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Motivation dynamics for autonomous composition of navigation tasks
Paul B. Reverdy, Vasileios Vasilopoulos, and Daniel E. Koditschek

Abstract—We physically demonstrate a reactive sensorimotor
architecture for mobile robots whose behaviors are generated
by motivation dynamics. Motivation dynamics uses a continuous
dynamical system to reactively compose low-level control vector
fields using valuation functions which capture the potentially
competing influences of external stimuli relative to the system’s
own internal state. We show that motivation dynamics 1) nat-
urally accommodates external stimuli through standard signal
processing tools, and 2) can effectively encode a repetitive higher-
level task by composing several low-level controllers to achieve
a limit cycle in which the robot repeatedly navigates towards
two alternatively valuable goal locations in a commensurately
alternating order. We show that these behaviors are robust to
perturbations including imperfect models of robot kinematics,
sensor noise, and disturbances resulting from the need to traverse
difficult terrain. We argue that motivation dynamics can provide
a useful alternative to controllers based on hybrid automata in
situations where the control operates at a low level close to the
physical hardware.

I. INTRODUCTION

This paper considers the problem of managing the execu-
tion of competing tasks in the setting of robot navigation.
Specifically, we demonstrate the applicability and robustness
of a dynamical systems approach to task management. An
established approach to this problem uses a finite automaton
to switch among various control vector fields in a discrete
manner, yielding a hybrid control system. Constructing such
an automaton requires designing a representation of the robot
and its environment in terms of discrete symbols and mapping
these symbols to low-level control actions. The discretization-
based approach can fail for at least three reasons: first, the
discrete symbols may be difficult to define (e.g., it may not be
clear where to set thresholds that define symbol boundaries);
second, the discretization is inherently rigid and dependent on
a model of the robot and its environment, which will inevitably
be incomplete; and third, it may be difficult to determine the
discrete state of the system, particularly in situations where
sensor data is corrupted by significant noise.

In contrast, our approach maintains a continuous internal
representation of the control vector field selection process. The
continuous internal representation avoids the need to explicitly
define a discrete symbolic state and results in a system that can
be considered a continuous relaxation of the hybrid system,
which can encode a much richer set of control actions. The
continuous nature of our approach naturally accommodates sit-
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uations where the state of an equivalent discrete representation
would be difficult to determine.

Our approach is inspired by biological decision-making
mechanisms and admits formal analysis and performance guar-
antees. We aim to encode and control internal state variables
that drive the robot to execute one or another of its tasks
in a manner sensitive to both their internally-perceived value
and externally-stimulated urgency. In other words, we seek
to develop a reactive method that is capable of aspects of
planning and of responding to external stimuli.

The focus of this paper is thus two-fold. First, we present
our recently-developed dynamical systems framework, which
we term motivation dynamics [1], in the context of concrete
problems in mobile robotics. We argue that this framework
can be a useful alternative to hybrid control systems in
situations where the control operates at a low level close to
the physical hardware. Second, we show two examples of
how a motivation dynamics controller can be instantiated to
produce desired behavior: one a stimulus response where the
robot chooses among navigation behaviors in response to a
noisy environmental stimulus, and another a stable recurrent
behavior corresponding to persistent patrol of two locations.

A. Motivation

In this work, we demonstrate the effectiveness of our
recently-developed motivation dynamics framework [1] in
achieving reactive and recurrent patrol behaviors. The moti-
vation dynamics framework is inspired by work in the neural
and ecological sciences that aims to understand how organisms
make decisions. A key feature of the decisions such organisms
have evolved to make is that they are embodied, i.e., they take
place in a physical context and decisions are made in order
to take physical actions. The dynamics associated with taking
physical actions then place important constraints on the types
of actions that can be considered.

There is a large and growing body of evidence that for
many types of embodied decisions, humans and other living
organisms perform decision making by considering many
possible actions in parallel [2]; furthermore there is evidence
[3] that in certain contexts the decision to select one of the
possible actions is made in a continuous fashion, where the
human subject’s physical dynamics smoothly transition from
performing one action to another. A common hypothesis in
the literature suggests that such a parallel operation mecha-
nism improves performance by allowing agents to anticipate
required actions and change their action choice if new sensory
data arrives [4], [5], [6].

Inspired by these findings, we take a reactive control ap-
proach and encode individual robot actions in control vector
fields Fi, i ∈ {1, . . . , N}. A standard method to compose
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these actions would be to select one action at a time using a
discrete automaton, thereby producing a hybrid control system.
In contrast, our method composes actions by taking convex
combinations of the corresponding vector fields and varying
the combination coefficients as needed to achieve high-level
behaviors. Concretely, we control the robot state x with a
composite vector field

F (x, t) =

N∑
i=1

mi(t)Fi(x),

where each mi ∈ [0, 1] and m ∈ ∆N , where ∆N is the N -
simplex defined by

∆N =

{
x ∈ RN+1 : xi ≥ 0,

N+1∑
i=1

xi = 1

}
.

We call m the motivation state of the agent, and the
component mi(t), i ∈ {1, . . . , N} represents the fraction of
attention which the agent places on task i at time t; component
mN+1 represents the motivation not to perform any task.
Encoding the action selection in this way can be thought of
as a convex relaxation of a discrete selection process; in the
discrete process the agent’s discrete actions would correspond
to the vertices of the simplex. Using a continuous motivation
state m allows a system to encode a much richer set of
behaviors than one could using a discrete switching variable.
As an example, consider a scenario where the robot knows it
must perform one of two tasks, but is currently unsure which
one is correct. The robot can anticipate the need to perform
both tasks by setting both motivations to nonzero values and
then smoothly shifting weight to the appropriate motivation as
the identity of the correct task becomes apparent.

In cases where the system being controlled is fundamentally
discrete, e.g., where the control actions correspond to selecting
one of a finite number of gear ratios, motivation dynamics
would not be appropriate, because a convex combination of
these control actions is not meaningful. However, motivation
dynamics is applicable to the broad range of systems where
hybrid compositional control approaches have been used,
because the underlying continuous controllers are expressed
in terms of vector fields which can be meaningfully combined
using convex combinations.

In the context of a recurrent patrol mission, we wish
the robot to exhibit a default behavior consisting of cyclic
performance of a sequence of equally-valued tasks, i.e., visits
to a sequence of waypoints. When external stimuli, e.g., sensor
data indicating the presence of an anomaly, appear, we wish
the robot to interrupt its default behavior and engage in some
other task whose value it now perceives to be higher than that
of the default behavior. We show how this can be achieved by
extending the framework from [1] to incorporate an interface
from sensor data to the system’s value state.

