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Resumo  
 

Os sistemas estuarinos desde sempre captaram a atenção do ser humano. Os estuários estão 

entre os ecossistemas mais produtivos do mundo, têm uma elevada biodiversidade, que é 

característica destes sistemas, e oferecem zonas mais protegidas, com enorme importância para 

funções de proteção, alimentação e berçário para várias espécies. São, portanto, áreas 

influenciadas pela atividade do Homem, que se habituou a explorar estes sistemas nas vertentes 

económicas e sociais, por exemplo, através da construção de portos, da atividade piscatória ou do 

turismo marítimo. Como consequência desta exploração, existe impacto da atividade 

antropogénica na dinâmica dos estuários, que deve ser devidamente avaliada. No entanto, a 

análise deste tipo de ambientes apresenta inúmeros desafios. Além do forçamento antropogénico, 

os estuários têm fortes interações com a atmosfera, condição que confere uma variação sazonal 

aos parâmetros físico-químicos da água. Adicionalmente, a mistura diária de água doce, vinda do 

rio, com água salgada, que entra pela foz, promove uma variação constante desses parâmetros e 

influencia a componente biológica da região. Estes fatores, bem como a recorrente interação com 

a costa, conferem uma condição natural complexa aos estuários. 

O presente estudo aborda este dinamismo e a variabilidade dos parâmetros físico-químicos 

no estuário do Sado, o segundo maior estuário de Portugal e um dos maiores da Europa. Devido 

à sua rica biodiversidade, produtividade e valor estético, o estuário do Sado foi definido como 

reserva natural em 1980, a fim de promover a sua preservação, evitando possíveis impactos 

antropogénicos nos seus processos e características naturais.  

Os primeiros estudos oceanográficos realizados no estuário do Sado decorreram nos anos 

70. No entanto, após 40 anos, ainda é um desafio conseguir compreender na íntegra a dinâmica 

deste estuário e é crucial estudá-lo utilizando uma abordagem que integre observações in situ 

(com um regime de amostragem frequente, feito em profundidade e que acompanhe o ciclo de 

maré) com dados de satélite, para permitir uma análise temporal e espacial mais completa. 

Seguindo esse objetivo, foram realizadas campanhas in situ entre setembro de 2018 e 

setembro de 2019 no estuário do Sado, para recolher dados físico-químicos (temperatura, 

salinidade, fluorescência, turbidez, intensidade e direção das correntes) e biológicos 

(concentração de clorofila a). Essas campanhas foram realizadas com uma periodicidade mensal 

utilizando um CTD (Condutividade, Temperatura, Profundidade), um correntómetro e uma sonda 

multiparamétrica, e recolheram-se amostras de água para posterior quantificação de 

concentrações de clorofila a e matéria em suspensão (SPM). Adicionalmente, em novembro de 

2018 e junho de 2019, a recolha de dados foi feita ao longo do ciclo de maré, em condições de 

marés vivas e de marés mortas. Os resultados indicaram que a região da embocadura do estuário 

é espacialmente homogénea, verificando-se, ocasionalmente, uma ligeira estratificação da coluna 

de água. A variabilidade dos parâmetros físico-químicos observada aparentou ser consequência 

de forçamentos antropogénicos e da variabilidade sazonal ou pontual das condições 

meteorológicas. Na região do estuário analisada, foi possível observar valores de salinidade 

tipicamente oceânicos, podendo concluir-se que o rio teve pouca influência na região mais 

exterior do estuário. Após comparados os resultados obtidos com os de estudos anteriores, pareceu 

ter existido uma diminuição da influência do rio na embocadura do estuário nos últimos anos, 

uma vez que se obtiveram valores de salinidade mais elevados ao longo do ano em análise, e uma 

maior amplitude térmica da água. A circulação no estuário aparentou ser feita através dos dois 

canais de navegação, sendo o canal sul, a via mais relevante de entrada e saída de água. Observou-

se que a maré teve um papel determinante na direção da circulação no estuário. Ademais, a direção 

da corrente foi uniforme ao longo da coluna de água, contrariando estudos anteriores. 
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Com vista a melhorar o conhecimento sobre a dinâmica deste sistema estuarino, avaliou-se 

também a variabilidade intra-anual e interanual da temperatura da superfície do mar (TSM) e da 

concentração de clorofila a através de deteção remota por satélite. O primeiro desafio, foi o de 

perceber quais os sensores mais apropriados para um estudo em sistema estuarino, que 

apresentassem dados fiáveis e com elevada qualidade espacial e temporal. Estudou-se a 

viabilidade em utilizar a base de dados de TSM do Group for High Resolution Sea Surface 

Temperature (GHRSST) através da versão 4.1 da análise Multiscale Ultrahigh Resolution (MUR) 

disponibilizada pelo grupo. Estes dados foram validados com sucesso, por terem apresentado uma 

boa concordância com os valores de temperatura recolhidos in situ, principalmente na região do 

estuário mais próxima do oceano. No entanto, revelaram ter uma baixa resolução espacial. Ainda 

assim, foi percetível a sensibilidade deste produto em detetar variações sazonais ao longo do 

estuário. Foi feita uma análise deste parâmetro de junho de 2002 a setembro de 2019 e viu-se que 

anos de TSM mais baixas, parecem estar associados a anos de índice NAO positivo.  

Para analisar a concentração de clorofila a no estuário, utilizaram-se os produtos do Sentinel-

3 OLCI (Ocean and Land Colour Instrument) para serem validados com os dados in situ, e os 

produtos MERIS, para se alcançar uma maior cobertura temporal e fazer-se uma análise histórica 

da variação de clorofila a no estuário de 2002 a 2012. A análise da clorofila estimada a partir do 

Sentinel-3 deu uma indicação de que esses dados eram mais apropriados para a área de estudo, 

devido à resolução espacial do sensor e à boa aplicação a águas costeiras. Foi possível observar 

concentrações mais elevadas de clorofila a nos canais mais interiores do estuário. 

Adicionalmente, as concentrações máximas de clorofila a foram encontradas durante a primavera 

em todo o estuário. No entanto, a correlação entre os valores de satélite e os obtidos in situ não 

foi a ideal (R2 = 0,33). Uma das fontes de erro associada aos dados do Sentinel-3 poderá ser a 

presença de matéria em suspensão que parece ter interferido na quantificação de clorofila a, 

principalmente durante a campanha de 8 de novembro de 2018. Dos resultados obtidos no 

presente estudo, foi também detetada uma tendência para um decréscimo da concentração de 

clorofila a na região, de 2002 a 2012. De 2002 a 2019, também a TSM tendeu a diminuir no 

estuário. No entanto, seria importante complementar o presente estudo com uma análise estatística 

que detetasse a significância das tendências observadas. 

Dada a complexidade dos ambientes costeiros, os algoritmos disponíveis (quer de correção 

atmosférica, quer de determinação de variáveis biogeoquímicas) ainda não são totalmente 

eficientes e outros componentes oticamente ativos (e.g., partículas em suspensão ou matéria 

orgânica dissolvida) podem interferir nas estimativas da concentração de clorofila a. No entanto, 

quando foram analisadas as bases de dados MERIS e Sentinel-3, utilizaram-se os algoritmos 

desenvolvidos para águas costeiras e foi possível observar que, com o tempo, houve um aumento 

da qualidade dos produtos de satélite disponíveis. Como tal, é importante que se continuem a 

desenvolver novos algoritmos direcionados para ambientes costeiros, utilizando como base os 

resultados obtidos pelos exercícios de validação de produtos de satélite já realizados por vários 

autores em diferentes áreas do planeta. O presente estudo permitiu uma caracterização da 

dinâmica do estuário do Sado na atualidade a partir das campanhas in situ e pareceu indicar que 

poderão ter existido algumas alterações na sua natural dinâmica nos últimos anos. No entanto, 

seria importante prolongar a análise in situ seguindo uma abordagem frequente acompanhando 

ciclos de maré completos. Posteriormente, mantendo-se a tendência dos resultados obtidos, seria 

importante perceber o que esteve na origem destas alterações e quais as consequências que estas 

poderão ter no futuro do ecossistema.  
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Abstract 

Estuarine systems have always captured the attention of Man. Estuaries are among the most 

productive ecosystems in the world. They have a high biodiversity, that is characteristic of these 

systems, and offer sheltered areas, with enormous importance for protection, feeding and nursery 

functions for several species. Therefore, they are areas influenced by the activity of Man, that 

explores these systems economically and socially, through, for example, the construction of ports, 

fishing or maritime tourism. As a result of this exploration, an impact of the anthropogenic activity 

on the dynamics of the estuaries is verified, which must be properly assessed. However, the 

analysis of these types of environments presents numerous challenges. In addition to 

anthropogenic forcing, estuaries have strong interactions with the atmosphere, a condition that 

gives a seasonal variation to the physicochemical parameters of the water. Additionally, the daily 

mixture of fresh water, coming from the river, with salt-water, which enters through the estuary, 

promotes a constant variation of these parameters and influences the biological component of the 

region. These factors, as well as the continuous interaction with the coast, give estuaries a 

complex natural condition. 

The present study addresses this dynamism and the variability of the physicochemical 

parameters of the water in the Sado estuary, the second largest estuary in Portugal and one of the 

largest in Europe. Due to its rich biodiversity, productivity and aesthetic value, Sado estuary was 

defined as a natural reserve in 1980, in order to promote its preservation, avoiding possible 

anthropogenic impacts in its natural processes and characteristics.  

The first oceanographic studies carried out in the Sado estuary took place in the 70s. After 

40 years, it is still challenging to understand the dynamics of this estuary and is crucial to integrate 

in situ observations (with frequent sampling, in depth and throughout the tidal cycle) with satellite 

data, to enable an extended temporal and spatial analysis. 

Following that objective, in situ campaigns were conducted between May 2018 and 

September 2019 in Sado estuary, to collect physicochemical (temperature, salinity, fluorescence, 

turbidity, intensity and direction of the currents) and biological (chlorophyll a concentration) data. 

These campaigns were conducted on a monthly basis using a CTD (Conductivity, Temperature, 

Depth), a current meter sensor and a multiparameter sonde, and water samples were collected for 

laboratory quantification of chlorophyll a concentrations and suspended particulate matter (SPM). 

Additionally, in November 2018 and June 2019, the data collection was made along the tidal 

cycle, in both spring and neap tide conditions. The results indicated that the outermost area of the 

estuary is spatially homogeneous, with occasional stratification of the water column. The 

observed variability of the physicochemical parameters appeared to be a consequence of 

anthropogenic forcing and of seasonal or occasional variations of the weather conditions. In the 

analyzed region of the estuary, it was possible to observe salinity values typically oceanic, so it 

is assumed that the river had a low influence in the outermost region of the estuary. When 

compared with the results of previous studies, it was possible to infer that there was a decrease in 

the influence of the river in the outermost region of the estuary in the past years, since higher 

salinity values were obtained throughout the year under analysis, and that is currently observed a 

greater thermal amplitude of the water. The circulation in the estuary appeared to be made in the 

two navigation channels, being the South channel the most relevant route for water exchange. It 

was observed that the tide played a determining role in the direction of the circulation in the 

estuary. In addition, and contrary to the results of previous studies, the direction of the current 

was uniform along the water column. 
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In order to improve knowledge about the dynamics of this estuarine system, the intra-annual 

and interannual variability of the sea surface temperature (SST) and the chlorophyll a 

concentration through satellite remote sensing was studied. 

The feasibility of using the SST database of the Group for High Resolution Sea Surface 

Temperature (GHRSST) was studied through version 4.1 of the Multiscale Ultrahigh Resolution 

(MUR) analysis made available by the group. These data were successfully validated, as they 

showed a good agreement with the temperature values collected in situ, mainly in the region of 

the estuary closest to the ocean. However, they appeared to show a low spatial resolution. Even 

so, the sensitivity of the product in detecting seasonal variations along the estuary was noticeable. 

An analysis of this parameter was carried out from June 2002 to September 2019 and it was 

observed that years of lower SST values seemed to be associated with years of positive NAO 

index. 

To analyze the chlorophyll a concentration in the estuary, the products of the Sentinel-3 

OLCI (Ocean and Land Color Instrument) were used for validation with the in situ data. MERIS 

products were also used to achieve a greater temporal coverage and to present a historical analysis 

of the variation of chlorophyll a in the estuary. The analysis of chlorophyll estimated from 

Sentinel-3 gave the indication that these data were more appropriate for the study area, due to the 

spatial resolution of the sensor and its better application to coastal waters. It was possible to 

observe higher concentrations of chlorophyll a in the innermost channels of the estuary. 

Additionally, the maximum concentrations of chlorophyll a were observed during spring 

throughout the estuary. However, the correlation between the satellite values and those obtained 

in situ was not ideal (R2 = 0.33). One of the sources of error associated with the Sentinel-3 data 

may be the presence of suspended matter that appears to have interfered with the quantification 

of chlorophyll a, especially during the campaign of 8 November 2018. From the results obtained 

in the present study, it was also observed a trend towards a decrease in the concentration of 

chlorophyll a in the region, from 2002 to 2012 (MERIS data). From 2002 to 2019, the SST also 

tended to decrease in the estuary. However, it would be important to complement the present 

study with a statistical analysis that would detect the significance of the observed trends. 

Due to the complexity of coastal environments, the algorithms available (whether for 

atmospheric correction or for determining biogeochemical variables) are not yet fully efficient 

because other optically active components (e.g. Suspended Particulate Matter or Colored 

Dissolved Organic Matter) can interfere with the estimations of chlorophyll a concentrations. 

However, in the present work, when MERIS and Sentinel-3 databases were analyzed, algorithms 

developed for coastal waters were used and it was possible to observe that, over time, there was 

an increase in the quality of the available satellite products. It is important to continue to develop 

new algorithms for coastal environments, using as a basis the results obtained by the validation 

exercises of satellite products already carried out by various authors in different areas of the 

planet. The present study allowed to describe the dynamic of the Sado estuary, based on in situ 

campaigns and it was concluded that some changes in the natural behavior of the estuary may 

have occurred in the past years. However, it would be important to prolong the in situ analysis 

following a frequent sampling approach along full tidal cycles. Subsequently, if the trend of the 

results obtained is maintained, it would be important to understand the origin of these changes 

and what consequences could they have on the future of the ecosystem. 

 

Keywords: Estuaries, Water Circulation, Remote Sensing, SST, Chlorophyll a 
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Chapter 1 

 

1 Introduction 

 

 
 

Estuaries are very dynamic transitional environments (Day et al., 2012). They are 

influenced by discharges from rivers, which transport large amounts of nutrients and organic 

matter, and simultaneously by oceanic waters, that allow the renewal of water and cause a great 

variation in salinity which determines the existing biodiversity. The high concentrations of 

nutrients, that comes also from the continuous interaction of the water with the coast, implicit in 

the morphology of an estuary, leads to high primary production (Mateus et al., 2008). For these 

reasons, estuaries are especially important areas of habitat and nutrition with very characteristic 

food chains, that contribute to its relevance as a nursery area (NOAA, 2020a). Therefore, estuaries 

are recognized as ecologically important and efforts should be made to preserve them (Day et al., 

2012). However, these environments tend to be difficult to analyze, due to all the external forcing 

to which they are subjected. The daily mixture of fresh water, that comes from the river, and salt-

water, that enters into the estuary through its mouth, promotes a constant variation of the physical 

and chemical parameters of the estuary, that influences the biological component of the region. 

Additionally, these variables are sensitive to atmospheric conditions and, therefore, show seasonal 

variations (Mateus et al., 2008).  

A large fraction of the population lives in the adjacent area of estuaries due to the 

increased social and commercial potential of these environments. The appropriate management 

of the estuaries is necessary for their preservation. Thus, its scientific understanding is of great 

practical importance (Wolanski et al., 2013) and integrating knowledge of geology, hydrology, 

chemistry, physics and biology is essential (Day et al., 2012). The Sado estuary in particular, is 

one of the biggest estuaries in Portugal, has a unique morphology and biodiversity and has an 

enlarged commercial interest, as there is a great dependence of the population of the region on 

the estuary and its resources (Caeiro, 2004).  

The Sado estuary was previously characterized considering its circulation regime and the 

variability of its physical, chemical and biological parameters, with in situ observations and 

numerical models (e.g.: Ambar et al., 1982; Maretec, 2002a). However, it has been weakly 

analyzed by satellite, probably due to the complex dynamics of these areas that increases the 

difficulty in deriving accurate products. Satellite remote sensing is of great importance as it allows 

a high temporal and spatial coverage, at virtually no cost. For example, it is possible to retrieve 

Sea Surface Temperature data from all around the world, simply by accessing to the Group for 

High Resolution Sea Surface Temperature (GHRSST) database. Also, the use of satellite remote 

sensing allows performing a historical analysis of the region, through the study of the intra and 
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interannual variability of the parameters of the estuary. The integration of in situ observations 

with satellite data is, therefore, essential to fully understand the estuarine dynamics, as this is a 

key tool to evaluate how the estuary has been changing through time and if it has been responding 

to the global climatic variation.  

 

1.1 The Sado Estuary 

 

Sado River begins in Serra da Vigia (southwest of Ourique) at 232 m high, and flows 

northwards until it reaches the Atlantic Ocean, through an estuarine environment, in Setúbal 

(Portugal). It travels a course of ≈ 175 km in a Southeast-Northwest orientation (ICNF, 2020).  

The Sado estuary is the second largest national estuary and one of the largest in Europe. 

Due to its rich biodiversity, productivity and aesthetic value, it was defined as natural reserve in 

1980, in order to promote its preservation, avoiding possible interferences in the natural processes 

and characteristics that distinguish it from other estuaries. The reserve has a navigable area of 

about 23,160 ha and includes about 28 km of the river (ICNF, 2020). 

Using the morphologic classification of Pritchard (1952), Sado estuary can be considered 

as a coastal plain type estuary, since it is long, shallow, with shoals, that resulted from the 

subsidence of the Sado basin (Sousa and Lourenço, 1980). 

In the protected area, there is a high number of bird species that find the perfect place to 

nest or hibernate, of mammals, reptiles and amphibians that in the vast areas of marsh obtain 

perfect nursery areas (ICNF, 2020). Also, it is possible to find seagrass meadows in Sado estuary. 

They are important in maintaining healthy estuarine environments and play a critical role in 

primary production (Cunha, 2009). This estuary is also the habitat of the only community of 

dolphins, Tursiops truncatus, resident in an estuarine environment in Portugal (Costa, 2015). 

