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ABSTRACT
Background  Little is known on early irreversible effects 
of increased intra-abdominal pressure (IAP). Therefore, 
timing of abdominal decompression among patients with 
abdominal compartment syndrome remains challenging. 
The study objective was to determine the relation 
between IAP and respiratory parameters, hemodynamic 
parameters, and early intestinal ischemia.
Methods  Twenty-five anesthetized and ventilated male 
Sprague-Dawley rats were randomly assigned to five 
groups exposed to IAPs of 0, 5, 10, 15, or 20 mm Hg 
for 3 hours. Respiratory parameters, hemodynamic 
parameters, and serum albumin-cobalt binding 
(ACB) capacity as measure for systemic ischemia 
were determined. Intestines were processed for 
histopathology.
Results  IAP was negatively associated with mean 
arterial pressure at 90 (Spearman correlation coefficient; 
Rs=−0.446, p=0.025) and 180 min (Rs=−0.466, 
p=0.019), oxygen saturation at 90 min (Rs=−0.673, 
p<0.001) and 180 min (Rs=−0.882, p<0.001), and 
pH value at 90 (Rs=−0.819, p<0.001) and 180 min 
(Rs=−0.934, p<0.001). There were no associations 
between IAP and lactate level or ACB capacity. No 
histological signs for intestinal ischemia were found.
Discussion  Although increasing IAP was associated 
with respiratory and hemodynamic difficulties, no signs 
for intestinal ischemia were found.
Level of evidence  Prognostic and epidemiologic 
study, level II.

INTRODUCTION
Intra-abdominal pressure (IAP) is the pressure 
concealed within the abdominal cavity. A substan-
tial increase in IAP ≥12 mm Hg is termed intra-
abdominal hypertension (IAH). If IAH exceeds 
20 mm Hg, reduced intra-abdominal arterial 
perfusion pressure will result in organ dysfunc-
tion which is termed abdominal compartment 
syndrome (ACS). This condition is related to high 
morbidity and mortality.1 2 Risk factors and treat-
ment options for ACS have been listed by the World 
Society of the Abdominal Compartment Syndrome 
in the “consensus definitions and clinical prac-
tice guidelines”.3 According to these guidelines, a 
decompression laparotomy should be performed if 
non-invasive measures failed.

An IAP of 20 to 25 mm Hg for a period of only 
60 min may already reduce mucosal blood flow 
of the intestines of rats and deteriorate intestinal-
barrier function.4 Moreover, IAH may cause irre-
versible intestinal ischemia before alterations in 

cardiac output or mean arterial pressure (MAP) 
become noticeable.5 6 Therefore, early surgical 
decompression before the development of ACS is 
becoming increasingly common.7 Since this treat-
ment is related to high morbidity, the surgeon must 
be sure whether organ dysfunction is caused by 
IAH.8

The detrimental effects of ACS and persistent 
high IAP are well known.9 However, the early 
irreversible effects of subclinical or transient IAH 
with intra-abdominal pressures up to 20 mm Hg 
are unknown. Knowledge of such effects may 
help surgeons in decision-making on early surgical 
abdominal decompression. As it is hardly feasible 
to study this in humans, an animal model should 
be used. The aim of this study was to determine the 
relation between early increased IAP and respira-
tory parameters, hemodynamic parameters, and the 
development of intestinal ischemia in rats.

METHODS
All animal experiments were performed in accor-
dance with the recommendations of the Guide for 
the Care and Use of Laboratory Animals, and under 
the regulation and permission of the local Animal 
Care Committee. Adult (8–10 weeks old) male 
Sprague-Dawley rats (300–350 g, specific pathogen-
free; Harlan Laboratories, Boxmeer, The Nether-
lands) were supplied with standard laboratory rat 
chow and water ad libitum, housed per two/three 
in individually ventilated cages, maintained on a 
12:12 hours light–dark cycle, and acclimated for at 
least 1 week before the experiment. This manuscript 
was reported in line with the ARRIVE statement.10

