variaties in de anatomie, zoals variaties in de weefseldi-
chtheden op het pad van de protonenbundels en variaties in de vorm en locatie van
de organen. Deze variaties kunnen leiden tot een vervormde dosisverdeling, metmo-
gelijk lokale over- en onderdosering tot gevolg.

Om te kunnen omgaan met deze dagelijkse anatomische veranderingen hebben we
online-adaptieve strategieën ontwikkeldomvoldoendedosis per fractie te garanderen
en een lage dosis in de kritieke organen te behouden. Met de ontwikkeling van deze
strategieën hebbenwede haalbaarheid van online-adaptieve IMPTbewezen en tegel-
ijkertijd zeven onderzoeksvragen beantwoord.

Een bestralingsplan kan worden teruggezet naar zijn originele staat door achtereen-
volgend een energie-adapta e en een herop malisa e van de spot-gewichten toe te
passen.

In Hoofdstuk 2 hebben we een 2-staps dosisrestauratie methode ontwikkeld, die
een vervormde dosisverdeling kan terugbrengen naar de originele staat door te com-
penseren voor de dagelijkse variaties in weefseldichtheden. De methode gebruikt de
dagelijkse (herhaal) CT-scan in combinatiemet de contouren vande planning CT-scan
geprojecteerd op de herhaal CT-scan. Voor een startplan gemaakt op de planning CT-
scan wordt (1) een restauratie van de spot posities (Braggpieken) uitgevoerd door
de energieën van de protonbundels aan te passen naar de nieuwe water equival-
ente padlengte; en (2) een heroptimalisatie van de spotgewichten uitgevoerd door
de dosimetrische verschillen met het startplan te minimaliseren met behulp van een
snelle en exacte kwadratische optimalisatie. Voor 10 prostaatkanker patiënten met
in totaal 80 herhaal CT-scans hebbenwe verschillendemanieren geëvalueerd van het
toewijzen van optimalisatiegewichten aan de heroptimalisatie van de spotgewichten.
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Resultaten toonden aan dat een hoog optimalisatiegewicht voor het planning doel-
volume (planning target volume, PTV) resulteert in adequate restauraties. Voor alle
scans werd een klinisch acceptabele dekking (V95% ≥ 98% en V107% ≤ 2%) behaald
voor het geprojecteerde PTV. Dosimetrische parameters voor het rectum en de blaas
bleven veelal binnen2Gyen2%-punt vandeoriginelewaarden. De eerste stap vande
methode kostte gemiddeld 5,4 seconden, spotgewicht heroptimalisatie kostte gem-
iddeld 3,8 seconden.

Volledige planadapta e kan zowel de dekking van het doelvolume als sparing van de
kri eke organen verhogen in vergelijking met dosisrestaura e.

InHoofdstuk3hebbenwededosisrestauratiemethodeuitgebreidnaar eenvolledige
planadaptatie methode die ook kan corrigeren voor veranderingen in de vorm en
locatie van het doelvolume en de kritieke organen (organs at risk, OARs). De meth-
ode gebruikt de dagelijkse herhaal CT-scan in combinatie met de contouren van de
herhaal CT-scan. Beginnend met een startplan voert de methode (1) een restaur-
atie van de spot posities uit zoals beschreven in Hoofdstuk 2; en (2) een toevoeging
van nieuwe spots om het doelvolume van die dag volledig te kunnen dekken, gevolgd
door een snelle optimalisatie met de referentie punt methode (RPM) van de spot-
gewichten. Dit resulteert in een Pareto optimaal plan voor de dagelijkse anatomie. De
methode is ontwikkeld en geëvalueerd op 88herhaal CT-scans van 11prostaatkanker
patiënten. Voor alle scans is dedosisrestauratiemethodeendenieuweonline-adaptieve
methode toegepast. Met de dosisrestauratie methode werd een klinisch acceptabele
dekking gehaald voor het doelvolume van de dag (V95% ≥ 98% en V107% ≤ 2%) voor
51,1% van de scans. Met de automatische volledige planadaptatie methode werd
een klinisch acceptabele dekking gehaald voor 96,6% van de scans na één iteratie
van het toevoegen van 2500 spots, en voor 100% van de scans na twee iteraties.
Volledige planadaptatie resulteerde in lagere dosis in de OARs dan dosisrestauratie
alleen. De grootste verbeteringen van dosisrestauratie naar volledige planadaptatie
met twee iteraties werden behaald voor de V45 Gy(RBE) van het rectum en de blaas,
met verschillen in de mediaan van 10,3%-punt en 10,8%-punt respectievelijk (max-
imaal 22%-punt). De twee stappen van de volledige planadaptatie namen gemiddeld
7,3 seconden en 1,7 minuten respectievelijk in beslag.