Currently the community is composed of 27 individuals and this, like many other species in the 

estuary, is threatened by the human activity, that in the peninsula of Setúbal and Troia, has a great 

incidence in the estuary. 

For all its characteristics, the estuary is also a privileged place for the practice of 

aquaculture, and the Sado’s oyster (Crassostrea (Magallana) angulata) is the main example of 

this activity in Setúbal. During the 60s and 70s, there was an important production of oyster in 

the estuary that got strongly weakened, possibly due to the high levels of pollution of the water 

(Coutinho, 2003). Nowadays, it is recovering its statute of one of the most iconic symbols of the 

region.  

Coutinho (2003) divided the Sado estuary into three sections, according to the topography 

and morphology of the region. The first section (S1, represented in orange in Figure 1.1), the 

Setúbal Bay, with an average depth of 10 m, is the region where the contact between the ocean 

and the estuary mouth occurs, through an embouchure of approximately 1.5 km and maximum 

depth of 40 m (Brito et al., 2003). This communication channel is divided in two different courses 

separated by intertidal shoals, the North channel, that allows access to the Port of Setúbal, and the 

South channel, which runs to the city of Alcácer do Sal. 

The second section (S2), in blue in Figure 1.1, is the one that includes a vast intertidal 

zone, where the Marateca and Comporta channels are located. In this region, the influence of the 

tides is very evident and is the factor that allows the water circulation. That leads to great 

variations in the volume and depth of the channels, naturally with a very reduced depth (Coutinho, 

2003). 

The third section (S3), in green in Figure 1.1, corresponds to the main channel of the Sado 

river, evident in the area of Alcácer do Sal, denominated as the channel of Alcácer. This channel 
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has an average of 5 m depth and a very irregular and seasonal flow that varies, on average, from 

0.7 m3/s in the summer to 60.0 m3/s in the winter (Coutinho, 2003; Brito et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Sado river is characterized by having a low flow rate and for a reduced displacement 

of water, as it is under the influence of the arid climate of Alentejo, where the river spring is 

located. Also, the river does not suffer great differences of altitude during its course to the mouth, 

has 2% of inclination in the initial section and practically zero in the final one (Sousa and 

Lourenço, 1980). Lastly, is fed by several streams that do not have a substantial flow.  

In general terms, there is a strong influence of the effect of the tide on the circulation in 

the estuary (Sousa and Lourenço, 1980). Previous studies showed that during high water, water 

tends to enter the bay predominantly through the North channel and exit through the South 

channel at low water and there is a trend towards a strong asymmetry between tidal regimes in 

the two channels with stronger streams in the southern channel of the estuary (Ambar et al., 1982). 

In order to have a better understanding of the dynamic of the estuary, Sado river flow was 

analyzed. Data of the daily average flow from Sistema Nacional de Informação de Recursos 

Hídricos (SNIRH) were used to complement this analysis. The data used were collected in 

Moinho da Gamitinha, the sampling station suggested by SNIRH’s team as being the most 

suitable for this study (see location in Figure 1.2). In the database, daily average values were 

available from October 1940 to December 2019, there being missing values in some periods of 

the series. Figure 1.3 shows the temporal variation of the daily average outflow of the Sado river 

in the station aforementioned. 

Marateca 

Gâmbia 

Troia 

Comporta 

Alcácer do Sal 

Figure 1.1. Configuration of the Sado estuary with the division into 3 sections. Adapted from Coutinho (2003). 
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These data (Figure 1.3) highlights two distinct periods. The first, from the beginning of 

the series until 1969, shows peaks with high daily outflows, frequently with values exceeding 500 

m3/s. The second period, from 1969 onwards, presents much lower outflows. Particularly between 

1969 and 1978, there were no values higher than 100 m3/s. This change in the flow regime could 

be related with the construction of dams along the course of the river (1967 – Roxo dam; 1972 –

Monte da Rocha dam; Sales, 2015). Table 1.1 shows the average and maximum daily flow of the 

two mentioned periods.  

Figure 1.3. Daily average outflow of the Sado river, in the period between 16 OCT 1940 and 31 DEC 2019, 

measured at Moinho da Gamitinha. Data provided by SNIRH. 

Figure 1.2. Location of Moinho da Gamitinha station. 
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Table 1.1. Mean and maximum values of the average daily flow measured at Moinho da Gamitinha, before and after 

1969. 

Average Daily Flow (m3/s) - Moinho da Gamitinha 

 Mean Maximum 

16 OCT 1940 to 31 DEC 1969 9.7 1298.5 

01 JAN 1970 to 31 DEC 2019 5.6 458.8 

 

Figure 1.4 shows the Sado river flow anomalies between 1941 and 2019, using the data 

of Figure 1.3 and considering the average of the values measured between this period as the 

reference. Only the data of the years that did not presented gaps of one or more months were 

considered. It is clear that 1963 was characterized by having a big positive anomaly, as opposed 

to 2019, one of the years with the lowest flow rates of the analyzed period. Also, it is plausible to 

deduce that there was a decrease of the river flow since 1941, given the trend towards negative 

anomalies represented by the dashed line (fitting the anomalies) in Figure 1.4. Of relevance is 

also the lack of positive anomalies in the last decade (although the absence of data in some years). 

 

 

Figure 1.4. Sado river flow anomalies between 1941 and 2019, being the reference, the average of the values 

measured between this period. Only the data of the years that did not presented gaps of one or more months were 

considered. The dashed line represents the trend of the river flow anomalies in the period referred. Data provided by 

SNIRH (Moinho da Gamitinha). 

 

 

Figure 1.5 presents the monthly values of Sado’s flow at Moinho da Gamitinha between 

2002 and 2011. This period was chosen to allow the analysis made in Chapter 3 with MERIS 

satellite products, that provided data between 2002 to 2012 (flow data regarding 2012 were not 

available in SNIRH’s database). As it would be expected, the river presented a higher mean flow 

during the winter months and minimum values during summer. 
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1.2 Aims of this study  

 

The main objective of this study was to analyze the temporal variability of 

physicochemical and biological parameters of the Sado estuary integrating two types of data: i) 

in situ observations and ii) satellite data. This temporal analysis was carried out at different time 

scales: tidal and seasonal, using in situ data, and interannual, after the integration of the satellite 

products. Consequently, this dissertation is divided into two main chapters, as described below. 

Chapter 2 is focused on the variability of temperature, salinity, turbidity, fluorescence and 

direction and intensity of currents (physicochemical parameters) at the outermost area of the Sado 

estuary, observed during in situ campaigns, at two different time scales: tidal and seasonal. In this 

chapter it is essentially intended to describe the circulation in the estuary, mainly the regime of 

water exchange at the mouth of the estuary, and to understand how the behavior of the remaining 

parameters can be defined throughout time. The first studies taken as a reference go back to the 

1970s. Given the dynamic regime of this ecosystem, the climatic forcing and the anthropogenic 

pressure that is currently verified in the area, it is aimed to analyze if the estuary changed in the 

past years. If so, there is the purpose to try to clarify the reason for the observed changes and 

study possible trends and consequences derived from the new conditions. 

Chapter 3 intends to extend the temporal and spatial coverage of the previous analysis 

with the use of satellite data. The first step is to understand which are the satellite products more 

appropriate for this study area, in order to analyze the variability of the Sea Surface Temperature 

(SST) and the chlorophyll a in the Sado estuary. After validating those products with the in situ 

observations, an evaluation of the general temporal and spatial pattern of those parameters was 

performed. The use of satellite data allows to investigate the temporal variation of these 

parameters using a more robust database and of greater spatial coverage. Likewise, it allows to 

discuss future scenarios for this estuary. 

 

 

 

Figure 1.5. Mean monthly river flow measured at Moinho da Gamitinha between 2002 and 2011, with the 

respective standard deviation. Data provided by SNIRH. 
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Chapter 2 

 

2 Tidal and seasonal variability of 

physicochemical parameters using in situ 

observations 

 

 

 

2.1 Introduction 

 

Estuaries have been described very broadly as the portion of the earth’s coastal zone 

where there is interaction of ocean water, fresh water, land and atmosphere. Although the 

dynamics of an estuary can be described in a very generalized way, estuaries are characterized as 

much by similarities as by differences (Day et al., 2012). The Sado estuary is an example of that, 

having distinctive properties. The first oceanographic studies carried out in the Sado estuary 

occurred throughout the 1970s with the work of Wollast (1978, 1979). Wollast (1978, 1979) 

studied the variation of the temperature and salinity in the estuary and recorded hydrologic and 

current data without analyzing the direction of the currents. However, these results were too 

preliminary to allow any solid conclusion about the physical oceanography of the estuary (Sousa 

and Lourenço, 1980). Later, several studies that focused on the physical characterization of the 

estuary were conducted in the area (Sousa and Lourenço, 1980; Ambar et al., 1982; Ribeiro and 

Neves, 1982; Neves, 1985).  

Sousa and Lourenço (1980) reported that the entrance of water in the Sado estuary was 

made mainly through the North channel, being the South channel the focal area of water outflux. 

The estuary was described by showing a pronounced asymmetry in both tidal regimes between 

the North and South channels, not only in current intensity (higher values were observed in the 

South channel), but also in the timing of the turn of the tide from ebb to flood (North channel with 

a faster reaction to the change of the tide). Also, the residual current was observed to be 

directioned from near Albarquel all the way up the northern channel while the southern channel 

showed a classical net estuarine circulation - the vertically integrated residual flow was seaward 

although the deep layers moved up-estuary and the surface layers moved towards the sea (Ambar 

et al., 1982).  

The oceanic water is believed to influence the entire estuary, as high salinity values were 

previously observed throughout the whole estuarine area (Sousa and Lourenço, 1980). Sousa and 

Lourenço (1980) observed that this parameter was vertically heterogeneous, so they referred that 

the Sado estuary was partially mixed. However, mean salinity values (tidal and vertical averages) 

were used together with current data, to calculate the stratification and circulation parameters 



 

8 

 

defined by Hansen and Rattray (1966) and, according to this criterion, the estuary was classified 

as having a low stratification (Ambar et al., 1982). Ribeiro and Neves (1982) suggested that the 

estuary behaved as a coastal lagoon, with salinity always above 28. The similarity with a coastal 

lagoon came mostly from the high salinity values that were measured throughout the whole 

estuarine region. This observation revealed a low mixture of fresh water with oceanic water, 

mixture that would have to be evident in a typical estuary (NOAA, 2020c). It was also observed 

that the water of the river tended to be colder than the ocean water (Ambar et al., 1982).  

Considering the tidal cycle, the variation of the salinity and the temperature was observed 

to be low (Moreira, 1987). Nevertheless, the seasonal variation of these parameters was evident 

(Sousa and Lourenço, 1980). According to the study of Sousa and Lourenço (1980), in the first 

section of the estuary (S1 in Figure 1.1), during winter and summer, the surface temperature was 

≈13 ºC and ≈17 ºC, respectively. As for the salinity, it reached values of 32 in winter and fitted 

between 35.0 and 35.7 during summer, for the same region of the estuary. Usually, during winter, 

the sea water was warmer than the water inside the estuary (or had almost the same temperature), 

occurring an inversion of that signal during summer (Ribeiro and Neves, 1982). 

More recently, few oceanographic studies have been conducted in the estuary. 

Nevertheless, the application of the MOHID 2000 model in Sado estuary is worth to be 

mentioned. MOHID is a water modeling system initially developed to study the circulation in 

coastal and oceanic areas (Neves, 2000). Throughout its existence, the MOHID model has been 

successfully used in numerous case studies, among which are areas with very different 

characteristics, as the deep ocean (cases of the Northeast Atlantic, within the scope of the Omex 

project; Mediterranean Sea, under the EuroModel project), river and estuarine areas, coastal areas, 

lagoons and reservoirs (Maretec, 2000a). In Sado estuary, a hydrodynamic analysis and a 

simulation of the estuary was performed with MOHID, in order to evaluate its trophic level, as 

well as to identify the most important factors that influenced it (Maretec, 2002a). The circulation 

regime obtained using MOHID for the Sado estuary presented results in agreement with previous 

studies.  

Since this region started to be occupied by humans, the estuary margins have slowly been 

modified. The salt pans, the landfills or the facilities of the port of Setúbal are undoubtedly some 

of the most visible structures resulting from the human settlement that led to the artificialization 

of the coast throughout time. Furthermore, they motivate frequent dredging works in the 

navigation channels, in order to maintain the navigability of the estuary. All these human 

influences lead to the destruction of intertidal zones, to the introduction of polluting sources 

within the estuary (from industrial units and ship movements) and influences the circulation in 

the estuary (Sousa, 2006). In addition to the changes resulting from human occupation, it is also 

possible to see modifications driven by environmental variations, such as climate change, specific 

atmospheric phenomena or changes in the river's flow, that vary the morphology of the estuary 

and the water physicochemical and biological conditions (EES Group, 2018). As about 40 years 

have passed since the first studies were carried out in the estuary, it is important to understand if 

the behavior of these water parameters changed through time, and if so, by what aspects were 

those changes driven. Moreover, a study based on in situ measurements made throughout the tidal 

cycle, with high frequency and in depth, in a monthly sampling regime, using a various set of 

instruments, was in need. This approach would allow a more accurate view of estuarine dynamics 

and, therefore, was used in the present study. 
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2.2 Sampling Strategy 

 

The sampling strategy of this study consisted in monthly sampling collections and intense 

campaigns conducted along part of the tidal cycle and covering the entire tidal cycle (partial tidal 

cycle and full tidal cycle campaigns, respectively). Different parameters of water quality (e.g.: 

temperature, salinity, dissolved O2, pH, nutrient and chlorophyll a concentrations) were 

measured. Monthly campaigns took place between September 2018 and September 2019, in stns. 

#6 and #7 (see Figure 2.1 and Table 2.1 for location). A total of 11 monthly campaigns were 

performed (Table 2.2). 

The partial tidal cycles were covered during two periods: November 2018 and June 2019. 

For each period, two cycles were sampled to evaluate the differences between spring and neap 

tides. For this tidal study, an additional station, stn. #8 (Figure 2.1 and Table 2.1), was considered 

instead of stn. #6, that was not monitored given its proximity to the coast. In the end, a total of 4 

partial tidal campaigns were performed. Stn. #8 is the station with the least information because 

was only monitored in those tidal campaigns. 

 

 

 

 

 

 

 

 

Table 2.1. Sampling stations: designation and geographical coordinates. 

Station (Stn.) Designation 
Coordinates 

Latitude ˚ N Longitude ˚ W 

#6 Setúbal 38.51809 008.89838 

#7 Outão 38.48667 008.93000 

#8 Troia 38.49278 008.88167 

Figure 2.1. Distribution of the sampling stations in Sado estuary. 
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All the monthly campaigns were planned to start the data collection at high water (HW). 

In the partial tidal cycle campaigns, sets of measurements were taken every two hours in each one 

of the stations, with more or less results depending on the available hours of day light. Due to the 

high variability of the data observable during these partial cycle campaigns, it was considered 

that, for better knowledge of the circulation in the estuary, it would be important to study complete 

tidal cycles. Therefore, one full tidal cycle campaign (13 h) was made in stns. #6 and #8, in June 

2019, with measurements taken every 30 min. For these complete cycle campaigns, the collection 

of the data was not made exactly in stn. #6, but closer to the navigation channel, to avoid land 

interference (exact coordinates - 38˚ 31' 3.6'' N   008˚ 53' 55.5'' W). During these 2 campaigns, 

the boat was anchored during the entire period and the measurements were taken, every 3 m depth 

in stn. #6 and every 4 m in stn. #8. Stn. #7 was not considered for this study because, the results 

obtained up to then with the monthly campaigns, lead to the conclusion that this area is highly 

dynamic, with high instability, difficult to characterize with the monitorization of only one full 

tidal cycle. Additionally, stn. #7 is located in the middle of the main navigation channel so it 

would be difficult to stay there for 13 h.  

 

2.3 Data and Methodologies 

 

In situ observations were carried out using: i) a NXIC (Non-eXternal Inductive 

Conductivity) CTD for conductivity, temperature and depth, from the former Falmouth Scientific 

Inc. – FSI; ii) an EXO2 Multiparameter Sonde (from YSI) for water quality analysis; iii) a Doppler 

Current Sensor (4100, from Aanderaa, Norway) for current intensity and direction measurements. 

In order to make the reading easier, from now on, the multiparameter sonde is referred as MS and 

the current meter sensor as CS.  

The CTD and the CS were used in all sampling campaigns, except in OCT 2018 (CS) and 

in DEC 2018 (CTD and CS) when unforeseen events prevented their use. Therefore, there is no 

data from these instruments during those months, as described in Table 2.2.  

From the campaign of the 26th of June onwards, there is no record of CTD data because 

the instrument had an anomaly. Also, in August 2019, due to logistic constraints, the research 

boat needed to sample stn. #7 was not available, thus only stn. #6 was monitored (Table 2.2). For 

the full tidal cycle campaigns, it was only used the CS.  

It should be mentioned that in stns. #7 and #8, the research boat never anchored and the 

profiles were always collected with the boat drifting whereas the collections in stn. #6 were made 

with the boat moored at a pontoon. 
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Table 2.2. Sampling dates and instruments used in each one of the stations (#6, #7 and #8). N represents the total 

number of profiles collected during the whole sampling period. LT – Local Time, CS – Current Meter Sensor, MS – 

Multiparameter Sonde, Sets - cycles of measurements made. 

 

2.3.1 CTD data 

 

The CTD was kept at the surface of the water column for sensor stabilization during 2 

min, before data for each profile were recorded. Only downcast data were used. Also, the data 

recorded in the first meter of the water column were discarded due to the dimensions of the CTD.  