The control system that results from this extension of [1] is
capable of smoothly shifting its motivation among its default
tasks in nominal conditions and to other tasks as external
sensor data dictate. We implement and execute these robust,
reactive motivation dynamics on physical machines and we

report on indoor and outdoor experiments with both wheeled
and legged robots.
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Fig. 1: Physical setups with Minitaur (top) in an outdoor
experiment and Turtlebot (bottom) in an indoor experiment,
equipped with a LIDAR for obstacle avoidance.

B. Prior work

In a recent theoretical work [1], we have developed a
dynamical system that uses a motivation state m(t) to encode
its decision of which navigation task to perform at time t.
Our dynamical system associates a positive value vi to each
task i and endows m with dynamics (3) studied in [7]. The
state vi(t) encodes the degree to which the agent values task
i at time t, and the dynamics of m are such that the system
will tend to place the majority of its attention on the highest-
value task. It can be shown formally [8], [9] that the dynamics
(3) embed an unfolded pitchfork bifurcation with the task
values vi serving as unfolding parameters. The value state also
provides a natural interface for injecting external stimuli using
standard signal processing tools such as likelihood functions.
The components of m(t) are then used as weights for the
individual task vector fields Fi and the system navigates using
the weighted sum of the tasks.

As reported in [1], the motivation-based control system
exhibits a limit cycle under appropriate conditions. The more
relevant result for applications is given by Theorem 1 below,
which states that there is a single control parameter to tune,
and that as long as the value of this parameter is sufficiently
high, the dynamics exhibit a stable limit cycle in which the
robot visits its goal states in a cyclically-repeating order.

This work is part of a project that aims to develop a contin-
uous dynamical systems approach for constructing switching
protocols for robotic mission planning. It should be viewed as
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bridging the literatures on hybrid switching [10], [11], [12],
[13], [14] and vector field or “blending”-based control [15],
[16], [17] and is philosophically in the tradition of vector
field planning, e.g., [18]. We argue that such an approach
could facilitate the development of robustly autonomous robots
capable of flexibly prioritizing their various low-level tasks in
reaction to the environment, in the same way as vector field
planning has proven effective in low-level motion control [19].

A key design problem for implementing a controller based
on either the standard hybrid or our motivation dynamics
framework is synthesizing a switching protocol that guarantees
the controlled system will achieve the desired behavior. For the
standard hybrid control approach, there has been significant
work developing synthesis techniques that take behavioral
specifications expressed in terms of linear-temporal logic and
automatically construct hybrid controllers that are guaranteed
to achieve behavior that satisfies the specification [20], [21].
Developing analogous general synthesis tools for motivation
dynamics is an open problem. The previous theoretical result
[1] is a first step towards solving this problem, as it provides a
guarantee of correct behavior for motivation dynamics in the
context of a two-point persistent patrol.

C. Contributions

The main contribution of this paper is the first physical
implementation of the motivation dynamics system developed
and first studied in [1]. First, we show how to integrate external
stimuli by properly defining the value state of the motivation
system, develop Theorem 2 to bound the performance of the
resulting system, and demonstrate that the resulting robot
control system is able to accurately and quickly respond to
noisy stimuli. Second, we consider the limit cycle guaranteed
by Theorem 1 and demonstrate its existence in several different
robotic systems, both indoors and outdoors, and with and
without obstacles. As mentioned above, this behavior would
be referred to as a recurrent patrol or coverage mission in the
logic-based synthesis literature.

The empirical results go beyond the previously-reported the-
oretical results from [1] in several ways. First, the integration
of external stimuli, mentioned only in passing in [1], is now
instantiated in a working physical implementation. Second, the
formal results from [1], including Theorem 1, only address the
case where the robot’s workspace is obstacle free. Here, we
show empirically that the same controller can produce a limit
cycle even in the presence of obstacles.

The remainder of the paper is structured as follows. Section
II presents the motivation dynamics system. Section III sum-
marizes the formal results from [1] that characterize the limit
cycle behavior. Section IV shows how the control strategy can
be modified to integrate external stimuli. Section V describes
the physical implementation of the controller on mobile robots,
Section VI presents our empirical results, and Section VII
concludes with our main observations.

II. MOTIVATION DYNAMICS

In this section, we specify the parts of our motivation
dynamics control system. A block diagram of the system is

shown as Figure 2. In Section III we show that particular
choices of fv, fm, and F result in a controller that produces
a recurrent patrol behavior. We address the integration of
external stimuli (i.e., the input u) in Section IV. For the
remainder of the paper we assume that we have N = 2 tasks.
The following sections follow the blocks of Figure 2 from
bottom to top.

Point robot dynamics

Motivation dynamics

Value dynamics

ẋ = mTF (x)
<latexit sha1_base64="xA7Oqqw9F+r5efs7gZOh6jD+Omw=">AAACFnicbVDLSgMxFM34rPU16tJNsAh1YZmpgm6UgiAuK/QF7VgyaaYNzWSGJCOWYb7Cjb/ixoUibsWdf2OmHVFbDwROzrk3ufe4IaNSWdanMTe/sLi0nFvJr66tb2yaW9sNGUQCkzoOWCBaLpKEUU7qiipGWqEgyHcZabrDi9Rv3hIhacBrahQSx0d9Tj2KkdJS1zzs9AIVd3ykBq4X3yUJPIPfNz+5qcHL4o950DULVskaA84SOyMFkKHaNT/0+zjyCVeYISnbthUqJ0ZCUcxIku9EkoQID1GftDXlyCfSicdrJXBfKz3oBUIfruBY/d0RI1/Kke/qynREOe2l4n9eO1LeqRNTHkaKcDz5yIsYVAFMM4I9KghWbKQJwoLqWSEeIIGw0knmdQj29MqzpFEu2Uel8vVxoXKexZEDu2APFIENTkAFXIEqqAMM7sEjeAYvxoPxZLwab5PSOSPr2QF/YLx/AZsMn50=</latexit>

ṁ = fm(m,v)
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v̇ = fv(v,x,u)
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u = (v,!) = fa(ẋ)
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Fig. 2: Block diagram of the motivation dynamics system. The
unicycle inputs u are computed from the desired point robot
dynamics ẋ via an anchoring relationship fa; u represents
external sensor input. The functions defining ṁ, v̇, and ẋ are
given by Equations (3), (4), and (2), respectively.

