UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL

Impacto do grau de consanguinidade na descendência de um pomar de produção de sementes de polinização aberta de *Eucalyptus globulus*

João Pedro Osório Faia

Mestrado em Biologia Humana e Ambiente

Dissertação orientada por: Professora Doutora Maria Helena Machado Trindade de Donato

Agradecimentos

Gostaria de agradecer à minha orientadora Professora Helena Trindade, por me ter concedido esta oportunidade única de aprendizagem que nunca irei esquecer. Obrigado por me ensinar todas as técnicas necessárias com um elevado rigor científico, por estar constantemente disponível para me tirar dúvidas ou dar sugestões e, acima de tudo, por me motivar quando mais precisei.

Ao RAIZ – Instituto de Investigação da Floresta e Papel, por ter tornado possível a realização deste projeto através da disponibilização deste tema de mestrado e, principalmente, pelo financiamento necessário à sua realização. Um especial obrigado às fantásticas pessoas do RAIZ, Alexandre Araújo, Cristina Marques, Joana Costa, José Cardoso e Nuno Borralho, que contribuíram com a sua experiência e conhecimento e me apoiaram ao longo deste projeto em diversas áreas, todas elas essenciais para tornar tudo isto possível.

À malta do gabinete 2.1.49, que me acolheu e sempre me ajudou no que precisava. Vou levar comigo bastantes recordações divertidas e, principalmente, muitas aprendizagens.

Um grande obrigado aos meus amigos, especialmente ao Duarte e à Maria que estiveram sempre lá desde o primeiro dia.

À minha namorada, Mafalda, pelo apoio essencial ao longo deste processo e por me ter dado na cabeça sempre que precisei de retomar o rumo certo.

Por fim, agradeço à minha família, especialmente aos meus pais e ao meu irmão, por me apoiarem e se preocuparem constantemente comigo, mas, acima de tudo, por me terem dado a oportunidade de estudar e chegar até aqui.

Abstract

Eucalyptus globulus is a pulpwood species of outmost importance in Portugal. Open pollinated orchards are a low-cost and frequently used commercial solution for improved seed production. However, they can present disadvantages, particularly the presence of high levels of inbreeding in the seed, which reduces genetic variability and increases homozygosity, hence promoting the expression of depressive phenotypes in the offspring. The impact of the degree of inbreeding – represented by the inbreeding coefficient (F) – on the productivity of trees from different progenies in an open pollinated seed orchard was studied. Additionally, descendant trees from the seed orchard that presented abnormal morphologies were investigated, and one of the aims of this study was to perceive if this was associated with inbreeding. A total of 324 plants aged between 1.6 and 2.6 years, from 11 orchard mother trees, were analysed with small sequence repeats (SSRs), using 12 previously tested markers. Paternity tests were carried out to determine the parentage, in order to calculate the inbreeding coefficient and investigate if the parents had any degree of kinship. The plant heights were also measured and a linear mixed model including several variables (heights, F, mothers, field) was applied to perceive the impact of the degree of inbreeding on the offspring. Phenotypes related to morphology were identified in the field as normal or abnormal, in order to perform a chi-square test and understand if there was a dependency between this variable and the inbreeding coefficient. At a population level, the productivity of the offspring showed a negative trend as inbreeding increased (estimate = -0.957). A self-pollinated plant (F = 0.5) presented, on average, 40 cm less height than an outcross plant. It may seem an insignificant value, however it is important to remember that plants are in their early years, having a greater impact on the competition for sunlight and nutrients. The offspring from each mother showed a variation related to the population model, maintaining however a negative trend. There were mothers with offspring less influenced by inbreeding (minimum estimate = -0.515) and others that were highly influenced (maximum estimate = -1.486) suggesting some mothers may have inherited more deleterious mutations than others. As far as abnormal phenotypes are concerned, no inbreeding-related dependency was found ($\chi^2(4) = 2.4277$; p = 0.6576). Nevertheless, there seems to be an indication that certain crosses developed a higher percentage of offspring with these traits. This study suggests that the trees in the orchard have a variable performance when undergoing inbreeding. Thus, the latter is a relevant characteristic to be analysed in the construction and management of an improved seed orchard, in order to minimise the impact of this disadvantage inherent to open pollinated orchards.

Keywords: Eucalytpus globulus, inbreeding, SSRs, genetic breeding, open pollination

