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Resumo

A indexação automática de documentos é um passo fundamental para a organização de dados e para
a extração de informação relevante dos mesmos. Esta extração de informação é realizada através de
processos de prospecção de texto e de técnicas de processamento de linguagem natural que tornam a
linguagem natural perceptível para o computador. Actualmente, muitas das soluções que são aplicadas a
estes processos consistem em soluções de aprendizagem automática. No entanto, tem se assistido a um
aumento contínuo da aplicação de soluções de aprendizagem profunda em tarefas de prospecção de texto
e de processamento de linguagem natural visto que, graças aos desenvolvimentos contínuos ao longo dos
últimos anos, estas soluções têm conseguido obter cada vez melhores resultados. Uma dessas técnicas é a
classificação multi-rótulo extrema, uma técnica de processamento de linguaguem natural que consiste na
indexação de documentos com rótulos pertencentes a um conjunto que pode conter milhares ou mesmo
milhões de possíveis rótulos.

Este trabalho apresenta um sistema desenvolvido para as ciências biomédicas e para o domínio mul-
tilinguístico, através da adaptação de um algoritmo de classificação multi-rótulo extrema usando apren-
dizagem profunda. O sistema desenvolvido combina ainda um software de reconhecimento de entidades
nomeadas com o algoritmo de classificação multi-rótulo extrema de forma a melhorar a atribuição de
rótulos aos documentos biomédicos.

Para testar o sistema desenvolvido, participei em três competições internacionais com foco na área das
ciências biomédicas, nomeadamente na BioASQ task 8a, BioASQ task MESINESP e ainda na subtarefa
CODING da competição CANTEMIST. O objectivo comum destas três competições consistia na index-
ação de documentos biomédicos com rótulos pertencentes a um dado vocabulário biomédico. No entanto,
enquanto na task 8a os dados estavam escritos em Inglês, na task MESINESP e na CANTEMIST, os da-
dos biomédicos estavam escritos em Espanhol.

Nas competições da BioASQ, o sistema desenvolvido destacou-se sobretudo nas medidas de precisão,
superando a grande maioria dos sistemas e ainda alcançando o 1º lugar por duas semanas consecutivas
numa das medidas da BioASQ task 8a. Na subtarefa CODING da CANTEMIST, o sistema atingiu uma
pontuação de 0.506 na medida mais relevante.

PalavrasChave: Literatura Biomédica, Reconhecimento de EntidadeNomeada, ClassificaçãoMulti-
Rótulo Extrema, Aprendizagem Profunda, Panorama Multilinguístico.
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Abstract

Automatic document indexation is a fundamental step for data organization and information retrieval
tasks. Information retrieval can be realized through processes of text mining and natural language pro-
cessing techniques that make natural language understandable to the computer. Nowadays, most solutions
that are applied to these processes use machine learning algorithms. However, thanks to continuous de-
velopments through recent years, there has been an increasing usage of deep learning solutions applied
to text mining and natural language processing tasks, due to the continuous achievement of better re-
sults. One of those techniques is extreme multi-label classification, a natural language processing task
consisting in the indexation of documents with labels from a label set that may contain thousands or even
millions of possible labels.

This work presents a system developed for the biomedical and multilingual panoramas based on the
adaptation of a deep learning extreme multi-label classification algorithm. The developed system also
combines a named entity recognition software with the extreme multi-label classification algorithm in
order to improve the label classification of the biomedical documents.

To test the developed system, I participated in three international challenges focused on the biomed-
ical sciences, namely in the BioASQ task 8a, BioASQ task MESINESP and in CANTEMIST CODING
subtask. The common goal of these three competitions was the indexation of biomedical documents with
labels belonging to a specific biomedical vocabulary. However, while the data in task 8a was in English,
in task MESINESP and in CANTEMIST the biomedical data was written in Spanish.

In the BioASQ competitions, the system stood out in the precision measures, surpassing most com-
peting systems and achieving the 1st place for two consecutive weeks in one evaluation measure in the
BioASQ task 8a. In the CANTEMIST CODING subtask, the system achieved a score of 0.506 in the
most relevant measure.

Keywords: Biomedical Literature, Named Entity Recognition, Extreme Multi-Label Classification,
Deep Learning, Multilingual Panorama.
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Resumo Alargado

A indexação automática de documentos e de dados é fundamental para a organização dos dados e para
a extração de informação relevante dos mesmos, o que pode ser essencial para o domínio biomédico,
pois permite um acesso rápido e facilitado a esta informação, disponibilizando apenas os dados de inter-
esse ao investigador ou utilizador. Para esta extração de informação relevante, são utilizados processos
de prospecção de texto juntamente com técnicas de processamento de linguagem natural que tornam a
linguagem natural perceptível para o computador, de forma a este poder processar os dados e retirar
significado dos mesmos.

Actualmente, muitas das soluções que são aplicadas à prospecção de texto e ao processamento de
linguagem natural consistem em soluções de aprendizagem automática que permitem, não só automatizar
o processo de extração de informação do texto, mas também permitem ao computador analisar mais
detalhadamente os dados, descobrindo novas características que podem levar a resultados melhorados.
No entanto, tem se assistido a um aumento contínuo da aplicação de soluções de aprendizagem profunda
em tarefas de prospecção de texto e de processamento de linguagem natural. Como o nome indica, estas
soluções apresentam características arquitecturais que levam a uma aprendizagem mais profunda dos
dados, como ummaior número de camadas internas que permitem uma análise mais detalhada dos dados,
descobrindo padrões e reconfigurando a próprios parâmetros internos da rede, levando a uma extração
de informação melhorada e mais eficiente. São exemplos destas formas de aprendizagem profunda as
redes neuronais convolucionais e recurrentes, cujos desenvolvimentos e aplicações nas mais diversas
áreas continuam a gerar mais e melhores resultados.

No entanto, tem-se assistido também ao rápido desenvolvimento de modelos de linguagem de apren-
dizagem profunda com a representação de palavras por vectores. Este tipo de modelos gera um ou mais
vectores para cada palavra com base no contexto em que a mesma se insere, levando a uma compreensão
melhorada da informação presente no texto e, consequentemente, melhorando os resultados alcançados
pelos sistemas em tarefas de processamento de linguagem natural. Um exemplo de sucesso que influ-
enciou o paradigma das soluções para processamento de linguagem natural foi o BERT (Bidirectional
Encoder Representations from Transformers), que levou ao desenvolvimento de modelos similares e es-
pecíficos para diferentes áreas, como a área biomédica. No entanto, para desenvolver este tipo demodelos
de linguagem, é necessária uma grande quantidade de dados de qualidade para o domínio em causa, o
que muitas vezes pode não suceder, especialmente em línguas que não a inglesa.

Apesar de tudo, graças aos desenvolvimentos contínuos ao longo dos últimos anos na área da apren-
dizagem profunda, estas soluções têm conseguido obter cada vezmelhores resultados e consequentemente
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mais visibilidade por parte da comunidade científica. Uma dessas técnicas é a classificação multi-rótulo
extrema. Esta técnica consiste na indexação de documentos com rótulos pertencentes a um conjunto que
pode conter milhares ou mesmo milhões de possíveis rótulos, o que representa desafios computacionais
para a classificação eficaz dos dados. No entanto, com o desenvolvimento das técnicas de aprendizagem
profunda, os algoritmos desenvolvidos para esta técnica de classificação também se tornaram mais efi-
cazes e têm vindo a apresentar cada vez melhores resultados em diversas áreas, apesar de ainda não terem
sido aplicados à área das ciências biomédicas nem ao domínio multilínguistico.

Assim, este trabalho apresenta um sistema desenvolvido para as ciências biomédicas e para o domínio
multilinguístico, através da adaptação de um algoritmo de classificação multi-rótulo extrema usando
aprendizagemprofunda chamadoX-Transformer. OX-Transformer, inicialmente conhecido porX-BERT,
é o primeiro algoritmo que escala o modelo de linguagem BERT à classificação multi-rótulo extrema, o
que levou o algoritmo a atingir resultados superiores em conjuntos de dados de referência.

O sistema desenvolvido neste trabalho combina ainda oX-Transformer com oMER (Minimal Named-
Entity Recognizer), um software de reconhecimento de entidade nomeada usado para identificar no texto
termos e relações que estejam presentes num dicionário ou ontologia. Assim, espera-se que esta combi-
nação possa melhorar a atribuição de rótulos por parte do algoritmo de classificação multi-rótulo extrema
a documentos biomédicos.

Para testar o sistema desenvolvido, participei em três competições internacionais com foco na área das
ciências biomédicas. Duas delas fazem parte da BioASQ, uma conhecida competição anual que se foca no
processamento de linguagem natural para a área biomédica. Dentro desta competição, participei na task
8a e na primeira edição da task MESINESP. O objectivo destas duas competições consistia na indexação
de documentos biomédicos com termos pertencentes a um vocabulário organizado desenvolvido para as
ciências biomédicos. No entanto, a task 8a usava documentos e um vocabulário em inglês, enquanto que
a task MESINESP era focada no domínio multilínguistico, usando documentos biomédicos em espanhol
e um vocabulário organizado também em espanhol.

A terceira competição em que participei foi na primeira edição da competição CANTEMIST, uma
competição cujo objectivo era a aplicação de técnicas de prospecção de texto a casos clínicos de oncologia
escritos na língua espanhola. Dentro desta competição, existiam várias subtarefas, cada uma dedicada
a uma técnica específica de processamento de linguagem natural. Eu participei na subtarefa CODING,
em cujo objectivo era a classificação dos casos clínicos usando termos pertencentes a um vocabulário de
termos oncológicos.

No final, os resultados obtidos pelo sistema desenvolvido foram promissores. Nas duas competições
do BioASQ, o sistema não conseguiu obter valores elevados nas medidas de avaliação mais relevantes,
mas destacou-se nas medidas focadas na precisão, onde superou a grande maioria dos sistemas, incluindo
os sistemas vencedores, chegando mesmo a alcançar o 1º lugar por duas semanas consecutivas numa das
medidas de avaliação do BioASQ task 8a. Quanto à subtarefa CODING da CANTEMIST, o sistema
atingiu uma pontuação de 0.506 namedidamais relevante. No entanto, os organizadores desta competição
não disponibilizaram nem os resultados dos restantes sistemas, nem um valor base, de forma que não foi
possível comparar o desempenho do sistema com outros nem com um valor base.
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Chapter 1

Introduction

1.1 Motivation

Machine Learning algorithms have been applied in text mining and in other Natural Language Processing
(NLP) related tasks, such as Named-Entity Recognition (NER), natural language inference, relation ex-
traction and question answering. These tasks make the natural language understandable to the computer,
thus being able to extract meaning, relations and knowledge from the text. The main role of machine
learning algorithms in this context is to improve and automate the extraction of information from text
sources. However, in recent years traditional machine learning algorithms are constantly being replaced
by deep learning methods, such as Convolutional Neural Networks [1, 2], Recurrent Neural Networks
[3, 4] or pre-trained language models [5, 6, 7, 8, 9] that are fine-tuned using specific vocabularies and
datasets from specific domains like biomedical sciences.

With the creation of specific datasets and corpora in the biomedical area, the effectiveness of deep
learning techniques for text mining tasks in this area has increased, achieving better and more accurate re-
sults. Consequently, through these advances in deep learning techniques applied to text mining and NLP
tasks, and thanks to the increasing amounts and availability of biomedical related datasets, one can access
and extract specific information about a certain topic inside the biomedical domain with increased relia-
bility. One example is the automatic label indexation of documents, which can be crucial for biomedical
data management and information retrieval tasks. In this task, documents are indexed with labels related
with the content of the documents and that belong to a specific vocabulary. In the biomedical panorama,
one of the most widely used vocabularies is MeSH (Medical Subject Headings)1, an ontology developed
by the National Library of Medicine2 that encompasses biomedical and health-related terms. MeSH has
been used in several deep learning approaches developed specifically for automatic label indexing of
biomedical articles [10, 11].

1https://www.nlm.nih.gov/mesh/meshhome.html
2https://www.nlm.nih.gov/
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Chapter 1 Introduction

However, for a deep learning model to be trained and be able to achieve high scores in different
evaluation measures, it requires great amounts of text. This text can come from different sources or
domains, like a general domain such as Wikipedia, or from specific domains, like biomedical sciences,
that have specific terms and vocabulary related to the domain. The choice of datasets and corpora to
use is essential when training the model, since choosing a domain-specific dataset can lead the system to
achieve better results than using a general domain dataset [7, 8, 12].

Still, most deep learning models and corpora are designed only for the English language, thus being
difficult to apply them to text mining and other NLP tasks in non-English languages. With the reduced
number of multilingual datasets, the performance and accuracy of the model drops when using non-
English data. This can be even more significative when dealing with specific domains, like biomedical
sciences, where structured domain-specific corpora may not exist in non-English languages. Due to this,
most developments in text mining and NLP tasks using deep learning are only focused in the English
language.

Nonetheless, one promising solution to improve the results of NLP tasks in the multilingual panorama
is ExtremeMulti-label Classification (XMLC). This technique consists in assigning to text multiple labels
from several candidate labels from a dataset that can achieve millions, a challenge for most machine
learning approaches, since it requires the model to learn thousands or even millions of labels and features
[13]. The choice of labels to use can be from any language and from any domain. Thus, with the right
choice of labels, it can be applied to the multilingual panorama or to specific NLP tasks, like semantic
indexing or even question answering. XMLC has been receiving an increased focus in recent years, where
some deep learning approaches have obtained considerable results in large datasets [14, 15].

Although deep learning models have achieved good results in many scientific community challenges
and are constantly being improved, there are notmanymodels that include the use of ontologies and linked
data in their core. Most models, like BERT [5] or XLNet [9], have a Transformer architecture [16] which
contains a set of pretrained weights that can be used to train a model from large corpora. The model can
then be further fine-tuned with external datasets, normally from the specific domain where the model will
be applied, along with data from the task where it will be used, but rarely from structured vocabularies
such as ontologies. The same applies to XMLC based solutions, which are not usually combined with
ontologies or other NLP tools.

1.2 Objectives

XMLC has been receiving an increased focus from the NLP and Text Mining communities, and deep
learning XMLC solutions have not yet been applied to the biomedical panorama, where the number of
labels in literature can easily reach thousands. Therefore, the main objective of this project was the
development of a deep learning XMLC based solution for the biomedical domain, capable of indexing
scientific articles with labels related to their content.

To further improve the label indexation, this thesis proposes to combine an XMLC algorithm with
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a NER tool capable of identifying ontology terms and their synonyms in the text. The hypothesis was
that, by combining a NER tool to identify key terms in the text, the XMLC algorithm would be able to
attribute more accurate labels to the texts, since it had a series of additional key terms to describe the text.