A relatively recent CTD calibration indicated that the following correction should be 

applied to the conductivity measurements: 

 

 

 

 

Stations with data 

Sampling Dates CTD CS MS 

06 SEP 2018 #6, #7 #6, #7 #6, #7 

03 OCT 2018 #6, #7 - #6, #7 

08 NOV 2018 
Partial Tidal Cycle 

#7 (4 sets), 

#8 (4 sets) 

#7 (4 sets), 

#8 (4 sets) 
#7, #8 

16 NOV 2018 
Partial Tidal Cycle 

#7 (4 sets), 

#8 (4 sets) 

#7 (4 sets), 

#8 (4 sets) 
- 

19 DEC 2018 - - #6, #7 

16 JAN 2019 #6, #7 #6, #7 #6, #7 

14 FEV 2019 #6, #7 #6, #7 #6, #7 

28 MAR 2019 #6, #7 #6, #7 #6, #7 

12 ABR 2019 #6, #7 #6, #7 #6, #7 

24 MAY 2019 #6, #7 #6, #7 #6, #7 

18 JUN 2019 
Partial Tidal Cycle 

#7 (5 sets), 

#8 (3 sets) 

#7 (5 sets), 

#8 (3 sets) 
#7, #8 

1 19 JUN 2019 - 20 JUN 2019  
Full Tidal Cycle 

 #8  

2 20 JUN 2019 - 21 JUN 2019  
Full Tidal Cycle 

 #6  

26 JUN 2019 
Partial Tidal Cycle 

- 
#7 (7 sets), 

#8 (7 sets) 
#7, #8 

10 JUL 2019 - #6, #7 - 

09 AUG 2019 - #6 #6 

23 SEP 2019 - #6, #7 #6, #7 

N 38 55 25 
 

1 19 JUN 2019 15:30 LT – 20 JUN 2019 05:00 LT; 2 20 JUN 2019 19:00 LT – 21 JUN 2019 08:30 LT. 

 𝑦 = 0.0699247975 + 0.997943785𝑥 [2.1] 
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where x is the conductivity measured by the instrument and y the respective value after 

calibration. The difference between the uncalibrated conductivities and the respective calibrated 

values was of ≈ 0.02 mmho/cm for the profiles of every campaign (blue and orange profiles, 

respectively, in Figure 2.2). Equation 2.1 was applied to the whole set of conductivity 

measurements.  

 

 

After correcting the conductivity, the practical salinity (PSS-78) was calculated using the 

Gibbs-SeaWater (GSW) Oceanographic Toolbox, software package of the Thermodynamic 

Equation of Sea-Water 2010 (TEOS-10), with the function gsw_SP_from_C (Practical Salinity 

from conductivity) using MATLAB software (McDougall and Barker, 2011).  

Using the values of water temperature (T) and salinity (S), the density anomaly was also 

computed using the same toolbox, with the function gws_sigma0. This function calculates the 

density anomaly (𝜎𝑡, kg/m3) with reference to the surface (0 dbar), according to equation 2.2:  

 

 

where ρ is the seawater density. 

Additionally, the CTD allowed registering data of turbidity and of chlorophyll a 

concentrations, which, in this last case, were automatically derived from the CTD fluorescence 

readings (referred simply as fluorescence from this point forward). 

After the data were treated, profiles of temperature, salinity, 𝜎𝑡, turbidity, and 

fluorescence were plotted for the whole set of stations. Also, a T/S scatter diagram was plotted 

considering all data collected.  

 

2.3.2 Current Meter Sensor data 

 

The Current Sensor (CS) enables to gather several parameters at each measurement depth: 

i) intensity and direction of the current; ii) temperature; and iii) pressure. The depth of the water 

column at stns. #6, #7 and #8, was approximately 8, 38 and 20 m, respectively. In stns. #6, #7 and 

 𝜎𝑡 = 𝜌𝑆,𝑇,0 − 1000 [2.2] 

Figure 2.2. Conductivity values obtained with the CTD in JAN’19 campaign before (blue) and after the calibration 

(orange). 



 

13 

 

#8, the measurements were made every 2, 5 and 4 m in the water column, respectively. At each 

station, the sensor was placed in the water and it was left stabilizing at every depth for about 2 

min. The instrument measured the parameters cyclically and when the values appeared stabilized, 

a measurement cycle was chosen as the representative one. 

Regarding the processing of the CS data, the first step was the computation of the pressure 

values (p in kPa) into depth values (D in m) using equation 2.3. 

 

 

 Then, a correction to the current direction was applied. These data were collected in 

degrees relative to the magnetic north and needed to be transformed into degrees relative to the 

geographic north, by subtracting or adding the earth’s magnetic declination to the first value. At 

the time of the measurements, the magnetic declination of the stations was the following 

(according to http://www.magnetic-declination.com): 

 

▪ Stn. #6: 2˚ 5’ W 

▪ Stn. #7: 2˚ 6’ W 

▪ Stn. #8: 2˚ 5’ W 

 

Since these values were relative to West, they represented a negative declination and, 

therefore, once they have been transformed into degrees, they were subtracted to the ones 

collected with the current sensor, to obtain the geographic direction of the current. 

The temperature values obtained by the CS, were not used in this chapter because they 

were much higher than the temperatures measured with the CTD and with the MS. The values 

obtained with these two instruments were close to each other and, as the instruments were 

calibrated in a recent past, it was assumed that they presented the most reliable values. Figure 2.3 

presents an example of the data collected in stn. #6 and #7, during the 14 FEB 2019 campaign, to 

show the discrepancy of the temperature values obtained with the 3 instruments.  

 

  

 𝐷 = (𝑝 − 100)/10 [2.3] 
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Figure 2.3. Temperature values obtained with the CTD, the MS and the CS in stns. #6 and #7, during the 14 FEB 

2019 campaign. 

http://www.magnetic-declination.com/
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The data were then arranged in polar vector graphics to characterize the currents 

according to its direction and intensity along the water column. The graphics were drawn with the 

software Grapher 14. 

 

 

2.4 Results  

 

2.4.1 Variability along the tidal cycle 

 

2.4.1.1 Partial Cycle Campaigns 

 

In this study, concerning the partial cycle campaigns, a total of 24 CTD profiles were 

acquired (Figure 2.5). For each profile, there is a time reference (Local Time, LT) relative to high 

water (HW). Every set of measurements is represented by “C” (partial Cycle measurement) 

followed by the number of the set. 

It was possible to see that there were small variations of each parameter along the water 

column and throughout the tidal cycle (Figure 2.5). However, some profiles showed some 

unexpected values. As for temperature, most observations varied around 16 ºC, except in stn. #8, 

during the June campaign, when the temperature varied from 15 ºC to 19 ºC. 

Regarding the salinity, almost all the profiles varied around 36.0. However, lower values, 

in about 3.5 units (i.e. 32.5) were observed at the surface in the 4th set (C4) of the campaign 

conducted in stn. #8 on the 16th November. Consequently, a similar pattern was observed in the 

σt profiles (Figure 2.5). 

Most of the turbidity profiles showed values ranging between 0 and 10 FTU (Formazin 

Turbidity Units). Higher values, up to 25 FTU were observed during the 08 NOV 2018 and 18 

JUN 2019 campaigns. Values of 13 and 24 FTU can be verified and they seem very high for the 

natural behavior of the estuary. The fluorescence profiles showed values mostly between 0 and 2 

and with no relevant variations in depth and throughout the campaigns (Figure 2.5). 

Although the general outlook of these profiles is of a regular behavior with small 

variations along the water column, in the campaign of June, a variation in the temperature, salinity 

and σt profiles (density anomaly) around 10 m depth was observed. This is shown in Figure 2.4, 

a partial zoom of Figure 2.5. This oscillation around 10 m was perceptible throughout that 

campaign in both stations but had a bigger pronunciation in the first and third set of measurements 

of stns. #7 and #8, respectively.  

 
Figure 2.4. Temperature, salinity and σt profiles obtained in the first and third set of measurements at stn. #7 and #8, 

respectively, during the 18 June campaign. 
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1Stn. #7: C1 – HW+5.0; C2 – HW+6.5; C3 – HW-3.3; C4 – HW+0.1. Stn. #8: C1 – HW+5.9; C2–HW-4.5; C3 – HW-2.5; C4 – HW+0.8. 

2Stn. #7: C1 – HW+5.8; C2 – HW-6.3; C3 – HW-4.2; C4 – HW-0.3. Stn. #8: C1 – HW+6.1; C2–HW-5.4; C3 – HW-1.5; C4 – HW+0.2. 

3Stn. #7: C1 – HW+4.0; C2 – HW+4.7; C3 – HW-4; C5 – HW-2.0; C6 – HW-0.1. Stn. #8: C2 – HW+5.7; C3–HW-4.9 h; C6 – HW+0.8. 

     

 

 

        
Figure 2.5. Temperature (ºC), salinity, σt (kg/m3), turbidity (FTU) and fluorescence (µg/L) profiles obtained at stns. #7 and #8 during the different partial cycle campaigns using the CTD (C – 

partial cycle measurement, HW – high water). 

08 NOV 2018 

Spring Tide1 

16 NOV 2018 

Neap Tide2 

18 JUN 2019 

Spring Tide3 
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The CS data obtained throughout the partial tidal cycle campaigns complemented the data 

obtained with the CTD. It is challenging to understand how the current intensity varies in depth, 

as there was no pattern in the variation of the current intensity along the water column throughout 

the tidal cycle (Figure 2.6 and Figure 2.7). Likewise, there was no constant agreement between 

the direction of the current at the surface and at the lowest level along the tidal cycle (showed in 

blue and green arrows, respectively, in Figure 2.6 and 2.7). This inconsistent behavior appeared 

to be similar in stn. # 7 and stn. #8, as a characteristic pattern was not observed at any of the 

stations. Between spring and neap tides, it was evident that higher current intensity values were 

observed in the campaigns conducted during spring tides, as would be expected. The June 

campaigns appeared to show a concordant behavior in terms of current intensity between some 

sampling points. However, these campaigns included more measurements throughout the tidal 

cycle than the campaigns conducted in November. It can also be seen that the direction of the 

current most often did not coincide with the tidal regime, contrary to the expectation. 

This inconstant behavior of the current direction and intensity throughout time, could be 

justified by the small number of measurements that were done at each station throughout the tidal 

cycle. Also, a big amount of those measurements was made during slack water, which does not 

give much information about the circulation regime in the region. 

.  

 

2.4.1.2 Complete Cycle Campaigns 

 

To achieve a more accurate characterization of the estuary circulation, an extra campaign 

was performed to fully cover the tidal cycle with measurements every 30 min, in stns. #6 and #8 

(Figure 2.8).  

For both stations, there was a general agreement between the direction at the surface 

current and the lowest level (blue and green arrows, respectively, in Figure 2.8), contrary to what 

was previously described in the analysis of the partial cycle campaigns. Additionally, the direction 

of the current coincided with the tide throughout the tidal cycle. There was a clear tendency for a 

current intensity decreasing with depth, as there were stronger currents at the surface. More 

intense currents were observed during the ebb than during the flood. As expected, during slack 

water, the currents reached minimum values in both stations (Figure 2.8).  

It is also possible to see that the two stations responded in different timings to the 

changing of the tide (Figure 2.8). Also, in high water both stations seemed to show a direction of 

the current towards the center of the estuary. The opposite appeared to happen in low water, being 

the direction of the current towards land (except at the surface of stn. #8).  

These data seem to indicate that the water flows in and out of the estuary through both 

channels, showing greater intensity in the South channel (the deepest one). Therefore, it is 

suggested that the southern channel is the most important in the exiting and at the entrance of 

water in the estuary (Figure 2.9). In Figure 2.9, the average current intensity obtained during flood 

is represented with a green arrow, and the obtained during ebb, is shown with a red arrow. 
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 Figure 2.6. Intensity of the current at every depth level, in stns. #7 and #8, along the partial tidal cycle campaigns conducted in November 2018. Direction of the current at the surface and at the 

deepest level represented in blue and green arrows, respectively. 

08 NOV 2018 – Spring Tide 

Stn. #8 

16 NOV 2018 – Neap Tide 

Stn. #7 Stn. #7 
Stn. #7 Stn. #7 

Stn. #8 
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 Figure 2.7. Intensity of the current at every depth level, in stns. #7 and #8, along the partial tidal cycle campaigns conducted in June 2019. Direction of the current at the surface and at the deepest 

level represented in blue and green arrows, respectively. 
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18 JUN 2019 – Spring Tide 

Stn. #8 

Stn. #7 

26 JUN 2019 – Neap Tide 

Stn. #7 

Stn. #8 

Hours 
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Figure 2.8. Intensity of the current at every depth level, in stns. #6 and #8, during the campaigns that completely covered the tidal cycle (June 2019). Direction of the current at the surface and at the deepest 

level represented in blue and green arrows, respectively. 
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2.4.2 Seasonal Variability 

 

At the end of the sampling period, it was possible to obtain the values of the analyzed 

parameters, averaged by season, considering the estuary as a whole, in depth and space (Table 

2.3). Also, the mean values considering the entire estuary and the whole sampling period were 

calculated (entire period in Table 2.3). It is important to note that during autumn and spring there 

were more observations due to the partial cycle campaigns. It is possible to observe that the 

temperature presented the clearer seasonal behavior, showing a thermal amplitude of ≈ 5 ºC (Table 

2.3). Sigma-t varied seasonally as expected (lower values during summer than in the winter 

months) and had an average of 26.2 kg/m3 throughout the sampling period. As it would be 

predictable, salinity was higher in summer than in winter but, given the range of values observed 

throughout the year, this seasonal variability was low. Higher turbidity values were observed 

during the transition months, being the highest the ones from spring measurements. Similarly, 

spring presented the highest average values of fluorescence, being difficult to assume any 

seasonal behavior of this parameter along the rest the year (Table 2.3). 

 

Table 2.3. Mean values obtained for each season and for the whole sampling period, considering the average of the 8 

stations and of the water column for the analyzed parameters. 

 Temperature (˚C) Salinity σt (kg/m3) Turbidity (FTU) Fluorescence (µg/L) 

Entire period 16.0 35.8 26.2 3.7 0.9 

Summer 19.0 35.9 25.6 1.7 0.8 

Autumn 17.3 35.8 25.9 3.3 0.7 

Winter 13.8 35.7 26.7 1.0 0.8 

Spring 16.2 35.9 26.2 5.1 1.4 

Figure 2.9. Average intensity and direction of the current obtained using all the data from the water column, at stns. 

#6 and #8 throughout the cycle campaign, during ebb (red arrow) and during flood (green arrow). 

#7 
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To accomplish a detailed analysis of the seasonal variability of each parameter according 

to the sampling station, Figure 2.10 presents the whole set of temperature profiles, where in red 

are the profiles obtained during the summer, in orange the profiles obtained in autumn, in blue 

the profiles obtained during winter and in green the profiles collected during spring. 

 A clear thermal seasonal pattern is observable in all stations (Figure 2.10). The lowest 

temperature values were obtained in winter (blue profiles) and the highest values obtained in 

summer (red profiles), as expected. However, in stns. #6 and #7, the profiles with the highest 

temperatures were obtained in October 2018. October is frequently a very hot month and, when 

the campaign took place, this region was under the influence of summer.  

After an analysis of each season in detail, it is interesting to describe some variations: 

i) In stn. #7 during summer (red profile in Figure 2.10), it was possible to see a 

practically constant decrease of the temperature in depth. This profile was the only one that 

showed this behavior.  

ii) The profiles obtained during fall (orange profiles in Figure 2.10), suggested that 

the water column was very well mixed during that time of the year, both in stn. #7 as in stn. #8.  

iii) During winter, it was also possible to observe a homogeneous water column in 

stn. #6 and stn. #7. However, in stn. #7, the profile obtained in January, suggested that the water 

column was well-mixed only until 20 m depth, with a temperature decrease of almost 1 ºC until 

the bottom, at ≈ 30 m (Figure 2.10).  

iv) In all the sampling stations, the profiles obtained during spring (green profiles in 

Figure 2.10) were the ones that showed the greatest range of values over the tidal cycle 

(comparing with the autumn profiles) and over time. In depth, some temperature variations in the 

first meters were noticeable. 

v) Of the three stations, it was stn. #6 that tended to have the greatest mixture of the 

water column over time. However, is the station with the lowest water column. 

Annex I shows in detail, the temperature profiles obtained in each campaign. It is 

interesting to note that stn. #6 had lower temperatures than stn. #7 in the winter months but higher 

values in summer and transition seasons. 

 

The salinity profiles obtained with the CTD for the same 3 stations are shown in Figure 

2.11. As in Figure 2.10, the color code was kept in order to facilitate the study of the seasonality 

of this parameter. Salinity data from stn. #6 seem to indicate the influence of seasonality but, as 

there is no consistency between stations, it is difficult to suggest any clear seasonal effect (Figure 

2.11). From Table 2.3 it was possible to observe a slight seasonal behavior of this parameter when 

it was considered the average of the 3 stations, but, analyzing each station separately, it becomes 

more difficult to see that variability. 
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Figure 2.10. Temperature profiles obtained in CTD stns. #6, #7 and #8 (summer campaigns in red, autumn 

campaigns in orange, winter campaigns in blue and spring campaigns in green). 
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In stn. #7, the salinities were in the interval 35.5-36.2, while in the other stations there 

was a greater variation of values. Relevant variations of salinity along the water column were not 

observed at all stations, which may suggest that the water columns were well mixed during 

sampling. However, an increase in the salinity was seen at the surface in several profiles, with 

lower values in the first meters of the water column. This was especially verified in the profiles 

obtained during winter and autumn. Noteworthy, is the profile C4 obtained in stn. #8 in the 

campaign of 16 NOV (orange profile with lower values in Figure 2.10), where the surface salinity 

Figure 2.11. Salinity profiles obtained in CTD stns. #6, #7 and #8 (summer campaigns in red, autumn campaigns in 

orange, winter campaigns in blue and spring campaigns in green). C4 – 4th partial cycle measurement 
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Figure 2.12. Salinity profiles obtain in CTD stns. #6, #7 and #8 related with the tidal regime (flood in red and ebb in 

blue). C4 – 4th partial cycle measurement 

was 33.2, reaching a value of 35.0 at ≈ 3 m depth. This profile can be seen in its entirety in Annex 

II. It is interesting to highlight the tendency for the profiles obtained during ebb (blue profiles in 

Figure 2.12) to yield the highest variations of salinity at the surface, compared to the profiles 

obtained during flood (red profiles in Figure 2.12).  Once again, in Figure 2.12, the bigger salinity 

variation was verified on 16 NOV (ebb profile), in the last measurement set (C4), where the first 

10 m of the water column show an increase of the salinity. 

In the hot months (September and October 2018 and May 2019), the salinity values in 

stn. #6 were very similar to those observed in stn. #7, for the respective campaigns. During the 

remaining months, salinities in stn. #6 were 0.5 lower than in stn. #7, for the same campaigns 

(Annex III). Since the salinity in stn. #7 did not change significantly over time, stn. #6 presented 

a higher sensitivity to seasonal variability, as described earlier.  

