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ABSTRACT 

Background: Experimental work in animals has shown that DNA methylation (DNAm), an 

epigenetic mechanism regulating gene expression, is influenced by typical variation in maternal 

care. While emerging research in humans supports a similar association, studies to date have 

been limited to candidate gene and cross-sectional approaches, with a focus on extreme 

deviations in the caregiving environment.  

Methods: Here, we investigated the prospective association between typical variation in 

maternal sensitivity and offspring epigenome-wide DNAm, in a population-based cohort of 

children (N = 235). Maternal sensitivity was observed when children were three- and four-years-

old. DNAm, quantified with the Infinium 450K array, was extracted at age six (whole blood). 

The influence of methylation quantitative trait loci (mQTLs), DNAm at birth (cord blood), and 

confounders (socioeconomic status, maternal psychopathology) was considered in follow-up 

analyses. 

Results: Genome-wide significant associations between maternal sensitivity and offspring 

DNAm were observed at 13 regions (p < 1.06e-07), but not at single sites. Follow-up analyses 

indicated that associations at these regions were in part related to genetic factors, confounders, 

and baseline DNAm levels at birth, as evidenced by the presence of mQTLs at five regions and 

estimate attenuations. Robust associations with maternal sensitivity were found at four regions, 

annotated to ZBTB22, TAPBP, ZBTB12, and DOCK4.  

Conclusions: These findings provide novel leads into the relationship between typical variation 

in maternal caregiving and offspring DNA methylation in humans, highlighting robust regions of 

associations, previously implicated in psychological and developmental problems, immune 

functioning, and stress responses.   
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INTRODUCTION 

Parental sensitivity, i.e. the responsiveness to children’s signals and communications, is 

an important predictor of developmental outcomes across the behavioral, emotional, and 

cognitive domains 1–3. Low sensitivity of primary caregivers - typically mothers -  has been 

associated with a host of negative outcomes, including higher risk for child psychopathology 4,5, 

externalizing and internalizing problems 1,6, and lower cognitive abilities 7. This influence can be 

long-lasting, as shown by prospective human studies 8,9 and experimental work in animals 10. 

Yet, the molecular mechanisms underlying the enduring effects of maternal care on 

neurodevelopmental and behavioral outcomes in humans remain unclear.  

Previous studies have provided initial support for DNA methylation (DNAm) - an 

epigenetic modification regulating gene expression - as a mechanism of interest for these 

processes 11–13. DNAm involves the addition of a methyl group to DNA base pairs, primarily to 

the 5-carbon of cytosine nucleotides, resulting in 5-methylcytosine. DNAm is sensitive to both 

environmental and genetic influences 13–15, with the latter being evidenced by changes in the 

methylome due to DNA variation, named methylation quantitative trait loci (mQTLs) 16. Further, 

DNAm plays an essential role in healthy development and functioning by modulating the 

programming of wider biological systems (e.g. neural and immune functioning) and by 

coordinating key cellular processes (e.g. tissue differentiation) 17. DNAm might thus represent a 

mechanism by which genetic and environmental factors, including the early caregiving 

environment, jointly and/or independently predict developmental outcomes 14.   

Most evidence of maternal care effects on DNAm comes from animal models. In a 

seminal study by Weaver et al. 13, low levels of maternal care in the first week of life – 

operationalized as the frequency of licking/grooming and arched-back nursing behaviors - 

altered  DNAm patterns in offspring at the glucocorticoid receptor (gr, also known as nr3c1), a 

key regulator of stress response 18. Importantly, these epigenetic changes were long-lasting, but 

could be reversed via cross-fostering or chemical interventions, leading to a normalization of 

physiological and behavioral responses to stress 13,19. These findings generated widespread 

interest, as they indicated (i) a causal role of maternal care on offspring’s epigenetic 

dysregulation and downstream phenotypes, independent of genetic liability, and (ii) the 

possibility of influencing developmental trajectories through environmental interventions, 

mediated by DNAm. Since this initial work, other studies have replicated the effects of maternal 

care on gr methylation in rodents 20 and extended findings to demonstrate DNAm changes in 

other tissues and genes 21–23 (e.g. brain derived neurotrophic factor (bdnf) and oxytocin receptor 

(oxtr)) as well as in other species such as rhesus macaques 24.  

Although rodents and primates widely differ from humans in their caregiving, a number 

of similarities in maternal-infant relationships have been observed across mammalian species 
25,26. Parallels at the sensory, hormonal, behavioral, and brain circuit levels have been noted 25–27, 

including the touch-based behavior characterizing rodents, primates, and humans in the early 

caregiving and the involvement of the limbic network in maternal-infant relationships (Feldman, 

2016). Guided by the animal literature, a growing number of studies have sought to determine 

the extent to which different forms of caregiving and adversities affect DNAm in humans.  

Human studies have focused on different forms of adversities 28 including poly-

victimization 29, and on extreme deviations in the early caregiving environment, such as 

maltreatment 30–34, institutionalization 35, and maternal psychopathology 36. Generally, literature 
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focusing on the caregiving environment has provided preliminary support in line with animal 

findings, identifying, for example, similar increases in GR methylation in both postmortem 

hippocampal tissue and peripheral tissues from individuals exposed to childhood maltreatment or 

early-life stress 20. Studies also indicate that epigenetic patterns associated with the caregiving 

environment extend beyond GR, implicating other genes related to, among other processes, 

neurodevelopment and stress, such as OXTR and BDNF. Moreover, by leveraging epigenome-

wide DNAm, novel genes were identified (e.g. KCNQ2, miR124-3)  in relation to maltreatment 

and child abuse in individuals with post-traumatic stress disorder 32, borderline personality 

disorder 33, and depression 34.  

While these results are promising and suggest a role of the caregiving environment in the 

human methylome, the current evidence in humans is limited in a number of key ways. First, 

since research has mostly focused on extreme deviations in the caregiving environment in 

selected samples, little is known about how typical variation in maternal sensitivity associates 

with offspring DNAm in the general population. Second, while studies on extreme deviations in 

maternal care have leveraged epigenome-wide approaches, literature on normative variation in 

maternal care has solely focused on candidate genes. This has impeded the identification of 

novel DNAm loci associated with maternal sensitivity, which might instead be detected with a 

hypothesis-free approach by performing an epigenome-wide association study (EWAS). Third, 

studies have typically relied on cross-sectional designs, in which the early caregiving 

environment is measured retrospectively via the use of questionnaires, raising doubts about the 

directionality of observed associations and about the validity of measurements, which may be 

prone to recall bias 37,38. Moreover, previous studies rarely investigated whether the identified 

associations may be confounded by genetic background shared between parents and offspring. 

The examination of the relationship between maternal care and DNAm might indeed capture 

intergenerational genetic transmission. Lastly, the influence on offspring DNAm of factors 

preceding postnatal maternal care, including the prenatal environment, remains unexplored.  

To address these gaps, we firstly examined how typical variation in observed maternal 

sensitivity prospectively associates with epigenome-wide DNAm patterns in a general population 

of children. Secondly, with a series of follow-up analyses, we explored the extent to which 

associations reflected genetic influences as well as confounding by “baseline” DNAm levels at 

birth, which precede exposure to postnatal maternal care and might constitute a biological 

indicator of the prenatal environment as well as of genetic effects on the methylome. 

 

 

 

 

MATERIALS AND METHODS 

Participants 

The present research was embedded in the Generation R Study, a prospective population-

based cohort study from fetal life onwards in Rotterdam, The Netherlands 39 (Supplementary 

Information 1). Ethical approval was obtained from the Medical Ethics Committee of Erasmus 

MC, University Medical Center Rotterdam. For the purposes of this study, children within the 

Generation R Study with data on maternal sensitivity (at three and/or four years) and DNAm (at 

six years) were selected (N = 235). Since 5 sibling-pairs were present, we later excluded one 

sibling per pair (N = 230) to ensure genetic relatedness did not impact results.  
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Participant characteristics are shown in Supplementary Table 1. Participants with data on 

both maternal sensitivity and DNAm (age six) differed from participants invited to the age six 

assessment in gestational age at birth (Msubsample = 40.3 weeks (SD = 1.4), Mfullsample = 39.8 (SD = 

1.9), t = 5.6, p = 6.50e-08), but not other covariates.  

Measures  

Maternal sensitivity  

Maternal sensitivity was assessed at ages three and four years through observations of 

mother-child interactions during teaching tasks too complex for the age of the child. These 

involved (i) building a tower and (ii) completing an etch-a-sketch drawing. Mother-child 

interactions were recorded and subsequently coded, according to the revised Erickson 7-point 

rating scales 40, based on two interdependent subscales: intrusiveness (IN) and supportive 

presence (SP), which together form the maternal sensitivity construct. Inter-coder reliability 

amounted to 0.81 at age three and 0.84 at age four 41.  

Eight measures of maternal sensitivity (i.e. IN and SP scales x two tasks x two time-

points) were available. IN scores were reversed, and both IN and SP scores were standardized. 

An overall maternal sensitivity score was calculated, for participants with data at age three 

and/or four, by averaging such standardized measures 42. This was done in line with previous 

literature 41, due to the stability of the maternal sensitivity scores between age three and four 

years 1, the temporality of these assessments, which both precede DNAm at age six, and to 

maximize our sample size. Cronbach’s alpha reliability of the obtained measure was acceptable 

(Cronbach’s α = 0.70) 43.  

DNA methylation 

DNAm in whole blood at age six was used for our epigenome-wide analyses. This was 

selected due to it being the closest DNAm assessment after maternal sensitivity observations 

(age three and four years), and to test the prospective association of maternal sensitivity with 

DNAm. Based on previous studies in animals, which found maternal care to have long-lasting 

influences on the methylome 13, we expected for maternal care effects to endure in early 

childhood. 

To obtain DNAm data, DNA extraction and bisulfite conversion via the EZ-96 DNA 

Methylation kit (Shallow) (Zymo Research Corporation, Irvine, USA) were performed, and 

samples were processed with the Illumina Infinium HumanMethylation450 BeadChip (Infinium 

450K), which measures 485 577 CpGs. The incorporating control probe adjustment and 

reduction of global correlation pipeline 44 was employed for the preparation and normalization of 

the data using R. Firstly, the minfi package 45 in R was used to read the idat files. Probes that had 

a detection p-value above background (based on the sum of methylated and unmethylated 

intensity values) ≥ 1e-16 were set to missing per array. Next, the intensity values were stratified 

by autosomal and non-autosomal probes and quantile normalized for each of the six probe-type 

categories separately: type II red/green, type I methylated red/green and type I unmethylated 

red/green. For each probe, DNAm levels were indexed by beta values (i.e. the ratio of 

methylated signal divided by the sum of the methylated and unmethylated signal [M/(M + U + 

100)]). Quality control procedures were additionally performed (e.g. check for sex mismatch). 

Only arrays with a call rate above 95% per sample were considered for additional processing. 
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DNAm data was winsorized (> 3 SD) to reduce the influence of potential outliers. In total, we 

obtained information on 457 872 autosomal sites in 493 six-year-olds.  

We additionally used DNAm data collected at birth in cord blood for a follow-up 

analysis. This was subject to the same pipeline as the DNAm data at age six and was also 

measured based on the Infinium 450K BeadChip. Only CpGs identified as significant or within 

DNAm significant regions were selected for these analyses. 

Covariates 

All analyses were adjusted for a key set of potential covariates guided by previous 

literature 46–49, including batch effects (plate number), sex,  gestational age at birth, maternal 

smoking during pregnancy (never smoked, smoked until pregnancy known, continued during 

pregnancy), and estimated cell-type proportions 50 (Supplementary Information 1). We 

additionally adjusted for two sets of covariates: (i) maternal education (highest level completed) 

as proxy for socioeconomic status, and postnatal maternal psychopathology (Brief Symptom 

Inventory), and (iii) DNAm levels at birth (cord blood tissue), together with respective cell-type 

and batch effect adjustments (Supplementary Information 1).  

Statistical Analyses 

Analyses were performed in R (version 4.0.0) and are described in-depth in 

Supplementary Information 1. A probe-level EWAS (multiple linear regression models) was run 

with the CpGassoc R package 51, to test for associations of maternal sensitivity with each DNAm 

site individually (Bonferroni epigenome-wide significance threshold: p < 1.09e-07). To account 

for potential bias and inflation, the BACON  R package 52 was used. 

Moreover, to capture correlations across CpGs, reduce data dimensionality, and attenuate 

the multiple testing burden, a regional-level EWAS was performed by using the R package 

DMRff 53. This estimates correlations across nominally-significant probes within a 500 bp 

window (default setting) and combines the EWAS summary statistics of such neighboring CpGs 

to identify differentially methylated regions while accounting for multiple testing with a 

Bonferroni procedure in both gene regions and sub-regions 54. 

A candidate gene look-up was also performed to maximize comparability with previously 

reported DNAm-maternal care associations. To date, DNAm levels of four genes have been 

associated with maternal care in humans 55–58, by at least one study: GR, BDNF, the serotonin 

receptor (SLC6A4), and OXTR. We looked-up the EWAS results for probes located within these 

genes, as annotated in the HumanMethylation450 v1.2 Manifest File. Following previous studies 
29,59, gene-level Bonferroni correction was used as significance threshold (i.e. p < .05/number of 

annotated probes).  

To identify enriched biological pathways, we performed an in-house gene ontology (GO) 

analysis 59–61 on sites with p < .001 in the probe-level EWAS, in line with previous literature 
59,60,62,63. We performed p-value adjustments based on default procedures 61. Enriched pathways 

were confirmed by an independent GO approach from the missMethyl R package 64 (p < .05).  

