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An interface between the APMO code and the electronic structure package MOLPRO is presented. The
any particle molecular orbital APMO code [González et al., Int. J. Quantum Chem. 108, 1742 (2008)]
implements the model where electrons and light nuclei are treated simultaneously at Hartree-Fock or
second-order Möller-Plesset levels of theory. The APMO-MOLPRO interface allows to include high-
level electronic correlation as implemented in the MOLPRO package and to describe nuclear quantum
effects at Hartree-Fock level of theory with the APMO code. Different model systems illustrate the
implementation: 4He2 dimer as a protype of a weakly bound van der Waals system; isotopomers of
[He–H–He]+ molecule as an example of a hydrogen bonded system; and molecular hydrogen to com-
pare with very accurate non-Born-Oppenheimer calculations. The possible improvements and future
developments are outlined. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4803546]

I. INTRODUCTION

It is well known that nuclear quantum effects play a sig-
nificant role in a wide variety of relevant systems implying
light nuclei such as hydrogen-bonded systems and helium
droplets. In fact, spectroscopic probes of molecular impuri-
ties in helium droplets have shown that while 4He clusters
result in superfluid behavior with free-rotor-like molecular
spectra, 3He atoms behave as a normal fluid and the impu-
rity spectra are of hindered-rotor type.1 Since 4He atoms are
composite spinless bosons and 3He atoms are fermionic par-
ticles with a nuclear spin equal to 1/2, one fundamental ques-
tion has concerned the influence of the spin and the anti-
symmetry of the fermionic 3He wave-functions in providing
such different response to the molecular rotation. Quantum-
Chemistry (QC)-like Nuclear-Orbital (NO) approaches, first
introduced by Jungwirth and Krylov,2 map the problem onto
an electronic structure-like problem by considering the he-
lium atoms as pseudo-electrons and the dopant molecule as
a structured pseudo-nucleus, replacing Coulomb interactions
by van der Waals He–He and He-dopant pair potentials. This
way, the dopant molecule is considered as fixed, assuming
the Born-Oppenheimer (BO) separation between the nuclear
motions of the helium atoms and the dopant, and an expan-
sion over Gaussian-type functions (GTFs) centered on the
dopant can be employed.2 Later, this QC-like NO approach
was reformulated in internal coordinates by separating the
center-of-mass operator from the Hamiltonian and employ-

a)Author to whom correspondence should be addressed. Electronic mail: Pi-
lar.deLara.Castells@csic.es

ing radial basis functions centered on the dopant-He inter-
nuclear distance, in contrast with standard electronic struc-
ture problems. Within this framework, multi-orbital Hartree
and Hartree-Fock (HF) implementations were developed.3, 4

Hereafter, the Full-Configuration-Interaction (FCI) NO ap-
proach was designed to deal with 3He atoms5, 6 and extended
to bosonic 4He atoms and para-H2 molecules.7 The essen-
tial merit of these QC-like approaches consists in using nu-
clear orbitals to describe one-particle helium states so that
bosonic/fermionic symmetry can be easily included3, 5–8 on
an equal footing, allowing a natural extension of theoretical
concepts that have served molecular structure theory. These
approaches rely on the BO approximation so that the nuclear
quantum effects (NQE) are introduced after performing the
standard clamped-nuclei electronic structure calculations that
provide the potential energy surface on which the nuclear mo-
tion occurs.

A number of theoretical approaches for NQE that have
been developed, are mainly aimed to describe systems in-
volving hydrogen-bonding, hydrogen transfer processes, and
small hydrogen-containing molecules beyond the BO approx-
imation. Some of these methods use a one-particle molecu-
lar orbital picture for both electrons and the lightest nuclei
(e.g., proton, deuteron, etc.), achieving a simultaneous instead
of sequential quantum-mechanical description of these parti-
cles. The underlying idea was put forward in the late 1960s
by Thomas and collaborators9–12 and applied to methane, am-
monia, and water, using Slater orbitals for the protons (SNO).
A few years later, Bishop and collaborators13, 14 studied H+

2
and isotopologues with an accurate non-adiabatic variational
approach. It also worths mentioning the molecular coupled-
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cluster (MCC) method formulated by Monkhorst in the late
1980s,15 in which the electrons and nuclei are described si-
multaneously with the coupled-cluster (CC) approach.

Over the last years, a renewed interest in nuclear-electron
orbital approaches has been raised in order to analyze, for in-
stance, isotope effects and hydrogen tunneling. One of their
attractive features is the capability of incorporating finite nu-
clear mass/isotope and spin statistic effects directly into the
electronic wave-function, in a contrast with BO treatments
where these finite-mass effects are usually incorporated as
corrections, either adiabatic or non-adiabatic, to the elec-
tronic energies only (see, e.g., Ref. 16). In fact, approaches
going beyond the BO approximation and enabling a simul-
taneous description of electrons and nuclei are very useful
when the nuclear de-localization has a marked influence onto
the electronic wave-function itself (e.g., proton-coupled elec-
tron transfer processes). The most rigorous non-BO methods
are aimed to solve the all-particle Schrödinger equation of
small atomic and molecular systems as accurately as possi-
ble, taking into account the translational and rotational in-
variance of the molecular Hamiltonian. Within this frame-
work, the methodological contributions from Adamowicz and
collaborators17–19 have the longest history (for a very recent
review, see Ref. 19). Starting with the separation of the center-
of-mass operator from the molecular Hamiltonian, one key
characteristic of these methodological developments is the
employment of explicitly correlated Gaussian (ECG) basis
functions depending on the inter-particle quantum modes.17, 19

The total wavefunction is then obtained by minimizing the en-
ergy functional through the variational principle. Following
these ideas, Mátyus and Reiher have very recently developed
a new numerical approach,20 obtaining rotational-vibrational-
electronic energy levels with spectroscopic accuracy.

Another branch of non-BO methodologies employs the
same strategies and basis-type functions as in standard elec-
tronic structure calculations, for the lightest nuclei, fixing the
positions of heavier nuclei which are then treated via the
BO approximation. An overview of these methodologies has
been provided by Sherrill and collaborators21 and, very re-
cently, by Goli and Shahbazian.22 They are known by dif-
ferent acronyms, such as multi-component molecular orbital
(MCMO), nuclear orbital plus molecular orbital (NOMO),
nuclear-electronic orbital (NEO), and any-particle molecular
orbital (APMO), as described below. A scheme considering
the most popular approaches and illustrating their evolution
over the time is shown in Figure 1. All of them employ GTFs
to expand the one-particle orbitals of electrons and quan-
tum nuclei, as in standard molecular orbital calculations, con-
structing Slater determinants and permanents for fermionic
and bosonic quantum particles, respectively. The zeroth-order
electronic-nuclear wavefunction is then written as the product
of these determinants and permanents. In what follows, adopt-
ing the same terms as used by Sherrill and collaborators,21

these approaches will be referred to as electronic and nuclear
molecular orbital (ENMO) approaches.