Finally, the last objective of this project was focused in applying the developed XMLC solution to
the multilingual biomedical panorama. In this objective, there was an increased focus in the Spanish
language. First, because it is one of the most spoken languages in the world, surpassing English in the
number of native speakers. Second, because of the BioASQ MESINESP (Medical Semantic Indexing in
Spanish)3 competition and the CANTEMIST (CANcer TExt Mining Shared Task – tumor named entity
recognition)4 shared task, two of the three international challenges in which I participated, and which
had the objective of automatically indexing Spanish written documents from the biomedical domain with
labels related to their content. This way, the developed solution was also pioneer in this specific multi-
lingual domain.

1.3 Methodology

The developed solution was based on adapting a state-of-the-art deep learning XMLC algorithm to the
biomedical and multilingual biomedical domains, firstly X-BERT [17] and then its most recent version,
X-Transformer [15]. X-BERT and X-Transformer are the first deep learning XMLC solutions to success-
fully adapt deep learning Transformer models such as BERT [5], to the XMLC panorama. They consist
in a three-stage framework that in a first step semantically indexes all labels to clusters using word em-
beddings. Then, through a deep learning model, indexes each text instance to the most relevant cluster,
and finally, ranks the labels from the previously indexed clusters, retrieving the most relevant labels for
each text instance.

To test and evaluate the proposed solution, I participated in the 2020 BioASQ competitions, namely in
task 8a and taskMESINESP, which were focused on the biomedical andmultilingual domains. Therefore,
a pipeline of Python scripts was developed. The first script preprocessed the data given by the competition
organizers, which was composed by thousands of biomedical articles. Then, before creating the files that
were to be given as input to the XMLC algorithm, I used a NER tool namedMER (Minimal Named-Entity
Recognizer) [18, 19] to recognize key terms and synonyms from the DeCS (Health Sciences Descriptors)5

and MeSH ontologies, which were added to the text. This way, I aimed at improving the label prediction
of the XMLC algorithm, since there would be an additional list of relevant keywords for each article.

In the end, a final script processed the results from the XMLC algorithm so that they could have the
required format for the competitions. A detailed description of this pipeline, the modifications made in
the XMLC algorithm, as well as the results achieved to both competitions can be found in Chapter 3 of
this thesis.

3https://temu.bsc.es/mesinesp/
4https://temu.bsc.es/cantemist/
5http://decs.bvsalud.org/I/homepagei.htm
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Then, after the BioASQ competitions, a similar pipeline was developed for the CANTEMIST com-
petition, namely the CANTEMIST-CODING task. This pipeline was based on the same pipeline used in
the BioASQ competitions, but only using X-Transformer with modifications made due to the competition
data, characteristics and requirements. For this competition, I also used data and pre-trained models that
were developed for MESINESP and compared the performance of different models trained with different
types and amounts of data. A detailed description of this pipeline and results achieved can be found in
Chapter 4 of this thesis.

1.4 Contributions

The main goal of this project was the development of an open source semantic indexing system for the
biomedical domain based on XMLC 6, that can be applied not only to the English language but also to
the multilingual panorama. The system was initially developed from X-BERT [17] and later adapted to
X-Transformer [15]. Both are state-of-the-art XMLC deep learning algorithms that were never applied to
the biomedical nor to the multilingual domain. The result of my work was a deep learning XMLC based
approach to be successfully applied to both domains.

With this system, I was able to participate in three international competitions: BioASQ task 8a,
BioASQ taskMESINESP, and in the CANTEMIST-CODING task. The participation and results achieved
in the BioASQ competitions are described in Chapter 3, while the CANTEMIST-CODING task is tackled
in Chapter 4.

Although the system was not able to achieve high F1-scores, it was able to achieve top scores in
the precision measures evaluated in the BioASQ tasks, surpassing most competing systems. As to the
CANTEMIST-CODING task, the system achieved a score of 0.506, in a scale of 0 to 1, in Mean Average
Precision, which was the most relevant measure for this competition.

Following these participations, I have submitted a scientific article [20] for the BioASQ 2020 Work-
shop which will be held at CLEF 2020 – Conference and Labs of the Evaluation Forum, and another one
[21], co-authored by me, for the CANTEMIST 2020 Workshop which will be held at IberLEF 2020 -
Iberian Languages Evaluation Forum.

In addition, I have also participated in the Semantic Indexing and Information Retrieval for Health
from heterogeneous content types and languages (SIIRH 2020) workshop, held in conjunction with ECIR
2020 (core conference), in which I have submitted and presented a short paper [22] where I propose a
possible application of the XMLC system that I have developed, but to multilingual biomedical Question
Answering.

The list of submitted and accepted workshop papers is the following:

• André Neves, André Lamúrias, and Francisco M. Couto, ”Extreme Multi-Label Classification ap-
plied to the Biomedical andMultilingual Panorama”, in The Eighth edition of BioASQ: Large-scale

6https://github.com/Cobollero/Multilingual-Biomedical-XMLC-Pipeline
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Biomedical Semantic Indexing and Question Answering, 2020 [20].

• Pedro Ruas, André Neves, Vitor M. Andrade, and Francisco M. Couto, ”LasigeBioTM at CAN-
TEMIST: Named entity recognition and normalization of tumour morphology entities and clinical
coding of spanish health-related documents”, in The Iberian Languages Evaluation Forum 2020
(IberLEF 2020) [21].

• André Neves, André Lamúrias, and Francisco M. Couto, ”Biomedical question answering using
extreme multi-label classification and ontologies in the multilingual panorama”, in The First Inter-
national Workshop on Semantic Indexing and Information Retrieval for Health from heterogeneous
content types and languages (SIIRH) [22].

1.5 Document Structure

In addition to this first chapter, this document is structured in four chapters that address the following
topics:

• Chapter 2: Related Work, provides an overview of concepts, approaches and state-of-the-art
solutions developed for text mining tasks, with an increased focus on NER and XMLC.

• Chapter 3: Biomedical Text Indexing - BioASQ Competitions, presents the system that I de-
veloped for the two BioASQ competitions, along with the results achieved, discussion and other
post-competition tests.

• Chapter 4: Clinical Case Indexing - CANTEMIST Competition, presents the new pipeline that
I developed for the CANTEMIST competition, along with the results achieved and corresponding
discussion.

• Chapter 5: Conclusion, discusses the main conclusions of this work, and presents some directions
for future work.
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Chapter 2

Related Work
This section contains the related work, key concepts and the state-of-the-art solutions in the fields related
to the project. It is organized to firstly introduce in the concepts of text mining and the two related text
mining tasks that are tackled in this project: NER and XMLC. Then, Section 2.2 introduces some tech-
niques fromNLP and Artificial Intelligence, and Section 2.3 tackles the importance and the developments
in the corpora, including multilingual corpora, that is used in many state-of-the-art models. Sectrion 2.4
presents some scientific community competitions that promote advances in biomedical NLP tasks and in
other machine learning tasks, along with Section 2.5 that explains the most common evaluation measures
in NLP tasks, including the ones used in the competitions that I have participated. Finally, Section 2.6
contains the state-of-the-art solutions developed for NER and XMLC in several domains.

2.1 Text Mining

Text mining is a process of knowledge discovery in which useful and relevant information is extracted
from unstructured text documents [23, 24]. It can manage the large number of words and structures
in natural language and it is also capable of dealing with the vagueness and ambiguity present in the
text [25]. Thanks to these capabilities, text mining presents itself as an interdisciplinary method for
information retrieval that encompasses several NLP tasks like NER, document classification and relation
extraction. For each task, the information retrieved might have different representations, specific to the
task. This way, it is possible to combine the results of different tasks to improve the results of other tasks,
like question answering [26, 27].

2.1.1 Named-Entity Recognition

NER is a text mining task with the objective of recognizing mentions of relevant entities in text. NER is
essential for many NLP applications such as question answering, machine translation, text summarization
and others [28], since it can locate and identifying entities in the text that are related to the intended
objective or to the domain of work. An example of general domain categories could be persons, locations,
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time or organizations. The entities can be composed by single words or by a sequence of words, that are
usually identified by the system through a tokenization process.

There are several approaches for recognizing entities from text. One of these approaches is the rule-
based approach, which relies on manually defined rules and does not require annotated data. Inside this
approach, there is the dictionary lookup method, which uses a knowledge base or lexicon from a specific
domain, such as an ontology, and then matches the text with the terms from the knowledge base [18, 19].
Another type of approach is based on machine learning techniques, such as deep learning, which require
a corpus of text data labeled with the entities and their position in the text. The model is then trained
using this corpus, so that it can learn to recognize the entities in new texts [29, 30]. There are also hybrid
approaches that combinemachine learning techniqueswith rule-based systems [31], which usually consist
in a machine learningmodel that is later fine-tuned with additional linguistic rules to improve its accuracy.

In the biomedical domain, NER is essentially used to recognize biological and chemical entities, such
as proteins, genes, species, diseases, chemicals and mutations. However, this task can be challenging
since all these entities have unique characteristics that usually require a domain-specific set of features and
rules to correctly identify them [32]. In this project, taking into the account the goals of the competitions
in which I participated, I decided to use a dictionary approach to identify terms belonging to the ontologies
that were used to classify the biomedical documents given in the competitions, alongwith their synonyms.

2.1.2 Extreme Multi-Label Classification

Multi-label text classification consists in categorizing data by assigning labels to documents, where each
document may have different labels assigned to it simultaneously. This is useful to organize and cate-
gorize data in several domains including biomedical sciences [33, 34]. In XMLC however, the domains
present hundreds of thousands or even millions of possible labels [13], which presents computational
challenges to effectively and efficiently classify the data [35].

The labelling and categorization of text data can be crucial for the performance of other NLP tasks,
such as question answering, in which the first step is usually to retrieve documents or text relevant to the
question. The labeling of data provided by XMLC can be important to improve the model’s accuracy,
since the labels might act as clues for the model to choose the most relevant documents or fragments of
text as answers to questions. However, due to the large number of possible labels, it might be useful to
use additional text mining techniques such as NER to improve the performance of XMLC algorithms.
Therefore, in this project, a NER approach will be combined with a deep learning XMLC algorithm
named X-BERT [17], later renamed X-Transformer [15], which scales pre-trained language models to
the XMLC panorama through a framework that combines semantic label indexing, deep neural matching
and a ranking component in order to achieve state-of-the-art results in several datasets. The algorithm
will be discussed with more detail in subsection 2.6.2.
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2.2 Approaches

2.2.1 NLP Techniques

NLP techniques aim at the extraction of meaning from human written text. This section will focus on
several approaches that allow the machine to understand natural language and consequently improve the
results of NLP tasks.

2.2.1.1 Tokenization

Tokenization consists in breaking sequences of text into smaller fragments called tokens. These tokens
can be words, sentences or even whole paragraphs, depending on the splitting criteria chosen. Usually,
for most space-limited languages, such as English or Spanish, whitespaces or punctuation marks are often
chosen as delimiter, but they might not always be the best splitting operand. For example, in unsegmented
languages, such as Chinese or Japanese, word boundaries and formulation are different, thus requiring
different splitting operands [36, 37].

Therefore, a set of tokenization rules or models should be defined for a proper tokenization prepro-
cessing of the data. This is useful to handle cases of abbreviations, or to handle text data from specific
domains such as the biomedical domain, where there are chemical compounds or genetic material that
might be separated by spaces or punctuation marks and where a proper tokenization is crucial for the
performance of the system [38, 39].

2.2.1.2 Stemming

Due to the morphological variants of natural language words, stemming is a process that is usually nec-
essary in text mining to reduce the complexity of the text. It consists in converging those variant forms
of words into one common representation, its stem or root [36]. For example, ‘are’, ‘am’ and ‘is’ can all
be reduced to their common verb ‘be’, which is their stem.

There are several techniques to apply stemming to text [40], some that consist in removing prefixes
or suffixes from words such as the popular Porters algorithm [41], in which the suffixes are removed ac-
cording to a set of rules. Other approaches revolve around statistical analysis, such as the YASS Stemmer
which does not need any linguistic information and relies on unsupervised statistical clustering techniques
applied to the corpus of text [42].

2.2.2 Machine Learning

Machine Learning is an area of computer science that aims at the development and study of algorithms
that allow a computational system to automatically perform tasks by learning patterns and features from
the input data. Thanks to these capabilities, machine learning algorithms are versatile and thus can be
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applied to diverse areas and applications. Machine learning algorithms can essentially be divided in
supervised and unsupervised learning algorithms [43].

Supervised learning algorithms require that a training set containing the examples with the inputs and
the desired labeled outputs. This training set will be used to build a mathematical model or classifier,
from which it will be able to classify new unlabeled data given as input. Consequently, the predictions
made by the classifier will depend on the training set used to train the model. Therefore, if one label is
underrepresented in the training set, the model may fail to predict it, while if it is overrepresented, the
model may be biased to incorrectly classify the data with that label.

In unsupervised learning algorithms, the training set does not need to be labeled with the expected
output, and thus it will learn by discovering patterns and structures in the data. For example, a trained
unsupervised learning model can identify portions of data with similar properties and group them together
in clusters.

There can also be cases of semi-supervised learning, i.e. a combination of labeled and unlabeled
data to train a model. In cases where the amount of labeled data are scarce, semi-supervised learning
techniques can be used to improve the results of supervised learning models, since it provides additional
training data to train the model [44].

2.2.2.1 Artificial Neural Networks

Artificial Neural Networks are computing systems capable of massive parallel processing that are inspired
by Biological Neural Networks, like the human brain.[45, 46] Each cell of the network is an artificial
neuron based on its biological homologous, that transmits signals between neurons through synapses. It
is through this signal transmission and processing, in conjunction with machine learning methods, that
the network can learn. The first model based on this architecture was developed in 1943 by Warren
McCulloch and Walter Pitts, that defined through logical and mathematical theorems a neural network
capable of solving any computable function [45].

The neurons are organized in layers where each layer processes the signal before sending it to the next
layer of neurons. The layers between the input and output layers are called hidden layers and through
them, the learning process can be enhanced. For example, by comparing the output of the layer and the
desirable output, it is possible to use backpropagation techniques to minimize the difference between the
output of the network and the desirable output, which will adjust the internal parameters of the layers to
minimize the deviation between the outputs in each iteration, thus getting closer to the desirable output
[3, 46, 47].

