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Abstract—This paper reviews the application of evolutionary 
computation techniques to analog, mixed-signal and radio-
frequency design problems. Design needs, limitations of existing 
approaches and open challenges are pointed out. 

I. INTRODUCTION 

Strategies to automate sizing of analog, mixed-signal and 
radio-frequency (AMS/RF) circuits have usually followed 
either a knowledge-based approach or an optimization-based 
approach. These strategies aim at finding the optimal sizing 
of the problem’s variables that satisfies imposed constraints 
and maximize/minimize some objective functions, if any.  

Knowledge-based approaches suffer from well-known 
limitations. Therefore, optimization-based approaches have 
become dominant for the past 15 years [1]. It is, however, 
important to note that the addition of AMS/RF design 
knowledge significantly enhances the optimization results by 
improving the design space exploration. 

Optimization-based approaches formulate the design 
problem as a constrained optimization problem: 
minimize/maximize some objective functions (e.g., minimize 
power consumption, minimize area), subject to some 
constraints (e.g., slew rate larger than a certain value). This 
can be formulated as follows: 
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objective functions (i.e., performance characteristics) to be 
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 are the inequality 
and equality constraints, respectively, that delimit the feasible 
region. Vector x
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corresponds to the p design variables, and 

Lx
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 and Ux
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 contain their lower and upper bounds, 
respectively.  If k=1, then the problem is a single-objective 
optimization problem; otherwise it is a multi-objective 
optimization problem. 

Optimization algorithms can be classified into two major 
classes: exploration (global) and exploitation (local) 
algorithms. Exploitation approaches, which can be 
deterministic or not, are appropriate for fine-tuning of 
designs, but not for sizing starting from scratch. On the other 
hand, exploration algorithms are used in global sizing. Most 
famous ones are heuristics, and, probably, the most widely 
used heuristics in AMS/RF design have been genetic 
algorithms, simulated annealing and modified versions of 
them (e.g. [2],[3]).  

In this paper, we will review some evolutionary 
computation (EC) techniques and their application to 
AMS/RF circuit design problems. Basic techniques are 
referenced in Section II and special attention is given to 
multi-objective problems in Section III. AMS/RF design 
problems are usually heavily constrained problems; hence, 
constraint handling mechanisms are addressed in Section IV 
and some current challenges are discussed in Section V.  

II. BASIC EVOLUTIONARY COMPUTATION 
TECHNIQUES 

Evolutionary Computation (EC) is a very active research 
area of computer science [4]. An important class of EC 
algorithms is Evolutionary Algorithms (EA), which are 
inspired from metaphors of biological processes. EAs 
encompass numerous approaches currently used in 
optimization, such as genetic algorithms, evolution strategies, 
etc. In short, an EA is a stochastic iterative procedure for 
generating tentative solutions for an optimization problem. 
The algorithm handles a set of individuals (candidate 
solutions), whose fitness (quality) determines the probability 
that they will be kept to be used as seeds for generating other 
individuals [4].  This work has been supported in part by the TIC-2532 Project, funded by
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EAs have been successfully applied to solve circuit 
design problems [2], [5]-[9]. Despite this fact, the continuous 
evolution of technology imposes hard constraints on such 
algorithms which lead to many real difficulties, such as 
prohibitive evaluation cost (related with the size, complexity 
and fidelity of the circuit model), a large number of function 
evaluations, a large number of parameters to handle, etc.  

Another class of nature-inspired EC algorithms, recently 
proposed, is swarm intelligence algorithms. They focus on 
animal behavior and insect conduct in order to develop some 
metaheuristics which can mimic their problem-solution 
abilities, namely Ant Colony (AC) [10], Artificial Bee 
Colony (ABC) [11], Wasp Nets [11] and Particle Swarm 
Optimization (PSO) [12]. The ability of these algorithms to 
solve AMS/RF design problems is also being investigated. 

It is to be mentioned that some heuristic-based 
mathematical approaches have also been used to deal with 
AMS/RF optimization problems, such as local search [13], 
simulated annealing [14], and scatter search [15].  

Traditionally, global optimization algorithms have been 
single-objective, i.e., they try to minimize/maximize a single 
objective function. More recently, algorithms specifically 
devoted to solve multi-objective optimization problems have 
become object of intensive research. Actually, solving real 
optimization problems, i.e., obtaining ‘good’ solutions in 
reasonable computation time while efficiently allocating 
computing resources, still presents numerous open 
challenges. 