To our knowledge, the NOMO method, introduced by
Nakai and collaborators in the late 1990s,23 represents the
earliest ENMO-type contribution (see, for example, Ref. 24
for a revision). There, self-consistent mean-field equations

FIG. 1. Scheme illustrating the evolution over the time of methodological
and computational ENMO implementations.

for electrons and nuclei were derived in the usual QC no-
tation, and applied using variationally optimized GTFs. Al-
ready at the earliest stages of its development, however, the
NOMO approach was extended to treat electronic and ex-
cited vibrational states with the single configuration interac-
tion (CIS) method,25 and re-formulated to rigorously remove
the center-of-mass motion26 from the total Hamiltonian (i.e.,
the translation-free (TF) NOMO version). Moreover, corre-
lation effects were also incorporated by adopting many-body
perturbation theory (MBPT) and the CC approach,27 clarify-
ing the major role of the electron-nucleus correlation. Fur-
ther developments24, 28–30 allowed to approximately substrate
the rotational contribution29, 31 also (i.e., the translation- and
rotation-free (TRF) NOMO version28). The TRF-NOMO im-
plementation was also extended to incorporate many-body
correlation effects with second-order Möller-Plesset (MP2)
and Epstein-Nesbet (EN) perturbation theory.30 More re-
cently, Nakai’s group has conducted important progresses to-
wards an accurate description of the electron-nucleus correla-
tion through the incorporation of ECG-type functions (i.e., the
ECG-NOMO approach32–34). The basic difference between
NOMO/HF and ECG-NOMO/HF implementations consists
in replacing electronic GTFs with the origin on the nuclear or-
bital centers by explicit correlated GTF between the electronic
and nuclear coordinates.32 This way, short-range electron-
nucleus correlation effects are effectively accounted for. Since
the ECG-NOMO/HF method involves the self-consistent res-
olution of HF-type equations for electrons and nuclei, the con-
ceptual simplicity of the original NOMO/HF implementation
is preserved. The latest ECG-NOMO implementation34 incor-
porates electronic correlation effects with the MP2 and CC
approaches, revealing that the ECG-NOMO method outper-
forms its TRF-NOMO counterpart.34

Another major ENMO-type contribution is the so-called
MCMO method (for recent revisions see Refs. 35 and
36). Actually, the origin of this method dates back to
the (above mentioned) work by Nakai and collaborators.23
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Later, Tachikawa and Osamura applied it (then termed the
dynamical extended MO method) to hydrogen and lithium
hydride molecules.37 One common characteristic of these
contributions is the application of the fully variational (FV)
treatment to optimize both exponents and center positions
of the GTFs (and thus termed the FVMO approach23, 38, 39).
Next, Tachikawa was independently involved in further
applications40 and developments41 of the MCMO method (see
Figure 1). This way, the MCMO method approach was ex-
tended to incorporate many-body correlation effects with the
FCI41 and MP2 approaches.42 The highest accurate MCMO
method, however, was developed by adopting the TRF for-
malism from Nakai et al.28 (see above) with the many-body
correlation described at FCI level.43 Hereafter, this approach
will be referred to as the FCI fully variational MO method.

Parallel computational and methodological develop-
ments have been carried out by Hammes-Schiffer’s group
over the last ten years,44 with their ENMO-type method
termed the NEO approach, which is implemented in the
GAMESS suite of programs.45 Starting with the HF ap-
proximation for both electrons and nuclei,44, 46, 47 their cur-
rent implementation allows to include the electron-nuclear
correlation either with explicitly correlated Gaussians (the
NEO-XCHF and NEO-XCHF2 versions48, 49) or using vari-
ational and perturbative post-HF methods such as non-
orthogonal CI (NOCI),50 multi-configurational self-consistent
field (MCSCF), and MP2 approaches.51 Aimed to describe
large molecular aggregates, multi-component density func-
tional theory (DFT), first proposed by Parr et al.52 in the
earlier 1980s and later by Shigeta et al.53 and Kreibich and
Gross,54 has been recently included in NOMO,55, 56 NEO,57

and MCMO58 implementations. In particular, the Colle-
Salvetti functional,59 originally designed to account for the
short-range correlation between the electrons, was extended
by Nakai’s group55, 56 to describe electron-nucleus correlation
effects.

More recently, the any particle molecular orbital APMO

code60–64 was developed. Restricted HF (RHF) equations
were implemented in the original code60 which was further
extended to include inter-particle correlations at MP2 level,61

and to remove the translational contamination at HF level.65

The main novelty of the APMO implementation lies in its ca-
pability of describing systems containing any combination of
quantum species (e.g., different isotopes), allowing to deal
with exotic species such as positronic and muonic molecules
and atoms.65 Further extensions with the PARAKATA code66

(the LOWDIN package67) allow to describe the quantum
particles with the unrestricted-HF approximation and us-
ing either DFT or auxiliary perturbation theory (ADPT),
and to carry out calculations with electron propagator
theory (EPT).68

In this paper, we present the first applications of the
APMO-MOLPRO interface. Our main goal is to include
NQE into standard highly correlated electronic structure cal-
culations using the general-purpose MOLPRO package of
programs.69 The MOLPRO code has a rich tool-box of method-
ologies to accurately describe both multi-reference or open-
shell cases and systems where dynamic correlation effects
play an important role. The APMO-MOLPRO implementation

enables to perform regular calculations with MOLPRO con-
sidering the lightest nuclei as quantum particles, described at
RHF level of theory through the APMO code. This implemen-
tation is applied to three types of systems: the 4He2 dimer,
[He–H–He]+, [He–D–He]+, and [He–T–He]+ isotopomers,
and molecular hydrogen along with its isotopomers.

The 4He2 dimer has been chosen as a prototype
dispersion-dominated weakly bound system with a van
der Waals interaction. We wish to stress that our aim is
not to question the validity of the BO approximation in
these systems neither the spectroscopic accuracy reached in
BO-based studies but to explore whether the incorporation
of nuclear quantum effects directly in the electronic structure
calculations may speed up the convergence with respect to
the level of theory. This issue is worth considering because
the accurate description of weakly bound systems at ab initio
level with post-HF methods (e.g., the coupled-cluster ap-
proach) faces the problem of the slow convergence with both
the one-electron basis set size and the level of the many-body
electron correlation treatment. When applied to dimers of
noble gases (see, e.g., Ref. 70 for an extensive analysis),
explicitly correlated coupled-cluster methods certainly accel-
erates the convergence but the improvement is more moderate
than that found in other systems. On the other hand, not only
the calculation of the potential energy surfaces is challenging
but also that of the molecular energy levels and, then, the
spectra. We can number the following reasons: (1) the
Fermi-Dirac (Bose-Einstein) statistics of the lightest nuclei;
(2) their wide (highly anharmonic) amplitude motions; and
(3) both the weakly attractive (long-range) and the strongly
repulsive (short-range) interaction. The FCI-NO approach
was designed to deal with these three problems, showing
that the hard-core wall present in the potential energy curves
amplifies the short-range nuclear dynamic correlation effects
and, therefore, very large nuclear basis sets are necessary to
get accurate rotational-vibrational energy levels. Hence, the
central question is whether numerical implementations that
describes the lightest nuclei and electrons simultaneously
could be more efficient, with respect to the level of approx-
imation, in computational spectroscopy of weakly bound
systems. Although it is not possible to answer this question
in general terms, it is worthwhile to carry out numerical tests,
as we will show below.

A second application considers [He–H–He]+ and its iso-
topomers as weakly bound hydrogen-bonded model systems
where the strength of the interaction is intermediate between
that of van der Waals and hydrogen bonding. First, we in-
vestigate the nuclear basis set convergence of total energies.
We have found an important correlation between isotope mass
and nuclear density localization. Third, a connection between
ENMO- and BO-based pictures is shown by correlating the
different density profiles of H, D, and T nuclei with the
isotope-mass influence into zero point energies. Finally, the
ENMO implementation is applied to molecular hydrogen and
its isotopomers with the main objective of comparing with
previous results on the same system.

The paper is structured as follows. Section II outlines
the methodological approach with the emphasis on the strat-
egy adopted to design the computational APMO-MOLPRO
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implementation. Section III presents its application to the
above mentioned systems. Section IV closes with a summary
and points out possible directions for future applications and
extensions.