Experimental model and IAH induction
Twenty-five anesthetized and ventilated rats were 
randomly assigned to five groups and exposed 
in random order to an IAP of 0, 5, 10, 15, or 
20 mm Hg for 3 hours. From a pilot study, it was 
known that exposing rats to higher levels of IAP or 
for a prolonged period of time was not feasible in 
this model. This was due to the detrimental effects 
on hemodynamic and respiratory parameters. Rats 
were anesthetized with intra-peritoneal ketamine 
hydrochloride (50 µg/g), ventilated following 
tracheostomy, and kept warm by a warming pad and 
tin foil. A capnograph and pulse oxymeter (both 
Siemens SC9000 XL monitor; Siemens Medical 
Systems, EM-PCS, Danvers, USA) were installed to 
measure end-tidal CO2 concentrations in expired air 
(EtCO2) and oxygen saturation. The carotid artery 
and internal jugular vein were cannulated (PE-50) 
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for blood draw access and monitoring the arterial blood pres-
sures (systolic, diastolic, and mean), heart rate (HR), and central 
venous pressure (CVP). The tail vein was cannulated for anes-
thetic and fluid infusion (10 µL per gram body weight of KMA 
mix, consisting of 0.72 mL 100 mg/mL ketamine, 0.08 mL 1 mg/
mL medetomidine, and 0.3 mL 0.5 mg/mL atropine, in 20 mL 
normal saline). Administration of antibiotics was considered as 
non-contributing since the experiment lasted only 3 hours. An 
intraperitoneal catheter (12 Ch Redon drain) was placed for 
fluid instillation and IAP monitoring by a midline laparotomy. 
The abdomen was closed with a running suture, including all 
layers of the abdominal wall.

The model used in this study has been described in detail 
previously.11 All animals were allowed to stabilize for 30 min 
before baseline measurements of MAP, CVP, HR, end tidal CO2 
(EtCO2), and saturation. Direct continuous measurement of IAP 
was performed via the intraperitoneal catheter. After baseline 
analysis, the IAP was increased by instillation of warmed (40°C) 
Gelafundin (gelafundingelatine polysuccinate 4%; B. Braun 
Medical B.V., Oss, The Netherlands) and placing the fluid bag 
on specific level. A plaster cuff was applied to the abdomen of 
rats in order to reduce the required volume of Gelafundin (not 
in original model). The IAP and positive end expiratory pres-
sure were kept at the same level during the experiment. Venti-
latory and hemodynamic adaptations were made to compensate 
for deterioration during IAH. The respiratory rate and peak 
inspiratory pressure were increased to maintain EtCO2 between 
4.5 and 6.0 kPa. MAP was kept between 70 and 110 mm Hg by 
Voluven administering (6% hydroxyethyl starch 130/0.4 in 0.9% 
sodium chloride; Fresenius Kabi B.V. Zeist, The Netherlands). 
After completion of the experiment, all animals were sacrificed 
by exsanguination.

Blood sampling
Blood samples (with a capillary) were drawn at baseline, at 
90 and 180 min for analyzing blood gases and serum lactate 
(ABL800 FLEX analyzer; Radiometer, Copenhagen, Denmark). 
All analyses were done once. At the same time points, single 
blood samples (0.6 mL) were drawn for duplicate determination 
of albumin-cobalt binding (ACB) capacity according to Bar-Or 
et al, as a measure of systemic ischemia.12 This biomarker is a 
highly sensitive and rapid marker for ischemia, but it is non-
specific for tissue type and therefore a marker for systemic isch-
emia. The ACB test is a low-cost test which is easy to perform 
and well available. Also, the assay showed promising results for 
the detection of ischemia in an animal model of ACS.13 The ACB 
test indicates systemic ischemia when its absorbance reaches 
above 0.4 absorbance units (ABSU), measured using a micro-
plate reader (Wallac 1420 Victor2; Perkin Elmer, Groningen, 
the Netherlands).

Histological examination
For each rat, five cross-sectional samples were taken at random 
locations of the intestine. If macroscopic damage was visible, 
samples were taken there as well. Samples were fixed with 
10% formalin, embedded in paraffin and sliced in 4–5 µm 
sections, stained with routine H&E, and examined under a 
light microscope by a pathologist (KM) and clinical researcher 
(SGS); discrepancy was discussed. Histopathology was graded 
according to the Parks and Chiu/Park scoring systems for intes-
tinal mucosal injury (Parks score for inflammation and necrosis 
and Park/Chiu score for mucosal lifting).14–16 All samples were 

scored at the most extensively affected areas. Mean scores of the 
five samples were calculated.

Statistical methods
The sample size calculation was based on an expected correla-
tion coefficient between IAP and Parks/Chiu score of 0.95. With 
an alpha error of 0.05 (two-tailed) and a beta of 0.2, five animals 
per group were needed. Data for all animals were analyzed using 
SPSS statistical software, V.21.0. All data were non-parametric 
and are displayed as median with corresponding quartiles (P25–
P75). Kruskal-Wallis test was used in order to test differences in 
body weight between groups. Spearman rank correlation tests 
was used in order to test the association between IAP and the 
individual variables.