III. MULTI-OBJECTIVE OPTIMIZATION 

Traditionally, multi-objective design problems have been 
addressed by applying a weighted sum of the objective 
functions, hence, transforming the multi-objective problem 
into a single-objective one. Then, any single-objective 
optimization technique can be applied. The weights of the 
different objectives intend to reflect the priority that the 
designer gives to some objectives over others. A first 
problem is that the weights assigned to the objectives do not 
necessarily map to the results obtained for each of them. But 
the major drawback is that it goes against the fundamental 
nature of multi-objective optimization. The intrinsic goal of 
multi-objective optimization is to provide the best trade-offs 
among the defined objectives, in the form of the so-called 
Pareto-optimal fronts (POF) [16]. To understand this concept, 
a few definitions are required. 
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 is said to be non-dominated if there is no other 

design that dominates it. The non-dominated set of the entire 
feasible performance space is known as the Pareto-optimal 
front. The concepts of dominance and Pareto-optimal front 

                                                 
1  This formulation is valid for minimization problems. A simple change 

of sign applies for maximization. 

are illustrated in Figure 1 for a two-dimensional performance 
space. 

In fact, the weighted sum approach above corresponds to 
obtaining a single point of the POF in Figure 1. In principle, 
it is possible to generate the POF by repetitively applying the 
same approach with different values of the weights. One 
problem with this method is that it cannot provide solutions 
in possible non-convex parts of the Pareto front because a 
convex weighted sum of objectives converges only to the 
convex parts of the Front. For instance, for k=2, the 
optimization problem in (1) is transformed as follows: 

1 1 2 2( ) ( ) ( )eqf x f x f x  
  

 (2)

As illustrated in Figure 2a, Equation (2) represents a 
straight line in the plane 1 2( , )f f . Thus minimizing eqf  is 

nothing but minimizing the constant c of equation (3): 
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It is clear, as it is shown in Figure 2b, that varying the 
weighting coefficients 1 2( , )   cannot allow sweeping the 
entire Pareto front. Besides, Figure 2c shows how much, in 
some cases, obtained solutions are sensitive to a small 
variation of these weightings [5]. Moreover, the weighting 
approach does not ensure, a priori, a homogeneous 
distribution of designs over the Pareto front. That is, a 
uniform assignment of weights does not mean that the Pareto 
front will be uniformly sampled. More importantly, as the 
number of samples increases, the approach becomes less 
efficient than the application of a truly multi-objective 
optimization algorithm. 

In most cases, the POF generation problem in AMS/RF 
circuits has been addressed by means of evolutionary 
computation algorithms [2],[5]-[7]. An exception is the 
approach reported in [17], that makes use of the normal 
boundary intersection method. The biggest drawback of this 
method is that it might get stuck at local minima due to the 
optimization algorithms applied. An improvement, reported 
in [18], is to try to escape from local minima thanks to the 
exchange of solutions between the optimization algorithms 
that are executed in parallel.  

 
Figure 1. Illustrating the Pareto-optimal front concept. 



IV. CONSTRAINT HANDLING 

AMS/RF design problems are usually heavily constrained 
optimization problems. The quality of the final results 
strongly depends on the mechanism used to handle 
constraints. Several approaches have been reported in the 
literature. 

A first approach is to simply reject candidate individuals 
that do not meet the constraints. Though its implementation is 
very simple, it, however, exhibits an important drawback. On 
one hand, increasingly demanding performance specifications 
impose severe constraints to circuit sizing methods. On the 
other hand, the design variable space has usually a large 
number of dimensions. It infers from these two trends that the 
feasible design space can represent only a small region of the 
complete design space. It may therefore happen that when the 
initial population is sampled in the design space, no 
individual is feasible and, hence, the algorithm gets stuck. 

Another widely used alternative is the static penalty 
function (PF) approach. In this method, the constrained 
optimization problem is transformed into an unconstrained 
one by minimizing the following function: 

'( ) ( ) ( , )f x f x W d x F    (4) 

where ( , )d x F  is a distance metric of the infeasible point to 
the feasible region F. It may simply be zero if no constraint 
violation occurs and is a positive number, otherwise. The 
definition of this distance metric includes the penalty 
coefficients that are used to stress the importance of a 
particular constraint violation over others. W is a weight 
coefficient to set a global importance of the constraints with 
respect to the objective functions. 

A major problem is that the results are sensitive to the 
values of the penalty coefficients and there is no general rule 
for setting them. A possible solution to palliate this problem 
has been published in [8], where the optimization problem is 
transformed into the minimization of an augmented 

Lagrangian and a competitive co-evolution process 
automatically adapts the Lagrange multipliers. 