II. METHODOLOGICAL BACKGROUND

To unify the notations, we first outline the expressions
used in a conventional electronic structure calculation at HF
level of theory. Considering the particular case of a closed-
shell molecule with N nuclei and N electrons (denoted as
e), the RHF wave-function is expressed using Fock space
(occupation-number) representation as

|�e〉 = |n1 · · · ni · · · nM〉, (1)

where M is the total number of spin-orbitals and the occupa-
tion number ni is 1 for N spin orbitals and zero otherwise. The
(double occupied) spatial molecular orbitals are constrained
to be orthonormal to each other, and can be written as a linear
combination of Nbf (non-orthonormal) GTFs,

ψi(re) =
Nbf∑
μ=1

Cμiχμ(re) (2)

with re collectively designating the spatial coordinates of the
electrons. The GTFs can be expressed as

χμ(re) ∝ (xe − Xμ)lμ (ye − Yμ)mμ(ze − Zμ)nμ

× {exp (−αμ(re − Rμ)2)},
(3)

where Rμ = {Xμ, Yμ,Zμ} specify the coordinates at which
the GTFs are centered (the fixed nuclear positions in conven-
tional electronic structure calculations). Since only Cartesian
GTFs are implemented within the APMO code, we used also
Cartesian GTFs in the MOLPRO electronic structure calcula-
tions.

The HF equations can be written in matrix form as

FC = SCε ∴ F = K + I + 1

2
G, (4)

where K, I, and G are the matrix representations of the elec-
tronic kinetic energy, the electron-nuclear attraction, and the
electron-electron repulsion, respectively. Explicitly,

Kμν =
∫

χ∗
μ(re)

[
−1

2
∇2(re)

]
χν(re) dre,

Iμν =
∑
γ∈N

∫
χ∗

μ(re)

[
Zγ

|re − rγ |
]
χν(re) dre, (5)

Gμν =
Nbf∑

λ,σ=1

Pλσ

[
(χμχν | χλχσ ) − 1

2
(χμχσ | χλχν)

]
,

where P is the first-order reduced density matrix (1-RDM),

Pμν = 2
N/2∑
k=1

c∗
μkcνk. (6)

The electronic energy is then written as

Ee = tr

[
P

(
K + I + 1

2
G

)]
+

∑
I,J∈N

ZIZJ

|rI − rJ | . (7)

In a more general case, the molecular system can be divided
into the set formed by quantum particles Q (i.e., the electrons
and light nuclei) and the set composed by classical particles
C (e.g., the heavy nuclei). Hereafter, the superscripts α and
β will denote different quantum particles. The total wave-
function associated with the set Q can be approximated as a
product of the single configuration-state-functions associated
with each quantum type,

�({rα}, {rβ}, · · · ) = �α({rα}) · �β({rβ}) · ·α, β ∈ Q.

For quantum nuclei, we consider a single configuration-state-
function where each quantum nucleus is constrained to oc-
cupy a different spatial orbital (it corresponds to the highest
total spin configuration for nuclei with non-zero spin), using
the occupation-number representation,

|�α〉 = ∣∣nα
1 · · · nα

i · · · nα
Mα

〉
, (8)

where Mα is the number of (spin) orbitals defining the Hilbert
space of the quantum particle with index α, and nα

i is either
0 or 1 for quantum nuclei. It should be noticed that this con-
dition is imposed because of the lack of nuclear correlation
within the current implementation.

The molecular orbital of any quantum particle ψα is ex-
pressed as a linear combination of GTFs,

ψα
i (rα) =

Nα
bf∑

μ=1

Cα
μiχ

α
μ(rα). (9)

The matrix expression of the HF equation associated with
each quantum particle α reads

FαCα = SαCαεα

(10)
Fα = Kα + Iα + J α + 1

ηα
Gα,

where the average interaction between α and the other quan-
tum species (β) is given by the term J α . Explicitly, the matrix
elements may be written as

Kα
μν =

∫
χα∗

μ (rα)

[
− 1

2Mα

∇2(rα)

]
χα

ν (rα) drα,

I α
μν =

∑
γ∈C

∫
χα∗

μ (rα)

[
ZαZγ

|rα − rγ |
]
χα

ν (rα) drα,

(11)

J α
μν =

∑
α �=β

N
β

bf∑
λ,σ=1

P
β

λσ

(
χα

μχα
ν

∣∣χβ

λ χβ
σ

)
,

Gα
μν =

Nα
bf∑

λ,σ=1

P α
λσ

[(
χα

μχα
ν

∣∣χα
λ χα

σ

) ± 1

ηα
(χα

μχα
σ |χα

λ χα
ν )

]
.
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Here, Mα denotes the mass of the quantum particle with index
α and the sign ± corresponds to the bosonic/fermionic nature
of this particle. ηα defines the occupation number of a given
spatial orbital (i.e., ηα = 1 for the quantum nuclei considered
here) so that the 1-RDM takes the form

P α
μν = ηα

Nocc∑
k=1

cα∗
μkc

α
νk. (12)

In the following, we consider molecular systems com-
posed by only one class of quantum nuclei (denoted as n)
with charge +Zne and mass Mn; then Nn refers to the num-
ber of quantum nuclei. A practical calculation starts with
the solution of Eq. (4) for the electrons considering both
classical and quantum nuclei as fixed point charges within
the BO approximation. Next, the electronic 1-RDM, Pe, is
employed to calculate the term that couples electronic and
nuclear densities J n, see Eq. (11). Equation (10) is then
solved for the quantum nuclei, and the whole process is it-
erated until convergence. The total energy of the pseudo-
system composed by quantum particles, that further serves as
an effective potential for the classical nuclei, can be written
as

E =
∑
α∈Q

tr[PαFα] +
∑

γ,ρ∈C

Zγ Zρ

|rγ − rρ | , (13)

and the electronic energy is conveniently defined as

Ee = tr

[
Pe

(
Ke + Ie + J e + 1

2
Ge

)]
(14a)

+tr

[
Pn

(
In + 1

ηn
Gn

)]
(14b)

+1

2

[
tr(PnJ n) − tr(PeJ e)

]
(14c)

+
∑

γ,ρ∈C

Zγ Zρ

|rγ − rρ |, (14d)

where the term (14c) is included to avoid the double-counting
of the nuclear-electron interaction energy. Also, we notice that
the nuclear kinetic energy term (tr[PnKn]) is separated from
the expression of the electronic energy. In the infinite-nuclear-
mass limit, the terms PαIα and 1

2 PαGα , become the Coulomb
repulsion between classical nuclei

tr (PnIn) −−−−→
Mn→∞

Nn∑
I=1

∑
γ∈C

ZnZγ∣∣rn
I − rγ

∣∣ ,
1

ηn
tr

(
PnGn

) −−−−→
Mn→∞

Nn−1∑
I=1

Nn∑
J=I

ZnZn∣∣rn
I − rn

J

∣∣ .
(15)

Similarly, the expression for the electronic energy becomes
identical to that in standard electronic structure calculations.
It is important to realize that the electronic energy, as defined
in Eq. (14), allows to get an effective potential energy sur-
face (i.e., the electronic energy as a function of the relative
positions between the nuclear GTFs centers). The electronic

energy thus represents the expectation value of the full Hamil-
tonian minus the nuclear kinetic energy, as in standard BO
calculations. Typically, an ENMO-type calculation starts with
the centers of the nuclear GTFs at the fixed nuclear positions
in preliminary BO calculations.

By comparing Eqs. (7) and (14), it is clear that we can
make the following mappings:

K ⇐= Ke,

G ⇐= Ge,
(16)

I ⇐= Ie + J e,∑
I,J∈N

ZIZJ

rIJ

⇐= tr

[
Pn

(
In + 1

ηn
Gn

)]

+1

2
[tr(PnJ n) − tr(PeJ e)]

+
∑

γ,ρ∈C

Zγ Zρ

|rγ − rρ | .