A. Kinematic unicycle model
We consider first a vehicle with fully-actuated first-order

dynamics: ẋ = u, where x ∈ D ⊆ R2, u ∈ R2. We develop
our vector field planner for the fully-actuated case and then,
for implementation purposes, map the planner into a version
that works with a vehicle modeled as a kinematic unicycle,
i.e., with dynamics

ẋ1 = ν cos θ

ẋ2 = ν sin θ (1)

θ̇ = ω,

where u = (ν, ω) ∈ R2 are the control inputs given in terms of
fore-aft speed and turning rate, respectively. This component
is depicted in the bottom panel of Figure 2.

B. Point robot dynamics
The point robot dynamics consist of a set of behavior vector

fields composed into a single navigation vector field by convex
combination with weights defined by the motivation state m.
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1) Behavior vector fields: We consider navigation as a
prototypical task for our robots. In the spirit of the reactive
control formalism, we encode individual navigation tasks in
vector fields Fi : D → TD, i ∈ {1, 2} with the property that

ẋ = Fi(x) =⇒ lim
t→+∞

x(t) = x∗i .

In other words, each goal state x∗i is an attractor of the
associated vector field Fi. Furthermore we assume the ex-
istence of functions ϕi : D → R+, i ∈ {1, 2} that obey
ϕi(x

∗
i ) = 0 and increase with distance from the goal state.

The functions ϕi measure the degree to which the ith task has
been completed, and can be constructed, e.g., by normalizing
Lyapunov functions for the vector fields Fi. In the navigation
function approach [18], ϕi is the navigation function for the
ith task and Fi is its negative gradient.

Consider as a concrete example the case of navigation in
the absence of obstacles. In this case, we define the fields by
Fi(x) = −(x − x∗i ), representing proportional control, and
the functions ϕi by ϕi(x) = ‖x − x∗i ‖2, i.e., the Euclidean
distance to the goal.

2) Navigation dynamics: We then define the navigation
dynamics of the point robot as the sum of the task vector
fields Fi weighted by the motivation state m:

ẋ = fx(x,m) := m1F1(x) +m2F2(x). (2)

Recall that m ∈ ∆2 =
{
x ∈ R3 : xi ≥ 0,

∑3
i=1 xi = 1

}
, so

m takes the form m = (m1,m2, 1−m1−m2) where m1,m2 ∈
[0, 1] and m1 +m2 ≤ 1. These dynamics can be interpreted as
a convex relaxation of a hybrid system, where only one of the
two task vector fields can be activated at any given time. The
corresponding hybrid system would allow m to take values in
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, i.e., the vertices of the simplex.

In contrast to the hybrid system, the motivation dynamics
system can take any convex combination of the task vector
fields and is thus able to encode a richer set of behaviors
than would be possible using a hybrid system. For example,
consider a scenario where the robot is unsure of which task
to perform. The hybrid system would have to choose one of
the tasks or to perform neither. In contrast, the motivation
dynamics system has the flexibility to put nonzero weight on
both tasks, thereby hedging its bets until further information
arrives. This greater flexibility of behavior is one of the virtues
of the motivation dynamics approach.

C. Motivation dynamics

The dynamics of m are given by

ṁ = fm(m, v;σ) (3)

where the components of fm are given by

ṁ1 = v1mU −m1(1/v1 − v1mU + σm2)

ṁ2 = v2mU −m2(1/v2 − v2mU + σm1),

σ > 0 is a fixed parameter, and mU = 1−m1−m2 completes
the simplex ∆2. The dynamics of mU are inherited from
this relation, which implies that ṁU = −(ṁ1 + ṁ2). These

dynamics were previously studied in [7] as a model of decision
making in biological systems.

The dynamics (3) can be thought of as a dynamical soft
maximum operation which put maximum weight mi on the
task i with the highest corresponding value vi. More formally,
the dynamics (3) embeds an unfolded pitchfork bifurcation
with the task values vi serving as unfolding parameters [8],
[9]. When both task values vi are low, (3) has a single
stable equilibrium corresponding to a deadlock phenomenon
in which the system attaches little weight to either task.
As the values vi are increased, the dynamics (3) exhibit a
bifurcation which destabilizes the deadlock equilibrium and
produces equilibria that correspond to definite choices for one
task or the other. Tools from bifurcation theory [22] can be
used to analyze the details of the bifurcation, but such analysis
is outside the scope of this paper.

The dynamics (3) apply to the case of N = 2 tasks.
Extensions to the case N ≥ 2 have been considered in recent
and ongoing work, e.g., [23], [24]. In this paper, we focus on
the case N = 2 for simplicity of exposition.

D. Value dynamics

The robot maintains a value state v that encodes the robot’s
perception of the importance of its various tasks. Maintaining
an explicit representation of the task values allows task valu-
ation and selection to be decoupled, and facilitates interfacing
motivation dynamics with external information, such as the
sensors considered in Section IV. The value state v has
dynamics

v̇ = fv(v, x) + fs(t) (4)

where fv represents internal state behavior and fs represents
external stimuli. The dynamics are structured as the sum of
two functions representing our desired distinction between
internally-driven default behavior and externally-driven behav-
ior performed in response to stimuli.

For the recurrent two-point patrol, we pick fv such that the
ith value state has dynamics

ελv̇i = −(v∗ϕi(x)− vi), i ∈ {1, 2}, (5)

where v∗ > 0 is a positive gain. The parameter ελ ≥ 0
is the inverse of the proportional gain in the feedback loop
coupling ϕi to vi and can be interpreted as the time scale of
the coupling: larger values of ελ correspond to vi following
ϕi more slowly. In the limit ελ → 0, the function values ϕi
are coupled directly to vi, i.e., vi = v∗ϕi(x).

In the following section, we review conditions under which
these dynamics produce a cyclic behavior corresponding to
recurrent patrol.

III. LIMIT CYCLES

For particular choices of the system functions ϕi, Fi, and
fv , there is a finite value V ∗ such that setting the parameter
v∗ > V ∗ results in the dynamics shown in Figure 2 exhibiting
a stable limit cycle. In this section we review a result which
appears as Theorem 3 of [1] and establish the existence of the
threshold V ∗ beyond which cyclic behavior is guaranteed.
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A. Task specification

We focus on a specific beacon-homing task, where the task
functions ϕi and Fi are defined as follows. We consider a
convex, obstacle-free domain D ⊆ R2 and define

ϕi(x) = ‖x− x∗i ‖2 (6)

as the Euclidean distance to the ith goal state and

Fi(x) = −(x− x∗i ) = −∇(‖x− x∗i ‖22)/2 (7)

to be the vector field that maps each point x to the negative
of the spatial error x− x∗i .