2.2.2.2 Deep Learning Techniques

Deep learning algorithms are based in artificial neural networks with a greater number of hidden layers.
These layers allow the algorithm to discover patterns in large sets of data and then indicate how the
algorithm should change its internal parameters layer by layer, i.e. the parameters of the layers are learnt
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from the data [48]. These layers can be organized in several types of architectures such as Convolutional
Neural Networks (CNN) [1, 2] or Recurrent Neural Networks (RNN) [3, 4].

CNN have fully connected layers, in which all neurons of one layer are connected to all neurons of the
next layer and a convolution function is applied in at least one of those layers. As to RNN, they present
feedback loops in their structure, allowing the neurons to remember their input in memory, enabling
them to be very precise in predicting the next input. They are also able to represent a sequence of events
implicitly, exhibiting a dynamic behavior over time, making them advantageous in analyzing sequential
data, like a time series, speech or text [49].

2.2.2.3 Language Models

Most deep learning solutions applied to NLP tasks use word embeddings in their core, which are unsu-
pervised learning models trained with large amounts of text to produce vectors that capture the similarity
between words, along with their syntactical and semantic information [50]. This way, the model can
make accurate guesses about a word’s meaning based on past appearances and can also be used to es-
tablish analogies between words. Two examples of these word embeddings techniques are Word2vec
[51] and GloVe [52]. However, these models may fail in polysemy scenarios since the word will be
represented as a single vector even though it might have different meanings.

To tackle these limitations, context dependent language models were developed, which generate dif-
ferent word embeddings for a word based on its position in a sentence. One example of these models is
ELMo (Embeddings from Language Models), which generates word vectors that model the syntax and
semantics of words, along with their linguistic context, thus being able to tackle polysemy cases. This is
possible thanks to a deep learning bidirectional language model that is trained on a large text corpus to
generate the word vectors [53]. These vectors can also be added to existing models in order to improve
their performance in other NLP tasks.

Another example of this type of models is BERT (Bidirectional Encoder Representations for Trans-
formers) [5], which has greatly changed the solutions applied to most NLP tasks. BERT is used to pre-
train language models from large amounts of unlabeled text. It uses a masked language model that ran-
domly masks tokens in the input data and then predicts which is the masked word based on the context
of the text. Thanks to this methodology, the model is pretrained with large amounts of data and then it
can be further fine-tuned by using specific datasets for a given task. The success of BERT was such that
many other models based on BERT started to appear for specific domains, like BioBERT [7] which was
specially developed for biomedical NLP tasks using large amounts of biomedical corpora, along with
SciBERT [8] which incorporates a large amount of scientific text corpora from Semantic Scholar1.

In addition, other state-of-the-art models were developed which surpassed the results of the original
BERT. Two of those models are RoBERTa (Robustly optimized BERT approach) [6] and XLNet [9].
RoBERTa uses a dynamic masking approach that generates a masking pattern each time a text sequence

1https://www.semanticscholar.org/
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is fed to themodel. This approach has achieved better results than the originalmasking used byBERT. The
RoBERTa model also used larger batch sizes than the original BERT and more than 10 times the amount
of data used to train the larger BERT model. On the other hand, XLNet does not mask tokens. Instead, it
predicts the tokens from a sequence using combinations of the remaining tokens in that sequence, being
the resulting prediction the most likely sequence of tokens. The XLNet models were also trained with
larger amounts of data than the BERT models, and with larger batch sizes. In the end, both RoBERTa
and XLNet surpassed BERT in benchmark datasets across different NLP tasks.

One of the main sources of pre-trained models, including multilingual models, is the Hugging Face
Transformers library[54]2. Transformers is a Python library that provides several pre-trained deep learn-
ing models, such as BERT, RoBERTa, XLNet and others, for several NLP and language generation tasks.
The library is enriched by a vast community of collaborators that adapt the existing models or contribute
with novel pre-trained models, many of them in non-English languages.

2.3 Vocabularies and Corpora

In order to train deep learning models and obtain good results, it is important to have large quantities of
quality text data, such as scientific articles, books or text from webpages available and stored in datasets.
One of the most used vocabularies to label scientific articles is MeSH3. This is a controlled vocabulary
of biomedical words or phrases that are assigned to scientific articles with the purpose of indexing and
describing the articles topics [55], thus facilitating user search. The hierarchical structure ofMeSH allows
a better organization of the related terms and allows users to search on broader, narrower or even in the
whole tree of terms. For example, the term ‘Endocardium’, which corresponds to the innermost layer
of the heart, has as direct ancestor the term ‘Heart’, which has the term ‘Cardiovascular System’ as its
ancestor, and all these terms are part of a bigger group of terms called ‘Anatomy Category’.

The MeSH terms are written in English, but a multilingual alternative based on them already exists.
The DeCS Terms4 were developed from MeSH with the goal of providing a unique terminology for
searching in Spanish, Portuguese and English. For each MeSH term, there is a corresponding DeCS
term. However, DeCS has more than 4000 exclusive terms that are not present in the MeSH hierarchy.

Other than the data and vocabularies available, language models also constitute an important part in
the process of developing deep learning models for the biomedical domain, since many of these language
models are trained using large amounts of text from this domain. Nevertheless, although there have
been numerous breakthroughs in languages models, the great majority is still focused only in the English
language. However, BERT as already been applied to the multilingual panorama with the creation of
three different models, with the most noticeable being BERT base multilingual cased and BERT base
multilingual uncased. The larger model contains 104 languages, composed by the text of the Wikipedia

2https://github.com/huggingface/transformers
3https://www.nlm.nih.gov/mesh/meshhome.html
4http://decs.bvsalud.org/I/homepagei.htm
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pages for each of those languages, excluding the user and talk pages. These models achieved state-of-the-
art results in the XNLI dataset [56], a corpus designed for language transfer and cross-lingual sentence
classification translated in 15 languages by human experts.

Another improvement in the multilingual panorama, namely in the biomedical domain, was a recent
work aimed at the development of word embeddings for the Spanish biomedical domain [12]. The authors
use a combination of biomedical data written in Spanish retrieved from the SciELO database5, along with
text data from specific topics of Wikipedia, such as pharmacy, medicine or biology. When evaluated and
compared with embeddings from a much larger but general domain corpus, their embeddings model
achieved better performance values in a NER task, thus showing the importance of using specific domain
data to develop language models.

2.4 Biomedical Text Mining Challenges

It is through text mining challenges promoted by the scientific community that many advances in NLP
tasks are achieved. In this section, some of the most relevant competitions related to the biomedical
panorama or related to this project are described.

2.4.1 BioASQ

BioASQ6 is a scientific competition that occurs since 2012 and includes a variety of text classification
and NLP challenges in the biomedical domain. Several challenges are organized with the objective of
developing and advancing the state-of-the-art solutions for large-scale semantic indexing and question
answering in the biomedical domain.

The competition is usually split into two distinct tasks. Task A consists in large-scale biomedical
indexing, in which the participants must classify new PubMed7 articles with MeSH terms, before they
are manually annotated by human experts. Task B consists in biomedical question answering, in which
the participants must respond with different types of answers which can be concepts, articles, snippets,
RDF triples, and even exact or ideal answers.

This year, BioASQ introduced the MESINESP task8, the first non-English task of the challenge co-
organized with the Barcelona Supercomputing Center. The objective of this task is similar to Task A,
but the scientific articles are written in Spanish, retrieved from the IBECS (Índice Bibliográfico Español
en Ciencias de la Salud)[57] and LILACS (Latin American and Caribbean Health Sciences Literature)9

databases, and must be classified with DeCS terms before being manually annotated by human experts.

5https://scielo.org/
6http://bioasq.org/
7https://pubmed.ncbi.nlm.nih.gov/
8https://temu.bsc.es/mesinesp/
9https://lilacs.bvsalud.org/
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2.4.2 BioCreative

The BioCreative (Critical Assessment of Information Extraction systems in Biology)10 is a community
driven challenge to evaluate text mining and information extraction systems in the biomedical domain.
The main motivation of the challenge is not the competitive aspect, but to serve as a way of comparing
the methods applied and the community assessment of scientific progress. The challenge started in 2004
and had several editions since then, with different biomedical text mining tasks in each edition such
as, gene identification, identification of protein-protein interactions, chemical compound and drug name
recognition, text mining chemical-protein interactions, among others.

2.4.3 CANTEMIST

The CANTEMIST (CANcer TExt Mining Shared Task – tumor named entity recognition)11 challenge
first occurred this year, and it is the first shared subtask focused on NER of tumor morphology terms in
the Spanish language and in the automatic assignment of eCIE-O-3.1 codes to documents. The eCIE-O-
3.1 codes correspond to the Spanish version of the ICD-O (International Classification of Diseases for
Oncology) ontology [58]. The eCIE-O-3.1 codes shall be referred just as eCIE-O codes from here on.

The challenge uses a corpus of clinical cases written in Spanish and it is divided into three distinct
tasks: NER, NORM and CODING. In the NER task, the objective is to automatically locate and recognise
tumor morphology terms. In the NORM task, the objective is returning and normalising all tumor entity
mentions along with their corresponding eCIE-O codes. Finally, in the CODING task, the objective is
the classification of clinical cases by returning a list of eCIE-O codes ranked by relevance/confidence for
each document.

2.4.4 Kaggle

Kaggle12 is an online data science andmachine learning community that allows its users not only to search
and publish public datasets and machine learning models, but also to participate in online data science
competitions. Many competitions are sponsored by data science companies or research institutes, with
goals that can vary from improving existing solutions, through the development of novel solutions for a
given problem. The competitions can be from almost any domain, including biomedical sciences, and
usually have monetary prizes associated or even recruitment opportunities for the sponsoring companies.

10https://biocreative.bioinformatics.udel.edu/
11https://temu.bsc.es/cantemist/
12https://www.kaggle.com/
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2.5 Evaluation Measures

2.5.1 Commonly used measures and general concepts

In order to evaluate the performance of the systems developed for NLP tasks, the trained models are
usually applied to gold standard test sets, which are datasets manually annotated by human experts. For
example, in the BioASQ task 8a challenge, the gold standard test set corresponded to the weekly list of
articles and the corresponding MeSH labels indexed by human experts. However, these labels were not
available to the participants during the competition period.

To better understand the evaluation measures that are used in NLP tasks, it is recommended to un-
derstand the definitions of True and False Positives, and True and False Negatives. True Positives (TP)
correspond to the case when the model prediction is true and in the gold standard it is also true. A False
Positive (FP), corresponds to the case when the model prediction is true, but in the gold standard it is
false. In contrast, a True Negative (TN) corresponds to a false prediction by the model and in the gold
standard it is also false. False Negative (FN) corresponds to a negative prediction by the model, when in
the gold standard is true. This relation is expressed in the Confusion Matrix in Figure 2.1.

Figure 2.1: Confusion matrix showing the relations between the predictions made by the model compared to the
values of the gold standard.

Several evaluation measures can then be used to evaluate the performance of the models. One of
the most common is accuracy, which takes into account the number of correct predictions over the total
number of predictions, as seen in Equation 2.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

However, accuracy alone is not enough to evaluate the performance of a machine or deep learning
model especially when using class-imbalanced datasets where there are classes/labels that can be more
frequent than others [59]. In order to get a more detailed and credible evaluation of a model, additional
measures are used with the most common being precision, recall and the F1-score or F-measure, which
have their corresponding formulas represented in Equation 2.2. Precision evaluates the number of correct
predictions over the total number of predictions made, with higher precision values corresponding to
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fewer false positives. Recall corresponds to the fraction of correctly identified positive predictions, with
high recall values being an indicator of less false negatives in the predictions. The F-score combines both
precision and recall to express an overall evaluation of the model performance and corresponds to the
harmonic mean of precision and recall.

Precision =
TP

TP + FP
Recall =

TP

TP + FN
F1− Score = 2× Precision×Recall

Precision+Recall
(2.2)

In XMLC tasks, since the algorithms usually deal with large amounts of data with thousands of pos-
sible labels, there is usually a focus in evaluating the performance at top K documents. The measure that
is mostly used to evaluate XMLC systems is precision at top K (P@K), which considers the number of
most relevant labels retrieved by the algorithm among the top K documents. The same logic can also be
applied to the evaluation of recall at top K (R@K), which corresponds to the number of correctly iden-
tified relevant labels, and F-score at top K (F@K), which takes into account both precision and recall at
top K. The formulas used for these measures are similar to the precision, recall and F-score formulas,
with the only difference being that the number of TP, FP and FN take into account all the occurrences at
the top K documents, as shown in Equation 2.3.

P@K =
TP@K

TP@K + FP@K
R@K =

TP@K

TP@K + FN@K
F@K = 2× P@K ×R@K

P@K +R@K
(2.3)

In the international challenges, there can be measures other than precision, recall and F1-score that
are used to evaluate the performance of the systems and that can be specific according to the requested
task. In the international competitions that I participated, the measures used to evaluated the performance
of the submitted solutions differed between competitions.

2.5.2 BioASQ evaluation measures

In BioASQ task 8a, the evaluation measures were split between flat and hierarchical measures, and in
MESINESP the evaluation measures comprised only the flat measures. The flat measures consist in
evaluating the assignment of labels to the documents and are based on the number of TP, TN, FP and FN,
while the hierarchical measures apply and hierarchical tree-like structure to the labels and the evaluation
is based on the label hierarchy through several methods, such as label similarity or label proximity [60].
The flat evaluation measures can be divided into micro and macro averaging. Micro averaging takes into
account the classification per document, while macro averaging considers each class [61]. In Equations
2.4 and 2.5 the formulas corresponding to the micro and macro are presented, with N corresponding to
the total number of documents.

MiP =

∑N
n=1 TPn∑N

n=1 TPn+
∑N

n=1 FPn
MiR =

∑N
n=1 TPn∑N

n=1 TPn+
∑N

i=n FNn
MiF = 2× MiP ×MiR

MiP +MiR

(2.4)
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MaP =
1

N

N∑
n=1

TPn

TPn+ FPn
MaR =

1

N

N∑
n=1

TPn

TPn+ FNn
MaF = 2× MaP ×MaR

MaP +MaR
(2.5)

As to the hierarchical measures, they take into account the hierarchy of the labels. Usually, the
label sets are augmented with the corresponding ancestors, in an attempt to capture the relations between
the different classes in the hierarchy [62]. However, the number of ancestor present in the augmented
label sets might differ according to the methods used, with some authors choosing to use all ancestors,
to others including the descents of the labels as well as the ancestors [63, 64, 65]. However, using all
ancestors to hierarchically evaluate the model predictions can be over-penalizing when errors occur in
nodes with many ancestors, therefore Kosmopoulos et al. [62] suggested the usage of the lowest common
ancestor (LCA) [66] instead. Independent of the number of ancestors used to augment the label sets, the
hierarchical precision (HiP), recall (HiR) and F-score (HiF) can be defined as shown in Equation 2.6, with
Lpred corresponding to the augmented set of predicted labels and Ltrue corresponding to the augmented
set of true labels from the gold standard set.