Resumo

Eucalyptus globulus é uma espécie de elevado valor comercial devido à sua grande contribuição para a indústria papeleira em Portugal. A utilização de pomares de polinização aberta para a produção de sementes melhoradas é um método bastante económico e largamente utilizado na indústria. No entanto, o facto de não existir controlo da polinização, possibilita a ocorrência de níveis elevados de consanguinidade nas sementes. A endogamia provoca a redução da variabilidade genética e aumenta a homozigotia, promovendo a expressão de fenótipos depressivos na descendência. Foi estudado o impacto do grau de consanguinidade, representado pelo coeficiente de consanguinidade (F), na produtividade de árvores de diferentes descendências de um pomar de polinização aberta. Adicionalmente, foram investigados indivíduos descendentes do pomar de sementes que apresentavam morfologias anómalas, sendo um dos objetivos deste projeto perceber se estes fenótipos estavam relacionados com a consanguinidade. Com recurso a 12 microssatélites previamente testados, foram realizados testes de paternidade a 324 plantas, com idades entre 1,6 e 2,6 anos, descendentes de 11 mães do pomar. Estes testes permitiram determinar o parentesco dos indivíduos, tendo este sido utilizado para calcular o coeficiente de consanguinidade e investigar se os respetivos progenitores tinham algum grau de parentesco. As alturas das plantas foram também medidas como representação da produtividade e foi aplicado um modelo linear misto, que incluía diversas variáveis (altura, F, mães, ensaios) para perceber qual o impacto do grau de consanguinidade na descendência. No campo, foram identificados dois fenótipos relacionados com a morfologia das plantas (normal ou anómalo), com o objetivo de realizar um teste qui-quadrado e perceber se existia alguma dependência entre esta variável e o coeficiente de consanguinidade. A um nível populacional, a produtividade da descendência revelou uma tendência negativa quando o grau de consanguinidade aumentava (estimativa = -0.957), indicando que uma árvore resultante de autopolinização (F = 0.5) apresentava, em média, menos 40 cm do que uma exogâmica. Uma perda de altura nos primeiros anos de vida de uma planta pode influenciar a competição por luz solar e nutrientes podendo potencialmente ter um maior impacto a longo prazo. A descendência de cada mãe do pomar parece apresentar uma variação em relação ao modelo populacional, mantendo, no entanto, a mesma tendência negativa. A variação mostra que, potencialmente, a descendência de algumas mães pode ser mais afetada pela consanguinidade (estimativa máxima = -1,486) do que outras (estimativa mínima = -0.515), sugerindo que algumas mães podem ter herdado um maior número de mutações deletérias, aumentando a depressão endogâmica. Relativamente aos fenótipos anómalos, não foi encontrada uma dependência com o grau de consanguinidade ($\chi^2(4) = 2,4277$; p = 0,6576), contudo, parece existir uma indicação que certos cruzamentos produzem uma maior percentagem de descendência com estas características. Este estudo sugere que as árvores do pomar possuem um desempenho variado quando submetidas à endogamia, sendo esta uma característica relevante a ser analisada na construção e gestão de um pomar de sementes de polinização aberta.

Palavras-chave: *Eucalyptus globulus*, consanguinidade, SSRs, melhoramento genético, polinização aberta

/				
Τ_	1	•	_	_
11	าก	14	P.	ρ
	IU		L	L

Agradecimentos	ii
Abstract	iii
Resumo	iv
Lista de Figuras	vi
Lista de Tabelas	vii
1. Introdução	1
2. Objetivos	4
3. Material e Métodos	5
3.1. Amostragem e avaliação de ensaios de campo	6
3.2. Análise morfológica	7
3.3. Análise molecular	7
3.3.1. Extração de DNA genómico	8
3.3.2. Amplificação do DNA 3.3.3. Análise de fragmentos	8
3.4. Análise de dados	9
4. Resultados	11
4.1. Avaliação dos ensaios de campo	11
4.2. Avaliação morfológica	12
4.3. Análise molecular	13
4.4. Avaliação da descendência	14
4.5. Influência da consanguinidade na produtividade de E. globulus	16
4.6. Relação entre a consanguinidade e os fenótipos anómalos	19
5. Discussão de Resultados	21
5.1. Avaliação do sucesso de amplificação dos microssatélites	21
5.2. Dinâmica de cruzamentos do pomar de polinização aberta	21
5.3. Qual o impacto do inbreeding no pomar de Eucalyptus globulus?	22
5.4. A depressão endogâmica difere entre genótipos?	24
5.5. As anormalidades fenotípicas são efeitos da consanguinidade?	24
6. Conclusão	25
7. Referências	26
8. Anexos	30

Lista de Figuras

Figura 1.1: Distribuição geográfica de *Eucalyptus globulus* em Portugal continental (ICNF, 2015). 1

Figura 3.1: a) Mapa da herdade da espirra onde está incluído o pomar e regiões envolventes. b) – Pomar de produção de sementes melhoradas de polinização aberta do RAIZ. 5

Figura 3.2: Mapa de Portugal continental com a marcação da localização dos 5 ensaios e do pomar. Cedido pelo RAIZ. 6

Figura 4.1: Alturas dos cinco ensaios. A medida central é a mediana. Os pontos acima ou abaixo dos gráficos são *outliers*.

Figura 4.2: Plantas com fenótipo normal. a) Árvore no campo com 1,5 anos. b) Ápice caulinar com fenótipo normal c) Amostra de um ramo com fenótipo normal. d) Gomo apical. e) Gomos axilares.