B. Value dynamics

We specify value dynamics (4) where fs = 0 and the
components of fv are those introduced above as (5), namely

ελv̇i = −(v∗ϕi(x)− vi), i ∈ {1, 2}. (8)

The parameter ελ ≥ 0 is the inverse of the proportional gain
in the feedback loop coupling ϕi to vi. In the limit ελ → 0,
the function values ϕi are coupled directly to vi, i.e., vi =
v∗ϕi(x).

The intuition behind this particular choice of dynamics
is as follows. When the robot is far from its ith goal, ϕi
takes a positive value and vi increases towards v∗ϕi(x). This
motivates the robot to perform task i, i.e., navigate towards
the goal x∗i . At the goal, ϕi takes value zero and thus vi tends
exponentially to zero, thus encouraging the robot to shift its
motivation to other tasks.

C. Formal guarantee

Define the closed-loop system state vector z = (x,m, v) ∈
D ×∆2 × R2. The dynamics of z are given by

ż = fz(z) := (fx(x,m), fm(m,x), fv(v, x)). (9)

Now, we study the dynamics of (9) with ϕi, Fi, and fv given
by (6), (7), and (8), respectively. Theorem 3 of [1] shows that
there exists an ε > 0 such that for each ελ ∈ [0, ε), there exists
a finite V ∗ελ such that for v > V ∗ελ , the system (9) exhibits a
stable limit cycle. This is the result that we illustrate through
a physical implementation in this paper. Precisely, we have

Theorem 1. [1, Theorem 3] Accepting [1, Conjecture 20], for
σ > 6, there exists a stable limit cycle of (9) for sufficiently
small, but finite, values of ελ and εv . Equivalently, fixing λ,
there exists a stable limit cycle of (9) for sufficiently large,
but finite, values of v∗.

Proof. See [1].

The practical implication of Theorem 1 is that by tuning
the single parameter v∗, one can ensure that the motivation
dynamics system (9) exhibits a stable limit cycle. This greatly
simplifies the process of implementing the motivation dynam-
ics. In the context of logic-based synthesis, the limit cycle
would be referred to as a recurrent patrol mission.

IV. INTEGRATING EXTERNAL STIMULI

The motivation dynamics system presented in [1] and re-
viewed in Section III did not include any external stimuli. In
this section, we show how to modify the previously-published
motivation dynamics strategy to integrate external stimuli,
thereby permitting the system to modify its actions in response
to the outside world. The stimuli are represented in Figure 2
as the input u entering in the value dynamics block.

For the purposes of demonstration, we consider a scenario
where the stimulus is binary and corresponds to one of the
robot’s two navigation tasks. Upon receiving a noisy stimulus,
the robot must respond by navigating to the correct target.
Methods developed for this scenario can readily be extended
to develop more complex stimulus responses, much as binary
representations of stimuli are used as the basis of reactive
logic-based planners [20]. We present the essential compo-
nents of our approach here in the main text and provide full
details in the Appendix.

Our method for integrating external stimuli is inspired by
the cognitive science literature on perceptual decision making.
This is consistent with our choice of decision-making mecha-
nism, as the dynamics (3) were originally developed to model
perceptual decision making in biological swarms. Often, the
stimulus comes as a signal to be integrated over time, and
in our scenario the decision maker must decide between two
competing classes to which the signal may belong. Wald [25]
showed that the optimal strategy for this task is the sequential
probability ratio test (SPRT). Such two-alternative choice tasks
have been studied in human and animal subjects using visual
and auditory stimuli, and models based on the SPRT have
been shown to provide a unifying account for a wide variety
of behavioral data [26].

Logic-based techniques for synthesizing hybrid controllers
have also been extended to integrate external stimuli. In order
to connect external stimuli with the symbolic internal repre-
sentations used by hybrid controllers, logic-based techniques
require defining a discrete set of possible external stimuli
which will then be used in a synthesis protocol. For example,
the authors of [20] assume that the raw sensor data can be
processed into a set of discrete state variables corresponding to
states of the external world. Such processing can be achieved
by recourse to standard statistical signal processing tools, for
example by building detectors (using, e.g., the SPRT).

In contrast, our technique maintains a continuous represen-
tation of the filtered stimuli. In applications where the stimulus
signal-to-noise ratio is low, the time required for a stand-alone
detector to integrate sufficient evidence to make a confident
decision may be similar to the time available to execute
the corresponding action. In such an application, retaining
a less-filtered signal in the decision-making system could
improve performance by using real-time information about
the relative likelihood of the different classifications. These
are the types of scenarios where we envision our motivation
dynamics system carrying out low-level control to complement
a higher-level logic-based controller. In parallel work [27], we
have begun to develop performance metrics that quantitatively
justify this intuition.
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A. Stimulus model

For our experiments, we suppose that our robot is endowed
with a sensor that can measure a noisy scalar signal from the
environment which indicates which of its navigation tasks to
perform. This models, e.g., a perception module that processes
raw sensor data and outputs a signal that captures relevant
features of the environment. Specifically, at time t the robot
can measure an environmental signal

e(t) = µs(t) + σsz(t), (10)

where z(t) is Gaussian noise with mean zero, unit standard
deviation, and which is uncorrelated over time,

s(t) =


0, remain idle (task 0)
+1, perform task 1
−1, perform task 2,

and µ, σs > 0 are known parameters. The two parameters
µ and σs can be interpreted as the signal and sensor noise
strengths, respectively.

The model (10) is defined in continuous time. However, in
implementations, the signals are measured in discrete time.
For purposes of analysis, we consider a continuous-time limit
of the discrete-time signals in the Appendix. We distinguish
between continuous- and discrete-time signals by using dif-
ferent brackets for the time argument. Concretely, the signal
e measured at continuous time t is denoted by e(t) and at
discrete time t by e[t].

B. Probability ratio test

Given the stimulus model (10), deciding which action to
perform at time t reduces to deciding whether the uncorrupted
signal s(t) is equal to +1 or −1. The SPRT provides an
optimal statistical test for making this decision based on
the log-likelihood ratio. Given a sequence of discrete-time
measurements {e[τ ]}tτ=1, the log-likelihood ratio of two hy-
potheses i, j is

Λij [t] =

t∑
τ=1

log
pi(e[τ ])

pj(e[τ ])
, (11)

where pi(e) is the probability density function of the signal e
conditional on the true signal s(t) being associated with task
i ∈ {0, 1, 2}.

The SPRT then uses the log-likelihood ratio Λ12[t] to
classify the signal by comparing it against thresholds logZ2 <
0 < logZ1 < ∞. If Λ12[t] > logZ1, then the signal is
classified as corresponding to task 1; if Λ12[t] < logZ2, the
signal is classified as corresponding to task 2; otherwise, the
signal cannot be confidently classified as corresponding to
either task and more information is required. The thresholds
Z1, Z2 are tuned to obtain desired rates of Type I (false
positive) and Type II (false negative) errors [25], [26].