HiP =

∣∣∣Lpred⋂Ltrue
∣∣∣∣∣Lpred∣∣ HiR =

∣∣∣Lpred⋂Ltrue
∣∣∣

|Ltrue|
HiF = 2× HiP ×HiR

HiP +HiR
(2.6)

2.5.3 CANTEMIST evaluation measures

In the CANTEMIST challenge, the measures used to evaluate the systems were precision, recall and the
F1-score. This measures were used in all three task of the challenge. However, the CODING task had
one additional measure, which was Mean Average Precision (MAP).

MAP was the most relevant measure in the CANTEMIST-CODING task and it corresponds to the
mean of the average precision scores achieved in each query [67], which in this competition, corresponded
to the number of documents to classify. In CANTEMIST, the average precision formula is represented
in Equation 2.7. For each document n, the average precision is calculated considering the list of labels
retrieved by the system for that document (|L|), the precision at top k labels (P@k), and relevance rel(k),
which equals 1 if the k-th element of the list is relevant, or 0 if it is not. The value resulting from the
cumulative sum is then divided by the total number of relevant labels present in the Gold Standard test
set that are associated to the document (RL).

AveragePrecision(n) =

∑|L|
k=1 P@k × rel(k)

RL
(2.7)

Taking this into account, the formula used in CANTEMIST to evaluate the MAP measure can be
described as seen in Equation 2.8, with N corresponding to the total number of queries, or in this case,
the total number of documents.

MAP =

∑N
n=1 AveragePrecision(n)

N
(2.8)
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2.6 State-of-the-art Solutions

Most state-of-the-art solutions use deep learning approaches, which have revealed exceptional results in
diverse tasks outside of NLP and from different domains of knowledge, like image and speech recognition
[68, 69], through predicting the effects of splicing on gene expression [70]. The same is true for NLP
tasks, such as NER or even text generation [54], where in recent years there has been a trend to apply
deep learning solutions over traditional machine learning algorithms. In fact, in 2011, Collobert et al. [71]
presented a solution regarding a unified neural network that learnt mostly from vast amounts of unlabeled
data. Their solution outperformed most of the state-of-the-art approaches in that time regarding specific
NLP tasks and domains and was shown to be an efficient and versatile solution.

2.6.1 Named-Entity Recognition

2.6.1.1 Rule-based Approaches

Rule-based approaches rely on manually defined rules to identify domain-specific terms in the text. Usu-
ally, the terms are stored in lexicons or dictionaries which will be accessed by the algorithm when pro-
cessing the text sequences. An example of these systems is MER [18, 19], which presents a minimalistic
and flexible approach to easily identify terms in the text, only requiring the lexicon and the input text.
MER is also capable of entity linking and it can be used with ontology data, thus providing additional
information along with each identified term. The computational performance and the results achieved by
MER surpassed several other systems, including machine learning approaches and the Bioportal annota-
tor system [72], a popular NER and entity linking tool developed for the biomedical domain.

Another NER system, exclusive for the biomedical domain, was developed by Quimbaya et al. [73]
and aimed at improving the identification of terms in electronic health records, which usually present less
rigorous text and less quality when compared with scientific medical text. Their system could identify
terms in the text even if they were misspelled or presented differences when compared with the original
terms from the system’s knowledge base. This characteristic allowed the system to achieve improved
recall scores, but at the cost of a decreasing its precision.

2.6.1.2 Deep Learning Approaches

There has been a trend to use deep learning techniques in NER, especially bidirectional LSTM (long
short-term memory) neural networks, since it allows tokens that are more distant from the target token to
influence the classification of each token [28]. Such an example is the LSTM-CRF [74], a deep learning
NER based on a bidirectional LSTM RNN and conditional random fields (CRF). The system is language
independent and generates word embeddings from the given input text, which are fed into a bidirectional
LSTM neural network. The network then returns a representation of the context that is passed to a CRF
layer which will return the predictions for each word. This system surpassed other NER models on
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two datasets containing independent named entity labels for the English, Spanish, German and Dutch
languages.

Another example is Chemlistem [29], which was developed to identify chemical entities in the text
for the BioCreative V.5 challenge [30]. The authors developed three different systems using a LSTM
neural network: one used a CRF layer, another used character embeddings alongside multiple LSTM
layers, and the last one was an ensemble of the other two. The three models achieved top scores in the
competition, with the ensemble model achieving the highest score of the three.

With the advent of pre-trained language models such as ELMo [53] and BERT [5], the performance
of NER models was improved. An example is Merge and Label [75], which uses a BERT-based model
to merge tokens and/or entities into entities and then labels them independently. The model surpassed
the other systems in the ACE 2005 corpus [76] and obtained high scores in the OntoNotes v5.0 [77],
the largest NER corpus available. Another approach comes from Li et al. [78] which also uses BERT,
but tackles NER as a machine reading comprehension task rather than sequence labeling, in which the
identification of each entity can be treated as the answer to a factual question. Their approach achieved
state-of-the-art results in several benchmark NER datasets in the English language.

2.6.2 Extreme Multi-Label Classification

In the XMLC task, there have been several machine learning solutions developed in the last decade [13].
Among these solutions, one of the most used and competitive algorithm is Parabel [79]. Parabel uses a
tree-based approach combined with a bag-of-words method to organize the labels in a given number of
clusters. The results achieved by Parabel not only surpass other XMLC tree-based algorithms, but also
show considerably faster training and prediction times.

However, only more recently there have been deep learning approaches developed specifically for
XMLC. One of the first attempts was the XML-CNN [80], a convolutional neural network that was
adapted from a state-of-the-art approach to a multi-class classification task [81]. The architecture of the
neural network was adapted with additional layers, one to capture features more precisely from across
different regions of text and another to reduce the model size, increasing performance. The loss function
was also changed to a binary cross-entropy loss function so it could better rank the labels. The XML-
CNN was successful in implementing deep learning to the XMLC task, surpassing most state-of-the-art
methods in several datasets.

Another successful approach was AttentionXML [82], which used a bidirectional LSTM RNN with
a multi-label attention layer to capture the most relevant parts of the text. However, AttentionXML could
not scale well with the largest datasets, so HAXMLNet was created, adding to the same architecture a
hierarchical clustering algorithm to divide the labels into smaller clusters, thus being able to work on
larger datasets effectively where AttentionXML could not [14].

Lastly, one recent approach is X-BERT [17], the first deep learning approach to apply pre-trained
language models, such as BERT, to the XMLC task. X-BERT uses a three-stage framework that firstly,
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semantically indexes all the possible labels in clusters using ELMo [53]. Then, using a deep learning
Transformer model, it indexes each text instance to the most relevant cluster. Finally, a linear ranker is
trained to rank the labels retrieved from the previous cluster indices, modeling the relevance between
each text instance and the retrieved labels, and then calculating the corresponding label scores.

X-BERT surpassed other state-of-the-art XMLC methods in four benchmark datasets. However, a
newer and improved version of X-BERT has been released recently, renamed X-Transformer [15]. X-
Transformer includes additional Transformer models, such as RoBERTa [6] and XLNet [9] and scales
them toXMLC. X-Transformer also improves the ranking phase by combining additional sampling strate-
gies to reduce computational complexity and improve the algorithm performance. The results achieved
byX-Transformer surpassed the previous results of X-BERT and other XMLC algorithms in the same four
benchmark datasets. In addition, the algorithm was also applied to a query recommendation dataset from
Amazon that suggests relevant products to the users according to previously viewed products, product
information and how many times they were viewed by the user. In this dataset, X-Transformer showed
improvements of more than 10% over Parabel [79], one of the most commonly used and competitive
XMLC algorithm.

Although X-BERT and X-Transformer were applied to benchmark datasets, neither of them were
applied to the biomedical panorama nor have been combined with ontologies. Therefore, this thesis
project explores this opportunity to apply a deep learning XMLC algorithm to the biomedical sciences,
aiming at improving the state-of-the-art results.
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Biomedical Text Indexing – BioASQ
Competitions

Document indexing is a crucial step for many NLP tasks, such as multi-label classification or question
answering, since it can improve the performance of the trained models. As a starting point for this project,
I created a text classification deep learning model for biomedical text by adapting the existing XMLC
algorithmX-BERT and later its most recent version, X-Transformer. The effectiveness of this methodwas
first tested in the BioASQ task 8a, which consisted in indexing journal abstracts written in English using
the MeSH terms, and later on the BioASQ MESINESP task, which had similar goals, but the abstracts
were written in Spanish and they were indexed using the DeCS terms. Therefore, this adaptation was also
focused on the multilingual panorama, so that the project could contribute to a possible improvement on
biomedical multilingual text classification. For both tasks, a pipeline of scripts was developed to process
the data given in each task and making it readable for the XMLC algorithm.

In this chapter, I will start by stating the modifications made to the XMLC algorithms so that they
could be applied to both competitions. Then, in Section 3.2 I will explain in detail the developed pipeline
used in the competitions as well as the developed models in Section 3.5. The model evaluation and
the results achieved in the two competitions are present in Sections 3.6 and 3.7. Finally, the results are
discussed in Section 3.8, along with some post-competition experiments in Section 3.9.

3.1 X-BERT and X-Transformer modifications

For both tasks, some modifications in the algorithm code were required. The first one was made in the
vectorization of the labels of the training, test and validation sets. I have chosen to use all possible labels,
including the labels that were not present in neither train, test nor validation sets. Otherwise the algorithm
would fail to work correctly if the number of labels between sets did not match.

Another modification was the inclusion of SciBERT [8] in the choices of models to train X-BERT, so
that I could use this model in task 8a. This inclusion was not made in X-Transformer, since it was only
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used for theMESINESP task which was focused on the Spanish language and SciBERTwas exclusive for
the English language. X-Transformer required additional changes since, at the time of the MESINESP
competition, the algorithm was still being developed by the X-BERT team and it could only process
the four datasets in which X-BERT was tested [17]. To surpass this limitation, I have modified some
preprocessing scripts from the original X-BERT code and implemented them in X-Transformer, so it
could process custom datasets.

Finally, in addition to these modifications, I changed the file encodings in both X-BERT and X-
Transformer to utf-8, so that the algorithms could process input data containing diacritical marks, such
as accents, that are common in the Spanish language.

3.2 Developed Pipeline

I developed a common pipeline for both competitions, with some changes according to the algorithm used
or with the competition, as it can be seen in Figures 3.1 and 3.2. The first step, was to retrieve the data
given by the competition organizers. The articles were split into training, test and validation sets using
a 60%-20%-20% proportion to be used by X-BERT. The validation set was be used for hyperparameter
tuning such as the number of training epochs, since X-BERT performs an evaluation during training
and then saves the hyperparameters in a checkpoint if the evaluation results surpassed the results of the
previous checkpoint. The values differ when using X-Transformer, because it only requires training and
test sets. The test set will also be used by X-Transformer to save the model checkpoints during training
evaluation. Therefore, I have decided to use a proportion of 70%-30% for X-Transformer.

The next step was the creation of a vocabulary file, which is required by both X-BERT and X-
Transformer and that contains the labels used to classify the data and a corresponding numerical identifier.
For that, each line of the vocabulary file has a DeCS or MeSH code, according to the competition, and
its corresponding internal identifier, which corresponds to a number from 0 to N, where N is the total
number of DeCS or MeSH Terms minus 1, since it starts in 0. This internal numerical identifier is the
characteristic that allows X-BERT and X-Transformer to work with any type of label and with any kind
of language, since the algorithms will use these numeric identifiers to classify the text. In addition, a label
mapping file was created for each competition. For task MESINESP, each line of the label mapping file
contains the correspondence between the DeCS term, its code and its numeric identifier in the vocabulary
file, while for task 8a, the file has the same structure but using the MeSH terms instead. For example, the
term ‘Temefós’, which has the corresponding DeCS code ‘2’, is the first element in the vocabulary file,
thus its numeric identifier will be ‘0’. This label mapping file will later be used to map the predictions
from their numeric identifiers to the corresponding DeCS or MeSH codes required for the competitions.

After converting the codes to their corresponding numeric identifiers, MER [18, 19] was executed
on each article’s abstracts to identify biomedical terms listed in lexicons created by me. For task 8a,
the lexicon I created was composed by the MeSH terms and their synonyms. As for task MESINESP,
the lexicon created contained the DeCS terms and their synonyms, but I also decided to include their
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Figure 3.1: Developed pipeline to process the articles before running them through X-BERT and finally converting
the resulting predictions into the required format for the competition. This pipeline was used for both BioASQ task
8a and task MESINESP. In MESINESP, instead of using the MeSH terms, the DeCS terms were used.

corresponding direct ancestors as an improvement over the one used for task 8a. This way, additional
terms could be recognized and possibly improve the predictions of the algorithm. The terms identified in
each abstract were added to the end of the corresponding article title or abstract, depending on the model
that was being trained. Repeated terms were removed, and the resulting string was then stemmed using a
snowball stemmer from the PythonNLTK package1. The files were thenwritten, with each line composed
by a list of internal numeric identifiers corresponding to the indexed labels, a tab character (‘\t’) and the
stemmed text. This tab character allows X-BERT and X-Transformer to distinguish between labels and
text.

After all the files required to run X-BERT or X-Transformer were created, I modified the shell script
used to execute the necessary commands to run the different phases of the algorithm, from preprocessing
the files, through training the deep learning model and predicting the labels. The modifications made
consisted in changing the files used as input for the algorithm, so that it used the previously created files
instead of the default files given in the script. Another modification consisted in the usage of CPUs and
GPUs and in some parameters that were used during the train of the deep learning model, which will be

1https://www.nltk.org/_modules/nltk/stem/snowball.html
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referred in detail in further sections of this chapter.

Figure 3.2: Pipeline used in theMESINESP task to process the articles before running them through X-Transformer
and finally converting the resulting predictions into the required format for the competition.