Figura 4.3: Plantas com fenótipo anómalo. a) Árvore no campo com 1,5 anos de idade. b) Elevada proliferação dos gomos axilares. c) Amostra de um ramo com fenótipo anómalo. d) Gomos axilares com elevada secura dos tecidos. e) Proliferação excessiva dos gomos axilares. 13

Figura 4.4: Altura das árvores em relação ao coeficiente de consanguinidade para a média dos ensaios. 17

Figura 4.5: Altura das árvores em relação ao coeficiente de consanguinidade por mãe. 18

Lista de Tabelas

Tabela 3.1: Ensaios e respetivas datas de plantação, datas de amostragem, idades em anos e localizações. 6

Tabela 3.2: Número de indivíduos descendentes de cada genótipo (Mãe) amostrados no projeto. * As mães assinaladas tiveram a sua descendência amostrada de forma pontual por apresentarem fenótipos anómalos. 7

Tabela 3.3: Descrição dos microssatélites por multiplex. Inclui o nome do microssatélite, a designação da sonda fluorescente (presente apenas nos *primers forward*) e o tamanho esperado dos fragmentos amplificados. 9

Tabela 4.1: Resumo dos resultados dos microssatélites. A tabela inclui o nome dos microssatélites, todos os alelos amplificados, o número de alelos diferentes e o número de indivíduos que não obtiveram o respetivo microssatélite amplificado. Os alelos foram obtidos através da análise dos resultados da eletroforese capilar (realizada pela empresa StabVida) utilizando o Peak Scanner v2.0.

Tabela 4.2: Número de indivíduos descendentes de cada genótipo (Mãe) pertencentes ao grupo principal de análise. A tabela inclui as percentagens de *inbreeding* e de contaminação dos 3 anos de colheita de sementes. Cada ano inclui entre parênteses os ensaios que foram instalados utilizando as plantas dessas campanhas de colheita. 15

Tabela 4.3: Estimativas dos efeitos fixos da interceção e declive da covariável F, respetivos erros padrão e p-value (Pr(>|t|)). As variâncias dos efeitos aleatórios para a Mãe e Ensaio são igualmente apresentadas. Os resultados do modelo estão detalhados no anexo 6 – figura 1.

Tabela 4.4: Depressão endogâmica, dado como o declive da regressão entre altura e grau deconsanguinidade (bF) para cada uma das mães representadas no estudo, bem como o seu valor genéticorepresentado pelas diversas interceções.17

Tabela 4.5: Tabela de contingência utilizada como *input* no teste de qui-quadrado realizado em R. Atabela apresenta a contagem de indivíduos com fenótipos normais e anómalos relativamente a cada valorde coeficiente de consanguinidade (F).19

Tabela 4.6: Número de descendentes com fenótipo normal ou anómalo resultantes dos cruzamentosobtidos na análise. Os cruzamentos incluídos têm no mínimo 10 descendentes e são representados pelajunção dos progenitores A com B. Os progenitores indeterminados são fruto de contaminações do pomarcom pólen externo não permitindo a sua identificação.20

1. Introdução

O progresso e a globalização da população humana tornaram inevitável a introdução de espécies exóticas nos ecossistemas (Dodds e Whiles, 2010). Algumas destacam-se negativamente pelo seu impacto na biodiversidade devido à forte competição com as espécies autóctones que acabam por ser ameaçadas, levando à diminuição das suas populações e à perturbação dos serviços ambientais (Rosenzweig, 2001). No entanto, certas exóticas podem desenvolver interações benéficas com o ambiente (Griffiths *et al.*, 2010) ou possuir características valiosas que possibilitam a sua exploração económica, contribuindo positivamente para o ecossistema.

Eucalyptus globulus Labill. (nome comum: eucalipto) é uma espécie arbórea pertencente à família Myrtaceae, natural da Tasmânia e de Vitória, regiões do sul da Austrália. As árvores são caracterizadas pelo seu rápido crescimento vertical, podendo atingir alturas de 55 metros, aparência esguia, uma ramificação predominante na região terminal e madeira densa e de fibra curta. Estas características, aliadas a uma fácil reprodução, tornam o eucalipto numa fonte acessível e eficaz para a produção de pasta de papel a nível comercial (Alves et al., 2007). Em Portugal, a espécie foi introduzida no seculo XIX com sucesso devido às condições edafoclimáticas favoráveis para o seu desenvolvimento. Inicialmente, o eucalipto foi utilizado para decoração e extração de eucaliptol e só a partir da década de 1940 foi iniciada a expansão em massa das plantações para a produção de pasta de papel (Radich, 1994). Por este motivo, a área ocupada por E. globulus apresentou um aumento gradual nos últimos 50 anos, que resultou em 810.000 hectares em 2010, aumentando para 845.000 hectares em 2015 (ICNF, 2015), estabelecendo-se por todo o país, mas com maior ênfase na região do vale do Tejo, centro e litoral norte (figura 1.1). A importância económica do setor industrial da pasta de papel representado pela CELPA – Associação da Indústria Papeleira é elevadíssima e o eucalipto tem o maior contributo para esse fim. Em 2016, o valor arrecadado pelas empresas associadas em Portugal, rondou os 2,54 mil milhões de euros, representando 1,37% do PIB desse ano (CELPA, 2016). Estes valores podem ainda ser melhorados através do aumento da produtividade das árvores com recurso a programas de melhoramento genético.

Figura 1.1: Distribuição geográfica de Eucalyptus globulus em Portugal continental (ICNF, 2015).