C. Using log-probability ratios as values

We connect the environmental stimulus with the motivation
dynamics system using the log-probability ratios as values. In

particular, for each task i, we set the associated value vi(t)
equal to

vi(t) = v∗max{Λi0(t), εv}, (12)

where Λi0(t) is the log-likelihood ratio which compares the
probability that s(t) corresponds to task i to the probability
that s(t) corresponds to performing neither task, εv > 0 is a
constant which we choose to ensure that the value of vi passed
to the motivation dynamics (3) is positive, as required, and
v∗ > 0 is a gain. The intuition is as follows: the more likely
that the signal corresponds to task i, the higher its associated
value vi and corresponding motivation value mi will be. This
results in the motivation dynamics system putting more weight
on the task.

Note that we have used the continuous-time quantity Λi0(t)
rather than the discrete-time quantity Λi0[t] defined in (11).
In Appendix VII-A we show that Λi0(t) is well defined
and derive the equation that governs its time evolution. This
equation allows us to derive performance guarantees such as
Theorem 2 using existing techniques from the decision-making
literature, as shown in Appendix VII-B.

D. Comparison to hybrid system

Here, we show a comparison between the motivation dy-
namics system with log-probability ratio values (12) and an
analogous hybrid control system. The precise details of the
implementation of (12) are provided in Appendix VII-A. We
consider a one-off decision where the robot, initially located
at x0, is presented with a stimulus following the model (10)
and the two tasks correspond to navigating to goals located
at x∗1 and x∗2, respectively. The robot is required to respond
by navigating to the correct goal. This decision models, e.g., a
situation where a robot is navigating through a partially-known
environment and only one of two possible passages is free of
obstacles. The robot has to use its sensor data to decide which
passage is open and navigate to it.

A standard hybrid control strategy for this decision problem
would be to construct a system whose discrete mode state a
takes one of three values according to the value of the log-
likelihood ratio Λ12 (11):

a(t) =


U, if Λ12 ∈ [logZ2, logZ1]

1 if Λ12 ∈ (logZ1,+∞)

2 if Λ12 ∈ (−∞, logZ2)

, (13)

where Z2 < Z1 are chosen to obtain desired rates of classi-
fication errors. The discrete state implements the SPRT and
therefore represents the fastest possible classification scheme.
When a(t) = U , the continuous dynamics are the null
dynamics ẋ = 0, i.e., do not move, while a(t) = 1 and
a(t) = 2 correspond to dynamics ẋ = −(x − x∗1) and
ẋ = −(x− x∗2), respectively, that navigate towards the goals.
One could design other dynamics for the case a(t) = U , e.g.,
to drive the robot towards the midpoint between the two goals,
but this will not necessarily generalize well either to a situation
where the robot has to make a series of decisions or where
there are more than two goals.

To illustrate the benefits of the motivation dynamics system,
we choose stimulus parameters µ = 1 and σs = 100 to
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represent a situation where the stimulus is very noisy. In
such a noisy environment, a detector like the one in (13)
would require a long time to classify the stimulus and make a
decision. In the absence of a confident classification, the hybrid
controller would not move. In contrast, the richer internal
representation of the motivation dynamics system allows it to
begin to move before it is fully confident about its decision.
The parameters v∗ and εv from (12) are set equal to 1 and
10−4, respectively, and the parameter α from (18) was set
equal to zero.

We simulated 1,000 instances of the one-off decision; ten
representative trajectories of the motivation dynamics system
are shown in Figure 3. The motivation dynamics system
converged to the correct goal 59.7% of the time, with a mean
response time of 165.6. For an equivalent hybrid system,
setting the thresholds − logZ2 = logZ1 = log(0.6/(1 −
0.6)) ≈ 0.405, results in an accuracy rate of 60%, equivalent
to the performance of the motivation dynamics system. In
contrast, with these parameters the SPRT at the heart of the
hybrid control system requires a mean time of 405.5 just to
classify the signal, and a further time of 3.16 to navigate to
the chosen goal. Motivation dynamics thus achieves the same
probability of converging to the correct goal while taking 60%
less time to decide and respond. This time savings are driven
by the system’s anticipatory behavior, as seen in Figure 3:
the trajectories begin moving towards both goals and then
smoothly commit to one goal or the other as the system
accumulates information from the noisy sensor.

The physical experiments 1 and 2 presented in Section VI-A
extend the one-off decision depicted in Figure 3 to the case
where the true signal s(t) switches at times that are unknown
to the robot and the robot has to respond accordingly by
making a series of decisions.

V. EXPERIMENTAL METHODS

For our empirical work, we use two robots: the Ghost
Minitaur, a quadrupedal legged machine [28], and the Dabit
Turtlebot 2e [29]. We chose Minitaur in order to show the limit
cycle both indoors where we could capture ground truth data
and outdoors in a less-structured environment, on a highly
dynamic legged platform. We use the Turtlebot to develop
the extensions including obstacle avoidance with a LIDAR
indoors. We implement both the motivation dynamics scheme
and the reactive controller on these robots using sensors that
give measurements of the range to beacons. Using these
sensors we implement beacon homing controllers in a manner
similar to that documented in [30]. We provide details in this
section.

A. Robot model
We model each robot as a unicycle, i.e., with dynamics (1)

ẋ1 = ν cos θ, ẋ2 = ν sin θ

θ̇ = ω,

where u = (ν, ω) ∈ R2 are the control inputs given in
terms of fore-aft speed and turning rate, respectively. This
is the standard model for the Turtlebot robot; an empirical
characterization of this model for Minitaur is given in [30].
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
2

Fig. 3: Ten trajectories using motivation dynamics to perform
a one-off decision. The robot starts at x0 = (0, 3) (marked by
a circle) and is given a signal according to (10) instructing
it navigate to the goal at x∗1 = (−1, 0) (square). Solid lines
show trajectories where the robot navigated to the correct goal;
dashed lines the incorrect goal located at x∗2 = (1, 0). Note
how, in all cases, the trajectory anticipates the need to move
toward both goals and smoothly commits to one goal or the
other as time passes and the system accumulates information.

B. Localization model

The system kinematics are then given as follows. Let x∗i
be the ith goal location. As is common in the sensor-based
planning literature, we work in the body frame of the robot and
denote the coordinates of x∗i in the body frame by (xi1, xi2).
Assuming that x∗i is not moving in the inertial frame and
that the robot kinematics are given by (1), the kinematics of
(xi1, xi2) are given by

ẋi1 = −ν + ωxi2, ẋi2 = −ωxi1.