 

 

 

 

 

 

  

 A T/S scatter diagram of the whole set of stations is presented in Figure 2.13, where the 

color code was kept according the season of the year as before. These results complement well 

the ones presented previously, as it is clearly shown that the seasonal variability of the temperature 

is framed in practically unchanging salinity values, throughout the whole year. 
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 All the sigma-t values ranged between 25.1 and ≈ 26.9 kg/m3 (Figure 2.14). Sigma-t 

values were similar in the three stations. However, a seasonal pattern of sigma-t and, therefore, 

of the water density, was observed, with denser waters in winter and lighter waters in summer 

(Figure 2.14; summer campaigns in red, autumn campaigns in orange, winter campaigns in blue 

and spring campaigns in green). No relevant vertical variation of the sigma-t values was observed. 

An exception occurred in stn. #7 (SEP 2018), where sigma-t increased with depth throughout the 

entire water column. This increase is a result of the temperature decrease observed in stn. #7 (red 

profile in Figure 2.10), which shows a slight stratification in the water column. 

 

Turbidity values collected with the CTD were also analyzed and did not differ 

significantly in the three stations (Figure 2.15). The values tended to vary between 0.0 and ≈ 7.0 

FTU throughout time. However, the profiles collected in 08 NOV (stns. #7 and #8) and 18 JUN 

(stn. #8), showed values reaching to 13.0 and 24.0 FTU, respectively, variation that appeared to 

be atypical for the estuary. Also, there was no meaningful variation of the turbidity along the 

water column during the sampling period, only in the previously mentioned profiles. When the 

different stations were compared according to the sampling day, it could be verified that, for the 

same campaign, stn. #6 had slightly higher values of turbidity than stn. #7 (see Annex IV). 

 

 

Figure 2.13. T/S scatter diagrams of stns.#6, #7 and #8 (summer campaigns in red, autumn campaigns in orange, 

winter campaigns in blue and spring campaigns in green). 
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Figure 2.14. Sigma-t profiles obtained in CTD stns. #6, #7 and #8 (summer campaigns in red, autumn campaigns in 

orange, winter campaigns in blue and spring campaigns in green). 
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Figure 2.15. Turbidity profiles obtained in CTD stns. #6, #7 and #8 (summer campaigns in red, autumn campaigns in 

orange, winter campaigns in blue and spring campaigns in green). C - partial cycle measurement. 

 

  

 

 

  The data of fluorescence obtained with the CTD (chlorophyll concentration measured by 

fluorescence) were also analyzed and the results are presented in Figure 2.16. In general terms, 

the fluorescence data collected seem to indicate no evidence of large variations in the biomass of 

phytoplankton communities, both vertically (in the water column) and spatially (across the three 

stations). The values did not exceed 5.0 µg/L throughout the sampling period and most of the 

profiles were in the range 0.0-3.0 µg/L, without showing a remarkable seasonal variability. 

However, some profiles showed circumstantial variations with values higher than 3.0 µg/L, being 
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the profile obtained in stn. #6 in MAR 2019, the one with the increase of fluorescence of higher 

relevancy (for further detail, see Annex V). In fact, in stn. #6, the profiles appeared to show a 

maximum of fluorescence between 4 and 6 m (except in September 2018, red profile in Figure 

2.16). This behavior could indicate that stn. #6 may show a Deep Chlorophyll Maximum (DCM) 

at ≈ 5 m. This maximum was not visible in the other stations, probably due to the poor 

stratification of the estuary waters.  

 

 

 

 

  

Figure 2.16. Fluorescence profiles obtained in CTD stns. #6, #7 and #8 (summer campaigns in red, autumn 

campaigns in orange, winter campaigns in blue, spring campaigns in green). 
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 The data collected with the current sensor (CS) during the monthly campaigns were 

processed in a similar way as the data collected in the cycle campaigns (Stn. #6 - Figure 2.17 and 

Stn. #8 – Figure 2.18). The direction and the intensity of the current is represented, as well as the 

time of the measurements relative to high water (HW). The measurements were conducted within 

the second or third hour after high water in stn. #6, or during slack water in stn. #7. 

The currents were consistent with the tidal regime in stn. #6 (see Figure 2.17). During 

ebb (e.g.: 16 JAN 2019, HW+1.6), currents with a strong west component were observed as a 

sign of water exiting the estuary. However, it is difficult to draw any conclusions regarding the 

behavior of the current intensity with depth, as there was no similar behavior between campaigns. 

In stn. #7, there is no evidence of any kind of pattern in the intensity and direction of the current 

throughout the sampling period or along the water column (Figure 2.18). 
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Figure 2.17. Intensity and direction of the current measured in stn. #6, between September 2018 and September 2019, at 5 levels: surface in blue, 2 m in pink, 4 m in orange, 6 m in green and bottom in red. Time of the measurements (given in hours) relative to high water (HW). 
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HW + 0.8 HW + 0.3 HW + 0.3 
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10 JUL 2019 

Stn. #7 

Figure 2.18. Intensity and direction of the current measured in stn. #7, between September 2018 and September 2019, at 8 levels: surface in blue, 5 m in pink, 10 m in orange, 15 m in green, 20 m in red, 25 m in purple, 30 m in yellow and bottom in dark blue. Time of the 

measurements (given in hours) relative to high water (HW). 
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2.5 Discussion 

 

From the analysis of the profiles, it was possible to detect a variation in the temperature 

and turbidity throughout the tidal cycle during the campaign conducted in June, with a thermal 

amplitude of around 4˚C and a variation of turbidity of 24 FTU. Additionally, during the same 

campaign, an intrusion of water with lower temperature, salinity and density was observed at 10 

m depth (Figure 2.4). The day in which the campaign took place, the sea and weather conditions 

were adverse, especially during the morning period, when the first measurements took place. The 

turbulence of the water could justify the range of temperature and turbidity values observed during 

that day but doesn’t justify the water intrusion observed at 10 m depth in stns. #7 and #8, which, 

should have been mixed, under those turbulent conditions. This intrusion could have been 

originated by a river discharge but, in that case, it would be observed a signal at the surface too. 

This occasional variation could also have been a manifestation of a land discharge. According to 

Rosa (2010), the orthopedic hospital of Santiago do Outão has its own waste disposal station that 

flows into the river. This could be a possible justification for what was observed but, as the first 

measurement set was taken during the ebb, a hypothetical discharge would flow towards the 

ocean, not affecting the sampling stations. Therefore, it is more plausible to think in a discharge 

coming from the interior of the estuary, with capacity to affect stns. #7 and #8, as it happens with 

Comporta’s sewage, that flows directly into the estuary (Dias, 2019). Although the sewage is 

located ≈ 15 km from stn. #8, it could be the cause of this intrusion. Further studies would be 

needed to unravel these processes in depth. 

A slight salinity increase was observed at the surface layers in some profiles (Figure 2.11). 

Higher rainfall increases the river flow that, when relevant, can influence the whole estuary, in 

all its parameters. The analysis of the profiles also revealed that, these low salinity values at the 

surface layers were obtained during the ebb. The circulation regime in the estuary is strongly 

dependent on the variation of the tide (Sousa and Lourenço, 1980) and, therefore, any relevant 

variation in the river flow can affect the entire estuary, mostly during the ebb. This could be the 

justification for the lower values observed at stn. #8 in November 16, one week after high rainfall. 

Despite the influence of the river in some of the profiles analyzed, the mouth of the 

estuary presented a mean salinity of 35.8, which is in agreement with the values observed in the 

coastal ocean of Portugal (Marques, 2017). The mouth of the estuary behaved like a coastal lagoon 

(Ribeiro and Neves, 1982), showing the entrance of seawater into the estuary, with high salinities, 

along the water column and practically with no temporal variation. 

The values of the several parameters matched partly the results presented in previous 

studies. Sousa and Lourenço (1980) observed, during winter, temperatures of 14 ºC and salinities 

of 34.0, in the region of stns. #6 and #7, and of ≈ 13 ºC and 32.0 near stn. #8. During summertime, 

they observed values of 18 ºC (near stns. #6 and #8) and 16 ºC (stn. #7), and salinities ranging 

between 35.0 and 35.7. In the present study, the profiles obtained during winter showed similar 

temperatures to those mentioned above, but salinities higher in about 2.0 units. During the 

summer, the temperature showed to be higher in about 2 or 3 ºC, according to the station, but the 

salinities were closer to what was measured by Sousa and Lourenço (1980). It seems that, during 

the sampling period of the present work, there was higher thermal amplitude throughout the year, 

with temperatures reaching higher values. Also, the influence of the river water in the region of 

the mouth of the estuary was less than before. These variations could be occasional or be the result 

of changes in the estuary in recent years. They could be due to variations in the weather conditions 

and, consequently, of the river flow, which has been decreasing according to Sales (2015) and the 

Chapter 1 of the present study.  
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In a more extended temporal analysis, it was possible to see a strong change in the river 

flow in 1969 (Chapter 1). The Roxo dam, placed south of Moinho da Gamitinha, built in 1967 

and, Monte da Rocha dam, built later on, in 1972, constitute two interferences in the river course 

and probably caused the observed decrease of the Sado river (Sales, 2015). As there are no 

published oceanographic studies of the estuary prior to the 1970s, it is difficult to verify the 

influence of the river flow reduction in the estuary dynamic, as well as in the characteristics of 

the physicochemical parameters. However, it was possible to validate the seasonality of the river 

flow throughout the year, which can justify some of the observed variations, in the salinity, as 

mentioned above, and in the turbidity of the water. 

The turbidity profiles presented higher values during summer than during winter, which 

can result from the reduced number of profiles obtained during summer. This evidence can also 

be justified by the low rainfall observed during winter, that evidenced higher values of turbidity 

during summer, which may come from the normal increase of productivity observable during that 

period (ADEC, 2015). However, the turbidity profiles obtained presented low values throughout 

the sampling period, evidencing the weak interference of the river water in the mouth of the 

estuary. Some profiles showed turbidity increases but, according to Vale et al. (1998), the higher 

values observed seem to be similar to the ones obtained in other undisturbed estuarine areas (11-

20 NTU, Nephelometric Turbidity Unit, directly comparable with FTU, the units used in this 

work).  

There were no significant variations of the parameters in depth, which indicates well 

mixed waters, with very little stratification and a relatively high vertical homogeneity (Figure 

2.5). These results are in agreement with the conclusions of Ambar et al. (1982), Ribeiro and 

Neves (1982), mentioned in Maretec (nd), Coutinho (2003) and Ferreira et al. (2005). A note only 

to the profile obtained at stn. #7 in September, which showed a constant decrease of the 

temperature in depth, as well as an increase of the density. This behavior is typical of a coastal 

oceanic station, during the summer. If more data collected in the summer were available, perhaps 

stn. #7 could be classified as a coastal oceanic station, as it was represented in Sousa and Lourenço 

(1980). The profiles obtained in January (winter season) suggested the formation of a mixed layer, 

since in February there was already conformity of the temperature values in the whole water 

column. In the absence of data collected in December, it is not possible to say if the mixed layer 

started to form even before January. 

The maximum of fluorescence observed in several profiles obtained in stn. #6 at ≈ 5 m 

depth was also corroborated by the data collected with the multiparameter sonde. This suggests 

the existence of a Deep Chlorophyll Maximum (DCM) that was not observed in the other stations, 

where a well-mixed water column occurred. This fluorescence maximum could be a result of the 

coastal influence, since the station was located next to a pier with associated fishing activities, or 

be a consequence of the influence of the sewers of Setúbal, that flow directly into the river, a few 

meters apart from the sampling station (Rabaçal, 2018; Goes, 2012). The works to divert the 

sewers to the Setúbal Wastewater Treatment Plant (WWTP) were not completed by the time the 

sampling campaigns were finished (Brandão, 2019). 

As the profiles obtained in the three stations did not show relevant differences among 

them, spatial homogeneity can be assumed in the outermost region of the estuary, mainly in stns. 

#7 and #8. Based on the temperature and salinity distributions, Wollast (1979) divided the estuary 

into an upper and lower part, being the lower part the area between stn. #7 and the beginning of 

the Alcácer channel (Sousa and Lourenço, 1980), so the spatial homogeneity mentioned above 

agrees well with that division. However, stn. #6 slightly diverged from the homogeneity observed 

between stns. #7 and #8, as the obtained values deviated from the ones observed in the other 

stations during the same campaigns. That could mainly be due to the lower depth of the water 
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column and the proximity of stn. #6 to the coast, that also leads to a highest susceptibility to 

atmospheric variations. 

Mainly, it was the variation of the tide that promoted the circulation in the estuary. The 

campaigns that fully covered the tidal cycle revealed that the water entered the estuary through 

the 2 channels, with more intensity along the South channel (Figure 2.8). The estuary outflow 

also occurred through both channels, being the South channel the main one for the water 

exchange. These results agree with the conclusions of Ambar et al. (1982) and Ribeiro and Neves 

(1982). Maretec (2002a), obtained current intensities similar to the ones observed in this study, 

with values in the range 50-100 cm/s in the same area. 

It was also observed an agreement between the current direction at the surface and at the 

lowest level across the full cycle. Ambar et al. (1982), referred the existence of a two-layer flow 

in the southern channel - up-estuary near the bottom and seaward at the surface - and currents 

more consistently up-estuary in the northern channel, which is in opposition with what was 

observed in the present study. The data collected during this study was not enough to draw 

conclusions regarding the residual current in the estuary. Ambar et al. (1982) and Maretec (2002a) 

mentioned a circulation model where the water entered the estuary predominantly through the 

North channel, leaving the estuary mainly through the South channel. This could not be verified 

with the present work but, possibly due to the lack of information of the interior of the estuary.  

The data collected at stn. #7 were illustrative of the difficulties in characterizing the 

circulation near Outão, as also happened with Sousa and Lourenço (1980). The very complex 

circulation detected could be explained not only by estuarine water exchange, but also by the 

strong coastal exposition of the area. A large amount of the observations collected in stn. #7 were 

carried out during slack water, which also possibly influenced the large variation of the current 

intensity and direction in the water column and throughout the year. Also, the measurements in 

that station were made while the boat was drifting and that might have affected the results, making 

the campaigns hard to be compared. 

Based on the results obtained in this study, there could have been a possible change in the 

circulation regime of the estuary. However, more observations along tidal cycle analysis and in 

more stations throughout the estuary would be needed to allow conclusions about that possible 

change. It would be interesting to complement and validate the data obtained during this work 

extending the tidal cycle analysis to the CTD. That would allow to elaborate a more complete 

description of the variation of the physicochemical parameters along the tidal cycle and 

understand whether the observed changes in the salinity and temperature do correspond to the 

actual behavior of the estuary. In order to fully understand the actual circulation regime in the 

Sado estuary, a tidal analysis in its interior region and within the river channels would be 

important. 

The Sado estuary is currently undergoing through a dredging process to improve the 

access of large ships to the port of Setúbal. These works have been removing large amounts of 

sand from the northern navigation channel (more than 6 million tons of sand (Guimarães, 2019)). 

Such works can lead to changes in the circulation of the estuary (van Maren, 2015; Conceição, 

2016). The change of the circulation regime due to dredging activities was already verified in the 

Oka Estuary (Spain) by Liria et al. (2009). Therefore, it would be very interesting to keep these 

works monitored in order to see whether there is an anthropogenic modification of the system, 

and, if so, what kind of repercussions would it have in the future of the estuary.  

In conclusion, the outermost area of the estuary can be described as spatially 

homogeneous, with occasional stratification in the water column. The variations observed in 

depth and throughout the sampling period were mainly due to environmental and anthropogenic 

pressures (atmospheric variations, changes of the river flow or land discharges). Also, the 
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outermost area of the estuary presented salinity values that are typical of coastal oceanic waters, 

throughout the whole sampling period. Stn. #7 resembled a coastal oceanic station and stn. #6 

was the most susceptible station to seasonal variations, showing a possible DCM at ≈5 m. The 

river flow appears to have been decreasing in the past years and the variation of the tide was the 

main enhancer of the circulation in the estuary. The circulation was made through the two 

navigation channels, being the South channel the main route for the estuary water exchange. The 

intensity of the current decreased in depth and its direction was similar along the water column, 

according to the tidal regime. Possible changes in the circulation may have occurred in recent 

years, as some of the results presented here did not agree with the results of previous studies. 

Currently, dredging works taking place in the estuary can also be threatening the circulation 

regime and the behavior of the estuary. Therefore, it is important to monitor the estuary and to 

scientifically follow possible investment activities in the region. 
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Chapter 3 

 

3 Seasonal and interannual variability based on 

satellite data 

 

 

 

3.1 Introduction 

 

Remote sensing emerged in the second half of the 20th century in the form of satellite 

observations of land and ocean (Dassenaki et al., 2012). In the field of oceanographic studies, 

satellite data are often used to evaluate four sea properties, commonly referred to as primary 

quantities: sea surface temperature (SST), ocean color, roughness and elevation (Sutcliffe et al., 

2016). The study presented herein is focused on these first two properties in a costal environment 

context, the Sado estuary. However, there are numerous challenges in analyzing this type of 

environments. Estuaries have strong land-see interactions, as water and sediment inputs or 

constant coastal erosion, and are exposed to a high anthropogenic forcing, given the man’s interest 

in exploring these environments. Therefore, these factors give a complex and spatially 

heterogeneous natural condition to the wetlands and land surface characteristics of the estuaries 

(Chi and Fu, 2018). Despite the constant dynamism that turns estuaries difficult to analyze, their 

monitoring is extremely important. They are among the most productive ecosystems in the world, 

are habitat for several species (NOAA, 2020a) and are crucial for the economy.  

Measuring sea surface temperature with satellites was one of the first properties to be of 

interest to the scientific community. Scientists record sea surface temperature (SST) 

to understand how the ocean interacts with Earth's atmosphere. SST provides fundamental 

information on the global climate system and is important for the study of marine ecosystems, 

namely estuaries (NOAA, 2020a). There are now over 40 years of data collected by sensors 

dedicated to the SST study. With relevance and still in activity are, for example, the Advanced 

Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The 

AVHRR is a sensor that records daily images with a spatial resolution of 1 km and was launched 

by NOAA in 1978 (ESA Earth Online, 2020a). In 1999, NASA launched the MODIS sensor on 

board Terra satellite and in 2002, on board Aqua satellite. Both sensors have been providing SST 

products with 1 km resolution with a continuous global coverage every 1 to 2 days (NASA, 2020). 