From these mappings, it follows that the bare Coulomb in-
teraction between the electrons and the quantum nuclei is re-
placed by a dressed Coulomb interaction between the elec-
trons and the quantum nuclear charge density, as given by the
term J e. This is schematically illustrated in Figure 2. The
nuclei are represented by a distribution ρ(rn − Rn) centered
in the clamped nuclear positions from standard BO calcula-
tions, Rn. Once again, in the infinite-nuclear-mass limit, the
nuclear distribution tends to a delta-type function δ(Rn), with
the electronic energy (see Eq. (14)) having the same expres-
sion as in the BO approximation (see Eq. (7)). From the map-
pings in Eq. (16), it is clear that the inclusion of electronic
correlation into the HF equations for the quantum nuclei can
be accomplished by substituting the HF electronic 1-RDM by
its correlated counterpart, obtained using the MOLPRO code.
Next, this correlated density matrix is introduced into the

e-

FIG. 2. Schematic illustration of the electrostatic interaction V (r) among a
reference electron (highlighted with a small circle) and a nucleus represented
as either a fixed point charge within the BO approximation (highlighted with
a large circle) or a Gaussian charge distribution with its center located at the
position of the fixed nucleus in BO calculations.
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coupling term J α from Eq. (11). The APMO code is then
run to solve the Fock equations associated with the quan-
tum nuclei, obtaining a new nuclear charge density. Corre-
lated electronic-structure-like calculations with MOLPRO and
HF calculations with APMO are then iterated to achieve self-
consistency. The full details of the computational APMO-
MOLPRO implementation are available upon request to the au-
thors.

III. APPLICATIONS

We first apply the APMO-MOLPRO implementation to
the 4He2 dimer which is a prototype of a weakly bound
system. A second application deals with the [He–H–He]+,
[He–D–He]+, and [He–T–He]+ isotopomers as a model
where the strength of the interaction is intermediate between
that of van der Waals and hydrogen bonding systems. Finally,
the molecular hydrogen and its isotopomers are considered.

A. A model of weakly interacting system:
The 4He2 dimer

Our calculations were performed using the singly aug-
mented version of the correlation-consistent polarized aug-
cc-pVQZ basis set (referred to as AVQZ) developed by Dun-
ning and collaborators71, 72 for the electrons and a 2s2p basis
set for the nuclei. The CC singles and doubles, and noniter-
ative triples [CCSD(T)] method was applied with an integral
threshold of 10−14 a.u. We followed the counterpoise (CP)
procedure proposed by Boys and Bernardi73 to account for
the intramolecular basis set superposition error (BSSE) for
both electrons and nuclei. For comparison, additional stan-
dard electronic structure CCSD(T) calculations with the dou-
ble diffusely augmented d-aug-cc-pV6Z basis set (DAV6Z)
were also performed. The nuclear basis set was calibrated
through the gradual addition and optimization of exponent
of s and p GTFs following the sequence 1s → 2s → 2s 1p
→ 2s 2p. Each exponent optimization step involved a simul-
taneous geometry optimization. The simplex algorithm was
used for the exponents optimization with an accuracy thresh-
old of 10−6 a.u. As a final step, a global re-optimization of
all the exponents α and the geometry was performed. This
procedure resulted in the following values for the optimized
exponents: 171.9559 (1s), 216.0468 (2s), 238.0624 (1p), and
250.0442 (2p).

Fixing the He–He internuclear distance, we started with
a standard CCSD(T) calculation with MOLPRO (i.e., clamp-
ing the He nuclei). Next, the electronic CCSD 1-RDM
was used to calculate the nuclear-electronic coupling matrix
J n (see Eq. (11)) and the Fock equation associated with the
nuclei and including the mean-field generated by the elec-
tronic charge density, was solved with the APMO code, with
the centers of the nuclear GTFs kept fixed at the positions of
the clamped nuclei in the preliminary BO calculations. This
was followed by a CCSD(T) calculation for the electrons with
MOLPRO including the NQE through the nuclear HF 1-RDM.
CCSD(T) and HF calculations for the electrons and the nuclei
were then run iteratively until self-consistency. This proce-
dure is repeated for different distances between the nuclear

FIG. 3. 4He2 dimer potential energy curves. APMO-MOLPRO

CCSD(T){CCSD}/AVQZ:2s2p (red solid line); MOLPRO CCSD(T)/AVQZ
(blue solid line); MOLPRO CCSD(T)/DAV6Z (green); MOLPRO FCI/DAV6Z
(black) from Ref. 77. The reference potential energy curve from
Ref. 74 is shown as a shaded area. The CCSD entry in APMO-MOLPRO

CCSD(T){CCSD}/AVQZ indicates that only the CCSD correlated
1-RDM has been employed into the HF equations for the nuclei. APMO-
MOLPRO CCSD(T){CCSD}/AVTZ:2s2p (red dashed line) and MOLPRO

CCSD(T)/AVTZ (blue dashed line) results are also shown.

GTFs centers. Figure 3 shows the resulting effective poten-
tial energy curve (PEC) (highlighted in red). For the sake of
clarity, Table I summarizes the main results (well-depths and
minimum energy positions).

Naturally, a rigorous non-BO calculation would provide
directly the energy D0 and wave-function of the 4He2 weakly
bound state that have been experimentally observed (i.e.,
without relying on a PEC). Due to the highly delocalized na-
ture of this state (〈R〉 47.1 ± 0.5 Å from Ref. 74), however,
a much larger nuclear basis set would be necessary to carry
out such calculations, along with the separation of the center-
of-mass operator from the molecular Hamiltonian and the in-
clusion of the electron-nuclear correlation. Extremely accu-
rate estimations of D0 or 〈R〉 values have been very recently
provided by Cencek et al. (see Ref. 74) by calculating the nu-
clear wave-function supported by the helium dimer potential.
This PEC was obtained through very accurate BO calcula-
tions including post-BO adiabatic and relativistic corrections
as well as quantum electrodynamic effects. Here, by comput-
ing an effective helium dimer potential, we adopt an approach

TABLE I. Well-depths (Eint
min) and minimum energy positions (Rmin) of the

4He2 dimer potential energy curves shown in Fig. 3.

Rmin(Å) Eint
min(cm−1)

AVTZ: BO/ENMO 3.04/3.06 − 5.8729/−6.1065
AVQZ: BO/ENMO 3.00/3.00 − 6.5727/−7.4054
DAV6Z(BO):a CCSD(T)/FCI 2.98/2.97 − 7.3580/−7.5785
Reference 74 2.97 − 7.6429

aReference 77.
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which is somewhat different from other applications within
the ENMO framework. As already mentioned, our goal is to
estimate if the inclusion of quantum nuclear effects would
affect the level of theory required to correctly account for
dynamic correlation in electronic structure calculations, and,
more particularly, the flexibility of the orbital space for an ad-
equate description of the dispersive interaction. Our interpre-
tation follows the lines of BO method using floating Gaussian
orbitals,75, 76 with the electrostatic attractive field generated
by vibrating nuclei as the guiding function for the electronic
orbitals, see also below.

In Figure 3, the APMO-MOLPRO CCSD(T) PEC (solid
red line) is compared with standard CCSD(T) electronic
structure calculations using the same (AVQZ) electronic ba-
sis set (solid blue line) or the much larger DAV6Z basis set
(highlighted in green). The most accurate PEC from Ref. 74
is also shown as a shaded area. For comparison purposes,
the FCI potential obtained using the DAV6Z basis set from
Ref. 77 is also displayed (black line). This FCI potential pro-
vides a bound state for the 4He dimer that disappears when
its depth-well is reduced by a mere 0.02% (e.g., the FCI
PEC with the AVQZ basis fails to provide a bound helium
dimer state). Although this FCI potential is very close to the
reference potential from Ref. 74, the associated D0 value is
about 0.5 mK above the best estimation at present (D0 = 1.62
± 0.03 mK from Ref. 74).