O melhoramento genético de uma espécie é suportado por uma população de indivíduos com fenótipos superiores, selecionados de acordo com as características desejáveis, através do aumento da frequência dos alelos respetivos. É necessário que, para tal, exista variabilidade genética na população onde se incluam diversos alelos de interesse que possam ser selecionados e estabelecidos nas gerações seguintes. O melhoramento genético clássico resume-se à seleção artificial, na qual se realizam cruzamentos entre indivíduos com características desejadas para desenvolver descendências que, em média, têm um melhor desempenho que os pais. A seleção artificial é um recurso utilizado há milhares de anos para aumentar o valor genético de espécies agrícolas e animais. No entanto, esta técnica só começou a ser utilizada para espécies florestais a partir dos anos 50 (Van Buijtenen, 1984), deixando as populações, até à data, sem manipulação genética e com um grande potencial para serem melhoradas (Funda e El-Kassaby, 2013). Os programas de melhoramento genético são estabelecidos com o objetivo de aumentar a produtividade da espécie sem comprometer o futuro da mesma, visto que uma seleção intensiva para uma característica pode levar à perda de diversidade originalmente presente na população e ao aumento de consanguinidade (Burdon e Shelbourne, 1971). No caso de E. globulus, a variabilidade genética existente na maioria das populações naturais permite aos programas de melhoramento genético a seleção das características mais desejadas para fins comerciais que incluem por exemplo, o aumento do volume e da qualidade da madeira produzida, a sua resistência contra pragas ou a tolerância a climas e solos distintos (Steane et al., 2006).

Uma das estratégias de exploração dos resultados de programas de melhoramento é pela produção em larga escala de semente proveniente de pomares constituídos por indivíduos geneticamente superiores. Os pomares de polinização aberta são relativamente fáceis de implementar, de baixo custo e baixa manutenção, permitindo a produção de sementes para fins comerciais. Os cruzamentos entre indivíduos neste tipo de pomar são aleatórios e dependem do serviço dos polinizadores, em oposição aos pomares de cruzamentos controlados nos quais se realiza a emasculação das flores sempre que existe floração, permitindo controlar exatamente os cruzamentos de interesse. A aleatoriedade da polinização dos pomares de polinização aberta resulta numa descendência com qualidade que, em média, é igual ao valor genético dos pais. No entanto, o facto de não existir controlo sobre a polinização permite que ocorram contaminações por pólen de outros eucaliptos da vizinhança. Estas árvores, se não se encontrarem geneticamente melhoradas, reduzem a qualidade da semente produzida, visto que o seu valor genético será menor que todos os progenitores do pomar. A contaminação é uma desvantagem que pode ser atenuada através do isolamento físico do pomar por pelo menos 600 m entre populações e da criação de barreiras de outras espécies (Pupin *et al.*, 2019 em *Eucalyptus urophylla*).

Existe, no entanto, outro problema potencialmente maior com pomares de semente de polinização aberta. *E. globulus* é uma espécie monoica, com flores completas, apresentando órgãos sexuais masculinos e femininos na mesma flor, facto que permite a autopolinização. A autopolinização (*self*) ou outros graus de consanguinidade (*inbreeding*) são referidos na bibliografia, em diversas ocasiões, como negativos para a descendência (Hardner e Potts, 1995; Costa e Silva *et al.*, 2011; Nickolas *et al.*, 2019; Pupin *et al.*, 2019). A consanguinidade provoca depressão no desenvolvimento das plantas (*inbreeding depression*), um fenómeno que resulta muitas vezes numa descendência com menos vigor, menor fertilidade (Charlesworth e Willis, 2009) ou aparecimento de fenótipos anómalos (Fuchs *et al.*, 2015). Isto deve-se ao facto de os descendentes de autopolinização possuírem uma maior frequência de homozigóticos que, por um lado, pode resultar no aumento da expressão de mutações deletérias recessivas, presentes na população com baixa frequência e que agora aumentam a chance de se expressarem (Whitlock *et al.*, 2000; Charlesworth e Willis, 2009; Hedrick *et al.*, 2016) ou por outro, no aumento da homozigótia em *loci* com vantagens heterozigóticas (Charlesworth e Charlesworth, 1987; Lynch e Walsh, 1998; Charlesworth e Willis, 2009; Hedrick *et al.*, 2016). Ambos os casos

resultam numa diminuição do vigor que irá provocar um impacto negativo na qualidade das plantas provenientes de sementes dos pomares de polinização aberta.

Apesar da autopolinização ocorrer em várias espécies, muitas desenvolveram mecanismos para colmatar ou reduzir o seu efeito na descendência. Os mecanismos variam e podem, ou não, ser encontrados em simultâneo, estes incluem a separação das flores femininas das masculinas em espécies monoicas, a dioicia (indivíduos com sexos separados), a dicogamia em espécies hermafroditas que garante a produção de gâmetas com separação temporal, o aborto pré ou pós-zigótico do embrião e a auto-incompatibilidade, sendo estes últimos encontrados no E. globulus. Os mecanismos de autoincompatibilidade permitem aos pistilos da planta reconhecer e rejeitar o próprio pólen ou de um individuo geneticamente semelhante, prevenindo a consanguinidade (McCubbin e Kao, 2000). O processo resume-se em três grupos diferentes, incompatibilidade no estigma, incompatibilidade no estilete e incompatibilidade no ovário (de Nettancourt, 1999), dependendo da região onde ocorre. Os dois primeiros são mecanismos controlados por genes do locus S (Hiscock e McInnis, 2003; Silva e Goring, 2001), onde o pólen, no estigma, ou o tubo polínico, no estilete, são inibidos. A autoincompatibilidade no ovário é considerado um mecanismo de ação tardia e mais raro, no entanto o género Eucalyptus revelou em diversos estudos possuir esta característica (Sedgley, 1994; Pound et al., 2002; Pound et al., 2003; Horsley e Johnson, 2007). A sua ação no ovário pode ainda ser dividida em três mecanismos; a inibição do tubo polínico pelo ovário antes deste chegar ao óvulo; a inibição do óvulo (pré-fertilização); e a rejeição pós-zigótica. Todos os sistemas de auto-incompatibilidade referidos diminuem a frequência do inbreeding, no entanto, este processo não é 100% eficaz (McGowen et al., 2010).