Voor doelgebieden met grote dag-tot-dag varia es resulteert volledige planadapta e
in betere bestralingsplannen wanneer het gecombineerd is met een pa ënt-specifieke
planbibliotheek.
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De volledige planadaptatie methode uit Hoofdstuk 3 gebruikt een startplan als be-
ginpunt voor de adaptatie naar de dagelijkse anatomie. In Hoofdstuk 4 hebben we
onderzocht of doelgebiedenmet grote dag-tot-dag variaties voordeel kunnen hebben
van de toevoeging van een patiënt-speci ieke planbibliotheek aan de volledige plan-
adaptatie methode. Dit is geëvalueerd op CT data van zes patiënten met een cer-
vixcarcinoom (baarmoederhalskanker) met in totaal 23 herhaal CT-scans, en dosis
voorgeschreven voor de primaire tumor en het nodale klinische doelvolume (clinical
target volume, CTV). In plaats van een enkel startplan per patiënt te genereren werd
een patiëntspeci ieke bibliotheek van startplannen gegenereerd. De bibliotheekplan-
nen werden gegenereerd op variaties van het doelvolume die met behulp van een
van te voren vastgesteld bewegingsmodel van het doelvolume werden bepaald. Voor
elke fractie werd het best passende startplan geselecteerd. Het geselecteerde start-
planwerdvervolgens aangepast doormiddel vande adaptatiemethodeuitHoofdstuk
3. De RPM-parameters werden automatisch getuned voor deze studie. Drievoudige
kruisvalidatie, i.e. driemalig tunen op één derde van de data en de gevonden para-
meters gebruiken op het resterende deel van de data, werd gebruikt om mogelijke
invloeden van de parameters op de uitkomsten van adaptatie te minimaliseren. Het
toevoegen van spots en optimalisatie van de spot-gewichten werd één of tweemaal
gedaan. Het gebruik van een 1-plan-bibliotheek (één startplan dat gebaseerd is op
alle beweging in het bewegingsmodel) is vergeleken met de selectie van een plan uit
een 2-plan-bibliotheek (twee startplannen gebaseerd op een deel van de beweging).
Het uitvoeren van een volledige planadaptatie met één iteratie van 3000 spots to-
evoegen resulteerde in een adequate dekking (V95% ≥ 95% en V107% ≤ 2%) voor
37/46 plannen bij de 1-plan-bibliotheek en 41/46 plannen bij de 2-plan-bibliotheek.
Met twee iteraties van spots toevoegen kon de 2-plan-bibliotheek een acceptabele
dekking halen voor alle plannen, terwijl de 1-plan-biblotheek een V107% > 2% be-
haalde voor 3/46 plannen. De 1-plan-bibliotheek en 2-plan-bibliotheek behaalden
vergelijkbare resultaten voor de kritieke organen. Dit laat zien dat het gebruik van
een patiëntspeci ieke plan-bibliotheek (2-plan-bibliotheek) in plaats van een enkel
startplan (1-plan-bibliotheek) gunstig is voor doelgebieden met grote dag-tot-dag
variaties.

Online planadapta e kan de dekking van het doelvolume behouden en tegelijker jd
dosissen in de kri eke organen verlagen in vergelijking met robuust plannen.