The results of the X-BERT and X-Transformer are given in the form of sparse matrices, with a num-
ber of rows equal to the number of articles that compose the test set, and the columns corresponding to
the possible labels, i.e. the number of MeSH or DeCS terms, depending on the competition. The pre-
diction for each article is retrieved, comprising a top K of most relevant labels and their corresponding
confidence values. I used K=20 labels per article for both X-BERT and X-Transformer since, according
to the competition organizers, the average number of MeSH/DeCS terms per article in the given datasets
was 12.68 for task 8a and 8.12 for task MESINESP. However, for a prediction to be chosen as correct,
I discarded every label with a confidence value under a threshold, which will be more detailed in Sec-
tion 3.4. Each label is then converted to the corresponding DeCS or MeSH term by using the previously
created label mapping file, so that in the end, a JSON file is created containing the predicted MeSH or
DeCS codes for each article id.
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3.3 Data

3.3.1 Training Data

A total of 318,658 abstracts and titles were used as training data in both task 8a and MESINESP. For task
8a, these articles came from a larger dataset with more than 14 million indexed English articles retrieved
from PubMed, while for MESINESP, the articles came from a set of 318,658 indexed Spanish written
articles retrieved from the IBECS[57] and LILACS2 databases. The choice of using the same number
of articles in both competitions was made so that I could compare the performance between the models
developed for English and Spanish.

As was said in the previous section, the articles were split into training, test and validation sets follow-
ing a 60%-20%-20% proportion to be used by X-BERT, and 70%-30% for X-Transformer. The number
of articles used in each set for each model can be seen in Table 3.1.

Table 3.1: Total number of unique DeCS and MeSH term codes and the total number of articles used in the models
along with the corresponding proportion used for the train, test and validation sets. In X-BERT, it was 60%-20%-
20%. In X-Transformer it was 70%-30%, since there is no validation set.

System Total Articles Train Set Test Set Validation Set #MeSH Terms #DeCS Terms

X-BERT 191,195 63,732 63,731

X-Transformer
318,658

223,060 95,598 -
29,640 33,702

3.3.2 Competition Test Sets

In the test sets given by competition organizers, there were noMeSH or DeCS terms indexing the articles,
so I had to put a placeholder label on each article, because the code of X-BERT and X-Transformer was
not prepared to run on unlabeled data. I also had to artificially adapt the size of the given test sets by
adding extra articles to them, so that they could have the same size as the test sets used on the previously
trained X-BERT or X-Transformer models, as shown previously in Table 3.1. In this case, the set needed
to have a total of 63,732 articles for X-BERT models, and 95,598 articles for X-Transformer models.

Since for both competitions the number of articles given to classify was under that value, I have
padded the test set with additional articles equal to the difference. For task 8a, I included indexed PubMed
articles from the 14 million articles given by the competition as training data. For MESINESP, I included
translated and indexed PubMed articles that came from a dataset given as additional material by the task
organizers to the participants. The padded articles were used as an additional validation set to define the
confidence threshold values of my submissions for both competitions and were not used in neither set to
train nor evaluate the models, so that the results would not come biased.

2https://lilacs.bvsalud.org/
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3.4 Evaluation Script

To evaluate the results achieved by the models developed for the competitions, a Python script was de-
veloped by me to measure the Macro and Micro Precision, Recall and F1 scores, which were some of the
measures used in both BioASQ competitions. For each model, two evaluations were made: one using the
models test set, and another using the additional validation set composed by the articles that were padded
to the test sets given by the competition organizers, and which acted as a preliminary evaluation for the
competition.

The evaluation script was focused on choosing the confidence score threshold that achieved the high-
estMicro F1 (MiF) score and the highestMicro Precision (MiP). The focus onMiFwas chosen, sinceMiF
was defined by the organization as the most important measure to both competitions. The focus on MiP
was motivated by the improved precision of X-BERT and X-Transformer over other XMLC algorithms
[17, 15], thus I wanted to see how high it could reach with this type of data.

The confidence score interval given by X-BERT to its predicted labels ranged from 0 to 1. However,
in X-Transformer, I noticed that this interval was changed from 0 to 1 to -0.99 to 1, thus encompass-
ing negative confidence values. To facilitate the comparisons between X-Transformer and X-BERT, I
normalized this scale to fit the interval from 0 to 1. Then, to determine the best threshold for the confi-
dence score that achieved the highest MiF or MiP values, I tested the values between 0.01 and 1, using
increments of 0.01.

3.5 Developed Models

3.5.1 Pre-Competition

3.5.1.1 MER vs No-MER

The first two models trained were used to check if the usage of MER would improve the results of the
XMLC algorithm. To test this, one model was trained using MER and the other model was trained
without using it. Both models were trained with X-BERT using BERT Base Multilingual Cased and
finetuned using the MESINESP abstracts, since the MESINESP dataset was made available earlier. For
both models, the parameters given as default by X-BERT to train and evaluate were kept, except for the
eval and train batch sizes which were changed from their corresponding default values of 64 and 32 to 3
due to hardware limitations. The number of train epochs was also changed to 7, since the best checkpoint
would usually be saved at the end of epoch 6. The models were trained on a single NVIDIA Tesla P4
GPU.

From evaluating the models using the corresponding test set, it is possible to observe in Table 3.2
that the model trained with MER achieved slightly better results than the model that did not use MER,
which was expected, since a list of key words related to the article’s topics was present, thus improving
the algorithm predictions.
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Table 3.2: Comparison between the results of two X-BERT models trained with the same datasets and parameters,
but one used MER to find DeCS terms, their synonyms and ancestors, and then add them to the end of the corre-
sponding article, while the other did not.
The threshold corresponds to the minimum confidence score used to obtain the highest MiF score.
Bold values correspond to the measures where the usage of MER had increased the results.

Micro Macro
Model

Precision Recall F1 Precision Recall F1
Threshold

Abstracts 0.4704 0.4101 0.4382 0.4663 0.4022 0.3936 0.08

Abstracts + MER 0.4780 0.4123 0.4427 0.4766 0.4094 0.4028 0.10

3.5.1.2 Titles vs Abstracts

After confirming that the usage of MER improves the results of X-BERT, the next step was to check if a
model trained using the titles together with the entities recognized byMER in the corresponding abstracts
could achieve better results than a model trained using the abstracts and the entities recognized by MER.
The hypothesis was that, due to the increased objectiveness of the titles in the core topics of the article in
a less amount of words than the abstract, along with a list of key terms and synonyms given by MER, the
model would be able to achieve better results since it had a continuous string of words that were more
related to the topics of the article than a larger amount of words with the key topics more diluted. To
test the hypothesis, I used X-BERT using the BERT Base Multilingual Cased model and the MESINESP
dataset. The parameters used to train the models were the same as the ones described in Section 3.5.1.1.

Table 3.3: Comparison between the results of two X-BERT models, one trained using the abstracts and the other
using the titles. Both models were evaluated with a focus on MiF and MiP.
The threshold corresponds to the minimum confidence score used to obtain the highest MiF or MiP score.
Bold values correspond to the measures where the model trained using the titles had achieved better results than its
abstract counterpart

Micro Macro
Model Focus

Precision Recall F1 Precision Recall F1
Threshold

MiF 0.4780 0.4123 0.4427 0.4766 0.4094 0.4028 0.10
Abstracts + MER

MiP 0.7117 0.1574 0.2578 0.6812 0.1642 0.2480 0.93

MiF 0.4685 0.4142 0.4397 0.4704 0.4229 0.4072 0.11
Titles + MER

MiP 0.7154 0.1636 0.2663 0.6901 0.1769 0.2617 0.92

Analyzing the evaluation results in Table 3.3, the difference between using the titles and the abstracts
is minimal. If evaluation is focused in achieving the highest MiF value, the model that used the abstracts
achieved slightly higher MiP and MiF values. However, if the evaluation was focused on attaining the
highest MiP value, the model using the titles achieved better scores in all measures in contrast with its
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abstract counterpart, which confirms the hypothesis.

3.5.2 Competition Models

3.5.2.1 Task 8a Models

Only two models were trained for the BioASQ task 8a, with the following characteristics:

• Model 1 – MER in conjunction with X-BERT, using BERT Base Uncased and finetuned using the
article’s titles.

• Model 2 – MER in conjunction with X-BERT, using SciBERT and finetuned using the article’s
titles.

Both models used the article’s titles due to results shown in Section 3.5.1.2. and also due to time
restrictions, since the competition had already begun when I started training the models. Therefore,
Model 1 was trained for Batch 2 of the competition, while Model 2 was trained for Batch 3. Both models
were trained using the same parameters described in Section 3.5.1.1.

3.5.2.2 MESINESP Models

A total of four models were trained for the BioASQ MESINESP task with the following characteristics:

• Model 1 –MER in conjunction with X-BERT, using BERTMultilingual Base Cased and finetuned
using the article’s abstracts.

• Model 2 –MER in conjunction with X-BERT, using BERTMultilingual Base Cased and finetuned
using the article’s titles.

• Model 3 – X-Transformer using BERT Multilingual Base Cased and finetuned using the article’s
abstracts.

• Model 4 – X-Transformer using BERT Multilingual Base Cased and finetuned using the article’s
titles.

For this task, I could train four models, since I had more time to submit the results and due to an
upgrade in the hardware available. I decided to train two models using X-BERT and the other two using
X-Transformer, since it was made available during the time of this competition. The X-Transformer
models were supposed to use MER, but due to an error in the scripts, the files did not include the results
fromMER before being run through X-Transformer. Unfortunately, I could not train new models in time
for the competition that included X-Transformer and MER, however, this was done post-competition.
I have also decided to train two models using the abstracts and the other two using the titles, so that I
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could, not only compare the differences between the two versions of the algorithm, but also check if the
hypothesis from Section 3.5.1.2. would also be confirmed in the results achieved in the competition.

The two X-BERT models were trained using the parameters previously described in Section 3.5.1.1.
As to the X-Transformer models, the parameters given as default were kept except for the train and eval
batch sizes which were both changed from their corresponding values of 64 and 32 to 4. To compensate
for the small batch size, the number of gradient accumulation steps was set to 2. The models were trained
for 3 epochs, the default value, in a set of 4 GPUs composed by 1 NVIDIA Tesla P4 GPU and 3 NVIDIA
Tesla M10 GPUs.

3.6 BioASQ Task 8a Results

3.6.1 Preliminary Evaluation

The results of a preliminary evaluation using the models test set can be seen in Table 3.4. When focused
on MiF, both Model 1 and Model 2 achieved similar results for their best scoring threshold values, which
was the same. However, Model 2, the one trained using SciBERT, achieved slightly higher values, which
was expected since SciBERT was especially created to be used with scientific text. MiP and Macro
Precision (MaP) have the highest values, and both Recall and F1 scores have a relatively similar score
and are both higher than 0.50 in case of Model 2.

When focused on MiP, the threshold values differ, but the results of both models were again similar,
with Model 2 achieving slightly higher values in all measures, except for the Macro and Micro Recall.
Both MaP and MiP have increased significantly to values over 0.88. However, this gain in precision
comes with the cost of the recall and F1 values dropping between 0.17 and 0.27, approximately.

Table 3.4: Results achieved by the models in the different measures using their corresponding test sets. The values
of each measure correspond to the values achieved by the model using the value present in the Threshold column.
Bold values correspond to the highest achieved scores in each measure.

Measures
Micro MacroModel Focus

Precision Recall F1 Precision Recall F1

Threshold

MiF 0.6179 0.4911 0.5472 0.6168 0.4972 0.5293 0.18
Model 1

MiP 0.8722 0.2467 0.3846 0.8650 0.2526 0.3695 0.86

MiF 0.6270 0.5095 0.5622 0.6265 0.5175 0.5460 0.18
Model 2

MiP 0.8894 0.2408 0.3790 0.8832 0.2480 0.3664 0.89
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3.6.2 Competition Results

I have competed in batch 2 and 3 of BioASQ task 8a and themodels were evaluated in flat and hierarchical
measures, as was explained in Section 2.5.2. The achieved results for each measure can be seen in Tables
3.5 and 3.6, where the scores achieved by the X-BERTmodels are comparedwith the system that achieved
the highest MiF score on the same week.

Table 3.5: Results achieved by the submitted X-BERT models (green lines) compared to the best scoring model in
the Micro F-measure (MiF) in the same week. Only the flat measures are presented.
The bold values correspond to values where the model surpassed the best scoring models and reached the 1st place
in the corresponding measure.
Measures: MiF – Micro F-measure. MiP – Micro Precision. MiR – Micro Recall. MaF – Macro F-measure. MaP
– Macro Precision. MaR – Macro Recall. Acc. – Accuracy. EBP – Example Based Precision. EBR – Example
Based Recall. EBF – Example Based F-measure.

Flat Measures
Batch Week System

MiF MiP MiR MaF MaP MaR Acc. EBP EBR EBF

deepmesh_dmiip_fdu 0.708 0.758 0.664 0.592 0.721 0.590 0.558 0.755 0.684 0.701
3 X-BERT BioASQ

(BERT - MiF)
0.316 0.465 0.239 0.066 0.350 0.054 0.184 0.462 0.238 0.294

deepmesh_dmiip_fdu 0.707 0.768 0.655 0.588 0.732 0.584 0.558 0.768 0.673 0.703
4 X-BERT BioASQ

(BERT - MiF)
0.328 0.496 0.245 0.067 0.352 0.054 0.195 0.498 0.247 0.310

deepmesh_dmiip_fdu_ 0.709 0.760 0.663 0.591 0.725 0.591 0.557 0.757 0.678 0.701

2

5 X-BERT BioASQ

(BERT - MiF)
0.320 0.477 0.240 0.066 0.343 0.054 0.187 0.480 0.239 0.399

dmiip_fdu 0.769 0.814 0.730 0.678 0.789 0.674 0.647 0.809 0.744 0.762
2 X-BERT BioASQ

(SciBERT - MiF)
0.330 0.494 0.248 0.067 0.345 0.055 0.195 0.495 0.247 0.309

dmiip_fdu 0.779 0.830 0.735 0.677 0.810 0.669 0.664 0.825 0.751 0.774
3 X-BERT BioASQ

(SciBERT - MiP)
0.265 0.803 0.159 0.022 0.640 0.015 0.156 0.796 0.162 0.255

deepmesh_dmiip_fdu 0.710 0.771 0.659 0.594 0.729 0.595 0.563 0.769 0.680 0.706
4 X-BERT BioASQ

(SciBERT - MiP)
0.245 0.781 0.145 0.024 0.639 0.017 0.140 0.750 0.145 0.232

deepmesh_dmiip_fdu 0.706 0.758 0.661 0.589 0.714 0.591 0.556 0.756 0.677 0.700

3

5 X-BERT BioASQ

(SciBERT - MiP)
0.260 0.792 0.155 0.023 0.618 0.016 0.151 0.772 0.157 0.248

In batch 2, the results were submitted for weeks 3, 4 and 5. The submitted solutions were given
by Model 1, the model trained using BERT Base uncased, and with the confidence score threshold that
achieved the highest MiF score. The results in those weeks were suboptimal, with the model staying in
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the last position every week and in all evaluation measures. The values of the Recall measures were the
lowest when compared with all other measures, especially Macro Recall (MaR). However, the values in
the precision measures were slightly higher than the ones achieved in other measures.