Nos últimos 40 anos, a biologia molecular tem sido uma ferramenta valiosa para o conhecimento da variabilidade genética das espécies. Os marcadores genéticos são sequências de DNA encontradas em regiões especificas do genoma que podem ser utilizados para identificar indivíduos ou espécies, averiguar a variabilidade genética de populações e perceber a causa de doenças hereditárias, entre outros. Um marcador de qualidade deve apresentar um elevado polimorfismo para ser informativo e permitir uma diferenciação clara entre haplótipos. Os microssatélites (SSRs) são um tipo de marcador genético que, devido à sua elevada taxa de mutação (Brinkmann et al., 1998; Vieira et al., 2016), apresenta um elevado polimorfismo, resultando em múltiplos alelos por loci. Estes são sequências de DNA repetitivo com uma repetição especifica por microssatélite, que pode ir de 1 a 10 nucleótidos (Vieira et al., 2016), sendo os diferentes alelos definidos pelo tamanho total da sequência repetitiva (Singh et al., 2018). A sua elevada reprodutibilidade, facilidade de amplificação (por *polymerase chain reaction* - PCR), variabilidade e codominância, tem promovido a sua utilização em estudos de genética populacional, genética da conservação e testes de paternidade (Hoy, 2013). Os testes de paternidade utilizam os microssatélites como marcadores herdáveis, portanto, existe o pressuposto que indivíduos relacionados partilham os mesmos alelos. Assim, para se realizar um teste de paternidade que apresente resultados de confiança, é necessário determinar uma série de microssatélites que detenham um elevado número de alelos para o teste diferenciar indivíduos sem qualquer dúvida. Os testes de paternidade são bastante úteis num contexto de pomar de polinização aberta, visto que por não se controlarem os cruzamentos, não se conhecem os dadores de pólen e apenas são conhecidas as árvores mãe que deram origem às sementes.

2. Objetivos

Tendo em conta o referido, este estudo pretendeu (1) avaliar a dinâmica de cruzamentos observada num pomar de polinização aberta, recorrendo à frequência de autopolinização versus polinização cruzada e contaminação externa, para os diversos genótipos (mães) do pomar. Foram também objetivos deste estudo (2) quantificar o impacto do grau de parentesco dos progenitores na produtividade da descendência, (3) avaliar se existe diferença no impacto da consanguinidade entre descendências de mães diferentes e (4) perceber se a descendência com anormalidades fenotípicas está relacionada com o *inbreeding*. Por último, pretendeu-se também avaliar o sucesso de amplificação dos microssatélites utilizados neste projeto.

3. Material e Métodos

Este projeto foi realizado em colaboração com o RAIZ (Instituto de Investigação da Floresta e Papel) que facultou todos os indivíduos amostrados ao longo da dissertação e forneceu apoio financeiro para estes estudos.

Com o intuito de responder aos objetivos colocados anteriormente, foi desenvolvido um plano amostral para recolher todos os dados necessários para esse fim. Deste modo, o RAIZ disponibilizou vários ensaios com a descendência de um pomar de produção de sementes geneticamente melhoradas de *Eucalyptus globulus*, o qual está situado na Herdade da Espirra, Pegões (figura 3.1). Este pomar foi instalado em abril de 2008 e tem uma área de 1,7 hectares (caracterização mais detalhada do pomar no anexo 2 – tabela 1 e figura 1). A polinização que ocorre é aberta, efetuada maioritariamente pela ação de abelhas e abelhões introduzidos para esse efeito bem como de outros insetos. O Pomar é constituído por 28 genótipos diferentes (clones), representados por números de rametos variados (anexo 2 – tabela 1). As sementes descendentes do pomar, classificadas de acordo com a mãe de origem, foram previamente recolhidas, germinadas e integradas em ensaios de campo em diferentes localizações (figura 3.2). Nestes ensaios foram avaliados dois parâmetros de relevância para este projeto, sendo eles a altura (produtividade) e a morfologia das plantas (fenótipo normal ou anómalo).

Figura 3.1: a) Mapa da Herdade da Espirra onde está incluído o pomar e regiões envolventes. b) – Pomar de produção de sementes melhoradas de polinização aberta do RAIZ.

3.1. Amostragem e avaliação de ensaios de campo

A amostragem realizada incluiu árvores instaladas em 5 ensaios diferentes, com localizações (figura 3.2), idades (tabela 3.1) e condições edafoclimáticas distintas (anexo 1 – tabela 1).