Let us now compare our ENMO results to those ob-
tained from standard electronic structure calculations. From
Figure 3, it can be noticed that the APMO-MOLPRO CCSD(T)
potential with the AVQZ basis set is very close to that
obtained through standard CCSD(T) calculations using the
much larger DAV6Z basis set (110 vs. 476 Cartesian GTFs).
In contrast, the well-depth of the potential from conventional
CCSD(T) calculation with the AVQZ basis set is 0.83 cm−1

higher (see Table I). This result demonstrates that the inclu-
sion of NQE allows to effectively reduce the electronic ba-
sis set size. This can be understood by considering that the
Kato’s (electron-nuclear) cusp condition78 becomes somehow
smoothed out when a fixed point charge is replaced by a fi-
nite nuclear charge distribution (see Figure 2), taking away
the divergence of the electron-nucleus Coulomb potential as
−Z/r when r goes to zero. On the other hand, when using
Gaussian-type orbitals whose gradient is zero at the origin,
the Kato’s cusp condition is not satisfied.79 Moreover, it seems
clear that the nuclear charge distribution shown in Figure 2 is
capable to push electronic density out into regions associated
with the dispersive interaction, thus relaxing the strong re-
quirements for the GTFs (intrinsically unable to properly de-
scribe the electron-electron cusp also) basis set size. In other
words, as the He nuclei approach each other, their associ-
ated electronic clouds become more diffuse and interactive,
increasing the dispersive effect. On the contrary, a fixed point
charge attracts more electronic density to its position. The
electronic orbitals become thus effectively more flexible in the
scenario of a vibrating nucleus. These arguments are similar
to those presented in Ref. 76 to explain the reasons why Diffu-
sion Monte Carlo (DMC) calculations with floating spherical
GTFs in the guiding function provide better results than their
standard GTFs-type counterparts. On the other hand, ENMO

TABLE II. Interaction energy differences �E (in cm−1) between APMO-
MOLPRO CCSD(T){CCSD}/AVQZ:2s2p and MOLPRO CCSD(T)/AVQZ cal-
culations (second column) as a function of the distance between GTFs nu-
clear centers RHe−He, in Å (first column). Third column: Diagonal adiabatic
correction V corr

ad,int (in cm−1) for 4He2 as a function of the He–He inter-nuclear

distance RHe−He, in Å.

RHe−He (Å) �E (cm−1) V corr
ad,int (cm−1)a

1.85 56.2514 0.2962
2.15 15.4504 0.0614
2.40 4.0442 0.0086
3.00 − 0.8331 − 0.0061
3.80 − 0.0441 − 0.0020

aReference 74.

calculations with the quantum nuclei described through rela-
tively narrow amplitude GTFs could be phenomenologically
identified with standard BO calculations using floating elec-
tronic orbitals.76 Thus, the most important insight that can
be extracted from the consideration of finite-mass effects in
a model system for the dispersion interaction is that the re-
quirements for the electronic structure calculations are less
stringent than in the infinite-nuclear-mass limit.

We notice that the interaction energy difference between
BO- and ENMO-type calculations (see Table II) should not
be confused with the diagonal adiabatic correction to the BO
energies. This is apparent from the definition of the latter as
the expectation value of the nuclear kinetic energy operator,80

V corr
ad =

〈
�e

BO

∣∣∣∣ −
∑

I

∇2
I

2MI

�e
BO

〉
, (17)

and taking into account that the kinetic nuclear energy is sub-
tracted to obtain the interaction energy within the ENMO
framework. By construction, the term V corr

ad is a finite-mass
adiabatic correction to the electronic energy only, while the
ENMO approach includes the influence of these finite-mass
effects onto the electronic wave-function itself. As reported
by Cenket et al.,74 the inter-nuclear dependence of the finite-
mass correction V corr

ad,int can be calculated by subtracting the
corresponding (mass-polarization) term from two isolated he-
lium atoms. Interaction energy differences between BO- and
ENMO-type calculations are compared with reference V corr

ad,int
values from Ref. 74 for a selected set of inter-nuclear dis-
tances. As can be seen from Table II, the energy difference ob-
tained by the inclusion of finite-mass effects with the ENMO
approach is more than two orders of magnitude larger than the
adiabatic correction around the minimum of the potential en-
ergy curve. Both energy differences are positive at very short
inter-nuclear distance, change their sign close to the mini-
mum, and approach zero at large distances. Thus, the inclu-
sion of finite-mass effects tends to stabilize the 4He dimer, as
expected.

So far, our goal has been the analysis of NQE for highly
correlated electronic energies. Let us now focus on the nuclear
response to these electronic correlation effects. For this pur-
pose, Table III lists the nuclear relaxation energies �Enuc

rex ob-
tained by replacing the HF electronic 1-RDM by its correlated
counterpart, calculated with the CCSD approach. As apparent
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TABLE III. Nuclear relaxation energies �Enuc
rex (in cm−1) as a function of

the distance between GTFs nuclear centers, RHe−He, in Å (first column).
Second (third) column: APMO-MOLPRO CCSD(T){CCSD}/AVTZ:2s2p
(CCSD(T){CCSD}/AVQZ:2s2p) results.

�Enuc
rex (cm−1)

RHe−He (Å) AVTZ AVQZ

2.30 −1.1522 −1.1105
2.70 −0.7638 −0.7001
3.40 −0.1141 −0.0768
3.80 −0.0680 −0.0088

from this table, the nuclear response to the electronic corre-
lation becomes increasingly more pronounced as the distance
between GTFs nuclear centers decreases. Then, at distances
shorter than 2.4 Å, the nuclear relaxation energy reaches
values larger than −1.0 cm−1, lowers to about −0.5 cm−1

close to the minimum, and approaches zero at 3.8 Å. From
Table III, it can be also seen that the electronic AVQZ and
AVTZ basis sets provide very similar values with nuclear re-
laxation energy differences below 0.07 cm−1. Contrarily, elec-
tronic interaction energies obtained using BO- and ENMO-
type calculations with the AVTZ basis set are fairly inaccurate
(see Fig. 3 and Table I). The inclusion of NQE certainly im-
proves the well-depth value calculated with the AVTZ basis as
compared to the reference one74 and the same general trends
upon augmentation of the basis set size are found in both BO-
and ENMO-type calculations. The current APMO-MOLPRO

interface is implemented for up to g-type Gaussian functions,
that corresponds to the VQZ-type basis for main group ele-
ments. Work is in progress to implement h- and i-type func-
tions that will allow to use up to V6Z basis sets. Upon in-
creasing the nuclear basis sets size, including electron-nuclear
correlation, and separating the center-of-mass motion, a sec-
ond regime would be eventually reached in which the inter-
nuclear quantum mode itself is correctly described. Concern-
ing the inclusion of short-range nuclear correlation effects,
it has been shown through BO-based studies6 with the FCI-
NO approach that their proper description in doped 3He clus-
ters is crucial in getting physically meaningful results, as the
pairing found for 3He and the quasi-degeneracy of different
nuclear spin-states. In turn, this quasi-degeneration renders
the spectra of probe molecules inside 3He very congested3, 81

at temperature for which spinless 4He droplets are super-
fluid and the guest molecule spectrum displays sharp rota-
tional lines. As already mentioned, very large one-particle ba-
sis sets and special diagonalization techniques are necessary
to describe these short-range correlation effects with FCI-NO
(BO-based) calculations6 due to the sharply repulsive He–
He potential at short distances that raises much more steeply
compared to the Coulomb potential. As follows from present
results, however, the requirements for the one-particle basis
set and the many-particle correlation treatment are less de-
manding when nuclei and electrons are treated simultane-
ously. In any case, the inclusion of the nuclear correlation is
necessary to relax the maximum spin condition for the nuclear
(3He) wave-function.