The VIIRS was launched by NASA in 2011 to extend and improve the series of measurements 

initiated by its predecessors, AVHRR and MODIS. It has a spatial resolution of 750 m and a 

repeat cycle of 16 days (NASA Earth Data, 2020). 

https://www.ospo.noaa.gov/Products/ocean/sst/contour/
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Currently, the Group for High Resolution Sea Surface Temperature (GHRSST) is also in 

action. This is an international and open science group that encourages and promotes the SST 

monitorization with satellites and allows scientists and entities to collaborate in order to create a 

global and updated database (GHRSST, 2020). This group's platform contains several products, 

some of which integrate data from the various sensors described above in a unique product. In the 

present work, one of the products of the GHRSST database (Multiscale Ultrahigh Resolution 

(MUR) product – 1 km spatial resolution) was used. 

Globally, this platform (GHRSST) has been used for several studies of ocean water 

monitoring (e.g. Chin et al., 2017; Martin et al. 2012) and for product validation. Vazquez-Cuervo 

et al. (2019) proceeded with the validation of SST satellite products, including the MUR 

GHRSST, with in situ data collected with a Saildrone AUV (Autonomous Underwater Vehicle) 

in the coastal ocean of the California/Baja Coast. This product, according to the authors, appeared 

to show a good correlation with the AUV data but, the differences observed between the values, 

were justified by the satellite spatial resolution. However, Crosman et al. (2017), studied the use 

of MUR GHRSST in a lake environment (Lake Michigan – 85 m depth, 190 km wide and 2 600 

km long; Lake Okeechobee – 2.7 m depth, 48 km wide and 56 km long; Lake Oneida – 6.7 m 

depth, 8.0 km wide and 32 km long), useful in this work as it is an environment with shallow 

waters surrounded by continental landmasses, similar to Sado estuary. These authors concluded 

that MUR product was a promising tool for providing real-time analyses of surface temperature 

for lakes larger than a few km in diameter. 

In Portugal, the problem of the lack of resolution of SST satellite products was also 

noticed for the Tagus estuary, the closest estuary to Sado. There are records of applications of the 

Mediterranean Sea Ultra High Resolution Sea Surface Temperature Analysis from Copernicus, 

with a resolution of 1 km (Mateus et al., 2013) in Tagus estuary, for forensic sciences purposes 

(to estimate the accumulated degree days for two drowning accidents). The low precision of this 

product, when applied to the region, is mentioned by the authors. However, Pablo et al (2019) 

used the products of the GHRSST MUR and achieved a successful validation of the 3D-MOHID 

Hydrodynamic Model for the Tagus Coastal Area, corroborating the studies of Crosman et al. 

(2017).  

Although some problems in the use of products with 1 km spatial resolution in shallow 

and small areas seem to exist (uncertainties as atmospheric corrections, cloud contamination, 

water emissivity and shoreline effects (Crosman et al., 2017)), there seems to be a consensus on 

the use of MUR, which appears to be the most viable product to use in an analysis of the SST at 

Sado estuary. Therefore, a characterization of the interannual and seasonal variability of the SST 

in the Sado estuary was made using the GHRSST satellite imagery to study the temporal and 

spatial variation of the sea surface temperature in the estuary.  

Ocean color products, more specifically the ones providing concentrations of surface 

chlorophyll a derived from satellite data also have diverse and important applications. 

Chlorophyll a is the most important light absorbing substance in the open ocean and exists in all 

photosynthetic microorganism, named phytoplankton, that are at the base of most food chains of 

aquatic ecosystems. Chlorophyll a concentrations can be used as a proxy of phytoplankton 

biomass, i.e., more phytoplankton in the water, the greener the water is....the less phytoplankton, 

the bluer it is (Nagaraja, 2019). The development of remote sensing ocean color dates back to 

1978 with the launch of the Coastal Zone Color Scanner Experiment (CZCS), the first instrument 

optimized for water analysis on board of a spacecraft (NASA, 2019). Although CZCS was 

intended as a one-year proof-of-concept mission, the sensor continued to transmit data over 

selected oceanic test sites until early 1986 (ESA Earth Online, 2020b). After CZCS, some 

historically relevant instruments were launched. SeaWiFS was released in 1997 by NASA to 

https://science.nasa.gov/about-us/contact-us
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provide useful ocean color data to the Earth science community. It collected data with 1.1 km 

resolution (Local Area Coverage) until it ended its mission in 2010. With the SeaWiFS 

instrument, NASA gathered the first record of photosynthetic productivity in the oceans. In 1999, 

as earlier referred, NASA launched MODIS sensor. Beyond SST, MODIS can measure the 

photosynthetic activity of land and marine plants (phytoplankton) with a resolution of 1 km 

(Nagaraja, 2020). Furthermore, in the year of 2002, MERIS sensor was launched by ESA (in 

ENVISAT satellite) and was the first imaging spectrometer mission with a primary objective for 

ocean and coastal color remote sensing. MERIS operations were stable with only few 

interruptions and continuously provided data to its users until 2012 (ESA Earth Online, 2020b). 

The sensor had a global coverage every 3 days with a spatial resolution of 300 m (ESA Earth 

Online, 2019a). Lastly, ESA, within the EC Copernicus Program, released the Sentinel program 

in 2014 to provide continuation of Earth observation missions. In this program, ESA launched 

several satellites/sensors, each one with specifics purposes. Sentinel-3 has the marine observation 

as the primary objective and collects data of ocean color with the Ocean and Land Color 

Instrument (OLCI). Sentinel-3 has a spatial resolution of approximately 300 m and a revisit time 

of 2 to 3 days (ESA Earth Online, 2019b). 

Worldwide, coastal ocean environments have been remotely studied in several 

disciplinary areas with ocean color products. Cui et al. (2010) explored the potential of using 

MERIS data in the Bohai Sea (78 000 km²) and achieved an overestimation of the satellite-derived 

chlorophyll a in the region regarding the in situ data, given the high turbidity of the water. On the 

other hand, MERIS satellite data have been demonstrated by Palmer et al. (2015) to be effective, 

in accurately retrieving chlorophyll a concentrations across the spatial extension of lake Balaton 

(596 km2, 3.3 m depth). Abbas et al. (2019) tried to use MODIS product in Chesapeake Bay, but 

the OC3M algorithm used failed to perform well in the coastal water.  

In Portugal, Sá et al. (2015) conducted a study to investigate the performance of MODIS 

Aqua OC3M, MERIS OC4Me (algal 1) and MERIS Neural Network (algal 2) chlorophyll data 

for the Western Iberian coast, and tested as well several chlorophyll products provided by the 

CoastColour Project and by the Climate Change Initiative (CCI) program, and a regional version 

of the Multi Layer Perceptron neural network developed within the scope of their study. Their 

statistical analyses showed that satellite chlorophyll estimates tended to be higher than the in situ 

reference values. However, among standard remote sensing products, MODIS OC3M and MERIS 

algal 2 yield the best agreement with in situ data. 

In general terms, the main problem globally observed in remotely quantifying chlorophyll 

a concentrations in shallow and coastal waters is related with the use of operational algorithms 

that are only suitable for oceanic water bodies (Abbas et al., 2019). The main difficulties to 

overcome these issues are associated with the presence of highly diffusing suspended mineral 

particles as well as high concentrations of particulate organic matter, which may bias atmospheric 

corrections and impact bio-optical algorithms. Additionally, in the presence of highly turbid 

waters, cloud-free pixels are sometimes erroneously classified as clouds, leading to a loss of data. 

Also, the crucial and mandatory validation exercises are greatly complicated to perform due to 

the extreme spatial heterogeneity of these areas (Loisel et al., 2012). Sá et al. (2015) also 

confirmed that a non-uniform chlorophyll distribution in the water column can be a concurring 

factor to the documented overestimation tendency when considering larger optical depth match-

up stations. However, improvements can be achieved by coastal products and through 

regionalized models developed with in situ chlorophyll and concomitant radiometric data. 

Regional solutions need to be considered when application requirements are not corresponded by 

standard product accuracy (Sá et al., 2015). 

https://science.nasa.gov/about-us/contact-us
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/meris
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A new era for continuous, high frequency water quality monitoring of coastal waters, was 

considered to begin in 2016 with the launch of OLCI on board Sentinel-3 (Toming et al., 2017). 

Lins et al. (2017) achieved successful chlorophyll a retrievals using Sentinel-3 OLCI data in the 

Mundaú-Manguaba Estuarine-Lagoon System (Brazil, maximum depth of 3.5 m). Furthermore, 

the sensor was described as being promising to remotely estimate chlorophyll a for coming 

decades in turbid inland waters (Lins et al., 2017). 

Therefore, the purpose of this study was to evaluate the performance of several 

approaches to estimate the chlorophyll a in Sado estuary, a region still poorly studied in this 

matter. Using in situ observations, the feasibility of using MODIS Aqua, MERIS and OLCI 

databases was studied, always considering the spatial resolution of each sensor. The estuary was 

assessed in terms of temporal and spatial variability of chlorophyll a.  

 

3.2 Data and Methodologies 

 

3.2.1 Satellite-derived Sea Surface Temperature (SST) 

 

The SST dataset was gathered from the Global Ocean Data Assimilation Experiment 

(GODAE) High-Resolution SST Pilot Project (GHRSST-PP). These products were produced as 

a retrospective data set (latency of four days) and of near real time (one day latency) at the 

Physical Oceanography Distributed Active Archive Center (PO.DAAC) of Jet Propulsion 

Laboratory (JPL), using wavelets as the basic functions in an optimized interpolation approach 

with a global grid of 0.01 degrees. 

The data version chosen was version 4.1 from the Multiscale Ultrahigh Resolution 

(MUR) product, based upon nighttime GHRSST L2 sea surface and subsurface temperature data 

collected by various instruments: 

• NASA's Advanced Microwave Scanning Radiometer-EOS (AMSRE) 

• Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua and 

Terra platforms 

• US Navy WindSat microwave radiometer 

▪ Advanced Very High Resolution Radiometer (AVHRR) on NOAA-n series satellites 

• in situ observations derived from NOAA's iQuam project 

 

These images are characterized as of level 4 (L4) due the integration of data obtained by 

different methods, sensors and models. All images had a spatial resolution of 1 km and a temporal 

resolution of 1 day, and the data set had global records since June 2002 up to the present (data set 

short name - MUR-JPL-L4-GLOB-v4.1). For the present study, the temporal series used 

encompassed images from 01 JUN 2002 to 30 SEP 2019, as the measurement of the in situ 

parameters in the Sado estuary ended in September 2019 (dataset available at 

https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1). 

All images obtained were processed using SNAP - Sentinel Application Platform satellite 

data processing and analysis program. In SNAP, the SST information of each image was 

automatically extracted from the previously established in situ stations, using the mean value of 

a 3x3 pixel grid (3 km x 3 km) centered in the pixel of each station. Additionally, MATLAB 

software was used to process the monthly, seasonal, annual and interannual average images of 

SST, from the daily satellite data. Lastly, the annual anomalies (an) presented for each sampling 

station followed Equation 3.1, where vo represents the mean value obtained for each year and vr 

the value of reference. 

https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
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 𝑎𝑛 = 𝑣𝑜 − 𝑣𝑟 [3.1] 

 

 

3.2.2 Satellite-derived chlorophyll a concentrations 

 

To study the variability of chlorophyll a in the estuary, three satellite instruments were 

considered: MODIS Aqua, MERIS and Sentinel-3 OLCI. The first instrument used in this study 

was the MODIS Aqua (Moderate Resolution Imaging Spectroradiometer), a satellite of the Earth 

Observing System project, with data accessible through the Ocean Color Web database of NASA 

(available at www.oceancolor.gsfc.nasa.gov/cgi/browse.pl? sen=amod). This sensor provided 

level 2 (L2) global images every 2 days. L2 images result from a data processing step in which 

the geophysical component is obtained, transforming measurements of electromagnetic radiation 

to measurements of oceanographic parameters. The sensor acquired data from 2002 to the present, 

with a spatial resolution of 1 km. However, it had a low spatial resolution when applied to the 

scale of the Sado estuary (total area of 212.4 km2 (Neto et al., 2019)). Therefore, additional 

instruments, such as MERIS and Sentinel-3 were considered. MERIS was an imaging multi-

spectral radiometer (Visible/Infrared, vis/IR), with a global coverage every 3 days and a spatial 

resolution of 300 m (ESA Earth Online, 2019a). Despite the better resolution, MERIS ended its 

activities in 2012, which made the comparison with the in situ data not possible. 

In order to be able to proceed with the analysis of the present behavior of the estuary in 

terms of chlorophyll a distribution and validate the products with the in situ values collected, a 

satellite still in activity and with a good spatial resolution had to be chosen. Therefore, there was 

the attempt to use data of Copernicus Sentinel for the year of 2018 and the days in which the 

campaigns occurred. Sentinel-3 started its mission in 2016, by ESA and EUMETSAT, with the 

purpose to deliver operational ocean and land observation services. From the set of sensors that 

incorporated this mission, the products of Sentinel-3 OLCI (Ocean and Land Colour Instrument) 

were used for this study. Sentinel-3 has a spatial resolution of ≈ 300 m and a revisit time of 2 to 

3 days (ESA Earth Online, 2019b). This is a sensor especially designed to coastal waters and that 

emerged as a successor of MERIS. For this work, it was used the product provided using the 

Neural Net algorithm, since it was developed for application to more complex case 2 waters 

(coastal waters). Sentinel images can be found in EUMETSAT Data Centre (available at 

https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATData 

Centre/index.html).  

Sentinel-3 data was considered ideal for the analysis of the present situation of the Sado 

estuary. For the long-term analysis, the precursor of Sentinel-3, i.e. MERIS, was selected. The 

bio-optical algorithm applied to MERIS data was OC5, also developed for application to coastal 

waters (Gohin et al., 2002). MERIS 10-year ocean color data set can be found in the NERC Earth 

Observation Data Acquisition and Analysis Service (NEODAAS) database.  

All the images obtained were processed using SNAP and the chlorophyll a values were 

automatically extracted from the previously established in situ stations, using the mean value of 

a 3x3 pixel grid (900 m x 900 m) centered in the pixel of each station, similar to SST image 

processing. The Sentinel-3 images available for validation with in situ data were filtered following 

the criteria defined by EUMETSAT: the pixels considered as valid for the analysis were those not 

flagged as INVALID, CLOUD, CLOUD_AMBIGUOUS, CLOUD_MARGIN, SNOW_ICE, 

COSMETIC, SUSPECT, HISOLZEN, HIGHGLINT or OCNN_FAIL (EUMETSAT, 2019). 

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=amod
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
https://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
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The computation of the monthly, seasonal, annual and interannual averages followed 

exactly the same procedure as the data of SST, through MATLAB, as described earlier. The 

annual anomalies presented also followed equation 3.1. 

 

3.2.3 In situ dataset 

 

The in situ data of sea surface temperature (SST) and chlorophyll a were obtained from 

monthly on-site campaigns that took place between March 2018 and September 2019 in the Sado 

estuary. These were performed within the scope of the Mar2020 AQUASADO Project. The 

sampling strategy used consisted in monthly sampling at 7 stations (Figure 3.1 and Table 3.1). In 

May and November 2018, as well as in June 2019, there were two campaigns instead of one, with 

measurements at stns. #5, #6, #7 and #8. Stn. #8 was the one with the least information because 

it has only been monitored in those campaigns.  

 

 

 

Table 3.1. Sampling stations: designation and geographical coordinates. 

 

 

 

Stations 

(Stn.) 
Designation 

Coordinates 

Latitude ˚ N Longitude ˚ W 

#1 Rice field - E Channel 38.41522 008.67155 

#2 Rice field - W Channel 38.43333 008.73333 

#3 Águas de Moura - S Channel 38.50000 008.74833 

#4 Águas de Moura - N Channel 38.52187 008.74828 

#5 Lisnave 38.47083 008.79389 

#6 Setúbal 38.51809 008.89838 

#7 Outão 38.48667 008.93000 

#8 Troia 38.49278 008.88167 

Figure 3.1. Distribution of the sampling stations in Sado estuary 
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All the monthly campaigns were planned in order to start the measurements in high water 

and provided a unique sea surface temperature value for station. During the months with 2 

campaigns, the observations were made throughout the day in each of the stations analyzed, as 

already described in the previous chapter. From these campaigns resulted as many temperature 

values as the number of measurement sets described in Table 3.2. In order to be able to use these 

data for comparison with the single SST values provided by the GHRSST database for each day, 

the daily average of the collected values was calculated. 

During the different campaigns, water samples were collected for laboratory 

determination of chlorophyll concentrations and SST data were acquired using a CTD, a 

Multiparameter Sonde and a Current Sensor. In order to make the reading easier, from now on, 

the Multiparameter Sonde is referred as MS and the Current Sensor as CS, as in the previous 

chapter.   

As referred, of the data collected with the 3 instruments, only the temperature was 

analyzed in this chapter. During the campaigns, the 3 instruments were lowered in the water to 

measure temperature profiles. From these profiles, it was used the temperature values collected 

between 0.5 and 1 m depth as the sea surface values.  

Of the in situ chlorophyll a data obtained, only the values of some campaigns were used. 

To proceed with a product validation in a specific region, the in situ collections have to be 

concomitant with the passage of the satellite (match-up). As mentioned earlier, Sentinel-3 does 

not provide results on a daily basis, so it was not always possible to obtain match-ups, even though 

the campaigns have been planned in order to optimize the achievement of match-ups. Also, the 

presence of clouds, problems with atmospheric correction, etc., can compromise the quality of 

the satellite data, in this case showing invalid values for a region. The days and the sampling 

stations on which water samples and temperature data were collected are shown in Table 3.2. The 

total number of SST values (N) collected with the instruments during the sampling period is also 

presented in the table. The CTD and the CS started collecting data in September 2018 at stn. #6, 

#7 and #8 and the MS started the collections in May 2018, having an almost total coverage of the 

estuary stations. Due to logistic constraints, it was not possible to collect data at all sampling 

occasions and using all the instruments. Also, for the interior and exterior area of the estuary 

different MS were used. 

The water samples were collected and transported to the laboratory as soon as possible. 

Samples were filtered using GF/F filters with 25 mm diameter and a mesh of 0.7 µm (Whatman). 