Nu ineerderehoofdstukken is aangetoonddatdosisrestauratie envolledigeplanadapt-
atie mogelijk zijn en kunnen leiden tot adequate bestralingsplannen, hebben we het
voordeel tenopzichte vandehuidige standaardmethodevan robuust plannen in kaart
gebracht. InHoofdstuk5hebbenwedaaromdedriemethodenmet elkaar vergeleken
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voor de dataset van 11 prostaatkanker patiënten (88 herhaal CT-scans). Voor deze
dataset hebben we eerst de veiligheidsmarges en robuustheidswaarden bepaald die
nodig zijn om voor alle herhaal CT-scans van ten minste 90% van de patiënten een
adequate dosis in het doelvolume te behalen. Voor elke herhaal CT-scan hebben we
daarnaast een bijbehorend startplan aangepast met de dosisrestauratie methode en
met de volledige planadaptatie methode. Om rekening te houden met de onzeker-
heden in de dracht van de protonenbundel die ontstaan door de omzetting van
Houns ield-eenheden naar proton stopping powers heeft de volledige planadaptatie
de gewichten van de protonenbundels robuust geoptimaliseerd met drie scenario’s
(nominaal, ±3%dracht). Door 4 en 8mm rond het hoge- en lage-doelvolume te plaat-
senendedoelvolumes robuust te optimaliserenmet een6mmpositioneringsonzeker-
heid en een 3% drachtonzekerheid werd een adequate dekking (V95% ≥ 98%) be-
haald voor 10/11 patiënten. Beide online-adaptieve methoden behaalden V95% ≥
98% en betere OAR sparing voor alle 11/11 patiënten. De grootste verbeteringen
werden gezien voor de V45 Gy(RBE) van het rectum, met verbeteringen tot 11%-punt
en 16%-punt tussen robuust en dosisrestauratie en tussen robuust en volledige ad-
aptatie respectievelijk. Exclusief de initialisatie en de uiteindelijke dosisberekening
duurde de dosisrestauratie gemiddeld 1,7 minuten en volledige planadaptatie gem-
iddeld 6,6 minuten.

Dosisrestaura e wordt voornamelijk beïnvloed door de keuze van het startplan, terwijl
de resultaten van volledige planadapta e meer a ankelijk zijn van het stopcriterium
en de op malisa emethode.

Het effect van het variëren van de parameters van de ontwikkelde online-adaptieve
methoden is onderzocht inHoofdstuk ??. Voor elk van de 88 herhaal CT-scans van de
prostaatkanker database bestaande uit 11 patiënten is een startplan aangepast met
behulp van de dosisrestauratie methode enmet de volledige planadaptatie methode.
Voor alle scans hebben we plannen gegenereerd met variaties op de standaardin-
stellingen van de volgende parameters: 1) de hoeveelheid bewegingsmitigatie die
is meegenomen in het startplan, 2) de sample grootte van de spot toevoeging, 3) het
stopcriterium van de spot toevoeging, en 4) de optimalisatiemethode voor de spot-
gewichten. De eerste variatie (startplan) is geëvalueerd voor zowel de dosisrestaur-
atie als voor de volledige planadaptatie. De laatste drie variaties zijn enkel
geëvalueerd voor de volledige planadaptatie. Voor de dosisrestauratie hebben we
gevonden dat het veranderen van de hoeveelheid bewegingsmitigatie in het startplan
ten opzichte van de standaardrange kan leiden tot onvoldoende dosis in het doel-
volume of hogere dosissen in de kritieke organen. Voor de volledige planadaptatie
zijn grote effecten alleen gevonden door het stopcriterium of de optimalisatiemeth-
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ode te variëren. Het verhogen van het aantal iteraties waarin spots worden toege-
voegd en de optimalisatiemethode van RPM te vervangen door de ‘2-phase-epsilon-
constraint’ (2pϵc) methode resulteerde bij beiden in vergelijkbare dekking van de
doelvolumesmaar lageredosissen indekritiekeorganen tenopzichte vande standaardin-
stellingen. Gezien het verhogen van het stopcriterium de rekentijden snel verhoogt
en de 2pϵc methode te veel tijd kost voor een online-adaptieve werkwijze moet de
aandachtwordengericht ophet verbeterenvandeuitkomstenvandeRPM-optimalisaties.
Aangezien de RPM-optimalisatie gestuurdwordt door de RPM-parameters is een uit-
gebreidere tuning van deze parameters aanbevolen.

Volledig automa sche contourpropaga e voor herhaal CT-scans is haalbaar door een
combina e van deep-learning en beeldregistra e.