Finally, a series of follow-up analyses were run. Firstly, the influence of genetic factors 

on our top hits (i.e. Bonferroni-significant sites or sites within Bonferroni-significant DNAm 

regions) was assessed by drawing on an mQTL database 16 (www.mqtldb.org). We examined 

whether hits were associated with known mQTLs during childhood, based on the results from a 

http://www.mqtldb.org/
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genome-wide complex trait conditional analysis. Secondly, we explored the robustness of top 

hits to additional adjustments for (i) postnatal maternal education and maternal psychopathology 

(N = 223) and (ii) pre-exposure DNAm (N = 226). The latter was done to account for the effect 

of DNAm at birth on DNAm at age six and to capture potential pre-existing influences (e.g. 

intrauterine exposures) on DNAm in childhood. Spearman correlations between DNAm at birth 

and age six were also calculated, per CpG. Thirdly, based on a list of our CpG hits, the in-house 

gene ontology analysis and missMethyl validation were run, with the same procedures as the 

main GO analysis specified above. Finally, to understand the relevance of our findings to the 

brain, which is linked to the caregiving environment 13,41, we looked up brain-blood 

concordance values for our top hits using the BECon online tool 

(https://redgar598.shinyapps.io/BECon/) 65.   

RESULTS 

Probe-level EWAS 

Maternal sensitivity was not associated with any single CpGs at age six, after genome-

wide correction (p < 1.09e-07) (Figure 1, Supplementary Table 2). BACON analysis revealed a 

normal lambda (λ = 1.00), minimal bias (Bayesian estimate of bias = - 0.002) and deflation in the 

test results – indicative of low power (Bayesian inflation factor = 0.925) (Supplementary Figure 

1). Following BACON correction for deflation, one intergenic CpG reached genome-wide 

significance: cg25628898 (estimate = - 0.008; SE = 0.002; p = 1.03e-07) (Supplementary Table 

2).  

Regional-level EWAS 

With a regional-level EWAS, we identified 13 DNAm regions associated with maternal 

sensitivity (p < 1.09e-07; α = 0.05) (Table 1, Figure 2, Supplementary Table 3), spanning 143 

CpGs. The top three DNAm regions coincided with the ANKMY1, RNF39, and ZBTB22 and 

TAPBP genes (Table 1). The largest estimates were shown at regions encompassing COLEC11 

and DOCK4. None of the CpGs within our significant regions was related to prenatal maternal 

smoking, based on previous research in neonates and children (Joubert et al., 2016 Rzehak et al., 

2016), suggesting adjustments in the EWAS accounted for its confounding role. When siblings 

(N = 230) were excluded all but one region (annotated to RNF5P1, RNF5, AGPAT1) remained 

significantly associated with maternal sensitivity.  

Candidate gene look-up 

The candidate gene look-up showed that, of the four selected genes (NR3C1, BDNF, 

SLC6A4, OXTR), which included 14 to 74 sites, no CpG met Bonferroni-adjusted gene-wide 

significance in association with maternal sensitivity (Table 2, Supplementary Table 4). Only 

three sites reached nominal significance (p < .05). 

Gene ontology  

The in-house GO analysis, based on sites with p < 0.001 in the probe-level EWAS, 

revealed enrichment for 148 pathways. Yet, this threshold might have been overinclusive. 

Thirty-nine of the 148 pathways were confirmed by the missMethyl GO method (p < 0.05) 

(Supplementary Table 5). Both methods indicated enrichment for, among others, calcium ion 

channels functioning, phosphorylation, and tissue and cell polarity. 

https://redgar598.shinyapps.io/BECon/


Maternal sensitivity and offspring DNA methylation  

9 
 

Follow-up analyses 

Firstly, an mQTL search revealed that five of the 13 significant DNAm regions contained 

at least one CpG associated with one or more known SNPs (Table 3, Supplementary Table 6). 

Eight regions, including ZBTB22/TAPBP (one of our top regions), did not present any mQTLs. 

Of the 143 sites within the 13 significant regions, 22% (n = 31) associated with one or more 

known SNPs. All associations were in cis.   

Secondly, after additional adjustments for socioeconomic status and maternal 

psychopathology, associations attenuated at seven regions (median = -1%, range = - 44% - 13%). 

Regions which did not decrease in effect were TAPBP, RNF39, two non-annotated regions, 

ANKMY1, and ALOX12P2 (Supplementary Table 7). When adjusting for pre-exposure DNAm 

levels, (Supplementary Table 8), associations attenuated at ten regions (median = -45%, range = 

-97% - 17%), with RNF39 being the most affected. Regions whose estimates did not decrease 

were ZBTB12, FBXO44/FBXO2, and a non-annotated region (chromosome 7). The median 

correlation between each CpG DNAm levels at birth and age six was of Rho = 0.43 (range: 0.11 

– 0.86) (Supplementary Table 9). 

Thirdly, in a follow-up GO analysis, based on the sites within the significant DNAm 

regions (n = 143), enrichment was found at 63 pathways (in-house method). Of these, 33 were 

validated by missMethyl (p < 0.05). Both methods indicated enrichment for, among others, 

several lipoprotein processes (e.g. particle remodeling), and peptide binding (Supplementary 

Table 10).  

Lastly, of the 13 significant DNAm regions, six contained half or more sites with greater 

than average blood-brain tissue concordance 65 in at least one brain tissue (for BA7 r > |.36|, for 

BA10 r  > |.40|,   for BA20 r  > |.33|), for a total of 67 sites (Supplementary Table 11) (not 

empirically tested).  

DISCUSSION  

This is the first epigenome-wide study investigating the prospective association between 

typical variation in maternal sensitivity (observed) and offspring DNAm, in a general population 

of children. Genome-wide significant associations were observed at 13 DNAm regions, four of 

which did not contain mQTLs and were minimally affected by adjustments for postnatal 

confounders and by pre-exposure DNAm levels, thus showing robustness in associations.    

Summary of Key Findings 

Our first aim was to examine the prospective relationship between maternal sensitivity 

and child DNAm using complementary approaches. Firstly, no individual CpG was identified in 

the probe-level EWAS after genome-wide correction. This might indicate that associations at a 

site-level are subtle and challenging to identify, especially considering this study assessed typical 

variation in maternal care as opposed to extreme deviations (e.g. abuse). The high multiple 

testing correction burden that probe-level EWASs entail may also impede the detection of single 

sites of small effect, which could be uncovered with larger samples. For instance, with our 

sample (N = 235) and model (multiple linear regression, 10 predictors), 80% power, and a 

genome-wide threshold, only moderate estimates (as small as 0.27) could be detected.  

When employing a regional approach, which can detect weaker but more widespread 

signals by accounting for correlations across CpGs, 13 DNAm regions were significantly 
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associated with maternal sensitivity (p < 1.06e-07, α = .05). These findings support the presence 

of offspring methylomic signatures of maternal care, which may be best uncovered through 

hypothesis-free approaches with methods capturing the correlational patterns of DNAm. Yet, 

replication of these findings is needed, and the possibility of false-positive findings should not be 

excluded. Notably, when considering a more stringent significance threshold (p < 2.18e-09; α = 

.001), as suggested to reduce false-positive rates 68, most of the regions (77%, N = 10) remained 

significantly related to maternal sensitivity.  

Further, we failed to detect an association between maternal sensitivity and DNAm 

variation at candidate genes previously identified by studies of maternal care in humans 55–58. 

Inconsistencies may reflect several factors, including differences in sample characteristics (e.g. 

psychiatric vs. population-based samples), maternal care assessments (retrospective vs. 

prospective reports) and analysis (e.g. gene regions covered by pyrosequencing vs. Infinium 

450K). Lastly, candidate gene studies may be particularly vulnerable to false positives, as shown 

in the genetic field 69.  

As a second aim, we explored whether identified maternal sensitivity-DNAm 

associations may be influenced by genetic factors, based on mQTL mapping. Twenty-two 

percent of the sites in our significant regions were linked to known SNPs. This suggests that 

associations for those sites may be in part confounded by genetic factors and corroborates 

previous research highlighting DNAm responsiveness to both external exposures and genetic 

variation 14. However, the presence of mQTLs alone does not preclude environmental effects. 

Indeed, recent studies have found that interindividual variability in DNAm is primarily explained 

by gene-environment combinations (additive and interactive effects) 70,71. Moreover, mQTLs 

were identified based on a publicly available database, as our sample was underpowered to 

directly test for genetic confounding. Future studies employing genetically-sensitive designs 

could more precisely quantify the effect of maternal sensitivity on DNAm by directly modeling 

genetic influences.  

When exploring the robustness of findings to additional adjustments, we observed 

attenuations at half of the regions, after controlling for socioeconomic status and maternal 

psychopathology. When considering pre-exposure DNAm levels, estimates attenuated at most 

regions. Although neonatal methylomic patterns were measured in cord blood at birth and not in 

peripheral blood (used at age six), which may lead to additional differences, these findings 

indicate that associations partly reflected pre-existing DNAm levels. This was clearly 

exemplified by RNF39, a region strongly associated with sensitivity, robust to postnatal 

confounders, and genetic influences. After adjustments, its estimate reduced by 97%, showing 

that associations did not result from postnatal caregiving, as they were already present at baseline 

(birth). These findings cast doubts on previous studies of caregiving which did not consider pre-

exposure DNAm levels, and raise questions on the directionality of associations between 

maternal care and DNAm, as well as on the potential role of other confounders affecting child 

DNAm at birth and in childhood, and maternal sensitivity (e.g. shared genetics, maternal 

distress). 

Here, we highlight four “high-confidence” associations with maternal caregiving, which 

were not linked to any mQTLs, and were most robust to adjustments for confounders and pre-

exposure DNAm levels. These spanned (i) ZBTB22/TAPBP, (ii) ZBTB12, (iii) DOCK4, and (iv) 

a non-annotated region in chromosome four. All four genes are protein-coding 18. DOCK4 is 
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implicated in neuronal processes, such as neuronal migration, and dendritic arborization 72 and 

its DNAm region presented higher than average blood-BA10 concordance in this study. ZBTB22 

and ZBTB12 are involved in transcriptional regulation and nuclear chromatin localization 73. 

These two genes, together with TAPBP, are within the Major Histocompatibility Complex 

(MHC). While these associations should be carefully interpreted as the MHC is characterized by 

extensive linkage disequilibrium 74, this genomic region plays an important role in immune 

functioning and has been implicated in neuronal plasticity 75,76. TAPBP specifically is involved in 

MHC class I protein complex assembly, gene expression regulation, and immunodeficiency 73. In 

this study, enrichment for MHC class I protein assembly and peptide binding was found for 

maternal sensitivity, suggesting that such exposure might enact on TAPBP-related functions via 

DNAm.  

Generally, our high-confidence genes have been previously associated with psychological 

and developmental problems, inflammation, and stress-responses. Molecular changes were 

shown at TAPBP for major depressive disorder and suicide 77, TAPBP and DOCK4 for 

schizophrenia 78–80, ZBTB22 for intellectual disability 73 and psychopathologies following 

hypercortisolism 81, and DOCK4 for autism and dyslexia 82,83. Enrichment for pathways 

including Dock4 has been repeatedly associated with stress-related responses in mice 84–86, while 

ZBTB12 DNAm is related to markers of inflammation (e.g. white blood cell counts) 87.  

Limitations and Suggestions for Future Research: 

Our findings should be interpreted in light of several limitations. Firstly, identified 

associations may have been influenced by additional parental factors that we could not control 

for in the present study, either because this information was not available (e.g. parental 

temperament, parental genotype) or due to the low number of cases (e.g. maternal medication 

and substance use in pregnancy). Nevertheless, we did control for the most important maternal 

confounders (smoking during pregnancy, socioeconomic status, psychopathology). Secondly, if 

unmeasured changes in maternal sensitivity and covariates occurred during the two-to-three-year 

time-lag between our exposure and outcome, noise would be introduced in the identified 

associations. A prospective design, as opposed to a cross-sectional one, remains however 

preferable due to the possibility to better understand the directionality of associations. 

Nonetheless, repeated postnatal measurements of both DNAm and maternal sensitivity would be 

ideal to longitudinally examine how associations change over time and disentangle directionality. 

Thirdly, we did not have information on whether the mothers included in this study were primary 

or secondary caregivers (at four years only). Yet, within Generation R, most mothers are primary 

caregivers 88. Additionally, while the use of the Infinium 450K provided novel insights into the 

genes affected by maternal sensitivity, future research should employ, when possible, the EPIC 

850K array due to its wider and more diverse genomic coverage 89. Lastly, our investigation 

solely focused on the association of maternal sensitivity on the child methylome. Related 

molecular signatures, such as transcription changes and epigenetic clocks, could be examined in 

future research to better understand the biological consequences of maternal care.  

In conclusion, this population-based study supports a prospective association of typical 

variation in maternal sensitivity with epigenome-wide DNAm in children. We highlight four 

DNAm regions that showed the strongest associations with maternal sensitivity as well as 

minimal evidence of genetic and pre-exposure influences, and which should thus be prioritized in 

future research. These results permit further delineation of the relationship between DNA 
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methylation and maternal care in humans and warrant confirmation by future research with large, 

longitudinal, and genetically-sensitive studies. 
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CpG p-values vary following BACON correction. After BACON-correction, a greater proportion 

of small as opposed to large p-values is present (panel C). 

Supplementary Tables (ST): 

ST1. All children in the present study are of Dutch ethnicity. An approximately equal proportion 

of males and females participated. Most mothers obtained a higher education qualification and 

never smoked during pregnancy.  

ST2. None of the top 30 CpGs identified in the probe-level EWAS surpassed genome-wide 

significance in the original EWAS. When BACON correction was applied, p-values decreased, 

with cg25628898, becoming statistically significant  (estimate = - 0.008; SE = 0.002; p = 1.03e-

07)  

ST3. The top 30 maternal sensitivity-DNAm associations are shown. The regional-level EWAS, 

after Bonferroni correction, revealed 13 regions significantly associated with maternal 

sensitivity.  

 

ST4. Probe-level EWAS findings at four genes, previously identified in association with 

maternal care in humans, were leveraged. Gene-wide significance thresholds were calculated for 

each gene separately: p < 0.05 / number of probes within the gene. There was no gene-wide 

significant probe. Only three probes reached nominal significance.  

ST5. 148 significant pathways were identified as enriched by the in-house method, 39 of which 

were validated by the MissMethyl method (highlighted in green). 