In these coordinates, the distance to x∗i is given by

di =
√
x2i1 + x2i2. (14)

C. Measurement and estimation

To close the estimation loop, we measure the distance di to
each beacon using the Pulson P-440 RF sensors [31], which
yield measurements at approximately 100 Hz. The ith beacon
reports a value of di corrupted by noise, which we assume
is iid over measurements and independent of measurement
location. Therefore, we use the measurement model

yi(t) = di(t) + ε(t), (15)

where ε(t) represents the measurement noise. Consistent with
other work in the robotics literature [32], we found that it was
sufficient to model ε as a Gaussian random variable with mean
zero and standard deviation of 10 cm.

We perform state estimation using the ParticleFilter class
contained in the Matlab Robotics toolbox [33] to estimate
the position of each beacon in the body frame and apply the
control law. For simplicity of implementation, we maintain one
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particle filter for each beacon, and each filter is responsible for
maintaining an estimate of the location of its beacon.

D. Control model

Using the estimation of x∗i in the robot’s body frame, we
supply the system with the goal

x∗ = m1x
∗
1 +m2x

∗
2 (16)

and construct the homing behavior to x∗ based on Equations
(7) and (8) of [30], which are based on the control law given
in [34, Equation (33)]. Concretely, in the absence of obstacles,
we set the robot control inputs equal to

ν = k(x∗)1, ω = k arctan((x∗)2/(x
∗)1), (17)

where k > 0 is a constant; this mapping constitutes the
anchoring relationship fa shown in Figure 2. When LIDAR
data is available, the control inputs are computed based on a
projection of x∗ into the robot’s local free space as described
in [30, Equations (7) and (8)]. For our experiments, ϕi = di
and the constants in dynamics (9) are set as σ = 10, ελ = 1,
and v∗ = 10.

E. System integration

The system is integrated using the Matlab Robotics toolbox
and ROS. We use the libraries [35], [36] to interface the RF
sensors and the Hokuyo LIDAR with ROS respectively. Mul-
tipath interference is a significant concern when using these
sensors, but we were able to minimize it by carefully choosing
the experiment location within the indoor environment to
avoid metallic objects. With Minitaur, 5000 particles for each
beacon with an effective particle ratio of 0.8 provided good
performance, while, with Turtlebot, we had to increase the
number of particles to 8000 due to less accurate measurements
from the onboard IMU.

Adding process noise in the measured linear and angular
velocities ν, ω of the robot was important to achieving reason-
able filter convergence. For reference, we use a process noise
of 0.2 m/s and 0.2 rad/s for the linear and angular speeds,
respectively. Additionally, the filter convergence is sensitive
to the initial distribution of the particles; we observe faster
filter convergence if we initialize the particles on the circle
defined by the first range measurement.

The exchange between Matlab and the robot for the com-
manded and sensed ν, ω is achieved through WiFi, with control
update rates of approximately 50 Hz, using the interface
between Matlab and the ROS control architecture described
in [30].

VI. EMPIRICAL RESULTS

In this Section we report the results of a series of exper-
iments that implement the robot control law detailed in the
previous section. We first demonstrate the effectiveness of
motivation dynamics in responding to external stimuli using
(12). Next we show that the control law (9) results in a limit
cycle in several experiments, thereby verifying the relevance
of the theoretical results reported in [1]. A comprehensive list

of experiments is given in Table I. The first four experiments
on which we report took place indoors at the University of
Pennsylvania’s PERCH facility, which is equipped with a
Vicon [37] motion capture system that we use to record ground
truth data. The fifth experiment took place outdoors.

Experiment Description Section
1 Stimulus response, no obstacles, Turtlebot VI-A
2 Stimulus response, obstacles, Turtlebot VI-A
3 Indoor limit cycle, no obstacles, Minitaur VI-B1
4 Indoor limit cycle, obstacles, Turtlebot VI-B2
5 Outdoor limit cycle, Minitaur VI-C

TABLE I: List of experiments discussed in Section VI.
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Fig. 4: Experiment 1: stimulus response in an obstacle-free
environment with a Turtlebot. From top to bottom, the panels
show the signal provided, range to the beacons, and the
trajectory of the internal states m and v. The environmental
signal in the top panel is modeled by (10) with the mean
following the trajectory shown with a black dashed line. The
value state v evolves according to (18); the value state v then
drives the motivation state m through the dynamics (3).

A. Stimulus-response experiment

Experiments 1 and 2 focus on demonstrating the stimulus re-
sponse control developed in Section IV. We used the Turtlebot
robot to perform navigation tasks in an indoor environment in
response to a fictitious stimulus modeled by (10). The stimulus
parameters in (10) were set equal to µ = 1 and σs = 0.7,
respectively. The leak term α from (18) was set equal to 0.001.
All other control parameters were set as reported in Section
V.

Figure 4 shows the results of a typical run of Experiment 1,
where the environment was free of obstacles. The panels
show the stimulus signals s(t), e(t), range to beacons ϕ(t),
and internal states m(t), v(t), respectively. The value state
vi increases when the associated task i is indicated by the
signal s(t) and decreases otherwise due to the leak term α
in (18). The motivation dynamics (3) then put weight on
the appropriate task, which results in the robot carrying out
the correct navigation behavior. Figure 5 shows the results



9

0 20 40 60 80 100 120 140 160 180 200

-2

0

2

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

-7 -6 -5 -4 -3 -2 -1 0

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Beacon 1

Beacon 2

Start

Obstacle

Fig. 5: Experiment 2: stimulus response in an obstacle-strewn
environment with a Turtlebot. The top two panels show the
signal provided and trajectory of the internal state m as in
Figure 4. The bottom panel shows the ground truth robot
trajectory and obstacle locations, expressed in the lab frame.
Trajectory color represents the behavior commanded by the
signal at the corresponding time. Obstacles shown in black.

of a typical run of Experiment 2, where the Turtlebot robot
was equipped with a LIDAR sensor to avoid obstacles in the
environment. The main panel shows the ground truth physical
trajectory of the robot; the color of the trace represents the
behavior commanded by the signal at the corresponding time.
We see that the robot quickly picks the correct task and
effectively navigates towards the corresponding goal while
avoiding obstacles.

B. Indoor limit cycles with ground truth

We now present the results of two experiments that imple-
ment the limit cycle controller described in Section III. Both
experiments were performed indoors in the PERCH facility,
using the control implementation reported in Section V. As
mentioned in Section V, we faced some issues due to multipath
interference from the building structure, but were able to
mitigate these issues by careful choice of the experimental
domain.