Summarizing, it is necessary to develop nuclear basis sets
better tailored to describe the inter-nuclear motion in conjunc-
tion with the separation of the center-of-mass motion, and
practical approaches to include the electron-nuclear correla-
tion. For a diatomics like 4He2, if the position of one nucleus
is frozen (infinite-nuclear-mass limit), the mass of the second
nucleus is fixed to the reduced mass, and the center of the
second nucleus GTFs is also optimized, it would be possible
to obtain an estimation of the zero point energy D0, since the
separation of the center-of-mass motion is already accounted
for. In our case, this procedure leads to the lowering of the
nuclear kinetic energy by about 0.03 a.u. Still, it is impor-
tant to realize that one-centered GTFs are unable to account
for the highly delocalized nature of the 4He2 wave-function.
For this purpose, it would be suitable to use multi-centered
Gaussian functions adding nuclear ghost GTFs. This strat-
egy is somehow reminiscent to the addition of midbond GTFs
in the electronic basis sets to saturate the dispersion interac-
tion. It also resembles the “distributed Gaussian functions”
(DGF) method of Hamilton and Light82 for solving multi-
dimensional vibrational problems, as applied83 to 4He2 and
4He3. Since the APMO implementation already enables the
use of nuclear ghost GTFs, the problem would translate in
designing efficient algorithms to distribute the GTFs centers.
We notice that the DGF method was proposed to deal also
with excited vibrational states.82 Concerning the inclusion of
the inter-particle correlation, the transcorrelated Hamiltonian
approach84 seems to be quite attractive. By using a single de-
terminant (permanent) Jastrow ansatz, HF-like equations are
obtained and, therefore, this approach seems to be well-suited
to interfaces with standard electronic structure codes.

B. [He–H–He]+ and its isotopomers

As a second application, we studied the [He–H–He]+,
[He–D–He]+, and [He–T–He]+ isotopomers. These are
model systems in which the interaction strength is remark-
ably influenced by the nuclear delocalization of the central
nucleus (i.e., H, D, or T). As in previous works within either
the BO85, 86 or the ENMO frameworks,49, 61 a symmetric lin-
ear structure for the [He–H–He]+ system was considered. The
two lateral He nuclei were treated classically and the central
nucleus was considered as a quantum particle. Specifically,
the quantum nucleus was described with a 5spd basis set of
GTFs, while the CCSD(T) method and the AVQZ basis set
were employed for the electrons. The nuclear GTFs were lo-
cated at the midpoint between the two He nuclei. Taking into
account the small difference between the masses of hydro-
gen and helium nuclei, a rigorous non-BO calculation should
treat both nuclei equivalently. However, we have chosen this
approach as it allows for a direct comparison with results ob-
tained earlier using similar methods.49, 61

The exponents of the nuclear GTFs were obtained using
an even-tempered set.69 The same set of basis functions was
employed for all isotopes. Following the strategy proposed by
Nakai,26 the exponents of nuclear GTFs with non-zero orbital
angular momentum quantum numbers were set to the same
values as for the s-type GTFs. Figure 4 shows the convergence
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FIG. 4. Convergence of the total energy upon addition of nuclear GTFs for
the [He–H–He]+ system and its isotopomers.

of the total energies as a function of the number of primi-
tive GTFs. These energies were obtained by fixing the He–
He internuclear distance at the optimized value in standard
CCSD(T) calculations. As a first step, the exponent of a sin-
gle 1s GTF was optimized variationally for each isotope. The
average exponents of the 1spdf GTFs in the even-tempered
sets were set to these optimized values. When only one s-type
function is employed, the three systems share the same nu-
clear density distributions. Therefore, the pronounced isotope
mass dependence of the total energy (see Figure 4) comes di-
rectly from the 1/Mn term in the kinetic energy matrix (see
Eq. (11)). The further addition of nuclear GTFs enables a dif-
ferential localization of the nuclear densities depending on the
isotope mass, reducing thus the total energy differences, see
Figure 4. It is clearly apparent that a 5spd basis set suffices to
get convergent total energy values for the three complexes.

As a second step, the geometry of the system was op-
timized using the 5spd basis set. The resulting total energy
values were −5.8754, −5.8823, and −5.8855 a.u. for the
[He–H–He]+, [He–D–He]+, and [He–T–He]+ complexes,
respectively. As expected from the higher level of theory
adopted here, these energies are lower (∼0.04 a.u.) than those
obtained with the APMO-MP2 method.61 To gain further in-
sight into isotope-dependent effects, we calculated the av-
erage values of the quantum nucleus kinetic energy Tn, the
electronic repulsion Ve−e, the He–He repulsion VN−N, the re-
pulsion energy between the central nucleus and the classi-
cal He nuclei Vn−N, and the electron-central nucleus attrac-
tion Vn−e. The differences between the values obtained within
the ENMO framework for the three systems and those result-
ing from standard CCSD(T) calculations for the [He–H–He]+

complex are shown in Figure 5. Table IV lists the average in-
ternuclear distance 〈RX−He〉 with the optimized molecular ge-
ometry, while the nuclear density distributions are displayed
in Figure 6.

We observed isotope mass effects similar to those found
in Ref. 61. They can be understood by considering: (1) the
isotope mass increase from protium to tritium; (2) the con-
comitant localization of the nuclear densities (see Figure 6);
and (3) the resulting compression of the electronic densi-

FIG. 5. Decomposition analysis of the energy terms associated with the
[He–H–He]+, [He–D–He]+, and [He–T–He]+ systems (see text).

ties. Naturally, the nuclear kinetic energy increases if the
isotope mass decreases, 1/Mn increases. Once again, as appar-
ent from Figure 2, the most attractive electron-nuclear inter-
action corresponds to the infinite nuclear mass limit. There-
fore, for heavier central nucleus, the average value of Vn−e

is larger. On a contrary, the Coulomb repulsion between the
central nucleus and the He nuclei is larger as the former be-
comes more localized (see the energy differences associated
with the Vn−N component in Figure 5). Also, it can be noticed
that the average Ve−e interaction becomes less repulsive as
the central nucleus becomes more delocalized. As discussed
above for the 4He dimer, the electronic density is more sparse
when a fixed point charge is replaced by a nuclear charge den-
sity, making their average interaction less repulsive. Consid-
ering the results presented in Table IV, we mention that the
equilibrium He–H bond distance obtained with conventional
electronic structure calculations (0.9249 Å from Table IV)
agrees very well with previous calculations using highly cor-
related methods (i.e., 0.925 Å from Ref. 86), indicating that
the electronic correlation is properly described. We can also
notice from Table IV the shortening of the average internu-
clear distances 〈RX−He〉 as the central nucleus becomes more
localized, making the He–He interaction more repulsive (see
Figure 5). On the other hand, the values of the Mulliken
charges (see Table IV) are smaller than those obtained through
a standard BO-based calculation, reflecting the delocalization
of the electronic densities after the inclusion of finite-mass

TABLE IV. Average internuclear distances 〈RX−He〉 (in Å), differences
between 〈RX−He〉 values obtained at HF and CCSD(T) levels of theory
(�〈RX−He〉, in Å), and Mulliken charges on the central nucleus (in a.u.) ob-
tained for the [He–X–He]+ isotopomers (i.e., X = H, D, and T) in the present
work.