Ensaio	Data da	Data da	Idade	Localização
	Plantação	amostragem		
Α	26/12/2015	27/06/2018	2,6	Fundão
В	31/12/2016	25/07/2018	1,6	Abrantes
C	28/03/2017	03/10/2018	1,5	Oleiros
D	15/12/2017	11/06/2019	1,5	Abrantes
E	15/12/2017	19/07/2019	1,6	Nisa

Tabela 3.1: Ensaios e respetivas datas de plantação, datas de amostragem, idades em anos e localizações.

No conjunto dos ensaios foram amostrados um total de 324 indivíduos, incluindo todas as árvores descendentes de 7 genótipos (mães) escolhidos como o "grupo principal de análise". Adicionalmente, foram amostradas descendências pertencentes a 4 outros genótipos que apresentavam fenótipos anormais (Tabela 3.2).

Figura 3.2: Mapa de Portugal continental com a marcação da localização dos 5 ensaios e do pomar. Cedido pelo RAIZ.

Tabela 3.2: Número de indivíduos descendentes de cada genótipo (Mãe) amostrados no projeto.

* As mães assinaladas tiveram a sua descendência amostrada de forma pontual por apresentarem fenótipos anómalos.

Mães	Ensaios				
	А	В	С	D	E
1552*	-	-	6	-	-
M74	9	15	12	10	9
M18	18	1	-	2	-
M49	-	19	8	11	10
100840012*	-	-	1	-	-
100841010*	-	1	-	1	-
M28	-	-	17	11	10
M07	13	24	7	6	9
M13	15	20	14	10	10
M89	-	-	-	13	11
100890020*	-	-	-	1	-

Nas datas previamente referidas para cada ensaio, foram realizadas as medições da altura das árvores com o instrumento de medida Vertex IV. A altura foi utilizada como uma medida representativa da produtividade do indivíduo. Quando aplicável, também foi realizada uma descrição morfológica da planta quando esta aparentava possuir um fenótipo anormal, sendo recolhido material para observação mais detalhada em laboratório. A amostragem de material vegetal foi efetuada recolhendo duas a quatro folhas de uma região intermédia do ramo. As folhas foram guardadas em envelopes selados e devidamente identificados para evitar erros e posteriormente, no laboratório, foram secas à temperatura ambiente por um período mínimo de uma semana.

Foi efetuada uma descrição de cada ensaio, através da média, desvio-padrão, mediana, mínimo, máximo, quartis e *outliers* das alturas das árvores amostradas com fenótipo normal, sendo estes dados incluídos numa tabela resumo e num *boxplot*.

3.2. Análise morfológica

A análise dos fenótipos, normal e anormal, foi realizada primeiramente no campo através de observação direta das plantas. Foi analisado o fuste da planta e a produção de gomos axilares classificando-se como fenótipo normal, plantas com dois gomos axilares por cada nó e fenótipo anómalo, plantas que produziam uma quantidade excessiva dos mesmos. Posteriormente, foram recolhidas amostras (pequenos ramos) dos dois tipos de fenótipos de diversos indivíduos e foram analisadas com maior detalhe no laboratório, com recurso a um microscópio estereoscópico, Zeiss SteREO Lumar V.12, acoplado a um sistema de captura de imagem de alta definição. O processamento das imagens foi realizado no *software* ImageJ.

3.3. Análise molecular

O facto de o pomar ser sujeito a polinização aberta, não permite saber o *pedigree* completo das sementes recolhidas. Inicialmente, só existe a informação dos progenitores maternos, visto que se associam às árvores de onde provêm as sementes. No entanto, para responder aos objetivos propostos, é também necessário saber a informação dos progenitores paternos de forma a calcular o grau de consanguinidade dos indivíduos amostrados. Assim, foram efetuados testes de paternidade a todos os indivíduos recorrendo a um conjunto de microssatélites adequados (Ribeiro et al., 2011).

O trabalho laboratorial foi dividido em 3 etapas, extração do DNA, amplificação do DNA e a análise dos fragmentos amplificados (STABVIDA, Caparica, Portugal).

3.3.1. Extração de DNA genómico

As folhas amostradas foram utilizadas para realizar a extração do DNA. O protocolo de extração de DNA genómico de E. globulus consistiu numa otimização do protocolo CTAB (Cetyltrimethyl ammonium bromide) facultado pelo RAIZ e baseado na modificação de Doyle e Doyle (1987) e adaptado de Grattapaglia (1993). O protocolo era iniciado excisando 3 discos foliares evitando as nervuras centrais da folha, seguido da maceração dos discos utilizando um macerador (moinho de amostras) próprio para o efeito (FastPrep - FP120). Este triturava as folhas com o auxílio de esferas e cilindros de porcelana apropriados, substituindo o processo de preparação de amostras com azoto líquido. O programa utilizado para a maceração consistiu em 30 segundos a uma velocidade de 4,5 m/s. A extração foi realizada por incubação a 65°C durante 60 minutos (protocolo completo no anexo 3). Após a extração, a qualidade e a concentração do DNA stock das amostras foi determinada recorrendo à espetrofotometria. Para isso, foi medida a absorvância a 260 nm e 280 nm no espetrofotómetro. Para o cálculo da qualidade do DNA, foi efetuada a razão entre as duas absorvâncias, A₂₆₀ / A₂₈₀, permitindo assim perceber a possível existência de contaminação com proteínas e o nível de degradação das cadeias de DNA na amostra. Foi considerada uma amostra de elevada qualidade quando a razão era aproximada de 1,8. Um valor inferior ao referido, significava uma maior concentração de proteínas na amostra. Pelo contrário, um valor superior a 1,8 indicava uma possível degradação das cadeias de DNA. A concentração da amostra foi calculada utilizando a absorvância a 260 nm pela seguinte equação:

Equação 3.1:
$$C_{DNA} = 50 \text{ x FD x } A_{260}/1000$$

Onde C_{DNA} é a concentração de DNA na amostra em $\mu g/\mu L$, FD é o fator de diluição da amostra no tampão utilizado na espetrofotometria (Foi utilizado um fator de diluição de 17x) e A_{260} é a absorvância medida no respetivo comprimento de onda.

Posteriormente, sabendo as concentrações stock, as amostras foram diluídas para uma concentração de $10 \text{ ng}/\mu L$.

3.3.2. Amplificação do DNA

Para a amplificação dos fragmentos de DNA, foram escolhidos 12 microssatélites de *E. globulus* que apresentavam uma variabilidade de alelos suficientes para diferenciar indivíduos e que permitissem realizar os testes de paternidade. A amplificação do DNA foi realizada através da técnica de PCR (*Polymerase Chain Reaction*) com recurso a um termociclador BIO-RAD T100[™], utilizando 12 pares de *primers (Forward* e *Reverse)* marcados com uma sonda fluorescente no *primer forward* (6-FAM ou HEX) e específicos para as regiões adjacentes aos microssatélites referidos anteriormente. Os microssatélites foram divididos em 4 multiplexes (tabela 3.3) conforme os tamanhos dos amplicões produzidos. O protocolo utilizado para a amplificação foi uma versão otimizada de um protocolo desenvolvido e facultado pelo RAIZ que se encontra pormenorizado no anexo 4 juntamente com o nome dos microssatélites, o tamanho dos fragmentos amplificados e com o programa utilizado para o PCR. A amplificação do DNA foi efetuada para todos os indivíduos amostrados e para os DNAs dos 28 genótipos do pomar (todos os possíveis pais) cedidos pelo RAIZ.

Tabela 3.3: Descrição dos microssatélites por multiplex. Inclui o nome do microssatélite, a designação da sonda fluorescente (presente apenas nos *primers forward*) e o tamanho esperado dos fragmentos amplificados.

Multiplex 1				
Microssatélite	Sonda	Tamanho esperado		
Embra11	6-FAM	95-147		
Embra119	HEX	172-214		
Emcrc8	6-FAM	229-263		
Emcrc7	HEX	265-317		

Multiplex 2				
Microssatélite	Sonda	Tamanho esperado		
Embra23	6-FAM	114-150		
Embra41	HEX	174-210		
Embra227	HEX	300-324		

Multiplex 3				
Microssatélite	Sonda	Tamanho esperado		
En15	6-FAM	70-104		
Es76	HEX	125-177		
Eg65	6-FAM	228-291		

Multiplex 4				
Microssatélite	Sonda	Tamanho esperado		
Embra37	6-FAM	114-170		
En12	HEX	210-252		

3.3.3. Análise de fragmentos

Após o PCR, a confirmação dos amplicões foi realizada por eletroforese em gel de agarose 2% num tampão TAE 1x por duas horas a 70v para existir a separação clara das bandas produzidas pelos vários multiplexes (anexo 7 – figura 1). Só depois era efetuada a análise dos fragmentos pela empresa STABvida, por eletroforese capilar.

3.4. Análise de dados

Relativamente à análise das plantas, os dados recolhidos no campo, nomeadamente altura e fenótipo normal/anormal (0 e 1), foram compactados em Excel.

No que diz respeito à análise de fragmentos, os ficheiros resultantes foram analisados com o *Peak Scanner software 2 (v2.0)*, onde se retirou o tamanho exato dos fragmentos que correspondem aos alelos dos indivíduos para cada *loci* de microssatélites (anexo 8 – figura 1). Os dados dos alelos dos vários indivíduos amostrados foram compactados em Excel, juntamente com os alelos dos possíveis pais pertencentes ao pomar. Posteriormente, foi utilizado o software *Cervus* para realizar os testes parentais. Este comparou todos os alelos dos indivíduos com a informação dos alelos da geração parental, resultando num Excel com os cruzamentos completos (Mãe x Pai).

Foi também efetuada uma breve descrição da descendência amostrada. Com os dados dos cruzamentos obtidos na vertente molecular, foram calculadas percentagens de *inbreeding* e de contaminação para cada mãe nos 3 anos de colheita de semente diferentes. As percentagens de *inbreeding* foram calculadas dividindo o número de cruzamentos nos quais a árvore mãe e pai revelaram ser a mesma (alelos idênticos) pelo número total de cruzamentos contaminados por pólen externo pelo número total de cruzamentos contaminados por pólen externo pelo número total de cruzamentos destences contaminados por pólen externo pelo número total de cruzamentos de determinada mãe. Estes cruzamentos definiram-se pela impossibilidade de identificar o lado paterno devido a este não pertencer ao *pool* de genótipos do pomar.