The filters were then wrapped in aluminum and stored at -80 °C to be later analyzed through High 

Performance Liquid Chromatography (HPLC), in order to allow the extraction and quantification 

of the different phytoplankton pigments. 3 mL of an extraction solution composed of 95% cold 

methanol, buffered with 2% of ammonium acetate and containing 0.35 mg/L of trans-β-Apo-8′-

carotenal were used. After placing the extraction solution in the sample test tube, the filter was 

grinded with a glass rod. Then, the tube was placed in the freezer (-20 ºC) for 30 minutes to, later 

on, be taken to the ultrasound for 5 minutes. The test tube was put back in the freezer (-20 ºC) for 

30 minutes and then, the sample was centrifuged for 10-15 min at 4000 RPM (4 ºC). Lastly, the 

sample was filtered and run in the HPLC machine. 
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Table 3.2. Sampling dates and the stations at which each instrument made measurements. CS corresponds to the 

current sensor and MS to the multiparameter sonde. N represents the total number of sea surface temperature values 

collected during the sampling period with each instrument. Sets - cycles of measurements made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stations with collected data 

Sampling Dates CTD CS MS 

27 MAR 2018 - - 
#1, #2, #3, #4, #5, #6, 

#7 

23 APR 2018 - - #2, #3, #4, #5, #6, #7 

08 MAY 2018 - - 

#1, #2, #3, #4, 

#5 (8 sets), #6 (7 sets), 

#7 (8 sets), #8 (7 sets) 

15 MAY 2018 - - 
#5 (6 sets), #6 (7 sets), 

#7 (7 sets), #8 (7 sets) 

06 JUN 2018 - - 
#1, #2, #3, #4, #5, #6, 

#7 

06 JUL 2018 - - #1, #2, #5, #6, #7 

03 AUG 2018 - - #1, #2, #6, #7 

06 SEP 2018 #6, #7 #6, #7 #1, #2, #6, #7 

03 OCT 2018 #6, #7 - #1, #2, #6, #7 

08 NOV 2018 
#7 (4 sets), 

#8 (4 sets) 

#7 (4 sets), 

#8 (4 sets) 

#5 (3 sets), #6 (2 sets), 

#7 (2 sets), #8 (2 sets) 

16 NOV 2018 
#7 (4 sets), 

#8 (4 sets) 

#7 (4 sets), 

#8 (4 sets) 

#5 (1 set),  

#6 (1 sets) 

19 DEC 2018 - - 
#1, #2, #3, #4, #5, #6, 

#7 

16 JAN 2019 #6, #7 #6, #7 #1, #2, #4, #5, #6, #7 

14 FEB 2019 #6, #7 #6, #7 #1, #2, #6, #7 

28 MAR 2019 #6, #7 #6, #7 
#1, #2, #3, #4, #5, #6, 

#7 

12 APR 2019 #6, #7 #6, #7 #1, #2, #6, #7 

24 MAY 2019 #6, #7 #6, #7 
#1, #2, #3, #4, #5, #6, 

#7 

18 JUN 2019 
#7 (5 sets), 

#8 (3 sets) 

#7 (5 sets), 

#8 (3 sets) 

#7 (5 sets), 

#8 (3 sets) 

26 JUN 2019 - 
#7 (7 sets), 

#8 (5 sets) 

#1, #2, #3, #4, 

#5 (5 sets), #6 (5 sets), 

#7 (7 sets), #8 (5 sets) 

10 JUL 2019 - #6, #7 #1, #2 

09 AUG 2019 - #6 #1, #2, #3, #4, #5, #6, 

23 SEP 2019 - #6, #7 #1, #2, #6, #7 

N 38 53 190 
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3.3 Results 

 

3.3.1 Satellite-derived Sea Surface Temperature (SST) 

 

3.3.1.1 Data Validation 

 

First, the in situ temperature values obtained by the different instruments were compared, 

in order to understand if there were relevant discrepancies between the instruments used. Figure 

3.2 shows the existing correlations between the CTD, the CS and the MS, the linear regression 

equation obtained as well as the number of inputs considered (N). The red dashed line represents 

the reference line, with slope 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The best existing relationship is the one between the CTD and the MS, exhibiting a great 

similarity between those values (R2=0.9757). Additionally, an overestimation of the values 

measured by the CS was observed. As such, it is acceptable to consider that the CTD and the MS 

are the most appropriate instruments for this study, given that they provide the most reliable 

temperature measurements. This was also confirmed by the comparison between in situ and 

satellite (GHRSST) data (Figure 3.3) for the stations located in the outermost area of the estuary 

(stns. #6, #7 and #8), represented in blue. Of note is that the slope of the relation line was closer 

to 1 between the CTD/MS and the satellite data, and farther from 1 with the CS, as would be 

expected. 

 

 

 

 

 

 

 

Figure 3.2. Correlation between the sea surface temperature data collected in situ during the campaigns with the CS, 

the MS and the CTD. The red dashed line represents the slope 1 reference line. 
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The validation exercise involved a statistical assessment of the agreement between in situ 

and satellite data (Table 3.3). Therefore, the percentage of underestimated satellite measurements 

(in situ > satellite, %), the average difference of temperature between the equipments (in situ - 

satellite, ΔT) and the respective standard deviation are presented in Table 3.3. Lastly, the mean 

Relative Percentage Difference (RPD) and the mean Absolute Percentage Difference (APD) were 

also computed to allow a more intuitively understanding of the relationship between the datasets. 

RPD and APD were calculated according to equations 3.2 and 3.3. 

 

 

Table 3.3. Relation between the temperature measured in situ and the satellite data, considering only stns. #6, #7 and 

#8 and the all set. % - percentage of underestimated satellite measurement (in situ>satellite); ΔT - average difference 

of temperature between the equipments (in situ-satellite); STD – ΔT Standard Deviation; RPD - mean Relative 

Percentage Difference; APD - mean Absolute Percentage Difference; N – number of inputs considered. 

 

 

 

RPD =
1

𝑁
∑

[𝑆𝑎𝑡]𝑖 − [𝑖𝑛 𝑠𝑖𝑡𝑢]𝑖

[𝑖𝑛 𝑠𝑖𝑡𝑢]𝑖
× 100

𝑁

𝑖=1

 
[3.2] 

 Stns. #6, #7 and #8 All the stations 

 CTD vs Satellite CS vs Satellite MS vs Satellite MS vs Satellite  

% 38.9 91.7 54.5 70.5 

ΔT (˚C) 0.65 2.27 0.68 2.09 

ΔT STD (˚C) 0.73 1.26 0.63 1.73 

RPD (%) 0.93 -9.75 -1.14 -5.54 

APD (%) 4.28 12.26 4.01 11.31 

N 20 25 44 113 

N=20 N=25 

Figure 3.3. Correlation between the sea surface temperature data obtained with the satellite (GHRSST) and 

collected in situ during the campaigns with the CTD (A), the CS (B) and the MS (C) and considering only the 

stations located in the outermost area of the estuary (stns. #6, #7 and #8) in blue, and in orange, the set of all the 

stations. The red dashed line represents the slope 1 reference line. 
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APD =
1

𝑁
∑

|[𝑆𝑎𝑡]𝑖 − [𝑖𝑛 𝑠𝑖𝑡𝑢]𝑖|

[𝑖𝑛 𝑠𝑖𝑡𝑢]𝑖
× 100

𝑁

𝑖=1

 
[3.3] 

 

In general terms, a good approximation between the values measured by these in situ 

instruments and those collected by the satellite was obtained. The best relation was found between 

the satellite and the CTD and the MS for stns. #6, #7 and #8 (the outermost stations of the estuary), 

with the RPD closer to 1 and -1 % for the CTD and MS, respectively, and the APD close to 4 % 

for both instruments. The RPD of the MS was negative because 54.5 % of the MS values were 

higher than the satellite. When considering the values obtained with the MS for all the sampling 

stations, a greater dispersion of the results and a lower agreement between the values can be seen. 

Therefore, it seems that the satellite provides more appropriate readings in the outermost region 

of the estuary, being less suitable for the interior area. 

To confirm if there was any variation in the relationship between the temperature of the 

in situ instruments and the satellite along the estuary, the relation between the temperature data 

obtained by the MS with the values of the satellite was analyzed, since it had a greater spatial 

coverage than the other instruments, for each sampling station (Table 3.4).  

 

 

Table 3.4. Correlation between the satellite and the MS data for each station, with the respective slope value and 

intersection of the linear regression line, the coefficient of determination (R2) and the number of points used in the 

analysis (N). 

MS vs Satellite 

Station Slope Intersection R2 N 

#1 0.4106 8.8829 0.7500 17 

#2 0.4411 8.3891 0.7891 18 

#3 0.5229 5.8211 0.8779 9 

#4 0.0787 13.8080 0.1794 10 

#5 0.3509 9.5358 0.5347 14 

#6 0.9172 1.1779 0.8543 20 

#7 1.0222 0.2404 0.8614 19 

#8 0.7260 3.2966 0.6256 5 

 

 

 

Based on the results presented in Table 3.4, the relationship between the satellite and the 

in situ values was better at stns. #6 and #7. When compared with the other stations, these two 

presented a higher R2 and a better approximation to the reference line (slope of 1). This indicates 

a better approximation of the satellite values to the in situ ones of the outermost stations of the 

estuary, as stated before, through Figure 3.3. This behavior was also verified when the temporal 

variation of this parameter was analyzed at every station. 

The temporal variation of in situ and satellite temperature values from March 2018 to 

September 2019 is presented in Figure 3.4. Only two stations (#1 and #7) were selected as 

examples. Stn. #1 is located in the inner zone of the estuary and stn. #7 is located in the outermost 
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area, representing two extremes of the estuary. The temporal variation of the temperature in the 

other sampling stations can be found in Annex VI.  

For all the sampling stations, the in situ data followed the behavior of satellite data but 

with a difference in terms of absolute values. This difference seemed to decrease with the 

approach to the estuary mouth, given that for stns. #6 and #7, the temperature of the different 

instruments was similar through the sampling period, showing a very good agreement between 

the values. Also, through the example of stn. #1, it can be seen that the satellite’s accuracy appears 

to be limited - during the months in which extreme temperatures are reached, the satellite values 

were more different in relation to the in situ ones, contrary to the verified during the rest of the 

months.  

Therefore, it seems adequate to assume that the GHRSST dataset is acceptable for a 

thorough temporal analysis of the temperatures in the estuary, especially for the outermost part of 

the system. 

 

Figure 3.4. Temporal variation of the temperature data obtained with the CTD, the MS and satellite during the 

sampling campaigns in stns. #1 and #7. 
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3.3.1.2 Seasonal Variation 

 

A seasonal evaluation of the SST in the Sado estuary was made through the mean SST 

value obtained for each season, at each sampling station (Table 3.5). The spatial mean, with the 

associated standard deviation, was also calculated for each season. Seasonally, as expected, 

summer and winter had the highest and lowest SST values, respectively.  

 

Table 3.5. Average SST values (˚C) obtained for each season, every sampling station and the mean value for the set 

of stations with the respective standard deviation. 

 

 

 

 

These seasonal variations are also represented in Figure 3.5, where it is possible to 

compare the temperature values obtained for the estuary with the temperature measured outside. 

 

 

 

 

 

 

 

A gradient in the SST between the inner and outer zone of the estuary is noticeable in the 

GHRSST images used, although with a low thermic amplitude. During summer, the inner waters 

of the estuary presented higher SST values than the outermost zone of the estuary, and during 

 
Stations   

#1 #2 #3 #4 #5 #6 #7 #8 Mean 
Standard 

Deviation 

Winter 14.48 14.51 14.46 14.44 14.51 14.48 14.49 14.51 14.48 0.88 

Spring 16.31 16.32 16.32 16.32 16.32 16.25 16.17 16.24 16.28 1.07 

Summer 18.89 18.90 18.89 18.89 18.90 18.85 18.79 18.86 18.87 1.62 

Autumn 17.68 17.70 17.67 17.66 17.71 17.64 17.60 17.66 17.66 1.63 

Figure 3.5. Distribution of the average sea surface temperature for each season, with data from 2002 to 2019 

(GHRSST). 
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winter, the opposite seemed to be verified. However, this variation only occurred from 2008 

onwards (except 2010). An example can be seen in Annex VII, where it is observable the SST 

variation throughout the year of 2008, 2010 and 2018, in one station from the inner area of the 

estuary (#1) and another from the outermost zone (#7), smoothed with a moving mean filter with 

a 15-day window. A clear thermal difference between the stations of the outermost zone and the 

inner zone of the estuary was also seen in 2010 (Annex VII), unlike the remaining years, when 

the values were observed to be similar. 

In summary, a monthly analysis was performed considering the SST average estimated 

for the whole estuary (average of the 8 sampling stations), for each month from June 2002 to 

September 2019 (Figure 3.6).  Figure 3.7 shows the intra-annual variation of the monthly SST 

variation in the estuary and the surrounding region. Monthly, the highest temperatures were 

verified in August and the lowest in February and, on average, there was a thermal amplitude of 

≈ 5 ˚C over the annual period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Mean SST values obtained for every month and the respective standard deviation, considering the data 

from June 2002 to September 2019. 
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Figure 3.7. Distribution of the average sea surface temperature for each month with data from 2002 to 2019 

(GHRSST). 
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3.3.1.3 Interannual Variation 

 

All satellite-derived SST data were used to evaluate its interannual variation and possible 

anomalies. This analysis considers data from June 2002 to September 2019 (Figure 3.8).

Figure 3.7 (continued).  
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Figure 3.8. Temporal variation of the SST data (GHRSST) over the period considered (June 2002 - September 2019). 
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Figure 3.9. Temporal variation of the annual sets of SST data (GHRSST) obtained from June 2002 to September 2019, smoothed with a moving mean filter with a 15-day window. 
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The 18-year analysis made, detected annual cycles with bigger temperatures observed 

during summertime and minimum temperature values during winter. Over time, some relevant 

oscillations could be observed. Of note are the maximum temperatures that occurred in 2003 and 

2014 (≈ 23 ºC), years with the biggest thermic amplitudes, and the highest minimum temperatures 

observed in 2007, 2008 and 2010, characterized by having much lower maximum temperatures 

as well.  

The difference of the values between the stations is very low, on average 0.31 ˚C between 

the station with the maximum and the minimum value (Figure 3.8). Therefore, this low spatial 

variability of the satellite-measured SST, makes appropriate to consider the average of the stations 

as the value of the whole estuary (although it was observed a seasonal change of the behavior 

between the inner and outermost stations of the estuary, as mentioned in the previous section). 

Therefore, the estuary is considered as a whole from this point forward. 

Also, as there were several years of data being analyzed, there was an interest in 

overlapping the different annual series and compare the variation of the SST values over the 

course of each year (Figure 3.9). Figure 3.9 was obtained by filtering the data using a moving 

mean with a 15-day window, to remove the irregular oscillations present in every annual series, 

that is, the frequent fluctuation of the values that appeared to have a frequency of about 7 days. 

Also, the background noise was removed and the clarity of the seasonal pattern was improved. 

This window was chosen because it is the period between spring and neap tides and to allow a 

greater attenuation of the oscillation observed.  

With the overlap of the different annual series observable in Figure 3.9, it can be 

concluded that through the period of study, the temperature behavior was similar. However, some 

irregularities stood out. An example was the autumn and winter of 2008, with much lower SST 

values than the other years, achieving almost less 2º C than the second year with lower 

temperatures. On the other hand, the winter of 2015/2016 had the highest temperature values. 

During spring 2011 is worth mentioning the high temperatures that were recorded and, of note, is 

also the high STT values obtained for the summer of 2006, that continued to stand out throughout 

the autumn. 2002 was presented as the year with the lowest temperatures during summer. 

The spatial variation of the SST in the estuary throughout the years, from 2003 to 2018 is 

presented in Figure 3.10. The data from 2002 and 2019 were not considered in this analysis 

because they did not consider entire years. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
Figure 3.10. Distribution of the average sea surface temperature for each year, from 2003 to 2018 (GHRSST). 
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Figure 3.10 (continued). 
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The representation of Figure 3.10 allows the comparison between the values observed 

inside the estuary with the ones obtained for the adjacent region, the coastal zone. Is possible to 

observe that there are no relevant differences between the temperature inside and outside the 

estuary (Figure 3.10). Furthermore, within the estuary itself, it is difficult to observe a spatial 

variation of the SST. However, it is possible to see that 2006, 2010 and 2011 were the years with 

the highest temperature values recorded. Also, it is noticeable that the temperature in the interior 

of the estuary had lower values than the surrounding region particularly in 2008 and 2012.  

The annual temperatures inside the estuary ranged between 16 and 18 ºC, being, usually, 

close 17 ºC, between 2003 to 2018 (Figure 3.11). The years with higher and lower values of SST 

according to the figure, agree with what was observed in Figure 3.10. Also, it is possible to see a 

trend towards a decrease of the temperature of the estuary in the past years. 

 

 

 

 

Figure 3.12 shows the SST annual anomalies obtained for every sampling stations 

between 2003 to 2018. Higher temperature anomalies were observed in the years of 2006 and 

2011 (Figure 3.12) for all stations evaluated in the Sado estuary. This is in agreement with the 

analysis of the annual averages (Figure 3.9). 2006 was a year with high temperatures across 

several months. However, 2011 yielded higher temperatures especially during the first part of the 

year, until the summer, which was not particularly hot. On the other hand, the year with the 

strongest negative anomaly was 2018 (Figure 3.12). However, while until 2011 the signal of the 

anomalies tended to vary, from 2012 onwards a negative anomaly in almost the entire estuary was 

registered. Spatially, it appears that in some years, like 2003 or 2006, there was a slight 

differentiation in the anomalies of the outermost stations of the estuary (stns. #6, #7 and #8) when 

compared with the others, but in general, there was a uniform behavior along the estuary. 
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Figure 3.11. Annual SST values obtained for the estuary (from the average of the sampling stations), since 2003 to 

2018. 
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From the data gathered (June 2002 - September 2019), an average value for the SST of 

16.86 ˚C for the Sado estuary was obtained. Figure 3.13. represents this result and the engaging 

area. 
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Figure 3.13. Distribution of the average sea surface temperature considering the data from June 2002 to September 

2019 (GHRSST). 