Table 3.6: Results achieved by the submitted X-BERT models (green lines) compared to the best scoring model in
the Micro F-measure (MiF) in the same week. Only the hierarchical measures are presented.
Measures: LCA-F – Lowest CommonAncestor F-measure. LCA-P – Lowest CommonAncestor Precision. LCA-R
– Lowest Common Ancestor Recall. HiF – Hierarchical F-measure. HiP – Hierarchical Precision. HiR – Hierar-
chical Recall.

Hierarchical Measures
Batch Week System

LCA-F LCA-P LCA-R HiF HiP HiR

deepmesh_dmiip_fdu 0.565 0.608 0.550 0.782 0.839 0.762
3 X-BERT BioASQ

(BERT - MiF)
0.271 0.422 0.218 0.389 0.619 0.316

deepmesh_dmiip_fdu 0.570 0.624 0.546 0.786 0.855 0.752
4 X-BERT BioASQ

(BERT - MiF)
0.281 0.448 0.221 0.400 0.652 0.319

deepmesh_dmiip_fdu_ 0.567 0.615 0.547 0.785 0.844 0.759

2

5 X-BERT BioASQ

(BERT - MiF)
0.273 0.434 0.217 0.394 0.641 0.316

dmiip_fdu 0.657 0.696 0.641 0.829 0.877 0.809
2 X-BERT BioASQ

(SciBERT - MiF)
0.280 0.445 0.221 0.400 0.651 0.321

dmiip_fdu 0.676 0.715 0.658 0.839 0.889 0.815
3 X-BERT BioASQ

(SciBERT - MiP)
0.194 0.526 0.125 0.275 0.867 0.175

deepmesh_dmiip_fdu 0.576 0.627 0.555 0.789 0.852 0.760
4 X-BERT BioASQ

(SciBERT - MiP)
0.182 0.509 0.115 0.251 0.826 0.157

deepmesh_dmiip_fdu 0.568 0.613 0.550 0.784 0.845 0.758

3

5 X-BERT BioASQ

(SciBERT - MiP)
0.189 0.510 0.121 0.262 0.840 0.165

In batch 3, Model 2 was used. However, due to hardware constraints, the model was not ready to
compete in the first week of this batch. In week 2, Model 2 was submitted following the same strategy
used in the previous batch, with the resulting predictions aiming for the highest MiF score. Although, the
results achieved by Model 2 were slightly higher than the ones achieved by Model 1, they were still low
when compared with the other participants.

In the following weeks, I changed the evaluation focus fromMiF to MiP, since it was the best scoring
measure in the previous submissions as well as the best scoring measure in the preliminary evaluation. As
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a result, the model achieved lower results in theMiF measure as expected, although this loss was less than
0.1. The Recall measures also suffered losses, especially MaR which was the worst measure, dropping
to values under 0.02. However, all precision measures increased significantly, making the model reach
the top positions in most precision measures. In the MiP measure, Model 2 reached a 3rd, 1st and again
1st place on weeks 3, 4 and 5, respectively. In Example Based Precision (EBP), Model 2 reached the 3rd
place in week 4 and the 1st place in week 5. The improvements were also noticed in the Hierarchical
Measures, namely in Hierarchical Precision (HiP), in which the model achieved a 3rd place in week 3,
and 5th place in weeks 4 and 5. The only precision measures where Model 2 did not have a significant
increase were the MaP measure, where the model achieved a 6th place in the last three weeks, and the
LCA-P measure, where the model could not surpass more than 3 other competing systems. In the end,
the accuracy also dropped by at least 0.04 when compared with the results focused on MiF.

3.7 BioASQ Task MESINESP Results

3.7.1 Preliminary Evaluation

Contrarily to the task 8a preliminary evaluation, for task MESINESP I added a new evaluation parameter,
which was the confidence score threshold of 0.50. I decided to add this value since it was the middle of
the confidence interval scale and it should provide a baseline performance for the models.

Table 3.7: Results achieved by the models in the different measures using their corresponding test sets. The values
of each measure correspond to the values achieved by the model using the value present in the Threshold Value
column.
Bold values correspond to the highest achieved scores in each measure.

Measures
Micro MacroModel Focus

Precision Recall F1 Precision Recall F1

Threshold

Base 0.6570 0.2622 0.3748 0.6295 0.2620 0.3386 0.50

MiF 0.4780 0.4123 0.4427 0.4766 0.4094 0.4028 0.10Model 1

MiP 0.7117 0.1574 0.2578 0.6812 0.1642 0.2480 0.93

Base 0.6492 0.2663 0.3777 0.6307 0.2771 0.3512 0.50

MiF 0.4685 0.4142 0.4397 0.4704 0.4229 0.4072 0.11Model 2

MiP 0.7154 0.1636 0.2663 0.6901 0.1769 0.2617 0.92

Base 0.7026 0.2819 0.4024 0.6890 0.2922 0.3773 0.50

MiF 0.4826 0.4971 0.4898 0.4830 0.5046 0.4587 0.24Model 3

MiP 0.7249 0.2539 0.3761 0.7081 0.2652 0.3555 0.55

Base 0.6928 0.2785 0.3974 0.6836 0.2984 0.3798 0.50

MiF 0.5137 0.4318 0.4693 0.5140 0.4513 0.4437 0.28Model 4

MiP 0.7765 0.1465 0.2465 0.7595 0.1674 0.2567 0.79
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The results achieved in the first evaluation using the models test set can be seen in Table 3.7. For both
Model 1 and Model 2, the scores achieved by each model were very similar, with slightly higher scores
achieved by Model 2. As for Models 3 and 4, which used X-Transformer, there is a clear improvement in
the results when compared with the models that used X-BERT, even without the usage of MER. Also, and
contrarily to Models 1 and 2, Model 3, which used the abstracts, achieved higher values in all measures
when compared with Model 4, except when focused on MiP where Model 4 surpassed it.

In the second evaluation, which used the additional validation set, the results achieved were different
as can be seen in Table 3.8. First, there was a drop in the scores, especially in the recall measures thus
dropping the F1-score. Precision also dropped, but not as much as the other measures. When focusing on
MiP, the best performing model was Model 2, which achieved higher scores when compared with Model
4. This small difference might be due to the usage of MER in Model 2, while Model 4 did not. As to the
focus on MiF, the best scoring model was Model 4 which achieved superior recall and F1-score values
when compared with the other models.

Table 3.8: Results achieved by the models when using the test set composed by additional indexed articles from
PubMed translated to Spanish.
Bold values correspond to the highest achieved values in the corresponding measures.
Green lines correspond to the models which predictions were submitted to the MESINESP challenge.

Measures
Micro MacroModel Focus

Precision Recall F1 Precision Recall F1

Threshold

Base 0.6132 0.0787 0.1395 0.6117 0.0838 0.1400 0.50

MiF 0.2937 0.1506 0.1991 0.3163 0.1545 0.1898 0.05Model 1

MiP 0.6737 0.0550 0.1018 0.6627 0.0603 0.1082 0.97

Base 0.6290 0.0759 0.1355 0.6323 0.0814 0.1377 0.50

MiF 0.3029 0.1572 0.2070 0.3204 0.1608 0.1975 0.05Model 2

MiP 0.6903 0.0556 0.1028 0.6823 0.0613 0.1103 0.95

Base 0.5610 0.0824 0.1437 0.5848 0.0886 0.1437 0.50

MiF 0.3198 0.1730 0.2245 0.3314 0.1797 0.2143 0.15Model 3

MiP 0.6468 0.0489 0.0910 0.6471 0.0550 0.0998 0.99

Base 0.6448 0.0832 0.1473 0.6374 0.0896 0.1499 0.50

MiF 0.3786 0.2041 0.2652 0.3761 0.2107 0.2506 0.14Model 4

MiP 0.6823 0.0549 0.1017 0.6752 0.0613 0.1103 0.77

After this second evaluation, it was necessary to choose which models should have their predictions
submitted for the MESINESP task, for which I could submit up to four models. Considering the results of
the second evaluation, I chose to submit the results from amodel that used X-BERT and from amodel that
used X-Transformer, so that the performance of both could be compared in the competition, therefore,
Model 2 and Model 4 were chosen. From Model 2, the results from the focus on MiF and MiP were
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submitted, since it had the highest achieved MiF score in the models that used X-BERT, and since the
focus on MiP had achieved the highest precision scores in the evaluation. FromModel 4, the results from
the baseline and the focus on MiF were chosen, since the focus on MiF achieved the highest MiF and
recall values from the evaluation, and the baseline because the precision gains of the MiP focus were not
so significant and had heavier losses in the other measures when compared with the predictions using the
baseline.

3.7.2 Competition Results

Like in BioASQ task 8a, the results in the MiF measure were not optimal, with the four submissions
staying in bottom positions in the classification. However, in the precision measures, the scores achieved
by two of my submissions were higher than most systems, even surpassing the winning system.

Table 3.9: Results achieved by the models submitted for the MESINESP task (green lines) compared to the best
scoring model in the Micro F-measure (MiF) and the BioASQ Baseline.
Bold values correspond to themeasureswheremy submissions surpassed both the BioASQbaseline and thewinning
system.
Measures: MiF – Micro F-measure. MiP – Micro Precision. MiR – Micro Recall. MaF – Macro F-measure. MaP
– Macro Precision. MaR – Macro Recall. Acc. – Accuracy. EBP – Example Based Precision. EBR – Example
Based Recall. EBF – Example Based F-measure.

Flat Measures
System

MiF MiP MiR MaF MaP MaR Acc. EBP EBR EBF

Winning System 0.4254 0.4374 0.4140 0.3194 0.3989 0.3380 0.2786 0.4382 0.4343 0.4240

BioASQ Baseline 0.2695 0.2337 0.3182 0.2816 0.3733 0.3220 0.1659 0.2681 0.3239 0.2754

X-BERT BioASQ F1

(Model 2 focus MiF)
0.1430 0.4577 0.0847 0.0220 0.3095 0.0186 0.0787 0.5057 0.0867 0.1397

X-BERT BioASQ

(Model 2 focus MiP)
0.0909 0.5449 0.0496 0.0045 0.3422 0.0036 0.0503 0.5415 0.0508 0.0916

LasigeBioTM TXMC F1

(Model 4 focus MiF)
0.2507 0.3559 0.1936 0.0858 0.3646 0.0799 0.1440 0.3641 0.1986 0.2380

LasigeBioTM TXMC P

(Model 4 focus baseline)
0.1271 0.6864 0.0701 0.0104 0.6989 0.0081 0.0708 0.6609 0.0716 0.1261

The predictions of Model 4 focused on the baseline achieved the 2nd place in the MiP, MaP and EBP
measures and also the highest accuracy from my submissions, while the predictions of Model 2 focused
on MiP achieved the 3rd place in MiP as well as a 5th place in EBP. As to the models focused of MiF,
they achieved balanced scores between all measures, but they were not enough to surpass the competition
baseline. It is also noticeable that the submissions focused on MiF achieved higher accuracy scores. The
results achieved by the four submissions, the BioASQ baseline and the winning system are presented in
Table 3.9.
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3.8 Discussion

3.8.1 Achieved Results

The results achieved in both these competitions show that the usage of deep learning XMLC solutions in
the biomedical and multilingual panorama can achieve promising results, especially with the high MiP
values achieved in MESINESP and in the last three weeks of task 8a. However, there is also a great room
for improvement. For example, in both task 8a and task MESINESP, the models struggled in all recall
measures, with scores lower than most of the competing systems. In contrast, the models achieve higher
scores in the precision measures, especially when the submitted results were focused on MiP. However,
the focus onMiP came with significant losses on recall, thus leading to lower F-measure scores and lower
accuracy. These low recall values can possibly be explained by several factors.

The amount of data used to train the models could have impacted the results. I have chosen to use
the same number of articles in both competitions, which was the number of available articles in the pre-
processed train set from MESINESP, so that I could compare the performance of a biomedical XMLC
based model across multiple languages. There was much more data available for both task 8a and task
MESINESP that I could have used to train larger models. However, this was not possible to do in time
due to the hardware limitations.

Another limitation, namely in task 8a and in the X-Transformer models, was the fact that I did not
use more complex lexicons in MER to identify entities in the text. The lexicon used in task 8a was rather
simple, only comprising the MeSH terms and their synonyms. I could have used more complex lexicons
such as one with the term’s ancestors or with ontology information, which could possibly increase the
final scores. In task MESINESP, the fact that I did not use MER in the X-Transformer models could have
negatively influenced results.

Finally, another reason for the low recall values achieved could be caused by the fact that XMLC
algorithms tend to achieve higher precision values due to an increased focus on precision measures,
namely in Precision at top K (P@K). P@K is widely used in the evaluation and comparison between
XMLC algorithms [13, 17, 15, 80, 81, 82, 14, 79], as it considers the number of most relevant labels
retrieved by the algorithm among the top K documents. The choice of using this measure to evaluate the
performance of these algorithms makes sense when dealing with datasets with thousands of documents,
from which the objective is to retrieve the most relevant labels from a set of labels that can reach millions.
However, this increased focus in precision can affect negatively the evaluation of the systems in other
measures, such as the F-score and recall, which were evaluated in these two competitions.

3.8.2 English vs Multilingual

One of my objectives with the participation in these two competitions was to compare the performance of
an English XMLC model versus its multilingual counterpart in a biomedical domain. When comparing
the results achieved by my submissions in both competitions, it is possible to notice that there is a great
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difference between the performances of the English models and the multilingual models.

In task 8a, Models 1 and 2 shared the same characteristics as Model 2 that was submitted for task
MESINESP. The three of them were X-BERT models trained with the same number of articles, all used
the article’s titles and were combined with MER to find key terms in the article’s abstracts. The major
difference between them was the pre-trained language models used. In task 8a, the models used BERT
Base Uncased and SciBERT, while in task MESINESP the model used BERT Base Multilingual Cased.

Analyzing the scores achieved by these three models, it is possible to notice a significant difference
in the scores achieved in my evaluations and in the competition evaluations. The clearest example is
in BioASQ task 8a evaluation, where the worst score achieved by my submissions in the competition
surpasses my best scored submission in task MESINESP in the non-precision measures, as well as the
enormous difference in the scores between the first classified systems in task 8a and the MESINESP
winner. One reason for this difference can be caused by the number of documents to classify in each task,
which in MESINESP was more than 24,000 articles, whereas in task 8a was about 5,000 to 7,000 articles
in each week.

Table 3.10: Results of the different versions of the common Model (Article’s titles + terms identified by MER)
used in the BioASQ competitions, when evaluated using the corresponding test set.
Bold values correspond to the highest values achieved in the corresponding measures.