ST6. Twenty-two percent of the CpGs within the significant DNAm regions were significantly 

associated with one or more known SNPs. All associations were in cis. 

ST7. Summary statistics before and after adjustments for maternal education and 

psychopathology, within a restricted sample with covariate data, are shown. After adjustments, 

estimates attenuated at approximately half of the regions.  

ST8. Summary statistics before and after adjustments for DNA methylation at birth, within a 

restricted sample with DNAm at birth, are shown. After adjustments, estimates attenuated at 10 

regions.  

ST9. DNA methylation levels at birth and age six for our significant regions were generally 

moderate-to-strong: Rho = 0.43.  



ST10. The follow-up gene ontology analysis, based on sites within our significant regions, 

identified 63 significant pathways, 33 of which were validated by MissMethyl.  

ST11.  We examined brain-blood correlations based on a publicly available database with 

information on DNAm levels across blood, Brodmann area (BA) 7, BA10 and BA20. Six regions 

presented half or more CpGs with correlations greater than the average value for all Infinium 

450K probes, in at least one brain tissue.



SI1. Supplementary Information on the Methods 

Participants:  

Generation R was designed to shed light into environmental, genetic, and other pathways 

involved in (ab)normal development. For the purposes of this study, children within Generation 

R with data on maternal sensitivity (at three and/or four years) and DNAm (at six years) were 

selected. Maternal sensitivity assessments at ages three (N = 1247) and four (N = 752) years were 

both considered. This was done in line with previous literature 1, due to the stability of the 

maternal sensitivity scores between age 3 and 4 years 2, the temporality of these assessments, 

which both precede DNAm at age 6, and to maximize our sample size. Amongst children with 

maternal sensitivity data at either time point, 235 also had DNAm information at age six (i.e. the 

closest prospective DNAm assessment). Of note, this sample included 5 sibling-pairs and was 

the sample used for the main analyses. To ensure genetic relatedness did not impact results, one 

sibling per pair was later excluded in a sensitivity analysis. The excluded sibling presented the 

least covariate data. 

In follow-up analyses, where additional adjustments for covariates were made, the main 

sample was further restricted to complete cases. For adjustments for maternal education and 

psychopathology, 223 children had data. For adjustments for DNAm levels at birth, 226 children 

had data.  

 

 

Covariates 

The main model in the epigenome-wide association study (EWAS) was adjusted for cell types, 

batch effects, sex, gestational age at birth, and maternal smoking during pregnancy. Further 

information on these variables is shown below.  

Cell-type and Batch effects 

Cell-type adjustments were performed, for analyses with DNAm at age six, for the 

following cell types: CD4 T lymphocytes, CD8 T lymphocytes, B lymphocytes, monocytes, 

natural killer cells. Of note, granulocyte cells were excluded due to multicollinearity. The sample 

plate was used as a measure of batch effects. This variable presented 17 levels.  

Sex and gestational age at birth 

Sex and gestational age were measured at child-birth. Sex was coded binarily into males 

and females. Gestational age at birth was measured continuously.  

Maternal smoking during pregnancy  

We analyzed maternal smoking during pregnancy as a three-level variable: (i) did not 

smoke during pregnancy, (ii) smoked until pregnancy was known, (iii) smoked throughout 

pregnancy. This was based on previous work from Joubert et al. 3 showing that sustained 

smoking throughout pregnancy has the strongest associations with offspring DNA methylation, 

with any smoking in pregnancy also showing significant associations, although not as strong. To 

ensure such variable was not subject to important bias, we additionally examined whether any of 



our hits (i.e. significant sites or sites within significant regions) overlapped with CpGs related to 

smoking, based on previous literature. Given the sample at hand, we used the Pregnancy and 

Childhood Epigenetics (PACE) consortium prenatal smoking exposure reference 3. In this 

publication, 6 074 genome-wide significant CpGs were identified in association with maternal 

smoking during pregnancy in cord blood. Additionally, since tissue- and age-specific effects 

might be present, we considered another EWAS of smoking carried out in childhood (age 5.5) in 

whole blood 4, which identified five genome-wide significant probes.  

Maternal education and maternal psychopathology  

In follow-up analyses, we additionally adjusted for maternal education and maternal 

psychopathology. Maternal education was coded into low, medium, and high, respectively 

denoting primary, secondary, and tertiary education levels. Maternal psychopathology (postnatal: 

child age six months) was measured according to the Beck Symptoms Inventory (BSI) which 

presents information on the total maternal psychopathology symptoms. 

DNA methylation at birth 

In another follow-up analysis, additional adjustments for DNAm levels at birth were 

performed. This was done for top hits only. Covariates which are key to appropriately measure 

DNAm levels were also included: batch effects (measured by sample plate) and cell types (CD4 

T lymphocytes, CD8T lymphocytes, B lymphocytes, monocytes, natural killer cells, and 

nucleated red blood cells – a cell type present only in cord blood).  

 

 

Statistical Analyses  

Regional-level EWAS 

The dmrff approach, based on simulations, performs better compared to other regional 

methods in terms of false positive control, statistical power, and replicability across datasets 5. Of 

note, the probe- and regional-level EWASs were rerun after one sibling per sibling-pair was 

excluded.  

Candidate gene look-up 

For the candidate gene look-up, we selected genes based on previous literature. We 

searched the PubMed and Google Scholar engines by using a combination of the following 

terms: “maternal care” or "maternal sensitivity" with “DNA methylation”. Only studies in 

humans were considered. Review articles were excluded. Both epigenome-wide association 

studies (probe- and regional-level EWASs) as well as candidate gene studies were considered, 

yet, no EWAS had been performed to date on normative maternal care. Of the identified 

candidate gene studies, only those with statistically significant results were included, for a total 

of four publications 6–9. Genes significantly related with maternal care/sensitivity included 

NR3C1, BDNF, SLC6A4, OXTR, and 11B-HSD2. Due to methylomic values not being available 

in our sample for 11B-HSD2, such gene was excluded. Overall, four genes were selected based 

on previous literature.  

Gene Ontology: In-House method 



In this method, genes in the test list were tested in relation to pathway membership, with 

a logistic regression approach. We controlled for the number of probes annotated to each gene in 

the test list. The Gene Ontology website was utilized to obtain pathways. Genes annotated to 

parent terms were used too. A gene list was formed based on the probes associated with maternal 

sensitivity at a p-value threshold < 0.001, based on the probe-level EWAS. The Illumina UCSC 

gene annotation permitted the annotation of probes to genes. Genes were considered if they were 

included in, at minimum, one gene ontology pathway and presented at least one annotated probe. 

Pathways were considered if including from 10 to 2000 genes. Once this method was used for all 

pathways, the significant ones with overlapping genes were retested. Associations were retested 

in all significant pathways, after adjusting for the most significant term. In case the associations 

at such pathways were no longer significant, the most significant pathway was considered as 

explaining the relationship. In such situation, pathways were grouped together. This process was 

repeated, with the next most significant pathway being adjusted for, till all pathways were 

considered as the most significant one or were identified as pertaining to a more significant 

pathway. A minimum of two genes was necessary for GO terms to be interpreted.   

Follow-up analyses 

Firstly, the influence of genetic factors on DNAm was examined, based on an openly-

accessible mQTL database. The database mQTL information was based on the results from the 

Accessible Resource for Integrative Epigenomics Studies (ARIES). The ARIES mQTL database 

includes data on the single nucleotide polymorphisms (SNPs) significantly affecting DNAm 

levels in cis or trans (p < 1e−14, 1Mb window), at several lifespan stages, based on the Infinium 

450K array. Here, we selected information for children, based on the results from a genome-wide 

complex trait conditional analysis. 

Secondly, we adjusted for an additional set of parental confounders, maternal education 

and psychopathology, in a subsample of children with such information (N = 223). This was 

done on top hits only. To ensure estimate changes resulted from adjustments as opposed to the 

restriction to the subsample, firstly, we ran a multiple linear regression on our top hits, within the 

subsample of children with data on such confounders (Model A, N = 223). This model was still 

unadjusted for maternal education and psychopathology. Subsequently, adjustments for maternal 

education and psychopathology were performed on top hits, within the subsample (Model B, N = 

223, adjusted model), with a multiple linear regression. The newly-obtained site summary 

statistics for both models were then inputted in DMRff, where the function dmrff.stats enables 

the recalculation of the statistics per DNAm region. The percent estimate change was then 

calculated ((estimate after adjustments – estimate before adjustments) / estimate before 

adjustments * 100).  

The same procedure was employed for adjustments for DNAm levels at birth. Therefore, 

a multiple linear regression where, for each site, its own DNAm levels at baseline were used as 

covariates, was tested in association with maternal sensitivity: site DNAm at six ~ maternal 

sensitivity + main set of covariates + site DNAm at birth (Model B, N = 226). This was 

compared to a restricted unadjusted model (Model A, N = 226). Site statistics were inputted in 

dmrff.stats to obtain regional-level statistics.  

Lastly, the BECon online tool used here includes information on tissue concordance 

between DNAm in blood and Brodmann Areas (BA) seven, 10 and 20, based on brain 

postmortem samples from 16 subjects. 
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A B C  

Supplementary Figure 1 A-C.  

BACON-corrected probe-level EWAS of the association between maternal sensitivity and DNAm 
Note. Panel A shows the test statistic histogram. This indicates minimal bias, as shown by the proximity of the black and red lines. Panel B depicts uncorrected and 

BACON-corrected QQ-plots. The uncorrected QQ-plot is from the main EWAS and shows no significant associations. The BACON-corrected QQ-plot suggests that 

values were originally deflated in the EWAS and that, after corrections, associations are present. Panel C is a histogram of p-values after BACON-correction, showing 
that there is a greater proportion of sites with low p-values compared to the proportion of sites with higher p-values, further suggesting that associations of maternal 
sensitivity with DNAm are present. 



ST1. Sample characteristics   

Child and maternal characteristics Percentage/Mean  

Child Characteristics  
Sex - females 49% 

Child Ethnicity - Dutch  100% 

Maternal Characteristics  
Observed maternal sensitivity  0.05 

Maternal Education*  
   Primary education 8% 

   Secondary education 21% 

   Higher education 71% 

Gestational age at birth 40.31 

Maternal prenatal smoking  
   Never smoked 75% 

   Quit when pregnancy known 11% 

   Continued during pregnancy 14% 

Maternal psychopathology* 0.15 

Note. % = percentage  
*Information was available only for a subsample (n = 223) 



ST2. Top sites from the probe-level EWAS with BACON-corrected estimates 

CpG 
EWAS T-

statistic 

EWAS P-

value 

EWAS 

Estimate 

EWAS Standard 

Error 

Bacon T-

statistic 

Bacon P-

value 

cg25628898 -4.93 1.7E-06 -0.01 0.00 -5.32 0.000 

cg00808563 -4.62 6.7E-06 -0.01 0.00 -4.99 0.000 

cg27541515 4.43 1.5E-05 0.01 0.00 4.79 0.000 

cg01567825 -4.34 2.2E-05 -0.02 0.00 -4.69 0.000 

cg26554505 4.26 3.1E-05 0.00 0.00 4.60 0.000 

cg21457839 4.20 3.9E-05 0.00 0.00 4.54 0.000 

cg05637265 -4.19 4.2E-05 -0.01 0.00 -4.52 0.000 

cg07439474 4.17 4.4E-05 0.00 0.00 4.51 0.000 

cg02276600 4.17 4.4E-05 0.01 0.00 4.51 0.000 

cg01200177 4.17 4.5E-05 0.02 0.01 4.51 0.000 

cg04604420 -4.16 4.7E-05 -0.01 0.00 -4.49 0.000 

cg05935283 4.16 4.7E-05 0.00 0.00 4.49 0.000 

cg00079764 4.08 6.4E-05 0.01 0.00 4.41 0.000 

cg09678349 -4.03 7.8E-05 -0.02 0.01 -4.35 0.000 

cg14012059 -3.99 9.1E-05 -0.02 0.00 -4.31 0.000 

cg25623347 -3.98 9.3E-05 -0.01 0.00 -4.30 0.000 

cg02328660 3.98 9.4E-05 0.00 0.00 4.31 0.000 

cg19755714 3.98 9.5E-05 0.01 0.00 4.30 0.000 

cg12441928 -3.97 1.0E-04 0.00 0.00 -4.28 0.000 

cg03113916 -3.94 1.1E-04 -0.01 0.00 -4.26 0.000 

cg03810365 3.94 1.1E-04 0.01 0.00 4.26 0.000 

cg09086615 -3.93 1.2E-04 -0.01 0.00 -4.24 0.000 

cg10066481 -3.92 1.2E-04 -0.01 0.00 -4.23 0.000 

cg10319073 -3.91 1.2E-04 -0.01 0.00 -4.23 0.000 

cg20093139 3.91 1.2E-04 0.01 0.00 4.23 0.000 

cg22798223 -3.91 1.3E-04 0.00 0.00 -4.22 0.000 

cg24618910 3.90 1.3E-04 0.00 0.00 4.22 0.000 

cg20959907 -3.88 1.4E-04 -0.02 0.00 -4.19 0.000 

cg15871766 -3.87 1.5E-04 -0.02 0.01 -4.18 0.000 

 

 

 

 



ST3. Top regions from the regional-level EWAS   

Location 
N 

CpGs 
Estimate Standard Error P-value 

Adj. P-

value 

chr2:241458886-241460002 8 -0.36 0.04 1.17E-17 5.61E-12 

chr6:30039027-30039600 22 -0.23 0.03 5.03E-16 2.42E-10 

chr6:33282879-33283184 17 -0.21 0.03 1.83E-15 8.77E-10 

chr2:21266727-21267334 10 -0.30 0.04 2.83E-14 1.36E-08 

chr2:3642629-3642867 6 -0.87 0.14 9.80E-11 4.71E-05 

chr17:6797034-6797771 6 -0.57 0.09 1.00E-10 4.80E-05 

chr7:111368367-111368847 4 -0.82 0.13 1.02E-10 4.90E-05 

chr6:32145383-32146595 27 0.05 0.01 3.55E-10 1.71E-04 

chr7:158749953-158751591 8 0.56 0.09 4.80E-10 2.31E-04 

chr6:33280149-33280436 9 -0.28 0.05 8.89E-10 4.27E-04 

chr6:31867757-31868169 19 -0.10 0.02 2.35E-08 1.13E-02 

chr4:147164778-147165097 4 0.43 0.08 2.53E-08 1.21E-02 

chr1:11714218-11714254 3 -0.44 0.08 5.82E-08 2.80E-02 

chr4:1243980-1244086 6 1.04 0.20 1.19E-07 5.70E-02 

chr7:158551048-158551361 4 -0.58 0.11 1.47E-07 7.07E-02 

chr20:57225195-57225678 2 0.12 0.02 1.65E-07 7.92E-02 

chr11:70672365-70672858 7 -0.28 0.05 2.27E-07 1.09E-01 

chr7:63505638-63505871 6 0.84 0.16 2.56E-07 1.23E-01 

chr20:36148615-36148928 14 -0.09 0.02 2.99E-07 1.43E-01 

chr2:128616082-128616167 2 1.07 0.21 4.00E-07 1.92E-01 

chr6:33245619-33246105 17 -0.10 0.02 4.75E-07 2.28E-01 

chr10:82295394-82296191 6 0.45 0.09 5.63E-07 2.71E-01 

chr2:20870087-20871002 5 -1.42 0.29 8.51E-07 4.09E-01 

chr6:31856617-31856773 4 -0.39 0.08 9.10E-07 4.37E-01 

chr7:44349704-44349955 3 0.91 0.19 1.15E-06 5.52E-01 

chr19:57702479-57702772 6 0.23 0.05 1.19E-06 5.72E-01 

chr7:6979239-6979488 2 -0.22 0.05 1.34E-06 6.42E-01 

chr12:52404134-52404422 4 0.29 0.06 1.42E-06 6.82E-01 

Note. adj. = adjusted; N = number.