〈RX−He〉 (Å) �〈RX−He〉 (Å) Mulliken

0.9608 0.387
He–H–He+ 0.9249a 0.0144a 0.635a

0.9631b

He–D–He+ 0.9498 0.0094 0.399
He–T–He+ 0.9451 0.0075 0.409

aValues obtained with conventional electronic structure calculations.
bAPMO-MP2 value from Ref. 61.
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FIG. 6. Three top panels: Contour plots of the nuclear density distributions
of [He–X–He]+ for X = H, D, and T, on a plane containing the He–He in-
ternuclear axis (the z axis). The distances are given in Å. Adjacent contours
are separated by 5.0 Å.−2 A model spherical density distribution (grey color)
has been superimposed to the protonic density in the [He–H–He]+ system.
Bottom panel: One-particle protonic density distributions, with the electrons
described at either CCSD(T) (solid lines) or HF (dotted lines) levels of the-
ory, calculated along the He–He internuclear axis of [He–X–He]+ (with the
origin located in the middle of the two He nuclei) for X = H, D, and T.

effects, as already discussed for the helium dimer. These ef-
fects become more pronounced as the nuclear mass decreases.
Within standard BO-based theory, this is explained by consid-
ering the PES anharmonicity and the wider amplitude zero-
point motions attained by the lightest isotopes (see, for ex-
ample, Ref. 87). Within the ENMO approach, the latter trend
is reflected in more delocalized nuclear densities as the nu-
clear mass decreases (see Figure 6). Interestingly, the protonic
densities are rather isotropic in contrast to those attained by

deuteron and triton nuclei, which are more confined in the
direction of the internuclear He–He axis. In the standard BO-
based picture, the heaviest tritium nuclear density shows the
most anisotropic shape that adapts better to the anharmonic
potential due to its smaller zero point energy. Physical in-
sights into the system are thus gained directly with ENMO-
type calculations before resorting to the quantum treatment
of the nuclear motion on the electronic potential energy sur-
face. The isotropic character of the protonic densities could be
correlated with a quasi-degeneracy of zero point energies for
asymmetric stretching and bending normal modes of the elec-
tronic ground state in standard BO-based calculations. Very
similar energies for stretching and bending frequencies were
found by Ko et al. in Ref. 49 using a single 1s GTF. The
inclusion of GTFs with higher angular momentum quantum
numbers in the present work enables a more balance descrip-
tion of stretching and bending modes. Also, previous works
have shown that the vibro-rotational energy levels supported
by the [He–H–He]+ PES do not correspond to any particu-
lar mode but to a combination of them.87 Focusing on the
comparison with previous works using ENMO approaches,
it can be noticed that our value for 〈RX−He〉 is quite close to
that obtained in Ref. 61 using the APMO-MP2 method (see
Table IV). More significant differences are found, however, by
comparing the protonic density distribution from the present
work (see the bottom panel of Fig. 6) and that obtained using
the NEO-XCHF2 method (see Fig. 1 from Ref. 49). Thus, the
inclusion of the electron-nuclear correlation with the NEO-
XCHF2 approach leads to a higher degree of delocalization
for the protonic densities, as discussed in previous works for
the same system.49, 61 On the contrary, as shown in the bottom
panel of Fig. 6, nuclear density distributions at the equilib-
rium geometry obtained with the electrons described at HF
and CCSD levels are almost indistinguishable. The equilib-
rium geometry itself, however, is affected by the nuclear re-
sponse to the electronic correlation. This is clearly reflected in
the isotope dependence of the differences between the 〈RHe-X〉
expectation values obtained at HF and CCSD(T) levels of
theory, as shown in Table IV (�〈RHe-X〉 values). Thus, for
protium, the enlargement of the average He–H distance at
CCSD(T) level is about twice as larger than for tritium. The
nuclear response to the electronic correlation is thus more pro-
nounced for the lightest isotope, as expected.

C. Isotopomers of molecular hydrogen: Prototype
model systems

The isotopomers of molecular hydrogen are prototype
model systems to test the robustness of ENMO approaches
and computational implementations43, 60 by virtue of their
relative simplicity. The highly accurate non-BO calculations
on these systems have been carried out by Adamowicz
and collaborators88–91 using an internal rotationally invari-
ant molecular Hamiltonian and explicitly correlated GTFs,
and including relativistic corrections to the resulting energies.
These works thus provide reference values that can be used to
test the accuracy of our results.

We have performed ENMO calculations applying a FCI
(HF) treatment for the electrons (nuclei) of H2, HD, HT,
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TABLE V. Average internuclear distances 〈Rn−n〉 (in Å) obtained for molec-
ular hydrogen and its isotopomers.

HF:HFa HF:FCIb Non-BO Experimentalc

H2 0.7765 0.7628 0.7666d 0.7511
HD 0.7698 0.7602 0.7632e 0.7498
HT 0.7668 0.7599 0.7493
D2 0.7632 0.7598 0.7591f 0.7484
DT 0.7603 0.7586 0.7476
T2 0.7574 0.7585 0.7559g 0.7469

aResults using the HF approximations for both electrons and nuclei from Ref. 60.
bResults obtained in this work at HF (FCI) level of theory for the nuclei (the electrons).
cValues determined from experimental data.92

dReference 88.
eReference 89.
fReference 90.
gReference 91.

D2, DT, and T2. The nuclear GTFs were obtained us-
ing an even-tempered procedure, as outlined in the case
of the [He–H–He]+ complex above. Specifically, we em-
ployed a 5spd/AVQZ basis set for nuclei/electrons. Table V
presents the average internuclear distances 〈Rn−n〉 in Å.
Experimental,92 high accurate non-BO results from Adamow-
icz and collaborators,88–91 and ENMO results using a HF ap-
proach (referred to as HF:HF) for both electrons and nuclei
with the APMO code60 are also displayed. Electronic and nu-
clear density contours of the HT isotopomer are shown in
Figure 7.

By comparing the average 〈Rn−n〉 values for the different
isotopes, both experimental and obtained from highly accu-
rate non-BO calculations, it is clear that the heavier the nu-
clear mass, the shorter the average internuclear distance. This
can be understood by considering that the widest amplitude
motion, accomplished by the lightest nuclei (i.e., protons), is
associated with the highest delocalized nuclear density (see
also Figure 7). This trend is well reproduced by both ENMO
computations, while the inclusion of the electronic correla-
tion through the FCI approach quantitatively improves the
average 〈Rn−n〉 values, as compared to those obtained with
highly accurate non-BO methods,88–91 and estimated from ex-
perimental measurements.92 On the other hand, the incorpo-
ration of electronic correlation through BO-based FCI calcu-
lations causes an increase of the H–H distance from 0.7326
and 0.7419 Å, indicating that the differences between HF:HF
and HF:FCI results with the ENMO approach arise not only
from the electronic correlation but also from the correspond-
ing nuclear response. As in the helium dimer case, nuclear
relaxation energies reach significant values at short internu-
clear distances only (see Table III), inducing smaller values
of the 〈Rn−n〉 when electronic correlation effects are included.
As expected, the shortening of the average 〈Rn−n〉 distances
becomes more marked as the isotope mass decreases (see
Table V). The isotope dependence of the response to the elec-
tronic correlation is also clearly apparent by comparing the
electronic densities obtained at CCSD(T) and HF levels of
theory (see Figure 7): the differences between CCSD(T) (red
lines) and HF (grey lines) density contours are more pro-
nounced around the lightest quantum nucleus, becoming al-
most indistinguishable at the infinite nuclear limit. This shows

FIG. 7. Contour plots of the electronic (highlighted in red) and nuclear (high-
lighted in blue) densities on a plane containing the internuclear axis (in Å
units). Electronic density distributions obtained at HF level of theory (grey
color) have been superimposed. (Upper panel) molecular HT. (Lower panel)
H2 at the infinite nuclear limit for one of the hydrogen nuclei (denoted as
∞H2). Adjacent contours are separated by 0.03 a.u.

the importance of including the electronic correlation effects
in the quantum treatment of the lightest nuclei.