Measures
Micro MacroModel Focus

Precision Recall F1 Precision Recall F1

Threshold

MiF 0.6179 0.4911 0.5472 0.6168 0.4973 0.5293 0.18
BERT Base Uncased

MiP. 0.8722 0.2467 0.3846 0.8650 0.2526 0.3695 0.86

MiF 0.6270 0.5095 0.5622 0.6265 0.5175 0.5460 0.18
SciBERT

MiP. 0.8894 0.2408 0.3790 0.8832 0.2480 0.3665 0.89

MiF 0.4685 0.4142 0.4397 0.4704 0.4229 0.4072 0.11BERT Multilingual Base Cased
(MESINESP) MiP 0.7154 0.1636 0.2663 0.6901 0.1769 0.2617 0.92

However, in the preliminary evaluations that used the model’s test sets, the difference is also evident
and show that the English-based models achieve better results in all measures, as it can be seen in Table
3.10. The reason for this difference in the results can be caused by the amount of data used to train
the pre-trained language models. The BERT models were trained using mostly text data retrieved from
Wikipedia. However, the amount of Wikipedia text varies between different languages. For example,
in terms of words, the BERT base model was trained with more than 3,000 million words, with about
2,500 million coming from the EnglishWikipedia [5]. In comparison, the number of words in the Spanish
Wikipedia, as of June 2020, was less than 900 million words. This enormous gap between the number of
words is very significant and consequently reflects on the results achieved by the non-English models.
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3.9 Post-Competition

3.9.1 X-Transformer and MER

Due to a small error in the script, the entities identified byMERwere not included in the text before being
given as input to X-Transformer. After correcting the error, I executed the procedure described earlier in
Section 3.2. using the article’s titles and parameters used for the MESINESP competition, along with the
lexicon composed by the DeCS terms, their synonyms and direct ancestors.

The results achieved using the model’s test set can be seen in Table 3.11 and confirm what was
expected and that has been previously seen with X-BERT in Section 3.5.1.1. The model that used MER
achieved slightly higher results in all measures and in all evaluation focuses. The only exceptions occur
in the evaluation focused on MiF, where the MiP score achieved by the model that used MER is slightly
lower, and when the evaluation uses the baseline threshold, whereMaR has a minimal difference of 0.001.
The greatest improvements in the evaluation measures are achieved when the evaluation is focused on
MiF, where MiR, MiF, MaR and MaF all present values with an improvement greater than 0.01.

Table 3.11: Comparison between two X-Transformer models (Article’s titles) using the corresponding test sets,
but one model used MER to identify DeCS terms, their synonyms and ancestors in the article’s abstract before
executing X-Transformer.
Bold values correspond to the highest values achieved in the corresponding measures.

Measures
Micro MacroModel Focus

Precision Recall F1 Precision Recall F1

Threshold

Base 0.6928 0.2785 0.3973 0.6836 0.2984 0.3798 0

MiF 0.5137 0.4319 0.4693 0.5140 0.4513 0.4437 0.28
X-Transformer

Titles
MiP 0.7766 0.1465 0.2465 0.7595 0.1674 0.2567 0.79

Base 0.6994 0.2792 0.3991 0.6903 0.2973 0.3814 0

MiF 0.5087 0.4623 0.4844 0.5116 0.4776 0.4569 0.27
X-Transformer
Titles + MER

MiP 0.7810 0.1496 0.2512 0.7638 0.1701 0.2610 0.78

3.9.2 Different Amounts of Data

The low recall and F1-score values achieved in both BioASQ task 8a and MESINESP could be related
with the amount of data used to create the models. In both competitions, I could have used more data to
train and evaluate the models but instead, I opted to use the same number of articles for both competitions
so that I could compare the performance between the English and Spanish XMLC models. Then, due to
time and hardware constrains, I could not train larger models in time for the competitions.
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In order to test how the amount of data affected the results, I decided to train new models using
additional datasets created with the data given in the competitions. The goal was to train new X-BERT
and X-Transformer models using different amounts of articles, and then compare the results of these new
models with the results achieved by the models used on the competitions. However, due to hardware
constrains, I could not retrieve the predictions of the larger models of X-Transformer. A possible way of
countering this limitation would be reducing the number of predicted labels per article, but I opted not
to do that, since this change could affect the scores achieved by the model in the evaluation, and thus
the comparison with the other models could lead to inaccurate conclusions. Therefore, the test was only
made using X-BERT models and using the data given in BioASQ task 8a.

From the articles given by the competition organizers for task 8a, I created one dataset with half the
size of the one used in the competition and another with double that size. The distribution of the articles
in the train, test and validation sets followed the same proportion of 60%-20%-20% that was used by the
X-BERT models trained for the competition. The number of articles present in each dataset can be seen
in Table 3.12.

Table 3.12: Size of the datasets created to compare the performance of X-BERT models using different amounts of
data. The English Set corresponds to the existing dataset that I used in the BioASQ task 8a competition. English
Set S has half the size of English Set, while English Set L has double the size of English Set. The proportion used
for the train, test and validation sets was 60%-20%-20%.

Dataset Total Articles Train Set Test Set Validation Set #MeSH Terms

English Set S 159,329 95,598 31,866 31,865

English Set 318,658 191,195 63,732 63,731

English Set L 637,316 382,389 127,463 127,464

29,640

Then, following the pipeline described in Section 3.2 for BioASQ task 8a, two models were created,
one for each newly created dataset, with the following characteristics:

• Model S – MER in conjunction with X-BERT, using SciBERT and finetuned using the article’s
titles from English Set S.

• Model L – MER in conjunction with X-BERT, using SciBERT and finetuned using the article’s
titles from English Set L.

The two models would be compared with Model 2 described in Section 3.5.2.1, which will be called
Competition Model. The parameters used to train the new models were the same as the ones that were
previously described in Section 3.5.1.1. This choice was made so that the training conditions could be
equal for each model, with the only difference being the amount of data used to train and evaluate the
models.
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Looking at the results achieved by the models in Table 3.13, it is possible to notice considerable
differences with the usage of smaller and larger quantities of data. Model S achieved higher precision
values than the Competition Model when the evaluation was focused on MiP. However, it presents worst
results in all other measures, especially in the recall measures. Interestingly, the highest recall and F1-
score values are achieved by the Competition Model. In contrast, Model L achieved higher precision
values, except when the evaluation focus was on MiF.

I was expecting superior values in all measures forModel Lwhen comparedwith the other twomodels
since it had more data available to learn from, but the Competition Model achieved higher recall and F1-
score values. The reason for these results could lie in the training parameters, namely in the number of
train epochs. The models were all trained during 7 epochs, which was the ideal number of epochs for the
Competition Model. However, this number could have different for the other two models. In fact, when
I analysed the X-BERT models training logs, the best checkpoint for Model S occurs in epoch 4, while
the best checkpoint for Model L occurs at the end of epoch 7 which means that, for Model L, the real best
scoring checkpoint might not have been achieved, thus the results could have been better. The only way
to confirm this hypothesis would be training Model L with an increased number of epochs, which will be
left as future work.

Table 3.13: Results achieved by the X-BERT models in the corresponding test sets using different size datasets in
the English language.
Bold values correspond to the highest achieved values in the corresponding measure.

Measures
Micro MacroModel Focus

Precision Recall F1 Precision Recall F1

Threshold

Base 0.7873 0.3477 0.4823 0.7853 0.3520 0.4603 0.50

MiF 0.6058 0.4971 0.5461 0.6057 0.5037 0.5286 0.16Model S
MiP 0.9125 0.1662 0.2811 0.9020 0.1726 0.2753 0.99

Base 0.7880 0.3773 0.5103 0.7861 0.3840 0.4914 0.50

MiF 0.6270 0.5095 0.5622 0.6265 0.5175 0.5460 0.18
Competition

Model
MiP 0.8894 0.2408 0.3790 0.8832 0.2480 0.3664 0.89

Base 0.8034 0.3504 0.4879 0.8013 0.3553 0.4672 0.50

MiF 0.6208 0.5038 0.5562 0.6207 0.5107 0.5391 0.16Model L
MiP 0.9324 0.1551 0.2660 0.9194 0.1624 0.2636 0.99

39





Chapter 4

Clinical Case Classification –
CANTEMIST Competition

The usage of text mining and NLP techniques in clinical cases can be crucial to retrieve key pieces
of information about pathologies, such as symptoms or treatments, increasing the available knowledge
about the pathology, which can improve the research and clinical decision-making [83, 84]. However,
there are not so many tools developed for the multilingual panorama, being most tools focused on the
English language, or with tools not specialized for processing clinical cases [84].

Taken this into account, I decided to participate in the CANTEMIST international challenge, namely
in the CANTEMIST-CODING task. In this task, the goal was the classification of Oncology clinical cases
written in Spanish by returning a list of eCIE-O codes related to the content of each clinical case, ranked
by the order of confidence. Since it was a multi-label classification challenge, I decided to apply and
adapt the X-Transformer pipeline that was used for the BioASQ MESINESP task, since it had achieved
promising results in the precision measures of that challenge, and this way it could also serve as an
additional case study of this XMLC solution to the multilingual biomedical panorama.

In this chapter, I will start by explaining the inclusion of a new pre-trained language model to train
X-Transformer. Then, in Section 4.2 I will explain the developed pipeline used in the CANTEMIST-
CODING task and in Section 4.4 the developed models for the task. The evaluation and the results
achieved in the challenge are tackled in Sections 4.5 and 4.6, correspondingly, finally followed by a
discussion in Section 4.7.

4.1 X-Transformer modifications

The only modification made in X-Transformer for this challenge, in addition to the ones that were already
made for the BioASQ competitions and that were described in Section 3.1, was the inclusion of BETO1,
the Spanish version of BERT, in the choices of models to train X-Transformer. This inclusion was made

1https://github.com/dccuchile/beto
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since I considered that using a BERT model specifically designed for the Spanish language could lead
to improved results over the Multilingual version of BERT, as it can be seen in the evaluation of BETO
[85].

4.2 Pipeline

Like in the BioASQ competitions, I developed a pipeline to execute the X-Transformer algorithm and
retrieve its predictions in the required format by the CANTEMIST-CODING task. This pipeline can be
seen in Figure 4.1 and it was based in the pipeline developed for the BioASQ competitions. However,
and contrarily to the BioASQ competitions, it does not use MER to identify key entities in the text due
to the size of the texts that composed the clinical texts, which largely surpassed the 512 token limit of
BERT [5], therefore, adding extra text to the clinical cases may not improve the results.

The first step was retrieving the data from the competition organisers. The data was organized in
separate folders for the training set and development sets, with each folder containing the text files of
each clinical case along with ’.ann’ files that contained the eCIE-O terms and codes that were indexed to
each clinical case.

Figure 4.1: Developed pipeline for the CANTEMIST-CODING task. It processes the CANTEMIST data before
running it through X-Transformer. In the end, the predictions are converted to the format required by the competi-
tion.
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After retrieving the data, the next step was merging each separate text file that composed the training
and development datasets into a single file for each dataset, so that in the end I would have only two
files, one containing the clinical cases that would be used as train set and the other the clinical cases that
would be used as the test set. Then, using the ’.ann’ files that were associated with each clinical case,
I extracted all labels that were attributed to each document and appended them to the beginning of the
corresponding clinical case separated by a tab character (’\t’), so that X-Transformer could distinguish
between the labels and the text. The text was then stemmed using a Snowball stemmer2.

The next step was the creation of the vocabulary file that contained the list of valid labels. Similar to
the vocabulary files of the BioASQ tasks, each line of this file had an eCIE-O code and its corresponding
internal identifier, corresponding to a number from 0 to N, where N is the total number of eCIE-O codes
minus 1. For the creation of this file, I used a file containing a list of valid eCIE-O codes that was provided
by the competition, from which I retrieved all codes and corresponding descriptions. Then, I included
the eCIE-O code descriptions that were present in the ’.ann’ files and that were not present in the list
previously retrieved. The codes without any description were removed, since they would be of no use to
classify the clinical cases using X-Transformer. In the end, the vocabulary file was composed by a total
of 4360 eCIE-O codes. Then, I have also created a label mapping file that contained the correspondence
between each eCIE-O code and its numeric identifier in the vocabulary file, which would later be used
to map the predictions from their numeric identifiers to the corresponding eCIE-O codes, similar to what
was described in the previous chapter.

The sparse matrices containing the predictions for each clinical case were retrieved, comprising a top
K of most relevant labels, with K=20, and their confidence values ranging from -0.99 to 1. Then, using
a Python script, the predicted labels were converted from their numeric identifiers to their corresponding
eCIE-O codes using the label mapping file previously created. The script also discarded each label with
a confidence score under a threshold chosen to achieve the highest Precision, Recall or F1 scores. For
each of these measures, a ’.tsv’ file was created with the predictions for each clinical case in the format
required by the competition. A fourth ’.tsv’ file was also created for the score threshold equal to 0, which
was used as a baseline score.

4.3 Data

4.3.1 Training Data

The data given for the CANTEMIST-CODING task was composed by one training set and two develop-
ment sets named dev-set1 and dev-set2, correspondingly. The training set was composed by 501 clinical
cases and the two development sets had 250 clinical cases each. However, dev-set1 had one unlabeled
clinical case which had to be discarded since it would be of no use to train or evaluate a model. Therefore,

2https://www.nltk.org/_modules/nltk/stem/snowball.html
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dev-set2 was used as the test set to develop the X-Transformer models. With this, the train and test sets
followed a proportion of approximately 77%-33% which was used to train the X-Transformer models.

Then, I decided to generate a larger training set composed by the 501 clinical cases and the remaining
249 clinical cases from dev-set1 that were classified with eCIE-O codes. This larger training set would
be used to train larger versions of the models so that I could compare how this increment in the data could
affect the final results. The models trained with this dataset kept the same test set previously described,
composed by the 250 clinical cases from dev-set2. A summary of the datasets can be seen in Table 4.1.

Table 4.1: Total number of clinical cases given by the CANTEMIST competition organizers to develop the models
along with the corresponding number of valid eCIE-O terms that had an associated description.
The test set was composed by the clinical cases from dev-set2, while the larger train set was composed by the
clinical cases that composed the train set plus the 249 annotated clinical cases that composed the dev-set1.

Total Clinical Cases Train Set Larger Train Set Test Set #eCIE-O Terms

1000 501 750 250 4360

4.3.2 Competition Test and Background Sets

In the CANTEMIST challenge, the goal was to classify, not only the 300 clinical cases that composed
the test set, but also a larger background set composed by 5032 clinical cases. Like in the BioASQ
competitions, I had to put a placeholder label on each document, since there were no eCIE-O codes
indexing the clinical cases and because X-Transformer was not prepared to run on unlabelled data.