ST4. Candidate gene look-up  

Gene Location CPG.Labels estimate std.error T.statistic P.value Genome_wide_sign Gene_wide_sign Nominal_sign 

BDNF chr11:27744816 cg18867480 -0.003 0.002 -1.63 0.105 No No No 

BDNF chr11:27744363 cg11718030 -0.003 0.003 -0.95 0.342 No No No 

BDNF chr11:27744049 cg15462887 0.002 0.003 0.72 0.475 No No No 

BDNF chr11:27744490 cg06046431 0.000 0.001 -0.50 0.619 No No No 

BDNF chr11:27744557 cg10022526 -0.001 0.002 -0.50 0.620 No No No 

BDNF chr11:27744759 cg24249411 -0.001 0.003 -0.35 0.729 No No No 

BDNF chr11:27743619 cg03167496 -0.002 0.002 -1.58 0.115 No No No 

BDNF chr11:27743664 cg25457956 0.001 0.002 0.68 0.494 No No No 

BDNF chr11:27743651 cg25381667 -0.001 0.001 -0.63 0.532 No No No 

BDNF chr11:27743648 cg14589148 -0.001 0.002 -0.56 0.577 No No No 

BDNF chr11:27742832 cg07704699 0.001 0.007 0.21 0.834 No No No 

BDNF chr11:27743258 cg27351358 -0.004 0.002 -1.63 0.105 No No No 

BDNF chr11:27740161 cg21010859 -0.002 0.001 -1.58 0.115 No No No 

BDNF chr11:27740813 cg13974632 0.004 0.003 1.45 0.149 No No No 

BDNF chr11:27739827 cg17413943 0.004 0.003 1.36 0.175 No No No 

BDNF chr11:27743348 cg02527472 0.002 0.002 1.21 0.226 No No No 

BDNF chr11:27742365 cg12448003 -0.001 0.002 -0.76 0.449 No No No 

BDNF chr11:27742355 cg01225698 0.003 0.003 0.76 0.451 No No No 

BDNF chr11:27742369 cg06684850 -0.003 0.004 -0.72 0.475 No No No 

BDNF chr11:27743476 cg01642653 0.001 0.002 0.63 0.528 No No No 

BDNF chr11:27740078 cg05818894 0.001 0.002 0.49 0.625 No No No 

BDNF chr11:27742454 cg04106006 0.003 0.007 0.41 0.684 No No No 

BDNF chr11:27740876 cg05733135 -0.001 0.002 -0.37 0.710 No No No 

BDNF chr11:27732958 cg11806762 -0.001 0.005 -0.28 0.779 No No No 

BDNF chr11:27743580 cg16257091 -0.001 0.006 -0.22 0.824 No No No 

BDNF chr11:27740495 cg04481212 0.000 0.002 0.12 0.907 No No No 

BDNF chr11:27742435 cg10635145 0.001 0.007 0.10 0.918 No No No 

BDNF chr11:27741077 cg22043168 0.002 0.002 0.95 0.341 No No No 

BDNF chr11:27741916 cg24650785 0.002 0.003 0.72 0.470 No No No 

BDNF chr11:27742138 cg25412831 -0.004 0.003 -1.49 0.139 No No No 

BDNF chr11:27742060 cg26949694 0.002 0.003 0.63 0.530 No No No 

BDNF chr11:27742219 cg06816235 0.000 0.002 -0.14 0.885 No No No 

BDNF chr11:27723290 cg26840770 0.005 0.002 2.36 0.019 No No Yes 

BDNF chr11:27723214 cg23497217 -0.005 0.003 -1.82 0.070 No No No 

BDNF chr11:27722722 cg03747251 -0.010 0.006 -1.58 0.116 No No No 



BDNF chr11:27723218 cg05218375 0.004 0.003 1.21 0.228 No No No 

BDNF chr11:27722774 cg15914769 0.001 0.001 1.18 0.241 No No No 

BDNF chr11:27723237 cg06991510 -0.001 0.001 -0.64 0.525 No No No 

BDNF chr11:27723190 cg15688670 0.000 0.001 0.38 0.705 No No No 

BDNF chr11:27723409 cg24065044 0.000 0.003 0.16 0.869 No No No 

BDNF chr11:27723245 cg24377657 0.000 0.003 0.13 0.896 No No No 

BDNF chr11:27723385 cg01636003 0.000 0.002 0.04 0.967 No No No 

BDNF chr11:27723075 cg20340655 -0.002 0.001 -1.56 0.120 No No No 

BDNF chr11:27722971 cg09606766 0.001 0.001 0.90 0.370 No No No 

BDNF chr11:27723128 cg11241206 0.000 0.001 0.27 0.789 No No No 

BDNF chr11:27722889 cg04672351 0.000 0.002 0.19 0.848 No No No 

BDNF chr11:27720709 cg09492354 0.001 0.001 1.78 0.077 No No No 

BDNF chr11:27721277 cg26057780 -0.002 0.001 -1.49 0.137 No No No 

BDNF chr11:27722037 cg23947039 -0.002 0.001 -1.46 0.147 No No No 

BDNF chr11:27718978 cg20108357 -0.006 0.005 -1.34 0.181 No No No 

BDNF chr11:27722066 cg18117895 -0.001 0.001 -1.25 0.212 No No No 

BDNF chr11:27701991 cg18595174 -0.004 0.003 -1.15 0.251 No No No 

BDNF chr11:27721668 cg20954537 0.001 0.002 0.96 0.339 No No No 

BDNF chr11:27722636 cg08362738 0.001 0.001 0.88 0.379 No No No 

BDNF chr11:27722638 cg25328597 0.001 0.002 0.78 0.434 No No No 

BDNF chr11:27722620 cg15710245 0.002 0.004 0.66 0.511 No No No 

BDNF chr11:27721270 cg15313332 -0.001 0.001 -0.50 0.620 No No No 

BDNF chr11:27722617 cg03984780 0.001 0.003 0.42 0.676 No No No 

BDNF chr11:27721280 cg10558494 0.001 0.002 0.33 0.740 No No No 

BDNF chr11:27721350 cg06260077 -0.001 0.003 -0.19 0.847 No No No 

BDNF chr11:27721222 cg25962210 0.000 0.002 -0.17 0.867 No No No 

BDNF chr11:27722063 cg00298481 0.000 0.001 -0.03 0.977 No No No 

BDNF chr11:27721088 cg27193031 0.000 0.002 0.25 0.801 No No No 

BDNF chr11:27722523 cg07159484 0.000 0.002 -0.06 0.949 No No No 

BDNF chr11:27722549 cg06025631 0.001 0.001 1.03 0.302 No No No 

BDNF chr11:27677125 cg06979684 -0.006 0.004 -1.64 0.103 No No No 

BDNF chr11:27680480 cg05189570 -0.002 0.002 -0.98 0.330 No No No 

BDNF chr11:27679729 cg23426002 0.002 0.002 1.17 0.242 No No No 

BDNF chr11:27679469 cg01418645 -0.001 0.002 -0.71 0.478 No No No 

BDNF chr11:27681475 cg07238832 0.001 0.002 0.44 0.662 No No No 

BDNF chr11:27679632 cg08388004 0.000 0.002 -0.01 0.988 No No No 

BDNF chr11:27696004 cg18354203 0.001 0.005 0.30 0.762 No No No 



BDNF chr11:27683959 cg14291693 -0.004 0.004 -1.08 0.281 No No No 

BDNF chr11:27695210 cg15014679 0.000 0.004 -0.09 0.929 No No No 

NR3C1 chr5:142786405 cg27345592 0.005 0.002 1.86 0.064 No No No 

NR3C1 chr5:142815469 cg12466613 0.006 0.004 1.73 0.085 No No No 

NR3C1 chr5:142815463 cg07589972 0.001 0.002 0.41 0.683 No No No 

NR3C1 chr5:142788776 cg07528216 0.001 0.002 0.38 0.706 No No No 

NR3C1 chr5:142785172 cg24026230 0.002 0.001 1.88 0.061 No No No 

NR3C1 chr5:142784982 cg14558428 0.000 0.001 0.62 0.534 No No No 

NR3C1 chr5:142785258 cg13648501 0.002 0.003 0.55 0.584 No No No 

NR3C1 chr5:142814827 cg08818984 0.003 0.002 1.32 0.189 No No No 

NR3C1 chr5:142814934 cg26720913 0.002 0.002 1.05 0.293 No No No 

NR3C1 chr5:142780254 cg17342132 0.005 0.002 2.15 0.033 No No Yes 

NR3C1 chr5:142658828 cg23273257 0.003 0.002 1.79 0.074 No No No 

NR3C1 chr5:142784222 cg26464411 0.001 0.001 1.20 0.233 No No No 

NR3C1 chr5:142781532 cg18998365 0.006 0.005 1.19 0.234 No No No 

NR3C1 chr5:142782415 cg17617527 0.001 0.001 1.09 0.275 No No No 

NR3C1 chr5:142783385 cg18019515 -0.001 0.001 -1.01 0.312 No No No 

NR3C1 chr5:142783639 cg15645634 -0.001 0.001 -0.90 0.368 No No No 

NR3C1 chr5:142784323 cg06968181 -0.002 0.002 -0.88 0.379 No No No 

NR3C1 chr5:142729913 cg03857453 -0.002 0.003 -0.76 0.448 No No No 

NR3C1 chr5:142776274 cg27107893 -0.004 0.006 -0.75 0.456 No No No 

NR3C1 chr5:142783569 cg17860381 0.000 0.001 -0.66 0.510 No No No 

NR3C1 chr5:142784382 cg18849621 0.002 0.002 0.63 0.530 No No No 

NR3C1 chr5:142780693 cg08845721 0.001 0.003 0.48 0.632 No No No 

NR3C1 chr5:142781498 cg07733851 0.002 0.005 0.47 0.640 No No No 

NR3C1 chr5:142740314 cg18484679 -0.001 0.003 -0.45 0.651 No No No 

NR3C1 chr5:142782072 cg06521673 0.001 0.001 0.45 0.652 No No No 

NR3C1 chr5:142757312 cg25535999 -0.001 0.002 -0.42 0.671 No No No 

NR3C1 chr5:142784462 cg16335926 0.000 0.001 0.32 0.747 No No No 

NR3C1 chr5:142783621 cg15910486 0.000 0.001 0.32 0.751 No No No 

NR3C1 chr5:142692961 cg19457823 0.002 0.005 0.32 0.752 No No No 

NR3C1 chr5:142781723 cg27122725 0.002 0.006 0.30 0.761 No No No 

NR3C1 chr5:142783383 cg11152298 0.000 0.002 -0.30 0.761 No No No 

NR3C1 chr5:142784522 cg10847032 0.000 0.001 -0.27 0.784 No No No 

NR3C1 chr5:142784721 cg21702128 0.001 0.003 0.24 0.807 No No No 

NR3C1 chr5:142783843 cg18068240 0.000 0.001 0.23 0.815 No No No 

NR3C1 chr5:142779552 cg06613263 0.000 0.003 0.18 0.857 No No No 



NR3C1 chr5:142783379 cg00629244 0.000 0.000 -0.09 0.930 No No No 

NR3C1 chr5:142783607 cg04111177 0.000 0.002 -0.06 0.955 No No No 

NR3C1 chr5:142757011 cg16586394 0.000 0.002 0.00 0.997 No No No 

NR3C1 chr5:142782791 cg20753294 -0.001 0.003 -0.27 0.791 No No No 

NR3C1 chr5:142782827 cg18146873 0.000 0.002 0.20 0.840 No No No 

OXTR chr3:8810077 cg12695586 0.004 0.003 1.42 0.158 No No No 

OXTR chr3:8810549 cg03987506 -0.006 0.004 -1.38 0.168 No No No 

OXTR chr3:8810139 cg19619174 -0.002 0.002 -1.22 0.223 No No No 

OXTR chr3:8811543 cg00247334 0.004 0.004 0.99 0.326 No No No 

OXTR chr3:8811601 cg17036624 0.006 0.007 0.93 0.356 No No No 

OXTR chr3:8811437 cg25140571 0.004 0.006 0.71 0.479 No No No 

OXTR chr3:8808259 cg00385883 -0.001 0.002 -0.70 0.483 No No No 

OXTR chr3:8811758 cg14483142 0.003 0.005 0.69 0.494 No No No 

OXTR chr3:8809306 cg15317815 0.004 0.007 0.53 0.600 No No No 

OXTR chr3:8806317 cg11589699 0.001 0.002 0.52 0.603 No No No 

OXTR chr3:8809715 cg27501759 0.001 0.001 0.43 0.669 No No No 

OXTR chr3:8809501 cg04523291 -0.002 0.006 -0.36 0.722 No No No 

OXTR chr3:8810592 cg00078085 -0.001 0.005 -0.11 0.911 No No No 

OXTR chr3:8809536 cg02192228 0.000 0.005 -0.01 0.990 No No No 

OXTR chr3:8811279 cg23391006 0.001 0.002 0.77 0.445 No No No 

OXTR chr3:8811004 cg17285225 0.000 0.001 -0.31 0.753 No No No 

OXTR chr3:8811092 cg09353063 0.000 0.002 -0.23 0.822 No No No 

OXTR chr3:8810980 cg08535600 0.000 0.003 0.15 0.883 No No No 