Focusing on the electronic densities shown in Figure 7
for molecular HT, it can be noticed that the electronic cloud
around the lightest isotope becomes more dispersed. On a
contrary, the electronic charge tends to concentrate more at
nuclear-rich regions as the isotope mass increases. This is
further clarified in the infinite-nuclear mass limit for one of
the hydrogen atoms (see the bottom panel of Figure 7). As
discussed above for the helium dimer, this can be explained
by comparing bare and dressed e-n Coulomb interactions
in Figure 2: the bare Coulomb interaction, corresponding to
the infinite-nuclear mass limit, is capable of attracting more
electronic density into the nucleus position. Naturally, this is
reflected in molecular dipole moment μ values. This prop-
erty has been experimentally determined for heteronuclear
HD by Nelson and Tabisz,93 providing a value in the range
0.8–1.0 mD. This value is overestimated by a factor of 28 by
our HF:FCI calculations which is similar to factor of 30 ob-
tained from earlier HF:HF calculations.60 As extensively dis-
cussed by Ishimoto et al.,43 the inclusion of electron-nuclear
correlation is very important to obtain μ values in good agree-
ment with the experimental measurements. In fact, by re-
sorting to the FCI fully variational MO method (see Sec. I),
they provided a value of the HD dipole moment of 0.85 mD
in excellent agreement with the experimental measurements.
Similar to the [He-H-He]+ system, electron-nuclear correla-
tion effects result in more delocalized nuclear density distri-
butions. Therefore, the electronic density becomes even more
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dispersed floating out from the classical nuclei positions and
providing smaller μ values. Accurate results have been also
given by Adamowicz and collaborators in Ref. 17 (for exam-
ple, μ = 0.83 mD for HD). The nuclear mass dependence of
these values is already qualitatively captured in our calcula-
tions (μ(HT) > μ(HD) > μ(DT)). However, the poor quan-
titative agreement for the μ values indicates the importance
of adopting higher levels of theory to describe this property.
As already mentioned, the separation of the center-of-mass
motion can be emulated by freezing the position of one nu-
cleus and replacing the mass of the second nucleus by the
molecular reduced mass. This numerical test has been car-
ried out for the HD molecule resulting in the lowering of
the nuclear kinetic energy by more than 0.02 a.u. Still, the
electron-nuclear correlation must be included to provide more
accurate values of diatomic non-BO energies. Moreover, it
should be stressed that at present the APMO-MOLPRO inter-
face allows to handle only maximum spin states for the nuclei
with non-zero spin. Therefore, our results on H2 correspond
to the ortho-H2 spin isomer. The experimental measurements,
however, usually involve a mixture of ortho- and para-H2 spin
isomers.

IV. CONCLUDING REMARKS AND FUTURE
PROSPECTS

We report the application of the APMO-MOLPRO inter-
face to three model systems. This computational implemen-
tation allows to incorporate nuclear quantum effects at HF
level into highly correlated electronic structure calculations
carried out with the MOLPRO package.69 On the other hand,
the APMO-MOLPRO interface extends the capabilities of the
APMO code by allowing not only to include the electronic cor-
relation but also an efficient optimization of either the nuclear
basis set or the molecular geometry. The APMO-MOLPRO

implementation is designed in a way that MOLPRO calcula-
tions can be performed with an internal call to the APMO

code.
To model a weakly interacting system, we have chosen an

effective potential for the dimer 4He2 with the bare electronic-
nuclear Coulomb interaction replaced by a dressed interac-
tion, substituting the point charges of classical nuclei by
corresponding finite nuclear charge distributions. Our results
indicate that the requirements for the electronic basis set size
and the many-particle correlation treatment become less de-
manding when electron and nuclei are described simultane-
ously. This result is interpreted on the basis of ab initio calcu-
lations using floating electronic orbitals, and the relaxation of
the cusp conditions upon replacing the bare Coulomb interac-
tion by that obtained after including finite-mass effects. In a
future, the distributed Gaussian functions method of Hamilton
and Light82 could be adapted to deal with vibrational ground
and excited states of weakly bound systems in ENMO-type
implementations.

As a second test case, the APMO-MOLPRO interface
has been applied to the [He–H–He]+ molecule and its iso-
topomers. As reported in previous ENMO studies on the same
system,61 the de-localization degree of the nuclear density is
found to be strongly correlated with the nuclear mass. Thus,

proton density is isotropic and much more delocalized com-
pared to its deuteron and tritium counterparts. Similarly, the
occurrence of anisotropic density shapes for deuteron and tri-
tium is explained on the basis of their lower zero point en-
ergies and thus closer following the classical potential en-
ergy surface. On the other hand, the comparison with NEO-
XCHF2 results from Hammes-Schiffer and collaborators49

highlights the importance of the electron-nuclear correlation
resulting in more delocalized nuclear densities.

A third application considers molecular hydrogen and
isotopomers. Although our results are consistent with pre-
vious works using the ENMO approach at either lower or
higher levels of theory, they clearly show that the inclusion
of nuclear-electron correlation effects is necessary. The com-
parison of HF electronic densities with those calculated at
CCSD(T) level of theory for the different isotopomers high-
lights the importance of including electronic correlation ef-
fects in the quantum treatment of the lightest nuclei. Numeri-
cal tests, including the separation of the nuclear mass motion,
lead to significant total energy differences.

As a future extension, the trans-correlated Hamiltonian
approach84 can be implemented as it can be formulated to in-
clude inter-particle short-range correlation through Hartree-
like equations. On the other hand, to describe excited states
for the nuclear wave-function, the simple version of the
frozen local hole approximation (FLHA) developed by Pahl
and Birkenheuer94 could be used, with electrons replaced
by protons. This FLHA method has been already imple-
mented in the development version of the MOLPRO package.95

Since proton density distributions are rather localized as com-
pared with electronic densities, the most obvious advantage
of such approach is that only a few self-consistent field
(SCF) and non-orthogonal CI calculations would be probably
necessary.

Altogether, our results suggest that the simultaneous
treatment of the lightest nuclei and electrons in weakly bound
systems could provide better convergence with respect to
the level of theory. However, it is very important to ad-
dress the problems associated with: (1) the non-separation
of the center-of-mass; (2) the insufficient flexibility of the
nuclear basis set; and (3) the non-inclusion of the electron-
nuclear correlation before the ENMO-type implementation
can be used to accurately represent the molecular energy lev-
els. These enhancements along with the implementation of h-
and i-type functions for the electrons will allow us to perform
more rigorous analysis of the electronic and total energies
convergence with respect to the basis set size. Our numeri-
cal tests for diatomic molecules indicate that the ENMO ap-
proach could be reformulated in terms of a translationally in-
variant molecular Hamiltonian (see, for example, Ref. 96). To
account for wide amplitude intramolecular quantum modes,
the implementation of the distributed Gaussian method that
has been successfully applied to post-BO studies of 4He2 and
4He3,83 is envisaged. The most appealing advantage of this
method is that it preserves the analogies with standard elec-
tronic structure implementations through the addition of mid-
bond functions, enabling an extension to account also for ex-
cited vibrational states. Work along these lines is currently in
progress.
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