Figure 3.12. Annual SST anomalies verified since 2003 to 2018, for every sampling station, considering the reference 

for each one of the stations as the mean of the SST obtained for each station between 2003-2018. 
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3.3.2 Satellite-derived Chlorophyll a concentrations 

 

The MERIS database, has a better spatial resolution for the area of Sado estuary than 

other sensors such as MODIS, as already mentioned. However, it only presented 802 valid daily 

images, of a set of 2,607, from September 2002 to April 2012 (Table 3.6). Sentinel-3 OLCI 

collected 304 images of the estuary throughout the year of 2018 but only 159 were considered 

valid (Table 3.6). These images were assumed as invalid when they did not present values in any 

of the 8 sampling stations or if there were several records for the same day (overlap of satellite 

passage). In this last case, the image with more stations with data was considered the valid one 

for the day. The validation of the Sentinel-3 data was made using the 18 chlorophyll a values 

obtained after applying the flag filter in the images corresponding to the days the sampling 

campaigns occurred, as previously specified in section 3.2.2 (Table 3.7). 

 Therefore, these databases allowed performing a temporal analysis of the chlorophyll 

concentrations throughout the estuary considering the number (N) of valid images described in 

Table 3.6 for each period. 

 

 

Table 3.6. Number of MERIS and Sentinel-3 images (N) used in the different periodic analyzes. 

 

Table 3.7. Sampling dates and respective stations in which valid chlorophyll a data was obtained. 

 

 

 

 

 

 

 

 

MERIS 
 

Sentinel-3 (2018) 

Month N  Year N  Season N  Month N  Season N 

January 61  2002 7  Winter 244  January 11  Winter 31 

February 61  2003 50  Spring 209  February 12  Spring 42 

March 57  2004 65  Summer 193  March 7  Summer 43 

April 47  2005 56  Autumn 156  April 11  Autumn 43 

May 52  2006 86   802  May 16   159 

June 59  2007 118     June 15    

July 83  2008 104     July 13    

August 92  2009 109     August 14    

September 71  2010 88     September 16    

October 75  2011 83     October 16    

November 67  2012 36     November 13    

December 77   802     December 15    

 802         159    

Sampling Dates Stations 

08 NOV 2018 #5, #6, #7, #8 

16 NOV 2018 #3, #5, #6, #8 

14 FEB 2019 #3, #5, #6 

28 MAR 2019 #3, #5, #6, #7 

12 APR 2019 #3, #5, #7 
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3.3.2.1 Data Validation 

 

Sentinel-3 OLCI data were validated to understand the viability of these data for current 

studies and to be able to proceed with a more consistent characterization of the chlorophyll a 

distribution along the estuary.  

Therefore, satellite-derived chlorophyll a concentrations (Neural Net algorithm, Chla 

NN) were compared with the in situ values (Chla in situ). A low agreement between the datasets 

was observed (Figure 3.14 – A). This comparison seems to indicate a tendency to an 

overestimation of the concentrations derived from the satellite, when compared with the in situ 

data. Also, the values obtained during the campaign conducted in November 8 were evidenced 

by their deviation from the slope line and, when removed, it could be seen that they badly affected 

the relation between the data series (Figure 3.14 – B). Although it is still observable the satellite 

overestimation, the datasets seem to maintain a more consistent relationship, with less dispersion 

of the values. 

 

 

 

 

 

 

Figure 3.14. Correlation between the chlorophyll a concentration obtained with the satellite and in situ. In A is 

considered the whole set of data and in B the set containing data from November 16, February, March and April. 
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Interestingly, it was observed that the 8 of November was a day with increased values of 

suspended particle matter (SPM) in the Sado estuary. As this could affect the signal in the visible 

spectra, and, therefore, affect the overall estimation of chlorophyll a, SPM data was gathered from 

AQUASADO project to investigate its influence in the satellite-derived chlorophyll a 

concentrations. So, the relation between the absolute chlorophyll error (|Chla NN – Chla in situ|) 

and the SPM obtained during the in situ campaigns is presented in Figure 3.15. Although not high, 

it is possible to find a relation between these two parameters: bigger differences between the 

chlorophyll values seem to be associated with higher SPM values. Also, for equal error values, 

higher SPM values were obtained during the campaign of 8 of November (represented in Figure 

3.15 in orange). These values were particularly high, possibly due to high levels of precipitation 

and of river runoff that may have occurred during that period. Additionally, it was not found any 

relation between the SPM and the in situ chlorophyll a concentrations. This gives a preliminary 

indication that SPM could play a relevant role in the chlorophyll a estimation from satellite.  

  

 

Additionally, when these Sentinel-3 images were projected, the data presented the spatial 

distribution that can be observed in Figure 3.16. In light grey are the pixels covered by the flag 

filter and in dark grey the land pixels.  

By observing the results obtained with Sentinel-3 (Figure 3.16), it was possible to see that 

the data presented a good spatial resolution, allowing to conclude about the distribution of 

chlorophyll along the estuary. From Figure 3.16, it was possible to observe that the channels of 

Marateca and Comporta tended to present a higher concentration of chlorophyll a than the rest of 

the estuary. In the first campaign of November, high values of chlorophyll were observed in the 

estuary, but they seemed to be abnormally high for the time of year. The large portion of land 

covered by grey pixels in this day may also be an indication of atmospheric problems. In fact, the 

previous validation analysis, showed a low agreement between the satellite and the in situ values 

obtained during this campaign (Figure 3.14). 

 

 

 

Figure 3.15. Relation between the in situ SPM and the absolute chlorophyll error (|Chla NN – Chla in situ|). The set 

containing data from November 16, February, March and April is represented in green and November 8 in orange. 
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08 NOV 2018 (A) 16 NOV 2018 (B) 

14 FEB 2019 (C) 28 MAR 2019 (D) 

12 APR 2019 (E) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2.2 Seasonal Variation  

 

In this section, the results obtained with MERIS and OLCI on the seasonality of the 

chlorophyll a in the estuary are presented following a chronological approach. 

Regarding MERIS, the concentration of chlorophyll a (Chla: mg/m3) obtained for each 

season and at each station is shown in Table 3.8, where is mentioned the number of images with 

valid values that were considered (N). In addition, the seasonal average for the whole estuary and 

the respective standard deviation are also presented (Table 3.8). Stns. #1 and #6 were not 

considered in MERIS seasonal analysis, as they were located very close to the coast. High 

concentrations of chlorophyll a were observed during spring. Interestingly, concentrations 

observed during winter were also high (Table 3.8 and Figure 3.17). It is also possible to highlight 

higher values of chlorophyll a at stns. #2, #3 and #4, compared to the other stations. On the other 

hand, the highest concentrations of chlorophyll a were observed during spring and summer in the 

coastal zone (Figure 3.17). 

 

Figure 3.16. Distribution of the chlorophyll a concentration in the Sentinel-3 images that were considered acceptable 

for validation with in situ data. 
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The variation of the chlorophyll a distribution in the estuary throughout the year and 

considering the monthly averages obtained for the estuary (through the average of the 8 sampling 

stations) is shown in Figures 3.18 and 3.19. The results showed in these images display 

similarities with the previous ones (Table 3.8 and Figure 3.17). There were low values in the 

estuary during the summer months comparing with spring and winter, unexpectedly, as summer 

is generally a season of high productivity in estuaries. In the coastal ocean, it was during the 

winter months that the chlorophyll a concentrations were the lowest and during spring and 

summer that they were the highest (Figure 3.19). 

 Stations   

 #2 #3 #4 #5 #7 #8   

 Chla N Chla N Chla N Chla N Chla N Chla N Mean 
Standard 

Deviation 

Winter 4.57 153 4.36 145 4.87 124 2.58 4 2.27 140 3.19 172 3.64 3.19 

Spring 4.74 104 4.43 89 4.57 83 5.78 1 3.27 82 3.69 118 4.41 3.19 

Summer 4.42 182 4.09 158 4.10 131 3.35 3 2.05 161 2.81 203 3.47 3.56 

Autumn 3.98 161 4.18 141 4.14 131 3.25 3 2.09 145 2.87 167 3.42 2.80 

Figure 3.17. Distribution of the average chlorophyll a concentration obtained for each season (MERIS). 

Table 3.8. Average chlorophyll a values (mg/m3) obtained for each season, every sampling station and the mean value 

for the set of stations, with the respective standard deviation (MERIS). N is the number of images considered. 
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Figure 3.18. Distribution of the average chlorophyll a concentration obtained for each month (MERIS). 

Figure 3.19. Distribution of the average chlorophyll a concentration obtained for every month (MERIS). 
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In order to give continuity to the time series obtained with MERIS that covers the years 

2002-2012, a temporal characterization of the chlorophyll a for the year of 2018 was also 

performed with OLCI data (Sentinel-3) (Figure 3.20). The chlorophyll a concentrations obtained 

for the period between January and December 2018 ranged between 0 and 21 mg/m3 and tended 

to vary a lot (Figure 3.20). However, the data seemed to present a slight sign of seasonality, with 

higher values emerging in April. From Figure 3.20, it is possible to observe a spatial 

differentiation of the chlorophyll values over the year, given the clear difference existing between 

the stations of the inner region of the estuary (represented in orange) and those in the outermost 

area (represented in blue). The mean value obtained from the set of stations is also represented in 

Figure 3.20 and appears to delimit the two regions of the estuary. This spatial variability is more 

evident in Table 3.9, where the average values obtained for the year 2018 at each station are 

presented. This estuarine area appeared to yield increasing values of chlorophyll a from the mouth 

of the estuary towards its interior and seemed to present a clear separation of the outermost region 

(#7 and #8) and the area of the interior of the channels (#1, #2, #3 and #4), as already observed 

in Figure 3.20. 

 

Figure 3.19 (continued). 
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Table 3.9. Spatial variation of chlorophyll a concentration obtained at the 8 sampling stations using Sentinel-3 data 

(Neural Net algorithm) considering the mean value for 2018 at each station. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The apparent seasonality shown in Figure 3.20, was studied following an integrated 

approach in order to visualize the patterns more clearly (Table 3.10). The average chlorophyll 

values (Chla) obtained at each sampling station every season, with the reference to the respective 

number of images used (N), is presented in Table 3.10. Also, in Table 3.10 is the mean seasonal 

value for the set of stations and its respective standard deviation. Is possible to see a seasonal 

variation of the chlorophyll concentration in the estuary for the year of 2018, with a great 

variability in the region of the most interior stations (Table 3.10). Additionally, winter is the 

season of the year with the lowest chlorophyll values along the estuary, while spring and summer 

Stations 
Mean chlorophyll a 

concentration (mg/m3)  

2018 

#1 9.74 

#2 9.94 

#3 8.67 

#4 10.22 

#5 8.13 

#6 5.68 

#7 3.02 

#8 2.87 

Figure 3.20. Temporal variation of chlorophyll a concentration at the 8 sampling stations using Sentinel-3 data 

(Neural Net algorithm) for the year of 2018. In orange are represented the stations of the inner zone of the estuary 

(#1, #2, #3, #4 and #5) and in blue the stations of the outermost region (#6, #7 and #8). 
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are the seasons with the most chlorophyll concentration. This behavior is also observed in the 

monthly averages presented in Figure 3.21. The winter months were those characterized by lower 

chlorophyll values. These results were different from the results obtained with the study of 

MERIS database. The monthly disparity between the two datasets (MERIS vs OLCI) can be easily 

observable (Figure 3.22) and is statistically significant (based on a paired t-test). 

 

 

 

 

 

  

 

  Stations   

 #1 #2 #3 #4 #5 #6 #7 #8   

 Chla N Chla N Chla N Chla N Chla N Chla N Chla N Chla N Mean 
Standard 

Deviation 

Winter 7.46 25 6.92 25 6.08 23 7.63 23 7.31 21 6.00 22 3.16 23 2.19 21 6.00 2.15 

Spring 12.63 37 12.82 32 10.78 31 11.28 32 9.06 24 5.61 27 3.27 28 2.89 28 8.95 3.05 

Summer 8.42 39 9.65 41 9.20 39 11.26 39 8.20 35 5.60 35 2.67 39 3.05 38 7.44 2.87 

Autumn 9.77 33 9.81 35 7.92 36 9.78 34 7.90 32 5.62 32 3.10 38 3.07 37 6.92 2.41 

Table 3.10. Average chlorophyll a values (mg/m3) obtained for each season, every sampling station and the mean 

value for the set of stations, with the respective standard deviation (data from Sentinel-3 for 2018). N is the number 

of images considered. 

 

 

Figure 3.21. Distribution of the average chlorophyll a concentration obtained for each month (Sentinel-3) with the 

respective standard deviation. 
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3.3.2.3 Interannual Variation 

 

The temporal variation of chlorophyll a concentrations for each sampling station, since 

SEP 2002 to APR 2012, using MERIS database (OC5 algorithm) is represented in Figure 3.23. 

Stns. #1 and #6 were not considered in this interannual analysis, as they were located very close 

to the coast. This analysis showed average chlorophyll values of 3.66 µg/L with a mean daily 

maximum and minimum of 5.06 µg/L and 2.32 µg/L, respectively. Also, it was not easy to detect 

a seasonal pattern. The mean values presented in Figure 3.23 were calculated after the application 

of a moving mean filter with a 15-day window (chosen because it is the interval between spring 

and neap tides) to allow a greater attenuation of the oscillations that would be verified without the 

filter. According to that average series, it may be possible to assume that 2003, 2007 and 2009 

were years characterized by having higher chlorophyll a concentrations inside the estuary (Figure 

3.23). 

An annual analysis, presenting the spatial distribution of chlorophyll inside and outside 

the estuary for each year of data considered, showed the estuary with a major concentration of 

chlorophyll than the coastal ocean. Also, the innermost region of the estuary, had higher values 

of chlorophyll a than the area of the bay and mouth (Figure 3.24). The years of 2003, 2007 and 

2009 were highlighted by the high concentration of chlorophyll in the region outside the estuary, 

being this variation coincident with the one observed inside the estuary in Figure 3.23. The years 

2002 and 2012 were not included in the analysis since they only had data from September onwards 

or until April, respectively.  

 

Figure 3.22. Distribution of the average chlorophyll a concentration obtained for each month (MERIS and Sentinel-3) 

with the respective standard deviation. 
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Figure 3.23. Temporal variation of chlorophyll a concentration using MERIS data (OC5 algorithm) in stns. #2, #3, #4, #6, #7 and #8, from SEP 2002 to APR 2012. 



 

68 
 

 

 

 

 

Figure 3.24. Mean chlorophyll a concentration obtained for each year between 2003 and 2011 (MERIS). 
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Figure 3.26. Anomalies of the chlorophyll a concentration in the sampling stations of Sado estuary every year, 

considering the reference for each one of the stations as the mean of the chlorophyll obtained for each station 

between 2003-2011. 

The annual averages of chlorophyll concentrations considering all stations, are presented 

in Figure 3.25. The respective standard deviation is also presented. Similarly to what was 

previously mentioned, 2003, 2007 and 2009 were the years with higher values of chlorophyll. 

The average values were almost constant throughout time, with a variation of 0.98 mg/m3.  

 

 

 

 

The anomalies of the distribution of chlorophyll a in the estuary for each station, every 

year, are represented in Figure 3.26. The reference value for each one of the stations was the mean 

of the chlorophyll a obtained for each station between 2003-2011. 

  

 

 

Figure 3.25. Distribution of the average chlorophyll a concentration for each year (MERIS) and the respective 

standard deviation. 
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The variation of the anomalies (Figure 3.26) seemed to follow the variation of the annual 

averages observed in the Figure 3.25. In addition, there appears to have been a trend towards a 

decrease in chlorophyll between 2003 and 2011, despite being within the standard deviation.  

When considering all the images of the database, a spatial climatological average for this 

region was obtained (Figure 3.27). The value obtained for chlorophyll a concentration in the 

estuary from 2002 to 2012 was 3.66 mg/m3. 

 

 

3.4 Discussion 

 

The satellite showed a small spatial variability of the SST when comparing the data of 

the 8 stations, making it suitable to consider the estuary as a whole. Nevertheless, the performance 

of MUR (GHRSST) seemed to be particularly better at stns. #6 and #7, the stations of the 

outermost region of the estuary (Figure 3.3 and Table 3.4). The database analyzed in this study 

was also studied by Cadima (2020) in a project that showed the MUR product as the most suitable 

to characterize the Portuguese coast, from the analyzed possibilities. As stns. #6 and #7 are closer 

to the ocean than the other sampling stations, the good relation verified is consistent with the work 

of Cadima (2020). However, in the present study, the satellite did not succeed in detecting reliable 

temperatures at the inner zone of estuary. This could be justified by the sensor’s low spatial 

resolution or due to the greater spatial variation that occurs in the innermost areas of the estuary, 

areas with shallow water columns (Loisel et al., 2012).  Nevertheless, the product proved to be 

sensitive to temporal variations in that region of the estuary, as the stations of the inner zone, 

during winter, registered lower temperatures than the outermost stations, and during summer, 

reversed this behavior.  

A relevant difference between the SST in the inner and the outermost region of the estuary 

was only detected in 2010. When the river flow anomalies obtained for the period between 1941 

and 2019 were analyzed, it was detected a high positive anomaly for 2010, which stood out from 

the remaining years. 2009/2010 was also characterized by a strong negative NAO, the strongest 

of the last decades (Climate4you, 2020). The North Atlantic Oscillation (NAO) is the dominant 

pattern of atmospheric circulation variability in the North Atlantic region ranging from 

central North America to Europe (a seesaw in atmospheric mass between the subtropical high and 

the polar low) (Climate4you, 2020). The negative phase of NAO is associated with wet winters 

Figure 3.27. Distribution of the average chlorophyll a concentration resulting from the set of all the images from 

2002 to 2012 (MERIS). 
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in Southern Europe. This can be a justification for the increase of the river flow in the region in 

the winter 2009-10. Therefore, it is possible that a strong river flow caused the increase of the 

thermal amplitude that was verified in that year along the estuary. As the outermost region of the 

estuary is shown as the coolest, the temperature of the water that flows from the river was higher 

than the ocean water, contrary to what was published by Ambar et al. (1982). Nevertheless, it 

would be important to have the river flow data for all the years of the studied period to be able to 

further analyze these findings. 