Om klinisch gebruik van de volledige planadaptatie mogelijk te maken moeten con-
touren op de dagelijkse herhaal CT-scans beschikbaar zijn. Hoofdstuk 6 presenteert
een automatische methode om deze te verkrijgen. De methode gebruikt eerst een
‘deep-learning network’ om automatisch de blaas in te tekenen op een dagelijkse her-
haal CT-scan. Hierna worden luchtruimtes in het rectum en de darmen gelokaliseerd
en opgevuld met behulp van een ’generative adversarial network’ (GAN). Als laatst
worden met behulp van het opgevulde beeld en de verkregen blaascontour de hand-
matige intekeningen van de planning CT-scan gepropageerd naar de dagelijkse her-
haal CT-scanmet ’deformable image registration’ (DIR). Drie verschillende databases
van prostaatkankerpatiënten van drie verschillende instituten zijn gebruikt. De eer-
ste database is gebruikt voor training en het testen van het ‘3D convolutional neural
network’ diewordt gebruikt voor het automatisch intekenen van de blaas. De overige
twee datasets zijn gebruikt voor evaluatie van de volledige work low. De verkregen
contouren zijn geëvalueerd door ze te vergelijken met de gouden standaard hand-
matige intekeningen door middel van de ’dice similarity coef icient’ (DSC), de ’mean
surface distance’ (MSD) en de 95% ’Hausdorff distance’ (95%HD). Een klinische val-
idatie van de contouren is uitgevoerd voor de 88 herhaal CT-scans van 11 patiënten.
De contourenwerdenklinisch acceptabel geachtwanneer het bestralingsplan verkre-
gen met deze automatische contouren een acceptabele dekking van het doelvolume
behaalden op de handmatige intekeningen. Deze evaluatie toonde aan dat voor 80%
van de automatisch verkregen contouren direct een acceptabele dekking werd be-
haald en er dus geen handmatige toepassingen noodzakelijk waren.
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Gemeten prompt gamma straling emissieprofielen kunnen worden gebruikt om ver-
anderingen in PTV dosis als gevolg van dag-tot-dag anatomische veranderingen te de-
tecteren.

InHoofdstuk7hebbenwede laatste stapvandevoorgesteldeonline-adaptievework-
lowonderzocht, namelijk hetmonitoren van de afgifte van de behandeling doormid-
del van prompt gamma (PG) straling emissiepro ielen als onderdeel van behandeling
kwaliteitscontrole. PG stralen zijn het resultaat van nucleaire interacties tussen inko-
mende protonen en de weefsels van de patiënt, en emissiepro ielen kunnen buiten
de patiënt worden gemeten. We hebben onderzocht of PG straling emissiepro ielen
gebruikt kunnen worden om verschillen in PTV dekking door inter-fractie anatomis-
che variaties ten opzichte van de planning CT-scan te detecteren. Een bestralings-
plan is gegenereerd voor elke planning CT-scan van de prostaat kanker database (11
patiënten, 88 herhaal CT-scans) met behulp van Erasmus-iCycle. Afstraling van het
plan werd met Monte-Carlo gesimuleerd op de planning CT-scan en de herhaal CT-
scans. Voor elke dosisverdeling werden dosimetrische parameters (Dx%) die de tu-
mordekking beschrijven gescoord, alsmedehet punt halverwegede afname regio van
het PG emissiepro iel (X50). Verschillen tussen de geplande waarden en de waarden
van de herhaal CT-scans werden geëvalueerd, en de Pearson correlatie coëf iciënten
tussen functies van de∆X50 en∆Dx%werden bepaald. De sterkste correlatieswerden
gevonden tussen veranderingen in de dekking van het hoge- en lage-dosis PTV en de
mediaan en het gemiddelde van de absolute waarden van∆X50, bij het gebruiken van
enkel de 5% meest intense protonbundels in het PG emissiepro iel. De correlaties
laten zien dat het in principe mogelijk is om PG emissiepro ielen te gebruiken om
dosimetrische veranderingen te detecteren. Om een exacte relatie tussen de emis-
siepro ielen en de dosimetrische parameters te bepalen is meer onderzoek noodza-
kelijk.
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