SLC6A4 chr17:28564094 cg06841846 0.005 0.002 2.75 0.006 No No Yes 

SLC6A4 chr17:28563089 cg26741280 -0.004 0.002 -1.97 0.051 No No No 

SLC6A4 chr17:28563119 cg27569822 0.002 0.001 1.90 0.059 No No No 

SLC6A4 chr17:28524160 cg20592995 -0.003 0.002 -1.27 0.207 No No No 

SLC6A4 chr17:28559497 cg26126367 -0.002 0.002 -1.16 0.248 No No No 

SLC6A4 chr17:28562142 cg05951817 0.003 0.006 0.58 0.561 No No No 

SLC6A4 chr17:28562220 cg22584138 -0.004 0.007 -0.57 0.571 No No No 

SLC6A4 chr17:28548496 cg24984698 -0.001 0.002 -0.49 0.622 No No No 

SLC6A4 chr17:28562474 cg03363743 -0.002 0.004 -0.44 0.659 No No No 

SLC6A4 chr17:28563054 cg25725890 -0.001 0.002 -0.43 0.667 No No No 

SLC6A4 chr17:28563300 cg18584905 0.001 0.003 0.31 0.755 No No No 

SLC6A4 chr17:28549806 cg01330016 0.000 0.002 -0.07 0.945 No No No 

SLC6A4 chr17:28562685 cg14692377 0.000 0.002 -0.31 0.757 No No No 

SLC6A4 chr17:28562813 cg05016953 0.000 0.001 -0.30 0.761 No No No 



Note. Chr = chromosome; sign = significance. Gene-wide significance was calculated as 0.05/n probes within the gene. The gene-wide thresholds were <0.001 

for BDNF (74 probes), <0.001 for NR3C1 (40 probes), 0.003 for OXTR (18 probes), 0.004 for SLC6A4 (14 probes).  

 

 
 



ST5. Gene ontology in-house results with MissMethyl 

validation  
      

ID Name 
nGenesinPathw

ay 

nTestListinPathw

ay 

P:GenesinTestL

ist 
OR P:GeneSize 

Beta:GeneSi

ze 

GO:00147

01 
junctional sarcoplasmic reticulum membrane 10 3 2.75E-22 1.02 0.588 4.72E-06 

GO:00152

78 
calcium-release channel activity 17 4 1.54E-20 1.02 0.000 4.89E-05 

GO:00330

17 
sarcoplasmic reticulum membrane 35 5 3.89E-17 1.03 0.804 4.05E-06 

GO:00033

09 
type B pancreatic cell differentiation 16 3 5.23E-14 1.02 0.483 7.75E-06 

GO:00050

24 

transforming growth factor beta-activated 

receptor activity 
17 3 8.86E-14 1.02 0.633 -5.44E-06 

GO:00046

75 

transmembrane receptor protein 

serine/threonine kinase activity 
17 3 8.86E-14 1.02 0.633 -5.44E-06 

GO:00148

97 
striated muscle hypertrophy 17 3 5.81E-12 1.02 0.001 3.84E-05 

GO:00033

00 
cardiac muscle hypertrophy 17 3 5.81E-12 1.02 0.001 3.84E-05 

GO:00463

32 
SMAD binding 61 6 1.85E-11 1.03 0.000 1.11E-04 

GO:00603

16 

positive regulation of ryanodine-sensitive 

calcium-release channel activity 
10 2 3.11E-11 1.01 0.282 -9.39E-06 

GO:00425

54 
superoxide anion generation 11 2 1.81E-10 1.01 0.148 -1.33E-05 

GO:00328

63 
activation of Rac GTPase activity 10 2 1.87E-10 1.01 0.461 6.43E-06 

GO:00181

07 
peptidyl-threonine phosphorylation 38 4 2.75E-10 1.03 0.647 7.78E-06 

GO:00509

19 
negative chemotaxis 10 2 1.05E-09 1.01 0.010 2.24E-05 

GO:00071

64 
establishment of tissue polarity 12 2 6.27E-09 1.01 0.625 4.68E-06 

GO:00017

36 
establishment of planar polarity 12 2 6.27E-09 1.01 0.625 4.68E-06 

GO:00328

55 
positive regulation of Rac GTPase activity 28 3 1.84E-08 1.02 0.904 -1.76E-06 

GO:00000

42 
protein targeting to Golgi 15 2 2.09E-08 1.01 0.009 -2.81E-05 

GO:00190

68 
virion assembly 14 2 2.33E-08 1.01 0.245 -1.20E-05 



GO:00335

98 
mammary gland epithelial cell proliferation 13 2 2.97E-08 1.01 0.536 6.16E-06 

GO:00901

29 
positive regulation of synapse maturation 12 2 4.10E-08 1.01 0.007 2.56E-05 

GO:00901

78 

regulation of establishment of planar polarity 

involved in neural tube closure 
13 2 4.67E-08 1.01 0.248 1.15E-05 

GO:00901

79 

planar cell polarity pathway involved in neural 

tube closure 
13 2 4.67E-08 1.01 0.248 1.15E-05 

GO:00328

56 
activation of Ras GTPase activity 30 3 6.25E-08 1.02 0.902 -1.86E-06 

GO:00488

41 

regulation of axon extension involved in axon 

guidance 
13 2 6.90E-08 1.01 0.103 1.62E-05 

GO:00604

87 
lung epithelial cell differentiation 27 3 7.49E-08 1.02 0.019 3.36E-05 

GO:00850

29 
extracellular matrix assembly 11 2 9.57E-08 1.01 0.000 5.14E-05 

GO:00020

68 
glandular epithelial cell development 14 2 1.31E-07 1.01 0.355 9.55E-06 

GO:00217

81 
glial cell fate commitment 15 2 4.79E-07 1.01 0.222 1.31E-05 

GO:00485

96 
embryonic camera-type eye morphogenesis 28 3 5.13E-07 1.02 0.000 5.83E-05 

GO:00860

19 

cell-cell signaling involved in cardiac 

conduction 
14 2 5.54E-07 1.01 0.006 2.86E-05 

GO:00320

08 
positive regulation of TOR signaling 14 2 7.75E-07 1.01 0.001 3.32E-05 

GO:00001

18 
histone deacetylase complex 47 4 7.75E-07 1.02 0.000 8.98E-05 

GO:00323

20 
positive regulation of Ras GTPase activity 110 6 2.69E-06 1.03 0.001 9.92E-05 

GO:00071

78 

transmembrane receptor protein 

serine/threonine kinase signaling pathway 
183 8 2.81E-06 1.04 0.002 1.13E-04 

GO:00512

70 
regulation of cellular component movement 537 16 3.19E-06 1.07 0.000 2.86E-04 

GO:00162

09 
antioxidant activity 67 4 3.42E-06 1.02 0.494 -1.54E-05 

GO:00321

48 
activation of protein kinase B activity 17 2 6.37E-06 1.01 0.015 2.77E-05 

GO:00459

95 
regulation of embryonic development 89 5 9.58E-06 1.03 0.003 7.64E-05 

GO:00020

88 
lens development in camera-type eye 63 4 1.21E-05 1.02 0.018 5.17E-05 



GO:00606

03 
mammary gland duct morphogenesis 37 3 1.38E-05 1.02 0.003 4.93E-05 

GO:00063

52 
DNA-templated transcription 209 8 2.06E-05 1.04 0.007 1.08E-04 

GO:00016

54 
eye development 292 10 2.19E-05 1.05 0.000 1.63E-04 

GO:00026

90 
positive regulation of leukocyte chemotaxis 54 3 3.13E-05 1.02 0.012 -5.10E-05 

GO:00350

88 

establishment or maintenance of apical/basal 

cell polarity 
21 2 3.26E-05 1.01 0.230 1.52E-05 

GO:00612

45 

establishment or maintenance of bipolar cell 

polarity 
21 2 3.26E-05 1.01 0.230 1.52E-05 

GO:00457

78 
positive regulation of ossification 44 3 4.23E-05 1.02 0.141 2.69E-05 

GO:00509

18 
positive chemotaxis 24 2 5.36E-05 1.01 0.866 -2.29E-06 

GO:00483

65 
Rac GTPase binding 22 2 5.77E-05 1.01 0.178 1.75E-05 

GO:00322

92 
peripheral nervous system axon ensheathment 21 2 7.00E-05 1.01 0.015 3.08E-05 

GO:00220

11 
myelination in peripheral nervous system 21 2 7.00E-05 1.01 0.015 3.08E-05 

GO:20000

26 

regulation of multicellular organismal 

development 
1236 27 8.43E-05 1.09 0.000 7.68E-04 

GO:00011

05 

RNA polymerase II transcription coactivator 

activity 
23 2 1.14E-04 1.01 0.079 2.33E-05 

GO:00017

09 
cell fate determination 43 3 1.33E-04 1.02 0.000 6.83E-05 

GO:00170

16 
Ras GTPase binding 151 6 1.33E-04 1.03 0.014 8.29E-05 

GO:20012

35 

positive regulation of apoptotic signaling 

pathway 
120 5 1.57E-04 1.03 0.194 3.92E-05 

GO:00160

55 
Wnt signaling pathway 227 8 1.60E-04 1.04 0.000 1.70E-04 

GO:00069

35 
chemotaxis 560 15 1.61E-04 1.06 0.000 4.05E-04 

GO:00423

30 
taxis 560 15 1.61E-04 1.06 0.000 4.05E-04 

GO:00018

43 
neural tube closure 74 4 2.71E-04 1.02 0.000 1.02E-04 

GO:00019

36 
regulation of endothelial cell proliferation 85 4 3.13E-04 1.02 0.047 5.05E-05 



GO:00718

89 
14-3-3 protein binding 18 2 3.65E-04 1.01 0.000 9.33E-05 

GO:20001

45 
regulation of cell motility 477 12 5.45E-04 1.05 0.000 2.12E-04 

GO:00085

44 
epidermis development 241 7 5.66E-04 1.03 0.646 1.96E-05 

GO:00712

77 
cellular response to calcium ion 33 2 6.22E-04 1.01 0.539 -9.74E-06 

GO:00427

53 
positive regulation of circadian rhythm 10 1 6.61E-04 1.01 0.254 -9.98E-06 

GO:00305

46 
receptor activator activity 28 2 7.25E-04 1.01 0.042 2.98E-05 

GO:00450

80 

positive regulation of chemokine biosynthetic 

process 
10 1 7.30E-04 1.01 0.341 -8.32E-06 

GO:00400

20 
regulation of meiosis 30 2 7.31E-04 1.01 0.297 1.58E-05 

GO:00168

88 
endodeoxyribonuclease activity 10 1 7.64E-04 1.01 0.388 -7.55E-06 

GO:20003

79 

positive regulation of reactive oxygen species 

metabolic process 
32 2 7.72E-04 1.01 0.819 3.58E-06 

GO:00400

36 

regulation of fibroblast growth factor receptor 

signaling pathway 
27 2 7.79E-04 1.01 0.007 3.90E-05 

GO:00164

93 
C-C chemokine receptor activity 11 1 7.98E-04 1.01 0.057 -1.74E-05 

GO:00066

23 
protein targeting to vacuole 10 1 8.69E-04 1.01 0.538 -5.38E-06 

GO:00726

66 
establishment of protein localization to vacuole 10 1 8.69E-04 1.01 0.538 -5.38E-06 

GO:00066

22 
protein targeting to lysosome 10 1 8.69E-04 1.01 0.538 -5.38E-06 

GO:00009

79 

RNA polymerase II core promoter sequence-

specific DNA binding 
29 2 9.05E-04 1.01 0.051 2.90E-05 

GO:00048

87 
thyroid hormone receptor activity 10 1 9.44E-04 1.01 0.649 -3.98E-06 

GO:00336

92 
cellular polysaccharide biosynthetic process 35 2 9.84E-04 1.01 0.590 -8.82E-06 

GO:00465

45 

development of primary female sexual 

characteristics 
104 4 9.94E-04 1.02 0.514 1.84E-05 

GO:00329

28 
regulation of superoxide anion generation 10 1 9.94E-04 1.01 0.724 -3.09E-06 

GO:00339

62 
cytoplasmic mRNA processing body assembly 10 1 1.05E-03 1.01 0.802 -2.19E-06 



GO:00109

35 
regulation of macrophage cytokine production 10 1 1.06E-03 1.01 0.824 -1.94E-06 