One of the most effective techniques reported so far is the 
selection-based approach [19]. In this approach, the selection 
rules for a couple of candidate solutions in the population are: 

1. Given two infeasible solutions, select the solution with 
smallest constraint violation,  

2. If one solution is feasible and the other is not, select the 
feasible solution,  

3. Given two feasible solutions, select that with best 
objective function value.  

Precursor of this technique was the constraint handling 
mechanism in [3], essentially based on the same principle, 
although intended to compare a parent and a child solution, 
as the optimization algorithm was derived from simulated 
annealing. The selection mechanism is based on using a 
different cost function sign at the feasible and infeasible 
region.  

The static penalty function approach can be easily 
extended to the multi-objective case by just adding a 
weighted sum of the objective function values to the fitness 
function. However, this approach suffers from the same 
drawbacks already discussed for the single-objective case. 

The selection-based approach can be easily extended to 
the multi-objective case by just using a dominance 
comparison criterion instead of the objective function 
comparison. Candidate solutions obey the same selection 
aforementioned rules (the case of a single-objective 
problem), but when two solutions are feasible, respective 
objectives have to be compared: 

1. if one of them dominates the other, choose the non-
dominated one; 

2. if no solution dominates each other, choose one of them 
randomly.  

V. CHALLENGES 

Unlike the simple mathematical functions that are usually 
posed as benchmarks in the EC field, the fitness function 
evaluation in AMS/RF design problems is comparatively 
much more expensive, especially if a high level of accuracy 
is desired. Moreover, many design automation approaches are 
dealing with simulation-based optimization. Therefore, the 
investigation of more efficient algorithms that can provide a 
better trade-off of exploration (global search) and 
exploitation (local search) with fewer evaluations of the 
fitness function remains an important challenge. 

Besides the constraint handling challenge already 
discussed, the efficient and accurate computation of the 
Pareto front constitutes a major challenge. Regarding 
constraints, and although problems of penalty function 
approaches are avoided, the calculation of the smallest 
constraint violation when both solutions are infeasible is still 
built as a weighted sum of the violation of each constraint. 
Experiments show that the convergence and extension of the 
POF may be heavily affected by the weights assigned to the 
constraint violations.  
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Figure 2. The weighting approach: principle and drawbacks. 



An additional problem appears, especially in modern deep 
submicron technologies, due to the increasing random and 
systematic process variations. Process parameter variations 
map into variations of constraints and objectives, affecting 
the yield of manufactured circuits [1]. This problem may 
become especially dangerous in multi-objective optimization 
problems, because the effort of optimization algorithms to 
improve each objective as much as possible may severely 
increase the impact that process parameter variances pose on 
the objectives. That is, the obtained POF may be very good at 
the nominal design point but such point may be at the tail of 
the corresponding probability density function when 
parametric variations are considered. Therefore, 
incorporation of variability information in the optimization 
process becomes increasingly important [20]-[22]. Again, 
variability and yield assessment is a costly process and their 
incorporation must consider appropriate trade-offs of 
accuracy/efficiency on the fitness evaluation side (e.g., from 
the high-accuracy, low-efficiency of Montecarlo-based 
methods to the low-accuracy, high-efficiency of regression-
based methods) and more efficient search procedures on the 
optimization engine side. 

In order to compare performances of different multi-
objective optimization algorithms or even compare the sets of 
Pareto points from two independent runs of the same 
algorithm (e.g., with different algorithm parameter settings), 
appropriate POF quality evaluation metrics are needed [16].  
POF evaluation and comparison criteria, which include 
different features of the POF, have been investigated 
extensively in the evolutionary computation (EC) field [16]. 
However, not all POF quality metrics seem to be suitable to 
analog design problems, and certainly not all needs of multi-
objective analog synthesis are appropriately represented by 
the available metrics in the EC literature. Evaluation metrics 
basically address convergence and diversity. Most 
convergence metrics use the so-called true POF. Unlike 
mathematical benchmarks commonly used, the true POF is 
unknown in AMS/RF design problems. Moreover, the extent 
or a controlled non-uniformity of the POF may be important, 
aspects that have received little attention in the EC literature 
[23]. 

Most practical circuits are too complex to consider their 
design following a flat approach. Therefore, they require the 
application of hierarchical decomposition and design 
techniques. An important research area is the model of 
application of multi-objective optimization approaches in 
hierarchical problems. A model of application is the so-called 
multi-objective bottom-up optimization approach [9], in 
which the POF of the different blocks are composed bottom-
up across the different hierarchical levels. Some conditions 
must be met for such composition and a number of 
interconnection constraints arise. However, the POFs can 
also be used as feasibility hyper-surfaces for an optimal top-
down hierarchical design approach. 
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