RESULTS
Basic characteristics
The median body weight of the rats was 377 g (P25–P75, 
368–392 g), and there was no association between body weight 
and the IAP group the rats were assigned to (p=0.767). The 
median body temperature decreased statistically significantly to 
36.0°C at 90 min (figure 1A). At that time point, temperature was 
negatively correlated with IAP (Spearman rank correlation coef-
ficient; Rs=−0.444, p=0.026). At 180 min, body temperature 
had normalized again. A decrease in the median MAP was noted 
in all groups (figure 1B). MAP was negatively correlated with 
IAP, both at 90 min (from MAP 108 mm Hg in the control group 
to 97 mm Hg in the highest IAP group; Rs=−0.446, p=0.025) 
and at 180 min (from MAP 119 mm Hg to 95 mm Hg, respec-
tively; Rs=−0.466, p=0.019). CVP remained fairly constant 
across time in all groups (figure  1C). At 180 min, the median 
CVP ranged from −2 mm Hg in the control group to 2 mm Hg in 
the highest IAP group (positive correlation with IAP, Rs=0.581, 
p=0.002). All animals completed the experiment and were used 
in the analyses.

Respiratory characteristics
IAP was positively correlated with median EtCO2 at 180 min 
(from 4.5 kPa in the control group to 5.4 kPa in the highest 
IAP group; Rs=0.639, p=0.001). Respiratory deterioration 
was reflected in all individual parameters of arterial blood gas 
analysis by a dose-dependent correlation with IAP and time 
(figure  2). Most notably, a decrease was seen in median pH 
(ranging from 7.27 in the control group to 6.86 in the highest 
IAP group; figure 2A) and median pO2 (ranging from 503 mm Hg 
to 192 mm Hg; figure 2B) at 180 min. pH and pCO2 values were 
negatively correlated with IAP at that time point (Rs=−0.934, 
p<0.001 and Rs=−0.752, p<0.001 respectively). Bicarbonate 
levels and oxygen saturation also decreased, and demonstrated 
a negatively correlation with IAP (figure  2D and F). Positive 
correlations were seen between IAP and pCO2 (Rs=0.882, 
p<0.001; figure  2C) and base deficit (Rs=0.862, p<0.001; 
figure 2E) at 180 min. Median pCO2 increased over time with a 
range from 44.2 mm Hg in the control group to 99.6 mm Hg in 
the highest IAP group, and median base deficit increased with a 
range from 5.3 to 11.9 for the same groups at 180 min.

Outcome characteristics
During the last phase of this experiment, serum lactate levels 
increased. No significant correlation was found between this and 
IAP (Rs=0.178, p=0.417; figure 3A). Although a decrease was 
seen in ACB capacity (demonstrated by an increase of ABSU), 
group medians did not reach the threshold of 0.4 ABSU for 
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systemic ischemia. No correlation between ACB capacity and 
IAP was observed (figure  3B). This finding was confirmed by 
histopathological examination, and no evident signs for ischemic 
damage were found in the H&E-stained sections (figure 4). The 
Parks score was comparable in all groups: no inflammation or 
necrosis was found in any of the specimens. The Park/Chiu score 
for mucosal lifting ranged from 0 to 4; no significant correla-
tion between Park/Chiu score and IAP was found (Rs=−0.141, 
p=0.501).

DISCUSSION
In this model of IAH, an increase in IAP did not result in signifi-
cant ischemic complications within the first 3 hours. Even though 
a relation was seen between increasing IAP and hemodynamic 
deterioration, no histopathologic signs of irreversible damage to 
the intestines were found; nor were there any signs of systemic 
ischemia throughout the experiment as tested using the ACB 
assay. This is in contrast with the results of the only other similar 
study in rabbits. In this study, rabbits were exposed to an IAP 
of 25 mm Hg for 1 hour. During this period, histopathology and 

Figure 1  Effect of intra-arterial pressure (IAP) increase on 
temperature, mean arterial pressure and central venous pressure 
at 90 and 180 min. Temperature (A), mean arterial pressure (B) and 
central venous pressure (C) at 0, 90, and 180 min are demonstrated 
for the individual IAP groups and displayed as median with upper and 
lower limits. The Spearman correlation coefficient (Rs) and p value (p) 
represent correlation between IAP and the individual variables with 
corresponding statistical significance at 90 and 180 min.