GO:00442

92 
dendrite terminus 10 1 1.17E-03 1.01 0.974 -2.81E-07 

GO:00518

65 
protein autoubiquitination 34 2 1.30E-03 1.01 0.679 6.67E-06 

GO:00432

56 
laminin complex 10 1 1.31E-03 1.01 0.840 1.76E-06 

GO:00452

92 
mRNA cis splicing 11 1 1.37E-03 1.01 0.399 -7.73E-06 

GO:00606

38 
mesenchymal-epithelial cell signaling 10 1 1.42E-03 1.01 0.717 3.16E-06 

GO:00900

09 
primitive streak formation 10 1 1.57E-03 1.01 0.571 4.95E-06 

GO:00083

54 
germ cell migration 11 1 1.62E-03 1.01 0.621 -4.54E-06 

GO:00702

34 
positive regulation of T cell apoptotic process 11 1 1.77E-03 1.01 0.753 -2.88E-06 

GO:00005

78 
embryonic axis specification 33 2 1.82E-03 1.01 0.131 2.39E-05 

GO:00095

66 
fertilization 132 4 1.84E-03 1.02 0.048 -6.25E-05 

GO:20002

51 

positive regulation of actin cytoskeleton 

reorganization 
11 1 1.87E-03 1.01 0.839 -1.86E-06 

GO:00053

37 
nucleoside transmembrane transporter activity 12 1 1.89E-03 1.01 0.247 -1.11E-05 

GO:00336

34 

positive regulation of cell-cell adhesion 

mediated by integrin 
10 1 1.91E-03 1.01 0.337 8.40E-06 

GO:00062

89 
nucleotide-excision repair 75 3 1.91E-03 1.02 0.770 -6.98E-06 

GO:00106

40 

regulation of platelet-derived growth factor 

receptor signaling pathway 
11 1 2.02E-03 1.01 0.971 -3.29E-07 

GO:00068

95 
Golgi to endosome transport 12 1 2.05E-03 1.01 0.318 -9.56E-06 

GO:00971

86 
amelogenesis 11 1 2.28E-03 1.01 0.830 1.97E-06 

GO:00190

82 
viral protein processing 12 1 2.31E-03 1.01 0.456 -7.14E-06 

GO:00340

45 
pre-autophagosomal structure membrane 11 1 2.36E-03 1.01 0.776 2.61E-06 

GO:00019

21 
positive regulation of receptor recycling 11 1 2.52E-03 1.01 0.672 3.88E-06 



GO:00220

38 
corpus callosum development 10 1 2.53E-03 1.01 0.119 1.36E-05 

GO:00508

57 

positive regulation of antigen receptor-mediated 

signaling pathway 
12 1 2.62E-03 1.01 0.632 -4.59E-06 

GO:00001

09 
nucleotide-excision repair complex 12 1 2.65E-03 1.01 0.651 -4.33E-06 

GO:00340

62 
RNA polymerase activity 41 2 2.73E-03 1.01 0.586 -9.62E-06 

GO:00038

99 
DNA-directed RNA polymerase activity 41 2 2.73E-03 1.01 0.586 -9.62E-06 

GO:00108

75 
positive regulation of cholesterol efflux 11 1 2.79E-03 1.01 0.518 5.92E-06 

GO:00328

39 
dendrite cytoplasm 12 1 2.85E-03 1.01 0.770 -2.80E-06 

GO:00432

52 
sodium-independent organic anion transport 13 1 2.90E-03 1.01 0.258 -1.13E-05 

GO:00009

93 
RNA polymerase II core binding 11 1 2.92E-03 1.01 0.457 6.82E-06 

GO:00052

47 
voltage-gated chloride channel activity 12 1 3.23E-03 1.01 0.979 -2.50E-07 

GO:00309

71 
receptor tyrosine kinase binding 38 2 3.51E-03 1.01 0.320 1.69E-05 

GO:00459

86 

negative regulation of smooth muscle 

contraction 
12 1 3.58E-03 1.01 0.841 1.92E-06 

GO:00326

77 
regulation of interleukin-8 production 45 2 3.65E-03 1.01 0.277 -2.01E-05 

GO:00350

98 
ESC/E(Z) complex 12 1 3.78E-03 1.01 0.749 3.07E-06 

GO:00439

81 
histone H4-K5 acetylation 13 1 3.87E-03 1.01 0.615 -5.02E-06 

GO:00439

82 
histone H4-K8 acetylation 13 1 3.87E-03 1.01 0.615 -5.02E-06 

GO:00082

76 
protein methyltransferase activity 73 3 3.90E-03 1.01 0.101 3.87E-05 

GO:00017

11 
endodermal cell fate commitment 13 1 4.03E-03 1.01 0.679 -4.13E-06 

GO:00512

05 
protein insertion into membrane 12 1 4.57E-03 1.01 0.455 7.15E-06 

GO:00308

98 
actin-dependent ATPase activity 11 1 4.88E-03 1.01 0.059 1.73E-05 

GO:00081

71 
O-methyltransferase activity 14 1 5.00E-03 1.01 0.476 -7.36E-06 



GO:00059

16 
fascia adherens 13 1 5.08E-03 1.01 0.912 1.10E-06 

GO:00305

02 
negative regulation of bone mineralization 15 1 5.09E-03 1.01 0.166 -1.48E-05 

GO:00455

40 
regulation of cholesterol biosynthetic process 13 1 5.11E-03 1.01 0.902 1.23E-06 

GO:00107

44 

positive regulation of macrophage derived foam 

cell differentiation 
15 1 5.11E-03 1.01 0.170 -1.47E-05 

GO:00483

87 

negative regulation of retinoic acid receptor 

signaling pathway 
14 1 5.63E-03 1.01 0.659 -4.56E-06 

GO:00705

28 
protein kinase C signaling 11 1 5.82E-03 1.01 0.022 2.10E-05 

GO:00190

13 
viral nucleocapsid 14 1 5.90E-03 1.01 0.742 -3.41E-06 

GO:00450

22 
early endosome to late endosome transport 14 1 6.00E-03 1.01 0.770 -3.03E-06 

GO:00018

91 
phagocytic cup 14 1 6.91E-03 1.01 0.968 4.18E-07 

GO:00191

98 

transmembrane receptor protein phosphatase 

activity 
20 2 7.07E-03 1.01 0.000 1.52E-04 

GO:00050

01 

transmembrane receptor protein tyrosine 

phosphatase activity 
20 2 7.07E-03 1.01 0.000 1.52E-04 

GO:00467

16 
muscle cell cellular homeostasis 15 1 7.09E-03 1.01 0.543 -6.52E-06 

GO:00216

84 
cerebellar granular layer formation 10 1 7.27E-03 1.01 0.000 3.44E-05 

GO:00217

07 
cerebellar granule cell differentiation 10 1 7.27E-03 1.01 0.000 3.44E-05 

GO:00065

55 
methionine metabolic process 14 1 7.31E-03 1.01 0.860 1.82E-06 

GO:00066

07 
NLS-bearing protein import into nucleus 14 1 7.47E-03 1.01 0.822 2.33E-06 

GO:00435

24 
negative regulation of neuron apoptotic process 122 4 7.80E-03 1.02 0.013 7.58E-05 

GO:00152

99 
solute:hydrogen antiporter activity 14 1 8.66E-03 1.01 0.560 6.03E-06 

GO:00007

26 
non-recombinational repair 15 1 8.78E-03 1.01 0.923 -1.03E-06 

GO:00152

38 
drug transmembrane transporter activity 16 1 1.11E-02 1.01 0.867 -1.85E-06 

GO:00309

83 
mismatched DNA binding 18 1 1.21E-02 1.01 0.275 -1.28E-05 



GO:00324

56 
endocytic recycling 15 1 1.22E-02 1.01 0.475 7.64E-06 

GO:00003

14 
organellar small ribosomal subunit 18 1 1.36E-02 1.01 0.432 -9.22E-06 

GO:00057

63 
mitochondrial small ribosomal subunit 18 1 1.36E-02 1.01 0.432 -9.22E-06 

Note. GO = gene ontology; n = number; OR = odd ratio; p = p-value. Cells highlighted in green were pathways which were validated by the 

MissMethyl method (p < 0.05)  
 

 

 

 

 

 

 

 

 

 

 



ST6. mQLTs associated with the CpGs 

within the significant DNAm regions    

Region Location CpG Gene_UCSC_Ref SNP affecting CpG DNAm 

1 chr2:241458886-241460002 cg05371791 ANKMY1;ANKMY1 NA 

1 chr2:241458886-241460002 cg06476685 ANKMY1;ANKMY1 rs10165759, rs4676426 

1 chr2:241458886-241460002 cg03743720 ANKMY1;ANKMY1 rs10165759, rs4676426, rs4676425 

1 chr2:241458886-241460002 cg24086040 ANKMY1;ANKMY1 rs3821348 

1 chr2:241458886-241460002 cg08461339 ANKMY1;ANKMY1 rs3821348, rs11285932, rs4676426 

1 chr2:241458886-241460002 cg24539848 ANKMY1;ANKMY1 rs4398270, rs13394744 

1 chr2:241458886-241460002 cg16909733 ANKMY1;ANKMY1 rs4676426, rs4676349 

1 chr2:241458886-241460002 cg08276645 ANKMY1;ANKMY1 rs7603521, rs4676430, rs4676426 

2 chr6:30039027-30039600 cg00947782 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg02188185 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg03343571 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg05563515 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg06249604 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg07179033 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg07382347 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg08491487 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg09279736 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg10568066 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg10930308 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg12633154 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg13185413 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg13401893 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg13918754 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg15877520 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg16078649 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg18930910 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg20119745 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg20249327 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg23712018 RNF39;RNF39 NA 

2 chr6:30039027-30039600 cg26730543 RNF39;RNF39 NA 

3 chr6:33282879-33283184 cg03000593 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg05210804 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg07245868 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg07895437 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg08771019 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 



3 chr6:33282879-33283184 cg10134527 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg11917542 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg13027595 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg14096569 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg14309283 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg14473643 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg17055704 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg18144560 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg21330831 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg25954512 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg26646118 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

3 chr6:33282879-33283184 cg27168291 ZBTB22;TAPBP;TAPBP;TAPBP;ZBTB22 NA 

4 chr2:21266727-21267334 cg00673290 APOB rs17240441, rs577584 

4 chr2:21266727-21267334 cg25123895 APOB rs201371756, rs62122515 

4 chr2:21266727-21267334 cg26112457 APOB rs512535 

4 chr2:21266727-21267334 cg03350299 APOB rs515135, rs1367117 

4 chr2:21266727-21267334 cg16723488 APOB rs515135, rs17240441 

4 chr2:21266727-21267334 cg07636176 APOB rs60403635, rs7575840 

4 chr2:21266727-21267334 cg15246511 APOB rs60403635, rs7575840 

4 chr2:21266727-21267334 cg24309555 APOB rs6548010, rs515135 

4 chr2:21266727-21267334 cg16306978 APOB rs6548011, rs515135 

4 chr2:21266727-21267334 cg25071744 APOB rs6548011, rs515135 

5 chr2:3642629-3642867 cg09974661 COLEC11;COLEC11 rs2071639 

5 chr2:3642629-3642867 cg16430428 COLEC11;COLEC11 rs2071639 

5 chr2:3642629-3642867 cg19867917 COLEC11;COLEC11 rs2071639 

5 chr2:3642629-3642867 cg26615126 COLEC11;COLEC11 rs2071639 

5 chr2:3642629-3642867 cg00835279 COLEC11;COLEC11;COLEC11;COLEC11 rs2071639 

5 chr2:3642629-3642867 cg17872886 COLEC11;COLEC11;COLEC11;COLEC11 rs2071639 

6 chr17:6797034-6797771 cg01758314 ALOX12P2 NA 

6 chr17:6797034-6797771 cg07391831 ALOX12P2 NA 

6 chr17:6797034-6797771 cg09705592 ALOX12P2 NA 

6 chr17:6797034-6797771 cg16893174 ALOX12P2 NA 

6 chr17:6797034-6797771 cg18007837 ALOX12P2 NA 

6 chr17:6797034-6797771 cg26334670 ALOX12P2 NA 

7 chr7:111368367-111368847 cg01567825 DOCK4 NA 

7 chr7:111368367-111368847 cg09678349 DOCK4 NA 

7 chr7:111368367-111368847 cg20959907 DOCK4 NA 

7 chr7:111368367-111368847 cg21594400 DOCK4 NA 



8 chr6:32145383-32146595 cg02973270 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg06570818 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg07482220 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg09043226 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg10023837 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg11043450 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg27370696 AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg08049198 AGPAT1;RNF5P1;RNF5 NA 

8 chr6:32145383-32146595 cg18191873 AGPAT1;RNF5P1;RNF5 NA 

8 chr6:32145383-32146595 cg18928683 AGPAT1;RNF5P1;RNF5 NA 

8 chr6:32145383-32146595 cg23464264 AGPAT1;RNF5P1;RNF5 NA 

8 chr6:32145383-32146595 cg25733934 AGPAT1;RNF5P1;RNF5 NA 

8 chr6:32145383-32146595 cg24425483 RNF5;AGPAT1;RNF5;RNF5P1 NA 

8 chr6:32145383-32146595 cg11995506 RNF5;AGPAT1;RNF5P1;RNF5 NA 

8 chr6:32145383-32146595 cg01074928 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg02260340 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg03237964 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg03718284 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg08450897 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg09301199 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg13763617 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg14771938 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg20008357 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg22673001 RNF5P1;RNF5;AGPAT1 NA 

8 chr6:32145383-32146595 cg01052103 RNF5P1;RNF5;AGPAT1;AGPAT1 NA 

8 chr6:32145383-32146595 cg01466825 RNF5P1;RNF5;AGPAT1;AGPAT1 NA 

8 chr6:32145383-32146595 cg15982308 RNF5P1;RNF5;AGPAT1;AGPAT1 NA 

9 chr7:158749953-158751591 cg00538212  NA 

9 chr7:158749953-158751591 cg00815399  NA 

9 chr7:158749953-158751591 cg12744031  NA 

9 chr7:158749953-158751591 cg00413089  rs35143397 

9 chr7:158749953-158751591 cg10079374  rs35143397 

9 chr7:158749953-158751591 cg11945929  rs35143397 

9 chr7:158749953-158751591 cg12954512  rs35143397 

9 chr7:158749953-158751591 cg13472359  rs61693740 

10 chr6:33280149-33280436 cg01253676 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg02863594 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg11796996 TAPBP;TAPBP;TAPBP NA 