The 18-year analysis using GHRSST dataset showed that the satellite detected annual 

temperature variation cycles and suggested an oscillatory behavior of the SST over time. The 

years of 2006 and 2011 presented the higher positive anomalies and 2008 and 2018 showed SST 

values lower in about 0.4 and 0.6 ˚C relatively to the reference, respectively (Figure 3.12). These 

variations were apparently strongly related to the weather conditions observed in that period of 

time, which is suggested by a detailed analysis of the seasonal and annual weather reports 

prepared by IPMA (available online) and the river flow annual time series (Chapter 1). Years with 

lower SST values (larger negative SST anomalies) corresponded to the years that registered lower 

river flow (greater negative flow anomaly), due to lower precipitation levels. Also, these years 

were of positive NAO index (2007/08 and 2017/18), factor that, again, can justify the climatic 

variations observed in those years (Climate4you, 2020). Aravena et al. (2008) studied the 

influence of NAO on climatic factors and estuarine water temperature on the Basque coast, in 

Spain (estuaries of Bilbao and of Urdaibai) and achieved similar results: NAO played a noticeable 

role in the water temperature variations that occur in those estuaries through its effect on the air 

temperature (positive phases of NAO resulted in decreased air temperature and, therefore, 

decreased SST). Also, during part of the studied period, NAO indices were high and seemed to 

produce a slight decrease of both rainfall and river discharge (despite no significant relationships 

between the parameters were obtained). In the present study, for 2008 and 2018, as it was verified 

a lower river flow, it can be assumed that there was a greater influence of ocean water in the 

estuary. Therefore, the assumption that the river water had higher temperatures than the oceanic 

water is corroborated. It appears that the precipitation does in fact influence the SST on a large 

scale, but as for the air temperature, its influence can only be concluded with the seasonal analysis 

of SST. Establishing an interannual relationship between the parameters was difficult, as the 

annual mean air temperature values available online are presented at a national and not a regional 

level, making it difficult to further discuss this topic. However, an attempt was made in order to 

understand if days of abnormal increases of the air temperature (heat waves) affected the daily 

values of the SST. Interestingly, it was not observed any relevant sign of those increases at this 

scale. The small temporal extension of these periods or a possible coincidence with occasional 

variations of the temperature of the adjacent coastal ocean, may justify the absence or attenuation 

of the influence of this type of phenomena in the daily values of SST. 

Moreover, through the interannual analysis made, a decrease of the sea surface 

temperature in the past years was identified. According to IPMA, since 1956, there has been a 

rise in the sea temperature off the west coast of Portugal. Specifically, near the Tagus estuary, in 

Cascais, a rise as also been verified between 2000 and 2010 (Santos et al., 2012). Therefore, 

considering the present study, the Sado estuary seems not to show the same trend as the one 

identified in other regions of Portugal. Also, this contradicts the trend of an increasing water 

temperature already verified in the oceans of the world, as one of the consequences of the climatic 

changes that planet is currently facing (Bindoff et al., 2019). However, a statistical test to analyze 

the significance of this trend would be needed. Also, it would be good to have a time series of 

SST from this and other estuaries in the country, with a better spatial coverage, to allow a better 

understanding of the evolution of this variable in the past years and to try to predict the future. 
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Regarding the recurrent fluctuations with a few days of frequency that were verified in 

the SST time series, they may likely occur due to atmospheric forcing and may correspond to the 

impact of weakly atmospheric variations (Laux and Kunstmann, 2008). 

In addition to the annual signal, the satellite was able to detect a seasonal signal (Figure 

3.6). The water temperature was higher in the warmer months, and cooler in the winter months, 

inside and outside the estuary. Therefore, the temperature of the air, in fact influences the water 

temperature (Ocean Health Index, 2020). This is clearer in the inner areas of the estuary, probably 

due to shallow water columns. The same was verified in the Tagus estuary in Gonçalves and 

Brogueira (2010), when the inner region of the estuary showed to be more susceptible to seasonal 

variations of the air temperature than the outermost region. 

In the outer region of the estuary, the isotherms presented different orientations in summer 

and winter (Figure 3.5), which suggests that during summer, occurred the transport of warmer 

waters from the south of the country to Troia peninsula. These observations indicate that the 

estuary and the adjacent area were not affected by the typical seasonal upwelling that 

characterizes the coastal region of Portugal (Coutinho, 2003). This may be due to the fact that 

Setúbal Peninsula interrupts the North-South coastal drift current originated by the dominant 

Northerly winds, and creates a shelter situation throughout the sector of Troia to Carvalhal Beach, 

which turns the seawater temperatures higher than those that characterize the western coast during 

the summer (Neto, 2000). 

On the other hand, the relationship between the water temperature and the chlorophyll 

distribution appeared to follow a different behavior. In the area of costal ocean, it was possible to 

see that, when the SST was higher (higher air temperature), there were lower values of chlorophyll 

a in the region (MERIS database). However, the values obtained for the estuary were not entirely 

in agreement with that. These results showed that summer was a season with lower productivity 

than winter, which was not in agreement with what was already known about the seasonal 

variability of the chlorophyll concentration and with what was mentioned by Coutinho (2003) for 

the Sado estuary. In her study, Coutinho characterized the phytoplankton community of the Sado 

estuary in its structure, dynamics and ecological aspects, and indicated maxima and minima of 

chlorophyll a concentrations (used as a proxy of phytoplankton biomass) in three regions, the 

outer (equivalent to stns. #6, #7 and #8), middle (area encompassing stns. #2, #3, #4 and #5) and 

innermost areas of the estuary (where stn. #1 is located), between 1990 and 1993. During that 

period, the maxima were obtained between June and August (summer) and the minima between 

November and March (autumn/winter). Also, over the years, she verified an increase of the 

chlorophyll a concentrations from the outermost region of the estuary to its innermost region. 

Thus, the higher winter values obtained with MERIS for the estuary may have been influenced 

by some environmental events such as precipitation, surface runoff or higher river flow. These 

events tend to increase the suspended matter in the estuary and can possibly influence the 

estimation of the satellite chlorophyll a concentrations. Since the determination of this parameter 

is based on an analysis of the visible spectrum, the suspended matter as well as the colored 

dissolved organic matter (CDOM) can change the color of the water, disturb the signal released 

from the water column and unable the efficient quantification of chlorophyll a (Sutcliffe et al., 

2016). Therefore, it is necessary to develop algorithms specially dedicated to shallow transitional 

areas, given their optical complexity. 

However, the range of chlorophyll a concentrations obtained for the interior of the estuary 

does not appear to be very different from what was presented in previous works. According to 

Lemaire et al. (2002), the distribution of chlorophyll a in the Sado estuary was between 0.2 and 

4.0 µg/L. Also, the work conducted by Marectec (2002b) presented an average value for the 

chlorophyll in the estuary during summertime of 5 μg/L, indicating no sign of eutrophication in 
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the region, as referred also by Ferreira et al. (2003). In those works, it was reported that, although 

the estuary is homogeneous in its major area, it has higher concentrations of chlorophyll a in the 

channels of Marateca, Comporta and Alcácer, the inner areas of the estuary (Coutinho, 2013). 

This was also observed with MERIS data.  

With the annual anomalies obtained with MERIS database, it was possible to see that 

there was a tendency of a decrease in the chlorophyll a concentration inside the estuary between 

2002 to 2012. According to Ferreira et al. (2019), the chlorophyll a variability in the western 

coast of the Iberian Peninsula is highly dependent on river discharges and coastal upwelling. 

Although the authors mentioned some chlorophyll hotspots along the coast (Northern and Central 

Portuguese coast and mouth of Tagus estuary) and identified the northwestern Iberia with a 

positive trend for chlorophyll a, the coastal region of Sado estuary was compassed in an area of 

low productivity. Therefore, the decreasing trend observed in this study, if it continues to be 

verified, can be justified by the decrease of the river flow observed in the past years (Sales, 2015) 

and because the Sado estuary is not influenced by the seasonal upwelling characteristic of the 

coast of Portugal, as already mentioned. Such a tendency follows the trend observed globally and 

already confirmed by NASA with a study that suggested a decline of the oceanic phytoplankton 

in the northern hemisphere (Rousseaux, 2015).  

Interestingly, between the chlorophyll a anomalies (MERIS) and the SST anomalies 

obtained, it was not observed any relevant relationship (neither by comparing each station 

separately, nor by comparing the average of the stations). Also, the daily Sentinel-3 chlorophyll 

a data was compared with the SST values for the year of 2018 and no association between the 

datasets was found. 

The analysis of chlorophyll a estimated from Sentinel-3 OLCI gave a clear indication that 

these data were more appropriate for this study area, due to the sensor’s spatial resolution. More 

clearly, it was possible to see the inner channels of the estuary with the highest concentration of 

chlorophyll a. Also, it was during spring that was achieved the maximum production of 

chlorophyll a throughout the estuary, as would be expected. However, the correlation between 

the satellite values and those collected in situ was low (R2 = 0.33). One of the error sources 

associated with the Sentinel-3 data may be the presence of suspended matter that appears to have 

interfered with the quantification of chlorophyll a, especially during the campaign of 8 November 

2018. Low correlations between Sentinel-3 products and in situ data have also been verified by 

other authors, as in the study conducted by Moutzouris-Sidiris et al. (2019) where no correlation 

was observed between the chlorophyll a calculated from the neural nets and the in situ data 

collected in the Mediterranean Sea. Given the complexity of coastal environments, the algorithms 

available are not yet fully efficient and the optically active components can interfere with the 

estimations of chlorophyll a concentrations. However, in the present work, when MERIS and 

OLCI databases were analyzed and the algorithms developed for coastal waters were used, a 

quality increase in the satellite products was observed. Therefore, it is important to continue to 

try to produce new algorithms suitable for shallow transitional waters, using as a base the results 

obtained by the products validation exercises already performed by several authors in different 

areas of the world. Improvements can be achieved by coastal products and through regionalized 

models developed with in situ chlorophyll and concomitant radiometric data (Sá et al., 2015). 
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Chapter 4 

 

4 General Discussion 

 

 
 

The data obtained with the CTD revealed a low variation of all the parameters studied 

along the tidal cycle. These observations were corroborated by the study of Moreira (1987). 

Although it was an expected result, it would be interesting to perform additional campaigns to 

follow complete tidal cycles, given the importance of the tide in the estuary circulation. This study 

revealed that the water influx and outflux in the region is generally made through the two 

navigation channels (North and South channels), according to the tide, with more intense currents 

in the South channel. In the two channels, more intense currents were observed during the ebb 

than during the flood. The current intensity appeared to decrease with depth and an agreement 

between the direction of the surface current and the current at the lowest level was also verified 

(see the schema of the circulation regime in Figure 4.1). This last result deviated from the 

observed in previous studies, so it is possible that the estuary had gone through a change in the 

circulation regime in the last years. These changes could have been originated by several factors: 

they could derive from the decrease of the river flow in the past years, from changes in the 

morphology of the estuary (natural or anthropogenic) (Neto et al., 2019) or even come from the 

differences between the sampling procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Schematic representation of the direction and intensity of the current (not to scale) observed in depth, in 

the two navigation channels, during flood and ebb. 
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The variation in the tide and, therefore, in the circulation regime in the estuary, was not 

observed through the analysis of the studied satellite datasets. However, the utility of using SST 

products to study circulation patterns in open ocean and coastal regions is recognized worldwide 

(NOAA, 2020d). In the present study, it was possible to see the circulation pattern of the regional 

coastal ocean with the Multiscale Ultrahigh Resolution (MUR) product and it was observed that 

during the summer months, occurred the transport of warmer waters from the south of the country 

to Troia peninsula. Therefore, the region of the Sado estuary and the adjacent area does not seem 

to be affected by the seasonal upwelling that influences the west coast of Portugal (Coutinho, 

2003).  

The influence of the circulation was also not observed in the satellite-derived chlorophyll 

a data, although the cycle of spring/neap tide can influence the distribution of chlorophyll in an 

estuary (Roegner et al, 2010). However, the flow of the river appeared to have influenced the 

estimation of the satellite chlorophyll a concentrations, by increasing the suspended matter in the 

estuary (Loisel et al., 2012). The influence of the river flow was observed not only in the analysis 

of the satellite data but also in the in situ observations, more evidently in the salinity profiles, 

which occasionally showed lower salinity values at the surface of the water column. 

Based on the data collected during the sampling campaigns, the outermost area of the 

estuary can be described as spatially homogeneous, with occasional stratification of the water 

column (Sousa and Lourenço, 1980; Ambar et al., 1982). The same spatial homogeneity was 

observed in the analysis of GHRSST MUR product, that included data from the whole set of 

stations distributed along the estuary. However, the satellite presented more realistic results for 

the outermost region of the estuary, possibly due to the low resolution of the product used. 

Likewise, these results can be justified by the greater variability of temperatures verified in the 

inner region of the estuary, due to shallow water columns that turns the region more susceptible 

to environmental changes (Loisel et al., 2012). Nevertheless, the sensor proved to be sensitive to 

temporal variations in the whole estuary. By the analysis of both the in situ observations and the 

satellite-derived SST, this region showed to be susceptible to the seasonal variation of the weather 

conditions and, consequently, influenceable by the changes of the river flow. On the other hand, 

the satellite-derived chlorophyll a data, more specifically Sentinel-3 data, showed that the estuary 

cannot be considered spatially homogeneous for its chlorophyll a distribution. Although the 

agreement between the Sentinel-3 data and the in situ values was low, it was observed by the two 

approaches that the most interior region of the estuary is characterized by having higher 

concentrations of chlorophyll a and that the higher values were obtained during spring. The 

validation exercises of chlorophyll a data are greatly complicated to perform. However, 

improvements can be achieved if considered regional solutions (coastal products and regionalized 

models developed with in situ chlorophyll and concomitant radiometric data) when application 

requirements are not corresponded by standard product accuracy (Sá et al., 2015). 

All things considered, the integration of both the in situ observations and the satellite data in 

this study led to a more robust analysis of the physicochemical parameters. The in situ data 

allowed assessing the usefulness of specific satellite products that have high spatial and temporal 

coverage of the Sado estuary. It was through remote sensing that the best temporal and spatial 

coverage was achieved, but this approach did not allow to observe variations in depth or 

throughout the tidal cycle, as it was possible to see with the in situ observations. The integration 

of these two methods contributed for a better understanding of the physicochemical processes in 

the Sado estuary, for which each approach provided a key contribution (Figure 4.2).  
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Figure 4.2. Integration of the results obtained with the in situ observations and the satellite data.  
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Chapter 5 

 

5 Final Remarks 

 

 
 

The Sado estuary has been the subject of several oceanographic studies in the past years. 

However, currently, it is still a challenge to fully understand the dynamics of this estuary. After 

the integration of in situ observations (with frequent sampling, in depth and throughout the tidal 

cycle) with satellite data, as performed in the present study, an extended understanding of the 

temporal and spatial patterns of the Sado estuary was achieved. It was investigated the estuary 

relatively to the variability of its physicochemical parameters (temperature, salinity, density, 

turbidity, fluorescence and direction and intensity of the currents), studying seasonal patterns and 

their variation along the tidal cycle. Also, it was evaluated the use of SST and chlorophyll a 

satellite products in the estuary and accomplished a historical description of the distribution of 

these parameters throughout the region since 2002, as well as a description of their inter and intra-

annual variability. 

In the future, it would be interesting to carry out a more extensive analysis of the estuary, 

both in situ and remotely. In the campaigns that followed the partial tidal cycles, some logistical 

constraints conditioned the sampling, leading to the reduction of the amount of data collected 

(availability of the boats, number of available light hours to do the measurements, instruments 

that got damaged, …). It was observed that the campaigns that covered entire tidal cycles were 

the ideal to do a reliable study about the circulation regime inside the estuary. Therefore, it would 

be essential to increase the robustness of the results obtained extending the monitoring of 

complete tidal cycles with frequent sampling to the CTD. Also, expand the use of the CTD and 

the current meter sensor to several sampling points distributed throughout the estuary would be 

important. Perhaps the best way to continuously obtain physicochemical data would be by 

deploying in situ buoys equipped with multiparametric sondes in the estuary. A frequent 

monitoring would also be important to enable an interannual analysis based on in situ data, that 

would allow to complement the existing satellite databases. In the analysis of the satellite-derived 

data, limitations of spatial resolution were detected in the SST product and problems of 

atmospheric correction and in the determination of the variables were observed in the chlorophyll 

products. It became clear that it is still challenging to study estuarine areas, in particular the Sado 

estuary, using satellite remote sensing data but, based on the results of this work, there is an 

indication of a relevant improvement in the quality and accuracy of the products generated over 

the last years. Therefore, it is important to continue to work on the development of new algorithms 

that are suitable for coastal environments. In the future it would be relevant to perform radiometry 

measurements to improve algorithms and the feasibility of using satellite data in such areas.  
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The Sado estuary has been increasingly considered as an area of high economic potential 

but, simultaneously, and interestingly, as a region that urgently needs to be protected. It is 

important to sustainably invest in the estuary and, to do so, it is necessary to fully understand the 

dynamics of the area in the various scientific aspects and monitor possible investment activities 

(e.g.: dredging works). The present study allowed to complement the oceanographic analysis 

previously carried out in the estuary and raised some questions that are possible to be answered 

with future studies. Also, shows the potential in exploring the area through satellite remote 

sensing and works as a consistent study capable of enrich further analysis in a field still 

underexplored in this estuary. 
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Figure A.1. Temperature profiles obtained in CTD stns. #6 (orange), #7 (blue) and #8 (green), in the period SEP 

2018-JUN 2019. C - partial cycle measurement. 
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Figure A.2. Temperature, salinity and sigma-t profiles obtained in CTD stn. #8 (C4 - partial cycle measurement no. 

4), during the campaign of 16 NOV 2018. 
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Figure A.3. Salinity profiles obtained in CTD stns. #6 (orange), #7 (blue) and #8 (green), in the period SEP 2018-JUN 

2019. C - partial cycle measurement. 
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Figure A.4. Turbidity profiles obtained in CTD stns. #6 (orange), #7 (blue) and #8 (green), in the period SEP 2018-JUN 

2019. C - partial cycle measurement. 
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Figure A.5. Fluorescence profiles obtained in CTD stns. #6 (orange), #7 (blue) and #8 (green), in the period SEP 2018-

JUN 2019. C - partial cycle measurement. 
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Figure A.6. Temporal variation of the surface temperature data obtained with the CTD, the CS, the MS and the 

satellite during the sampling campaigns. 
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Figure A.6 (continued). 
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Figure A.7. Example of the SST variation throughout the year of 2008, 2010 and 2018, in one station from the inner area of 

the estuary (#1) and another from the outermost zone (#7), smoothed with a moving mean filter with a 15-day window. 

Annex VII 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