The size of the test set was also artificially adapted so that it could have the same size of the test
set used to train the X-Transformer models. However, and contrarily to what happened in the BioASQ
competitions, the number of clinical cases that composed the test and background sets was far greater
than the number of clinical cases that was used in the models test set, which only had 250 documents.
The solution was splitting the test and background sets into a set of smaller files of 250 clinical cases each.
The first 109 lines of each of those files were composed by clinical cases from the test and background
sets to classify, while the remaining 141 came from dev-set1, which was already classified with eCIE-
O codes. These 141 clinical cases were used as an additional validation set to define the confidence
threshold values of my submissions, has it was done in the BioASQ competitions.

4.4 Developed Models

In a first iteration, I trained four X-Transformer models using the training set composed by 501 clinical
cases. Two models were trained with pre-trained BERT models, namely BERT Base Multilingual Cased
and BETO, the Spanish version of BERT. The other two models were trained with two pre-trained models
using data from theMESINESPCompetition. One of them, used the model described in Section 3.9.1 that
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consisted in using the biomedical article’s titles along with MER to identify DeCS terms, their synonyms
and ancestors in the article’s abstracts. The other model used the X-Transformer model described in
Section 3.9.2 that was developed with larger amounts of data, but from which I could not retrieve its
predictions due to hardware limitations. However, since the model files were created, the model could
be used to train other X-Transformer models. These two models shall be referred as MESINESP Model
and MESINESP Model Large, since they were trained with data from that competition. Summarizing,
the four models had the following characteristics:

• Model 1 - BERT base Multilingual Cased finetuned with 501 clinical records.

• Model 2 - BETO finetuned with 501 clinical records.

• Model 3 - MESINESP Model finetuned with 501 clinical records.

• Model 4 - MESINESP Model Large finetuned with 501 clinical records.

In a second iteration, I trained four additional models following the same characteristics of the pre-
vious ones, but using the larger train set composed by the 750 clinical cases. This way, I could compare
the results of the models trained with different amounts of clinical cases. The models had the following
characteristics:

• Model 5 - BERT base Multilingual Cased finetuned with 750 clinical records.

• Model 6 - BETO finetuned with 750 clinical records.

• Model 7 - MESINESP Model finetuned with 750 clinical records.

• Model 8 - MESINESP Model Large finetuned with 750 clinical records.

All models were trained using the default parameters of X-Transformer, except for the eval and train
batch sizes which were both changed from their original values of 64 and 32 to 4 due to hardware con-
strains. The number of gradient accumulation steps was set to 2 to compensate for the small batch size
and each model was trained for 12 epochs, on a single NVIDIA Tesla P4 GPU.

4.5 Preliminary Results

In order to choose which model predictions to submit, I decided to evaluate the predictions made by each
model on the dev-set2 using the evaluation script given by the competition organizers. As was explained
before, each model had four ’.tsv’ files as output, with each file corresponding to the confidence score
threshold that achieved the best precision, recall, F1-score and the baseline score, which corresponded
to the confidence score threshold set to 0, which was the middle of the X-Transformer confidence score
scale. Then, each file was used as input for the evaluation script given by the competition organizers.
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Table 4.2: Preliminary results of the trained models for the CANTEMIST-CODING task using the second devel-
opment set.
Bold values correspond to the three highest values achieved in the Mean Average Precision (MAP) measure.
Green lines correspond to the models and corresponding evaluation focus whose predictions were chosen to submit
for the CANTEMIST-CODING task.

Model Focus MAP Threshold

Baseline 0.222 0

F1 0.366 -0.66

Precision 0.180 0.22

Model 1
BERT Base Multilingual Cased

Recall 0.384 -0.81

Baseline 0.267 0

F1 0.385 -0.48

Precision 0.188 0.48

Model 2
BETO

Recall 0.438 -0.83

Baseline 0.293 0

F1 0.378 -0.34

Precision 0.191 0.52

Model 3
MESINESP Model

Recall 0.446 -0.82

Baseline 0.281 0

F1 0.396 -0.45

Precision 0.180 0.60

Model 4
MESINESP Model Large

Recall 0.448 -0.82

Baseline 0.203 0

F1 0.372 -0.46

Precision 0.186 0.12

Model 5
BERT Base Multilingual Cased

(750 CC)
Recall 0.407 -0.83

Baseline 0.224 0

F1 0.371 -0.46

Precision 0.180 0.39

Model 6
BETO
(750 CC)

Recall 0.417 -0.82

Baseline 0.250 0

F1 0.392 -0.40

Precision 0.200 0.32

Model 7
MESINESP Model

(750 CC)
Recall 0.442 -0.82

Baseline 0.268 0

F1 0.379 -0.43

Precision 0.194 0.29

Model 8
MESINESP Model Large

(750 CC)
Recall 0.427 -0.81

The results for each model are registered in Table 4.2, with the highest MAP scores being achieved
when the predictions are focused on achieving the highest recall scores. Another fact to notice is that
the highest MAP scores are achieved by the X-Transformer models trained with the MESINESP models,
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which was expected, since the MESINESP data consisted in biomedical articles written in Spanish. It is
also noticeable that the models that use BETO seem to achieve higher MAP scores when compared with
the ones that used BERT Multilingual. As to the usage of more clinical cases to train the models, there
is not a clear evidence that it improves the results achieved, with some models achieving slightly higher
scores in MAP if the evaluation was focused on precision or in the F1-score, while in other models the
score was inferior when compared with the models that used lesser articles.

Taken these results into consideration, I decided to choose 5 distinct models to submit, with the
predictions focusing on recall, since it was the measure that lead to increased MAP values. The chosen
models were Models 2, 3, 4, 5 and 7.

The predictions made by the models for each of the 48 text files that contained the data from the test
and background sets were retrieved, resulting in 48 prediction files. For each of those prediction files,
the first 109 lines, which corresponded to the predictions made for the test and background sets, were
stored in a variable which contained the data to be written in the ’.tsv’ files. The remaining 141 lines,
which corresponded to the predictions of the classified clinical cases from dev-set1, were used to find the
confidence score threshold that achieved the best recall score, so that it could be used to discard the test
and background sets predictions with a confidence score under that value before writing the ’.tsv’ file to
be submitted.

4.6 Competition Results

The submissions for CANTEMIST-CODING task consisted in the predictions for both the test and back-
ground sets. However, the evaluation only considers the 300 clinical cases that compose the test set. The
submissions were evaluated on the MAP measure, which was the most relevant measure for this chal-
lenge, but the precision, recall and F1 scores were also evaluated. The evaluation also made distinction
between considering the eCIE-O term ’Metastasis’ and not considering it, since the dataset presented an
high class imbalance in which mentions to this term are ubiquitous.

Looking at results achieved in the competition presented in Table 4.3, the best scoring model was
Model 5 contrarily to what I was expecting, since in the preliminary evaluation this model had achieved
the lowest MAP score of the five models submitted for this task. Interestingly, the lowest MAP scores
were achieved by Models 3, 4 and 7, which were trained using the MESINESP models and that had
achieved the highest MAP scores in the preliminary evaluation. As to remaining evaluation measures,
the precision and F1 scores were lower than the recall scores as expected, since the submissions contained
the predictions that used a confidence score threshold focused on achieving the highest recall scores.
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Table 4.3: Results of the submitted models for the CANTEMIST-CODING task. The measures without Metastasis
are calculated without considering the mentions to the eCIE-O term ’Metastasis’ (8000/6 code).
Bold values correspond to the best scoring submission.
Measures: MAP - Mean Average Precision. P - Precision. R - Recall. F1 - F1 score.

Measures
With Metastasis Without MetastasisModel

MAP P R F1 MAP P R F1

Model 2 0.463 0.157 0.549 0.244 0.350 0.119 0.466 0.189

Model 3 0.449 0.159 0.517 0.243 0.333 0.118 0.427 0.184

Model 4 0.455 0.151 0.532 0.235 0.344 0.113 0.445 0.180

Model 5 0.506 0.211 0.601 0.312 0.399 0.167 0.527 0.254

Model 7 0.459 0.197 0.541 0.289 0.346 0.151 0.456 0.226

4.7 Discussion

Overall, the results achieved in the CANTEMIST-CODING task were better than expected, with the
lowest score surpassing to the highest score achieved in my preliminary evaluation. Unfortunately, the
competition organizers did not publish a general scoreboard with the results of the remaining competitors,
neither have they release a baseline score for each measure, therefore it is impossible to know how well
the X-Transformer model worked in comparison with the other participants.

Nevertheless, the results achieved by X-Transformer could be improved. For example, I did not use
MER nor any other NER software in the clinical cases in order to extract relevant entities and synonyms
from among the corpus. The reason for this was due to the large amount of text that composed each
clinical case, thus adding a list of additional words to that text might not improve the results. However,
a possible solution could pass by reducing the amount of text from each clinical case before running it
through X-Transformer. This could be achieved by using automatic text summarization tools to leave
only the essential information about each clinical case. Then, using MER, key entities and related terms
could be extracted and include them in the summarized text. This way, by reducing the original clinical
case to a smaller and more objective text, along with identified key terms and entities given by the NER
tools, it is more likely that the X-Transformer model will be able to achieve better results, like it was
shown in Section 3.5.1.2 where the usage of the article’s titles in conjunction with MER achieved better
results than using the article’s abstracts in conjunction with MER.
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Conclusion

Recent advances in deep learning techniques largely improve the performance of textmining solutions
developed for NLP tasks across several domains, including the biomedical domain. XMLC is also one
of the text mining solutions that was improved with these recent advances in deep learning, leading to
state-of-the-art results in several datasets [14, 15]. However, XMLC had not yet been applied to the
biomedical domain neither it as been combined with other NLP tools, such as NER software, which lead
to the main objective of this thesis: the development of a solution that combines XMLC with NER, and
the application to the biomedical and multilingual panorama.

By participating in the BioASQ competitions, I have successfully adapted the state-of-the-art XMLC
solution X-BERT [17] along with its most recent version X-Transformer [15] to the biomedical and mul-
tilingual biomedical domains. This was achieved through some changes in the algorithm code and by
developing a pipeline of scripts to preprocess the data and identify key terms and synonyms from an on-
tology by usingMER [18, 19] before sending the data to the XMLC algorithm, as was detailed in Sections
3.1 and 3.2. However, the results achieved were suboptimal in the most relevant measures evaluated by
the competitions. Nonetheless, the XMLC solution achieved high scores in the precision measures in
both BioASQ competitions, surpassing most competing systems and even achieving the 1st place in the
MiP measure for two consecutive weeks in BioASQ task 8a. This lead to post-competition developments
in a way of searching for how the results could be improved in future editions, with an increased focus
in the usage of more data to train the models.

After the BioASQ competitions, I had the opportunity to participate in the first edition of the CAN-
TEMIST competition, namely in the CANTEMIST-CODING task which had some similarities with the
MESINESP challenge. Therefore, I adapted the solution that was developed for the MESINESP task,
as described in Section 4.2, and developed new X-Transformer models trained with different amounts
of data and with different pre-trained models, some of them developed for the MESINESP task or using
the data given in MESINESP. The results achieved in MAP, the most relevant measure of this challenge,
had an high score of 0.506. However, since the competition organizers did not release the results of the
remaining competing systems neither a baseline score, it is not possible to fully analyze the performance
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of the XMLC solution in the CANTEMIST competition.
With the participation in these international challenges, I was able to combine deep learning XMLC

with a NER tool in order to improve the results achieved, and I was also able to apply it to the biomedical
and multilingual biomedical panorama, achieving considerable results in the precision measures. How-
ever, there is still much room for improvement, namely in the recall measures which were relatively low.
Additionally, I was also able to explore the differences in performances between the usage of English and
non-English models, with non-English models achieving considerably lower values, which highlights the
necessity of non-English datasets, especially in the biomedical sciences.

In the end, this work produced an open-source semantic indexing system based on XMLC that can
be used with either English or non-English data, and a total of three publications, namely two workshop
publications describing the submitted solutions for the international challenges in which I have partici-
pated, and a short paper for the SIIRH 2020 workshop [22], where I proposed a possible application of
this pipeline to multilingual biomedical question answering.

5.1 Future Work

As future work, the main goal would be improving the performance of the developed XMLC solution
in the biomedical domain. A first step could rely on the usage of more complex MER lexicons. In
the BioASQ challenges, the lexicons used were somehow simple, comprising only the MeSH or DeCS
ontologies, along with synonyms of the terms and the direct ancestors in the case of DeCS. A new lexicon
could comprise not only these elements but also semantic similar terms [86], or even the relations with
terms from other ontologies or structured vocabularies with associated DeCS/MeSH terms, in order to
retrieve additional information related to the terms and include it in the text. This additional information
could be relevant to the XMLC algorithm and consequently lead to a better label classification.

Another possible development would be training X-Transformer models and use them as pre-trained
models to develop other X-Transformer models similar to what was done in some models that were sub-
mitted in the CANTEMIST- CODING task. As explained in Section 4.4, some of the submitted models
were developed using X-Transformer models that were previously developed for the MESINESP task
or containing data from the MESINESP task. These models achieved superior results in the prelimi-
nary evaluation as seen in Section 4.5, even though the same did not happen in the competition results.
Nonetheless, this solution might be able to achieve improved results in challenges similar to MESINESP
that require the classification of Spanish biomedical articles.

An additional path to explore is the application of the developed XMLC pipeline to question answer-
ing tasks, as proposed by my publication in the SIIRH 2020 workshop [22]. The main hypothesis behind
this idea is that, since XMLC algorithms can classify documents with labels related their content, and
usually the first step of a question answering system is retrieving documents relevant to the question. By
using these labels the question answering system will be able to give more accurate answers, since it had
a series of labels to identify the most related documents to the question.
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Another further development is combining XMLC with other NLP tools, such as automatic text sum-
marization tools. Through automatic text summarization, it will be possible to reduce the original text to
a more concise alternative containing only the key topics of the articles or clinical cases. Combining this
text with the terms and entities identified by the NER software and adding them to the processed text,
similar to what was done in the BioASQ competitions, it might be possible to further improve the results
achieved by X-Transformer.

Finally, a future development that could benefit all of the above proposals is the development of a
BERT model for the Spanish biomedical domain by using all of the Spanish biomedical articles given by
the BioASQ MESINESP task, which comprises more than 10 million articles. This task would require a
great amount of time and hardware processing to be achieved, but it could lead to considerable improve-
ments in the results of not only X-Transformer models, but also other deep learning solutions developed
for the Spanish biomedical domain due to a domain-specific language model.
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