10 chr6:33280149-33280436 cg12589538 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg13638257 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg14419102 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg18353226 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg20998791 TAPBP;TAPBP;TAPBP NA 

10 chr6:33280149-33280436 cg26083458 TAPBP;TAPBP;TAPBP NA 

11 chr6:31867757-31868169 cg00058449 ZBTB12 NA 

11 chr6:31867757-31868169 cg00805874 ZBTB12 NA 

11 chr6:31867757-31868169 cg00889295 ZBTB12 NA 

11 chr6:31867757-31868169 cg04603811 ZBTB12 NA 

11 chr6:31867757-31868169 cg05680710 ZBTB12 NA 

11 chr6:31867757-31868169 cg06636203 ZBTB12 NA 

11 chr6:31867757-31868169 cg07249939 ZBTB12 NA 

11 chr6:31867757-31868169 cg07910050 ZBTB12 NA 

11 chr6:31867757-31868169 cg09788778 ZBTB12 NA 

11 chr6:31867757-31868169 cg11645762 ZBTB12 NA 

11 chr6:31867757-31868169 cg12484688 ZBTB12 NA 

11 chr6:31867757-31868169 cg13127825 ZBTB12 NA 

11 chr6:31867757-31868169 cg14562426 ZBTB12 NA 

11 chr6:31867757-31868169 cg17243044 ZBTB12 NA 

11 chr6:31867757-31868169 cg17766150 ZBTB12 NA 

11 chr6:31867757-31868169 cg25013586 ZBTB12 NA 

11 chr6:31867757-31868169 cg25110523 ZBTB12 NA 

11 chr6:31867757-31868169 cg25470384 ZBTB12 NA 

11 chr6:31867757-31868169 cg25861453 ZBTB12 NA 

12 chr4:147164778-147165097 cg01539483 - NA 

12 chr4:147164778-147165097 cg04181032 - NA 

12 chr4:147164778-147165097 cg07701757 - NA 

12 chr4:147164778-147165097 cg07973709 - NA 

13 chr1:11714218-11714254 cg01420388 FBXO44;FBXO2;FBXO44;FBXO44;FBXO44 rs4478814 

13 chr1:11714218-11714254 cg05796704 FBXO44;FBXO2;FBXO44;FBXO44;FBXO44 rs4478814 

13 chr1:11714218-11714254 cg22697136 FBXO44;FBXO2;FBXO44;FBXO44;FBXO44 rs909934 

Note. Chr = chromosome; DNAm = DNA methylation; NA = not available (mQTL not identified at the CpG site)  



ST7.Associations between maternal sensitivity and DNA methylation at significant regions after adjustments for maternal 

education and psychopathology 
  

  Restricted 

unadjusted model 

Restricted 

adjusted model  
 

Location Gene(s) estimate SE estimate SE  % estimate change 

chr2:241458886-241460002 ANKMY1 -0.149 0.032 -0.149 0.033 0.00% 

chr6:30039027-30039600 RNF39 -0.058 0.017 -0.059 0.018 1.72% 

chr6:33282879-33283184 ZBTB22; TAPBP -0.140 0.032 -0.132 0.033 -5.71% 

chr2:21266727-21267334 APOB -0.150 0.04 -0.119 0.041 -20.67% 

chr2:3642629-3642867 COLEC11 -0.202 0.074 -0.196 0.076 -2.97% 

chr17:6797034-6797771 ALOX12P2 -0.146 0.035 -0.146 0.036 0.00% 

chr7:111368367-111368847 DOCK4 -0.576 0.071 -0.569 0.073 -1.22% 

chr6:32145383-32146595 RNF5P1; RNF5; AGPAT1 0.007 0.004 0.004 0.004 -42.86% 

chr7:158749953-158751591 Non-annotated region 0.079 0.028 0.087 0.028 10.13% 

chr6:33280149-33280436 TAPBP -0.133 0.039 -0.15 0.04 12.78% 

chr6:31867757-31868169 ZBTB12 -0.012 0.005 -0.009 0.005 -25.00% 

chr4:147164778-147165097 Non-annotated 0.444 0.079 0.451 0.081 1.58% 

chr1:11714218-11714254 FBXO44; FBXO2 -0.051 0.021 -0.046 0.022 -9.80% 

Note. Chr = chromosome; SE = standard error; % = percent       



ST8. Associations between maternal sensitivity and DNA methylation at significant regions after adjustments for DNAm at birth   

  Restricted unadjusted 

model 

Restricted adjusted 

model 
 

Location   estimate SE estimate SE 
% estimate 

change 

chr2:241458886-241460002 ANKMY1 -0.134 0.032 -0.079 0.027 -0.41 

chr6:30039027-30039600 RNF39 -0.057 0.017 -0.002 0.013 -97.11 

chr6:33282879-33283184 ZBTB22; TAPBP -0.141 0.032 -0.111 0.032 -21.68 

chr2:21266727-21267334 APOB -0.156 0.040 -0.047 0.033 -69.66 

chr2:3642629-3642867 COLEC11 -0.176 0.074 -0.070 0.050 -60.33 

chr17:6797034-6797771 ALOX12P2 -0.173 0.034 -0.057 0.024 -67.02 

chr7:111368367-111368847 DOCK4 -0.507 0.071 -0.284 0.059 -44.04 

chr6:32145383-32146595 RNF5P1; RNF5; AGPAT1 0.007 0.004 0.001 0.004 -80.25 

chr7:158749953-158751591 Non-annotated region 0.077 0.027 0.090 0.024 16.97 

chr6:33280149-33280436 TAPBP -0.177 0.039 -0.033 0.027 -81.17 

chr6:31867757-31868169 ZBTB12 -0.011 0.005 -0.012 0.005 5.32 

chr4:147164778-147165097 Non-annotated 0.419 0.080 0.227 0.063 -45.89 

chr1:11714218-11714254 FBXO44; FBXO2 -0.055 0.021 -0.061 0.020 9.62 

Note. Chr = chromosome; SE = standard error; % = percent      



ST9 Correlations of methylation values at birth with age 6 at significant regions     

Location Gene(s) Min. 1st.Qu. Median Mean 3rd.Qu. Max. 

chr2:241458886-241460002 ANKMY1 0.36 0.52 0.60 0.59 0.68 0.78 

chr6:30039027-30039600 RNF39 0.22 0.32 0.37 0.39 0.45 0.55 

chr6:33282879-33283184 ZBTB22; TAPBP 0.22 0.45 0.56 0.51 0.60 0.81 

chr2:21266727-21267334 APOB 0.57 0.69 0.72 0.71 0.75 0.78 

chr2:3642629-3642867 COLEC11 0.63 0.72 0.77 0.76 0.82 0.83 

chr17:6797034-6797771 ALOX12P2 0.51 0.58 0.67 0.64 0.71 0.75 

chr7:111368367-111368847 DOCK4 0.48 0.52 0.57 0.59 0.63 0.72 

chr6:32145383-32146595 RNF5P1; RNF5; AGPAT1 
-

0.01 
0.12 0.15 0.16 0.21 0.32 

chr7:158749953-158751591 Non-annotated region 0.48 0.89 0.93 0.86 0.94 0.94 

chr6:33280149-33280436 TAPBP 0.46 0.52 0.56 0.60 0.63 0.81 

chr6:31867757-31868169 ZBTB12 
-

0.03 
0.07 0.11 0.11 0.17 0.23 

chr4:147164778-147165097 Non-annotated 0.47 0.51 0.58 0.58 0.65 0.67 

chr1:11714218-11714254 FBXO44; FBXO2 0.31 0.34 0.37 0.37 0.40 0.44 

Note. Chr = chromosome; min. = minimum; 1st Qu. = 1st quartile; 3rd. Qu. = 3rd quartile; max = maximum 



ST10. Gene ontology analysis based on the CpGs within the significant regions   

ID Name OR GenesinPathwayandTestList 

GO:0019005 SCF ubiquitin ligase complex 1.18 FBXO2;FBXO44 

GO:0030433 ER-associated ubiquitin-dependent protein catabolic process 1.18 FBXO2;RNF5 

GO:0034379 very-low-density lipoprotein particle assembly 1.09 APOB 

GO:0034383 low-density lipoprotein particle clearance 1.09 APOB 

GO:0003841 1-acylglycerol-3-phosphate O-acyltransferase activity 1.09 AGPAT1 

GO:0034374 low-density lipoprotein particle remodeling 1.09 APOB 

GO:0006516 glycoprotein catabolic process 1.09 FBXO2 

GO:0071379 cellular response to prostaglandin stimulus 1.09 APOB 

GO:0031904 endosome lumen 1.09 APOB 

GO:0016024 CDP-diacylglycerol biosynthetic process 1.09 AGPAT1 

GO:0042627 chylomicron 1.09 APOB 

GO:0017127 cholesterol transporter activity 1.09 APOB 

GO:0034362 low-density lipoprotein particle 1.09 APOB 

GO:0050750 low-density lipoprotein particle receptor binding 1.09 APOB 

GO:0010885 regulation of cholesterol storage 1.09 APOB 

GO:0045540 regulation of cholesterol biosynthetic process 1.09 APOB 

GO:0010744 positive regulation of macrophage derived foam cell differentiation 1.09 APOB 

GO:0042953 lipoprotein transport 1.09 APOB 

GO:0030675 Rac GTPase activator activity 1.09 DOCK4 

GO:0042887 amide transmembrane transporter activity 1.09 TAPBP 

GO:0042288 MHC class I protein binding 1.08 TAPBP 

GO:0005537 mannose binding 1.09 COLEC11 

GO:0031146 SCF-dependent proteasomal ubiquitin-dependent protein catabolic process 1.09 FBXO2 

GO:0071682 endocytic vesicle lumen 1.09 APOB 

GO:0010884 positive regulation of lipid storage 1.09 APOB 

GO:0019433 triglyceride catabolic process 1.09 APOB 

GO:0001961 positive regulation of cytokine-mediated signaling pathway 1.09 AGPAT1 

GO:0006641 triglyceride metabolic process 1.18 APOB;AGPAT1 

GO:0048365 Rac GTPase binding 1.08 DOCK4 

GO:0032420 stereocilium 1.08 DOCK4 

GO:0006890 retrograde vesicle-mediated transport 1.08 TAPBP 

GO:0033344 cholesterol efflux 1.09 APOB 

GO:0042605 peptide antigen binding 1.08 TAPBP 

GO:0070534 protein K63-linked ubiquitination 1.09 RNF5 

GO:0001540 beta-amyloid binding 1.08 FBXO2 



GO:0030669 clathrin-coated endocytic vesicle membrane 1.09 APOB 

GO:0098553 lumenal side of endoplasmic reticulum membrane 1.08 TAPBP 

GO:0098576 lumenal side of membrane 1.08 TAPBP 

GO:0071556 integral component of lumenal side of endoplasmic reticulum membrane 1.08 TAPBP 

GO:0032855 positive regulation of Rac GTPase activity 1.08 DOCK4 

GO:0030163 protein catabolic process 1.36 FBXO2;FBXO44;APOB;RNF5 

GO:0030317 sperm motility 1.09 APOB 

GO:0030971 receptor tyrosine kinase binding 1.08 DOCK4 

GO:0070936 protein K48-linked ubiquitination 1.08 RNF5 

GO:0042277 peptide binding 1.17 FBXO2;TAPBP 

GO:0048844 artery morphogenesis 1.08 APOB 

GO:0030246 carbohydrate binding 1.17 FBXO2;COLEC11 

GO:0005789 endoplasmic reticulum membrane 1.33 APOB;TAPBP;AGPAT1;RNF5 

GO:0042158 lipoprotein biosynthetic process 1.08 APOB 

GO:0001948 glycoprotein binding 1.08 FBXO2 

GO:0015833 peptide transport 1.08 TAPBP 

GO:0002479 antigen processing and presentation of exogenous peptide antigen via MHC class I 1.08 TAPBP 

GO:0071356 cellular response to tumor necrosis factor 1.08 APOB 

GO:0006518 peptide metabolic process 1.08 TAPBP 

GO:0051082 unfolded protein binding 1.08 TAPBP 

GO:0005581 collagen 1.08 COLEC11 

GO:0030165 PDZ domain binding 1.08 DOCK4 

GO:0042626 ATPase activity 1.08 TAPBP 

GO:0044309 neuron spine 1.08 FBXO2 

GO:0043197 dendritic spine 1.08 FBXO2 

GO:0009791 post-embryonic development 1.08 APOB 

GO:0017124 SH3 domain binding 1.08 DOCK4 

GO:0060326 cell chemotaxis 1.08 DOCK4 

Note. GO = gene ontology; OR = odd ratio; p = p-value. Pathways highlighted in green were validated by MissMethyl.  