1) Minitaur without obstacles: In Experiment 3 we imple-
ment the limit cycle controller on a Minitaur robot in a domain
without obstacles. Figure 6 shows the ground truth robot
trajectory from a typical run of Experiment 3 as measured in
the lab frame. The two circles show the two beacon locations,
and the circle with line shows the initial pose of the robot.
Several features are immediately visible upon inspecting the

trajectory. First, the robot has an initial transient and then
settles into a cyclic behavior in which it approaches one
beacon, then the other. This is the physical manifestation of the
limit cycle whose existence is proven in Theorem 1. Second,
the cyclic behavior is not symmetric: the points of closest
approach to Beacon 2 are much more closely grouped than
the points of closest approach to Beacon 1. This is likely due
to asymmetries in the robot, which make it prefer walking
forwards (towards Beacon 2 in this experiment).

Figure 7 shows the measured range to the beacons, i.e.,
ϕi(x(t)), and the internal state consisting of motivation m(t)
and value v(t) from a typical run of Experiment 3 with
Minitaur. Note that the limit cycle behavior is much more
clearly manifest in the internal state trajectory than in the
physical trajectory shown in Figure 6, likely because the
dynamics of the internal states m and v are numerically
integrated in the controller and therefore follow the assumed
dynamics more closely than the physical dynamics of x. The
asymmetries in the limit cycle are due to the same factors as
discussed for Figure 6, as well as an asymmetry in the RF
sensor antenna placement due to physical constraints.
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Fig. 6: Experiment 3: indoor limit cycle with Minitaur. Ground
truth robot trajectory and beacon locations expressed in the lab
frame. The robot persistently patrols back and forth between
the beacons.

2) Turtlebot with obstacles: In Experiment 4, we imple-
mented the same limit cycle controller as in Experiment 3 on
a Turtlebot 2e robot using an obstacle avoidance behavior as in
[30]. The behavior is reactive and uses sensor data to compute
the robot’s local free space, projects the goal location onto this
free space, and drives the robot towards this projected goal.
Figures 8 and 9 are analogous to Figures 6 and 7, respectively,
for this new experiment. The behavior is qualitatively similar
to the obstacle-free results with Minitaur, suggesting that the
theoretical guarantee from Theorem 1 can be extended to this
new, obstacle-strewn case.

As in the Minitaur experiments shown in Figures 6 and
7, the robot does not come arbitrarily close to the beacon
but rather maintains some minimum distance, in this case
approximately 2 m. Experimentation suggests that this min-
imum distance can be controlled by adjusting the parameter σ
in the motivation dynamics (3). Extending Theorem 1 to the
obstacle-strewn case and analyzing the relationship between σ
and the minimum distance to the goal can both be understood
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Fig. 7: Experiment 3: indoor limit cycle with Minitaur. From
top to bottom, the panels show the range to beacons, i.e.,
ϕi(x(t)), and the trajectory of the internal states m and v. The
states m and v follow the dynamics (3) and (8), respectively.

using formal dynamical systems tools. This work is currently
underway.
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Fig. 8: Experiment 4: indoor limit cycle in an obstacle-strewn
domain with Turtlebot. Ground truth robot trajectory and
obstacle locations, expressed in the lab frame. Obstacles are
shown in black. The robot persistently patrols back and forth
between the beacons while reactively avoiding the obstacles.

C. Outdoor experiment

Experiment 5, whose setup is shown in Figure 1, was
carried out in a public park in Philadelphia, PA. Outside,
multipath interference was insignificant. As in Experiment 3,
we implemented the limit cycle controller on a Minitaur robot.

Figure 10 shows the measured range to the beacons, i.e.,
ϕi(x(t)), and the internal states m(t) and v(t). As in the
indoor experiment, the robot exhibits a cyclic behavior of
repeatedly coming closer to one beacon and then the other.
Also as in the indoor experiment, the cyclic behavior appears
more clearly in the internal state than the range measurements.
The irregular appearance of the cyclic behavior in the outdoor
experiment is due to the greater difficulty that the robot had
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Fig. 9: Experiment 4: indoor limit cycle in an obstacle-strewn
domain with Turtlebot. From top to bottom, the panels show
the range to beacons, i.e., ϕi(x(t)), and the trajectory of
the internal states m and v. The states m and v follow the
dynamics (3) and (8), respectively.

in negotiating the domain, which was a moderately-well-kept
grass field with an asphalt path in the middle. Locomotion on
this terrain is less predictable than locomotion indoors on hard
tiles, which accounts for the irregular cyclic behavior in this
experiment.

Despite the difficulties posed by this more challenging
environment, the cyclic behavior of the robot persists over
several switches of target, showing the attracting nature of
the limit cycle. In this environment, the unicycle model of
the robot is even more poorly respected, which results in the
control law being less effective. It should further be noted that
these results were intended to show the robustness of the basic
control strategy, and so were obtained without any special
efforts being made to tune the control or estimation system
parameters to account for the features of the environment.
Moderate parameter tuning would likely yield more regular
oscillatory behavior if such behavior were desired.

VII. CONCLUSION

In this paper we present the first physical implementation of
the reactive vector field planner (9) introduced and studied in
[1]. We show that the planner can naturally integrate external
stimuli and respond by producing appropriate behaviors. In the
absence of external stimuli, for a sufficiently-high value of a
gain parameter, this planner exhibits stable limit cycles where
the robot repeatedly navigates towards two target locations.
We show that this same behavior is achieved in the physical
implementation, thereby showing that our planner encodes a
recurrent patrol mission covering the two targets. Furthermore,
the planner is robust, as the identical control strategy exhibited
the limit cycle behavior both indoors and outdoors without
additional tuning.

The experimental results presented here extend the formal
results from [1] in two ways. First, we show that the same



11

0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

Fig. 10: Experiment 5: outdoor limit cycle with Minitaur. From
top to bottom, the panels show the range to beacons, i.e.,
ϕi(x(t)), and the trajectory of the internal states m and v. The
states m and v follow dynamics (3) and (18), respectively.

motivation dynamics planner can be readily extended to the
case where the robot domain is strewn with obstacles. These
experimental results suggest extending the formal results to
include the case where the vector fields Fi have generic
Lyapunov functions. This work is underway. Second, we
show how to integrate external stimuli into the decision-
making mechanism. For a situation where a stimulus requires
performing an associated action, we show that using log-
likelihood ratios as the action values results in a system that
can quickly and accurately respond to noisy stimuli, and we
provide an associated performance guarantee.