Figure 2  Effect of intra-arterial pressure (IAP) increase on arterial 
blood gas values at 90 and 180 min. pH (A), pO2 (B), pCO2 (C), 
bicarbonate (D), base deficit (E), and saturation (F) at 0, 90, and 180 min 
are demonstrated for the individual IAP groups and displayed as median 
with upper and lower limits. The Spearman correlation coefficient (Rs) 
and p value (p) represent correlation between IAP and the individual 
variables with corresponding statistical significance at 90 and 180 min.
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the ACB assay demonstrated a statistically significant increase in 
intestinal ischemia.13

The findings of this study may indicate that in the earliest 
phase of increasing IAP, physicians have some time to focus on 
adequate respiratory and hemodynamic support before preven-
tive open abdomen decompression is applied. In the first phase 
of IAH, respiratory deterioration may already be very profound 
without causing irreversible damage to the intestines. During 
this period, the possible effects of less-invasive measures can 
be awaited with no further harm being done. This supports 

the theory that effects of percutaneous catheter decompres-
sion (PCD) can be awaited for a period of 4 hours; if PCD was 
not effective, urgent open abdomen decompression should be 
initiated.7

The respiratory and hemodynamic deterioration observed in 
this study demonstrated the suitability of the model used. Apart 
from the metabolic acidosis in the 0 mm Hg group, outcomes 
seem to be an adequate reflection of IAH in humans.17 18 The 
metabolic acidosis in the 0 mm Hg group was unexpected, a 
finding possibly due to the rats being relatively hypovolemic. 
In order to keep rats as normovolemic as possible, rats in the 
0 mm Hg group only received resuscitation fluids for compensa-
tion of blood collection. As confirmed by the negative CVPs, this 
minimal support seems to have been insufficient.

All animals were sacrificed at 180 min for histopatholog-
ical evaluation; reperfusion following decompression was not 
awaited. Theoretically, during reperfusion, free radicals may 
cause significant oxidative damage.19 The oxidative damage 
might even be more extensive than the damage induced by IAH 
itself. Demonstrating this, however, was not the aim of this study.

Possible limitations of this study were the relatively small 
sample size and the small size of the animals used in this exper-
iment. It is known that the abdominal wall elasticity of small 

Figure 3  Effect of intra-arterial pressure (IAP) increase on serum 
lactate and albumin-cobalt binding at 90 and 180 min. ABSU, 
absorbance units; ACB, albumin-cobalt binding capacity. Lactate (A) 
and albumin-cobalt binding (B) at 0, 90, and 180 min are demonstrated 
for the individual groups and displayed as median with upper and 
lower limits. The Spearman correlation coefficient (Rs) and p value (p) 
represent correlation between IAP and the individual variables with 
corresponding statistical significance at 90 and 180 min.

Figure 4  H&E sections of the least and most extensively damaged 
mucosa. In most sections of rats in all groups, no lesions were found 
in the small intestine (A). Grade 3 Parks/Chiu lesions of ischemia (ie, 
mucosal lifting down sides of the villi; see arrow) were seen sporadically 
(B).
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animals significantly differs from the elasticity in humans.20 Even 
though a plaster cuff was placed around the abdomen of the 
rats, this may have influenced the results of the present study. 
Moreover, the pathophysiology of ACS in critically ill humans 
is likely different from ACS in the otherwise healthy rats used in 
the current model. Translation of this IAH model to the human 
situation should therefore be done with care.

The period of 180 min was relatively short compared with 
patients who are observed and conservatively managed after 
bowel obstruction or non-operatively managed blunt abdominal 
trauma. This is inherent to the selected rat model. From a pilot 
study, it was known that exposing the rats to IAP levels of 25 or 
30 mm Hg resulted in death within 1 hour. Even at 20 mm Hg IAP, 
the rats’ hemodynamic and respiratory parameters progressed 
to lethal levels, making it impossible to keep the animals alive 
longer than 180 min. At that time point, arterial blood gas values 
reached morbid levels in the highest IAP group. In one case, the 
rat died instantaneously when the IAP was relieved. Neverthe-
less, this experiment was suitable for demonstrating a principle. 
The outcomes of this study require confirmation in larger study 
groups or larger animals.

In conclusion, during this experimental study of increased 
IAP, no signs of early irreversible ischemic damage were found, 
while profound deterioration of respiratory and hemodynamic 
parameters were already present. These findings may indicate 
that in the early phase of increasing IAP, physicians have some 
time to focus on adequate respiratory and hemodynamic support 
before preventive open abdomen decompression is applied. 
Non-invasive measures which prevent a further increase of IAP 
seem preferable.
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