ST11. BECon Brain-Blood Correlations   

Region Location CpG Genes Cor.Blood.BA7 Cor.Blood.BA10 Cor.Blood.BA20 Cor.>.average 

1 
chr2:241458886-

241460002 
cg03743720 ANKMY1 0.28 0.4 0.16 No 

1 
chr2:241458886-

241460002 
cg05371791 ANKMY1 0.38 0.27 0.26 BA7 

1 
chr2:241458886-

241460002 
cg06476685 ANKMY1 0.34 0.36 0.12 No 

1 
chr2:241458886-

241460002 
cg08276645 ANKMY1 0.47 0.51 0.21 BA7, BA10 

1 
chr2:241458886-

241460002 
cg08461339 ANKMY1 0.19 0.22 -0.04 No 

1 
chr2:241458886-

241460002 
cg16909733 ANKMY1 0.49 0.33 0.22 BA7 

1 
chr2:241458886-

241460002 
cg24086040 ANKMY1 0.5 0.4 0.07 BA7 

1 
chr2:241458886-

241460002 
cg24539848 ANKMY1 0.22 -0.01 -0.15 No 

2 chr6:30039027-30039600 cg00947782 RNF39 0.12 0.06 0.53 BA20 

2 chr6:30039027-30039600 cg02188185 RNF39 -0.09 0.04 0 No 

2 chr6:30039027-30039600 cg03343571 RNF39 0.69 0.28 0.68 BA7, BA20 

2 chr6:30039027-30039600 cg05563515 RNF39 0.34 0.36 0.44 BA20 

2 chr6:30039027-30039600 cg06249604 RNF39 0.22 0.27 0.68 BA20 

2 chr6:30039027-30039600 cg07179033 RNF39 0.34 0.25 0.57 BA20 

2 chr6:30039027-30039600 cg07382347 RNF39 0.28 0.2 0.76 BA20 

2 chr6:30039027-30039600 cg08491487 RNF39 0.15 0.01 0.33 No 

2 chr6:30039027-30039600 cg09279736 RNF39 0.39 0.37 0.69 BA7, BA20 

2 chr6:30039027-30039600 cg10568066 RNF39 0.45 0.46 0.75 
BA7, BA10, 

BA20 

2 chr6:30039027-30039600 cg10930308 RNF39 0.24 0.46 0.51 BA10, BA20 

2 chr6:30039027-30039600 cg12633154 RNF39 0.2 0.41 0.64 BA10, BA20 

2 chr6:30039027-30039600 cg13185413 RNF39 0.42 0.26 0.59 BA7, BA20 

2 chr6:30039027-30039600 cg13401893 RNF39 0.1 0.31 0.74 BA20 

2 chr6:30039027-30039600 cg13918754 RNF39 0.24 -0.32 -0.03 No 

2 chr6:30039027-30039600 cg15877520 RNF39 0.07 -0.28 0.41 BA20 

2 chr6:30039027-30039600 cg16078649 RNF39 -0.2 0.37 0.59 BA20 

2 chr6:30039027-30039600 cg18930910 RNF39 0.51 -0.18 0.5 BA7, BA20 

2 chr6:30039027-30039600 cg20249327 RNF39 0.43 0.13 0.05 BA7 

2 chr6:30039027-30039600 cg23712018 RNF39 0.09 0.04 0.61 BA20 

2 chr6:30039027-30039600 cg26730543 RNF39 0.26 0.43 0.21 BA10 



3 chr6:33282879-33283184 cg03000593 ZBTB22, TAPBP -0.14 0.11 -0.25 No 

3 chr6:33282879-33283184 cg05210804 ZBTB22, TAPBP 0.4 0.61 0.17 BA7, BA10 

3 chr6:33282879-33283184 cg07245868 ZBTB22, TAPBP 0.34 0.15 -0.05 No 

3 chr6:33282879-33283184 cg07895437 ZBTB22, TAPBP 0.54 0.6 0.17 BA7, BA10 

3 chr6:33282879-33283184 cg08771019 ZBTB22, TAPBP -0.04 0.47 0.12 BA10 

3 chr6:33282879-33283184 cg10134527 ZBTB22, TAPBP 0.26 -0.14 -0.06 No 

3 chr6:33282879-33283184 cg11917542 ZBTB22, TAPBP -0.09 0.31 -0.27 No 

3 chr6:33282879-33283184 cg13027595 ZBTB22, TAPBP -0.21 -0.07 -0.24 No 

3 chr6:33282879-33283184 cg14309283 ZBTB22, TAPBP 0.12 0.46 -0.09 BA10 

3 chr6:33282879-33283184 cg14473643 ZBTB22, TAPBP 0.27 0.51 0.03 BA10 

3 chr6:33282879-33283184 cg17055704 ZBTB22, TAPBP 0.54 0.51 0.04 BA7, BA10 

3 chr6:33282879-33283184 cg18144560 ZBTB22, TAPBP 0.33 0.44 -0.02 BA10 

3 chr6:33282879-33283184 cg25954512 ZBTB22, TAPBP -0.06 -0.09 -0.22 No 

3 chr6:33282879-33283184 cg26646118 ZBTB22, TAPBP -0.15 0.14 -0.1 No 

3 chr6:33282879-33283184 cg27168291 ZBTB22, TAPBP 0.24 0.04 -0.18 No 

4 chr2:21266727-21267334 cg00673290 APOB 0.19 0.18 0.17 No 

4 chr2:21266727-21267334 cg03350299 APOB 0.39 0.06 0.03 BA7 

4 chr2:21266727-21267334 cg07636176 APOB 0.21 0.14 0.23 No 

4 chr2:21266727-21267334 cg15246511 APOB 0.04 0.2 -0.18 No 

4 chr2:21266727-21267334 cg16306978 APOB 0.09 -0.22 -0.14 No 

4 chr2:21266727-21267334 cg16723488 APOB 0.31 -0.08 -0.04 No 

4 chr2:21266727-21267334 cg24309555 APOB 0.59 0.09 -0.15 BA7 

4 chr2:21266727-21267334 cg25071744 APOB -0.19 0.03 -0.03 No 

4 chr2:21266727-21267334 cg25123895 APOB 0.15 0.43 0.2 BA10 

4 chr2:21266727-21267334 cg26112457 APOB -0.07 -0.21 0.06 No 

5 chr2:3642629-3642867 cg00835279 COLEC11 0.45 0.42 -0.02 BA7, BA10 

5 chr2:3642629-3642867 cg09974661 COLEC11 0.49 0.41 0.23 BA7, BA10 

5 chr2:3642629-3642867 cg16430428 COLEC11 0.45 0.26 -0.22 BA7 

5 chr2:3642629-3642867 cg17872886 COLEC11 0.35 0.37 0.32 No 

5 chr2:3642629-3642867 cg19867917 COLEC11 0.68 0.36 0.18 BA7 

5 chr2:3642629-3642867 cg26615126 COLEC11 0.57 0.39 0.41 BA7, BA20 

6 chr17:6797034-6797771 cg01758314 ALOX12P2 0.53 0.1 -0.03 BA7 

6 chr17:6797034-6797771 cg07391831 ALOX12P2 -0.29 0.23 0.09 No 

6 chr17:6797034-6797771 cg09705592 ALOX12P2 -0.05 -0.13 -0.01 No 

6 chr17:6797034-6797771 cg16893174 ALOX12P2 -0.09 -0.21 0.02 No 

6 chr17:6797034-6797771 cg18007837 ALOX12P2 -0.33 -0.39 0.29 No 

6 chr17:6797034-6797771 cg26334670 ALOX12P2 0.46 -0.1 0.05 BA7 

7 chr7:111368367- cg01567825 DOCK4 -0.15 -0.45 -0.09 BA10 



111368847 

7 
chr7:111368367-

111368847 
cg09678349 DOCK4 -0.31 -0.25 -0.15 No 

7 
chr7:111368367-

111368847 
cg20959907 DOCK4 -0.21 -0.39 -0.18 No 

7 
chr7:111368367-

111368847 
cg21594400 DOCK4 -0.36 -0.63 -0.3 BA10 

8 chr6:32145383-32146595 cg01052103 
AGPAT1, RNF5, RNF5P1, 

AGPAT1 
-0.24 -0.17 -0.17 No 

8 chr6:32145383-32146595 cg01074928 AGPAT1, RNF5, RNF5P1 -0.43 -0.14 -0.09 BA7 

8 chr6:32145383-32146595 cg01466825 RNF5, RNF5P1, AGPAT1 0 -0.05 -0.06 No 

8 chr6:32145383-32146595 cg02260340 RNF5, RNF5P1, AGPAT1 0.42 0.38 0.16 BA7 

8 chr6:32145383-32146595 cg02973270 RNF5, RNF5P1, AGPAT1 0.17 -0.25 -0.31 No 

8 chr6:32145383-32146595 cg03237964 AGPAT1, RNF5, RNF5P1 0.12 0.08 0.19 No 

8 chr6:32145383-32146595 cg03718284 RNF5, RNF5P1, AGPAT1 0.33 -0.48 -0.62 BA10, BA20 

8 chr6:32145383-32146595 cg06570818 RNF5, RNF5P1, AGPAT1 -0.14 0.11 0.14 No 

8 chr6:32145383-32146595 cg07482220 RNF5, RNF5P1, AGPAT1 0.17 -0.36 -0.19 No 

8 chr6:32145383-32146595 cg08049198 RNF5, RNF5P1, AGPAT1 -0.4 -0.11 0.01 BA7 

8 chr6:32145383-32146595 cg08450897 RNF5, RNF5P1, AGPAT1 -0.09 -0.19 -0.36 BA20 

8 chr6:32145383-32146595 cg09043226 RNF5, RNF5P1, AGPAT1 0.13 0.23 -0.06 No 

8 chr6:32145383-32146595 cg09301199 RNF5, RNF5P1, AGPAT1 -0.27 0.03 -0.12 No 

8 chr6:32145383-32146595 cg10023837 RNF5, RNF5P1, AGPAT1 -0.17 -0.01 0.19 No 

8 chr6:32145383-32146595 cg11043450 RNF5, RNF5P1, AGPAT1 0.29 0.29 -0.13 No 

8 chr6:32145383-32146595 cg11995506 RNF5, RNF5P1, AGPAT1 -0.24 0.04 -0.04 No 

8 chr6:32145383-32146595 cg13763617 RNF5, RNF5P1, AGPAT1 -0.12 -0.58 -0.42 BA10, BA20 

8 chr6:32145383-32146595 cg14771938 RNF5, RNF5P1, AGPAT1 0.44 -0.26 0.18 BA7 

8 chr6:32145383-32146595 cg15982308 RNF5, RNF5P1, AGPAT1 -0.25 0.02 -0.2 No 

8 chr6:32145383-32146595 cg18191873 RNF5, RNF5P1, AGPAT1 -0.5 0.09 0.06 BA7 

8 chr6:32145383-32146595 cg18928683 RNF5, RNF5P1, AGPAT1 0.05 -0.37 -0.47 BA20 

8 chr6:32145383-32146595 cg20008357 RNF5, RNF5P1, AGPAT1 0.62 0.48 0.65 
BA7, BA10, 

BA20 

8 chr6:32145383-32146595 cg22673001 AGPAT1, RNF5, RNF5P1 -0.16 -0.09 -0.37 BA20 

8 chr6:32145383-32146595 cg23464264 RNF5, RNF5P1, AGPAT1 0.3 -0.38 -0.08 No 

8 chr6:32145383-32146595 cg25733934 RNF5, RNF5P1, AGPAT1 -0.21 -0.22 0.05 No 

8 chr6:32145383-32146595 cg27370696 RNF5, RNF5P1, AGPAT1 -0.42 -0.38 -0.45 BA7, BA20 

9 
chr7:158749953-

158751591 
cg00413089 None 0.64 0.42 0.51 

BA7, BA10, 

BA20 

9 
chr7:158749953-

158751591 
cg00538212 None 0.35 0.16 0.47 BA20 

9 chr7:158749953- cg00815399 None 0.76 0.67 0.66 BA7, BA10, 



158751591 BA20 

9 
chr7:158749953-

158751591 
cg10079374 None 0.65 0.59 0.48 

BA7, BA10, 

BA20 

9 
chr7:158749953-

158751591 
cg11945929 None 0.62 0.55 0.31 BA7, BA10 

9 
chr7:158749953-

158751591 
cg12744031 None 0.56 0.54 0.51 

BA7, BA10, 

BA20 

9 
chr7:158749953-

158751591 
cg12954512 None 0.46 0.52 0.37 

BA7, BA10, 

BA20 

9 
chr7:158749953-

158751591 
cg13472359 None 0.47 -0.18 -0.06 BA7 

10 chr6:33280149-33280436 cg01253676 TAPBP 0.28 0.13 0.36 BA20 

10 chr6:33280149-33280436 cg02863594 TAPBP 0.14 0.02 -0.12 No 

10 chr6:33280149-33280436 cg11796996 TAPBP 0.21 0.18 0.06 No 

10 chr6:33280149-33280436 cg12589538 TAPBP 0.01 0.23 0.34 BA20 

10 chr6:33280149-33280436 cg13638257 TAPBP -0.04 0.12 -0.08 No 

10 chr6:33280149-33280436 cg14419102 TAPBP 0.26 0.19 0.14 No 

10 chr6:33280149-33280436 cg18353226 TAPBP -0.15 -0.22 0.09 No 

10 chr6:33280149-33280436 cg20998791 TAPBP 0.14 0.16 0.24 No 

10 chr6:33280149-33280436 cg26083458 TAPBP 0.54 0.13 0.15 BA7 

11 chr6:31867757-31868169 cg00889295 ZBTB12 0.24 -0.28 0.37 BA20 

11 chr6:31867757-31868169 cg05680710 ZBTB12 -0.01 0.11 0.21 No 

11 chr6:31867757-31868169 cg07249939 ZBTB12 0.81 0.42 0.15 BA7, BA10 

11 chr6:31867757-31868169 cg11645762 ZBTB12 0.39 0.4 0.22 BA7 

11 chr6:31867757-31868169 cg14562426 ZBTB12 -0.07 -0.3 0.27 No 

11 chr6:31867757-31868169 cg25110523 ZBTB12 0.14 0.13 0.06 No 

12 
chr4:147164778-

147165097 
cg01539483 None 0.09 -0.26 -0.01 No 

12 
chr4:147164778-

147165097 
cg04181032 None 0.27 0.22 0.18 No 

12 
chr4:147164778-

147165097 
cg07701757 None 0.03 -0.2 -0.17 No 

12 
chr4:147164778-

147165097 
cg07973709 None -0.17 0.04 -0.27 No 

13 chr1:11714218-11714254 cg01420388 FBXO2, FBXO44 0.21 0.09 -0.13 No 

13 chr1:11714218-11714254 cg05796704 FBXO2, FBXO44 -0.03 -0.36 0.03 No 

13 chr1:11714218-11714254 cg22697136 FBXO2, FBXO44 0.26 0.23 -0.07 No 

Note. BA = Brodmann area; chr = chromosome; cor = correlation; > = greater than    
 