The formal results demonstrated in this paper are restricted
to the case of two low-level tasks. However, work is in
progress that extends both the formal and the experimental
results presented here to an arbitrary number of low-level
tasks. This work will be the subject of a separate report.
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APPENDIX

A. Likelihood ratio and value dynamics

In this appendix, we show that the continuous-time likeli-
hood ratio Λi0(t) that arises from the discrete time ratio (11)
is well defined and derive the equation that governs its time
evolution.

We implement the value model (12) in discrete time by
setting

Λi0[t] = (1−α)Λi0[t−1]+log(pi(e[t]))−log(p0(e[t])), (18)

where [t] denotes the discrete time step t associated with a
given sensor reading and α > 0 is a constant. The parameter
α encourages the system to discount old stimuli, thereby

allowing it to adjust to a changing environment. Such a
structure is commonly used in the cognitive science literature,
where the α term is referred to as a “leak” or a “forgetting
factor” [26]. In the absence of external stimuli, these dynamics
will push vi towards the value of zero, which corresponds to
hypotheses i and 0 being equally probable.

For purposes of interpretation and analysis, it is useful to re-
late the discrete-time dynamics (18) to the general continuous-
time value dynamics (4). This can be done by taking the
continuous-time limit of (18) and interpreting the resulting
dynamics as setting the ith component of the stimulus function
fs equal to

fs,i(t) = (−αvi(t) + v∗ log(pi(e(t)))− v∗ log(p0(e(t)))) ,

where e(t) is the sensor reading at a continuous time t. The
limiting continuous-time dynamics must be treated with care
for two reasons. First, the stochastic nature of the stimulus
e(t) means that the function fs is a stochastic function of time.
Thus, the dynamics v̇i = fs,i(t) are more properly modeled
as a stochastic differential equation (SDE), for which [38] is
a standard reference. Second, the discrete-time equation (18)
implicitly assumes a sensor sampling rate, i.e., the time ∆t
between samples. Taking the appropriate continuous-time limit
of (18) thus implicitly takes the sensor sampling frequency to
zero at the same rate as ∆t. Fortunately for our purposes, the
limiting process has been well studied in the literature, e.g.,
[26, Appendix A, pp. 744–746], [38].

The most straightforward way to understand the limit-
ing process is to think in terms of numerical integration.
Continuous-time ordinary differential equations of the form
ẋ = f(x) can be numerically integrated using discrete-
time algorithms, such as the Euler method. Given an initial
condition x(0) = 0, the Euler method constructs a discrete-
time approximation x[n + 1] = x[n] + ∆tf(x[n]), where
x[n] approximates x(n∆t). SDEs admit analogous numerical
integration schemes [38]; the SDE analog of the Euler method
is known as Euler-Maruyama.

Using the model (10), the discrete-time likelihood ratio
evolution (18) becomes

Λi0[t] =
µ

2σ2
s

(±2e[t]− µ) + (1− α)Λi0[t− 1] (19)

=
µ2

2σ2
s

(±2s[t]− 1) + (1− α)Λi0[t− 1]± µ

σs
z[t− 1],

where the positive sign corresponds to the case i = 1, the
negative sign to the case i = 2, and z[t] ∼ N (0, 1) is again a
Gaussian random variable. Comparing terms shows that the
discrete-time process (19) is precisely the Euler-Maruyama
approximation [38, Section 10.2] for the continuous-time SDE

dΛi0(t) = aidt+ bidW (t), (20)

where the constants ai and bi are defined by

ai = − α

∆t
Λi0(t) +

µ2

2σ2
s∆t

(±2s(t)− 1)

bi = ± µ

σs
√

∆t
,
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and the positive and negative signs again correspond to i = 1
and i = 2, respectively.

The equation (20) is the continuous-time representation of
fs,i in (4). The terms in (20) can be interpreted as follows. The
constant ai scales the deterministic evolution due to the mean
stimulus and the forgetting factor and bi scales the stochastic
Weiner increment dW (t) which is the formal mathematical
representation of the stimulus noise in the continuous-time
limit [39], [26]. The SDE (20) is sometimes referred to as a
drift-diffusion equation, with ai being a drift and bi a diffusion
term. Note that µ/σs can be interpreted as the signal-to-noise
ratio of individual sensor readings, and µ/(σs

√
∆t) can be

interpreted as the signal-to-noise ratio scaled to account for
the sampling time ∆t.

The difference equation (18) and the SDE (20) are equiva-
lent in the sense that solutions Λi0[t] of (18) are a so-called
strongly-convergent approximation of solutions of (20) [38].
This equivalence allows us to derive performance guarantees
such as the following Theorem 2 using existing techniques
from the decision-making literature.

B. Performance guarantee

Performance guarantees for the motivation dynamics stimu-
lus response behavior can be readily obtained using techniques
from the decision-making literature. For example, the follow-
ing theorem holds.

Theorem 2. Consider the motivation dynamics (3) with values
vi following (18) under the stimulus model (10). Let Λ̄ =
(Λ10 + Λ20)/2 and ∆Λ = Λ10 − Λ20 and let β = µ/σs
denote the signal-to-noise ratio of the stimulus. Then,

1) Λ̄ is stably attracted to the value −β2/2α, and
2) For small α, the expected time to decision DT and error

rate ER, i.e., probability of selecting the wrong goal, are
approximately given by

DT =
K(σ)∆t

2α
tanh(K(σ)β2/8α),

ER =
1

1 + exp(K(σ)β2/4α)
,

where K(σ) is a constant given by [7, Equation 5].

Proof. The dynamics of Λ̄ and ∆Λ follow from (20). The
stochastic terms in ˙̄Λ cancel, yielding

˙̄Λ = − α

∆t
Λ̄− β2

2∆t
.

Similarly, the dynamics of ∆Λ are

d∆Λ =

(
− α

∆t
∆Λ +

β2

∆t

)
dt+ 2

β√
∆t

dW (t),

where dW (t) is a Wiener increment as in (20). The first
statement follows directly from the dynamics of Λ̄.

The second statement follows by noting that the dynamics
of ∆Λ constitute an Ornstein-Uhlenbeck process and that
vi(t) = v∗Λi0(t) when Λi0 > 0. As shown in [7, Equation
5], the motivation dynamics makes a decision when K(σ) <
|∆v|/v̄ ≈ |∆Λ|/Λ̄, where K(σ) is a constant. Then the

expressions for DT and ER follow from Equations A65 and
A64 of [26], respectively.

The value of this result is to give an analytical measure
of two performance criteria for the motivation dynamics
technique. These analytical results help elucidate trends; for
example, the expected decision time scales with the sampling
interval ∆t, and both performance metrics scale with the ratio
K(σ)β2/α.
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