O coeficiente de consanguinidade (F) para cada indivíduo foi determinado a partir dos respetivos *pedigrees* completos dado dispormos das identidades genéticas das Mães e dos Pais envolvidas em cada cruzamento, obtidos na componente molecular deste projeto, juntamente com a informação dos respetivos avós maternos e paternos que foi fornecida pelo Raiz. Este coeficiente foi calculado com base na matriz de parentesco entre todos os progenitores e com recurso ao programa "optiSel" em R (Robin Wellmaan, 2018). O coeficiente F define-se como a probabilidade dos dois alelos presentes num indivíduo, escolhidos aleatoriamente, serem idênticos por descendência dos haplótipos maternos e paternos. O valor de F varia entre 0 e 1, sendo considerado um grau de consanguinidade tanto mais elevado quanto mais próximo de 1.

Os dados foram analisados de acordo com o modelo linear:

Equação 3.2:
$$Alt = \mu + M_i + b_i F_i + Ens + erro$$

Em que *Alt* é a altura dos indivíduos, μ a média da população, M_i é o efeito da Mãe *i* considerado aleatório, $b_i F_i$ o efeito da depressão endogâmica na descendência da mãe i, ajustado como uma covariável de efeito fixo e com coeficiente b_i para cada uma das mães *i*, ajustada como uma covariável de efeitos aleatórios e *Ens* que é o efeito do ensaio considerado aleatório.

A significância dos efeitos fixos estimados foi baseada no valor de t e nos graus de liberdade obtidos através do método de Satterthwaite. As significâncias dos efeitos aleatórios resultam da aplicação do *likelihood ratio test* (LRT) que compara dois modelos, um modelo completo e outro sem o efeito a testar.

Os indivíduos que possuíam fenótipos anómalos foram considerados *outliers* e retirados destas análises. A análise foi realizada com base no package "lme4" (Bates et al., 2015).

Relativamente ao último objetivo deste estudo, que pretendia responder à questão se os fenótipos, normal ou anómalo, encontrados nos indivíduos do campo, estão relacionados com o grau de parentesco, foi realizado um teste de qui-quadrado de independência com um nível de confiança de 95%. A função utilizada, "chisq.test", recebeu como *input* uma tabela de contingência que incluía o coeficiente de consanguinidade, F, e o fenótipo expresso, P, de cada indivíduo. A variável P é binária e varia entre fenótipo normal (P = 0) e fenótipo anómalo (P = 1). Este teste tem como hipótese nula (h0) a existência de independência entre o grau de parentesco dos progenitores e o fenótipo expresso.

4. Resultados

4.1. Avaliação dos ensaios de campo

Os cinco ensaios analisados (A, B, C, D, E) continham descendências de diferentes mães tendo sido instaladas e amostradas em datas diferentes resultando em indivíduos com idades distintas. As alturas destas plantas foram descritas em cada ensaio e representadas por *boxplots* (figura 4.1). O ensaio A, que era o mais antigo (2,6 anos), apresentou, em média, árvores com alturas de 7,02 m \pm 0,71, um valor mínimo de 4,20 m e um máximo de 8,50 m. Os restantes ensaios possuem idades mais aproximadas (1,5 anos), mas apresentam alguma variação. Os ensaios C e D, evidenciaram valores aproximados. As medições variaram entre 1,20 m e 5,60 m, com uma média de 3,84 m \pm 0,83, no ensaio C. De forma similar, o ensaio D variou entre 1,40 m e 5,20 m e apresentou uma média de 3,80 m \pm 0,60. Por outro lado, os ensaios B e E divergiram dos últimos de forma diferente. O ensaio B mostrou valores ligeiramente mais elevados, tendo obtido uma média de 4,40 m \pm 0,53 e alturas que variaram entre 3,30 m e 5,30 m, ao contrário do ensaio E que apresentou valores menores que os restantes. Este, em média, era constituído por árvores com 2,31 m \pm 0,54 e um mínimo e máximo de 1,45 m e 3,85 m, respetivamente.

Figura 4.1: Alturas dos cinco ensaios. A medida central é a mediana. Os pontos acima ou abaixo dos gráficos são *outliers*.

4.2. Avaliação morfológica

Após uma análise preliminar no campo e posteriormente uma análise em laboratório das amostras recolhidas, foi possível perceber a existência de diversos fenótipos distintos presentes em *E*. *globulus*.

O fenótipo normal (figura 4.2) apresentava uma filotaxia característica das plantas com folhas juvenis com disposição oposta (duas folhas por nó, posicionadas a 180° uma da outra e alternando em ângulos de 90° entre nós) e dois gomos axilares na base de cada par de folhas (figura 4.2e).

Entre os observados, o fenótipo que foi considerado "fenótipo anómalo" ou "anormal" era o que influenciava a produtividade das plantas. A diferença entre as plantas normais e anómalas era muito evidente, marcada pela perda de dominância apical e maior dominância lateral, produzindo árvores com uma menor altura e uma aparência arbustiva (figura 4.3a, c).

As amostras de ramos, quando observadas ao pormenor, apresentavam uma proliferação anormal dos gomos axilares onde se encontram os meristemas (figura 4.3b, d, e). Ao contrário do fenótipo normal, onde apenas eram visíveis os habituais dois gomos axilares na base das folhas, o fenótipo anómalo foi marcado pelo desenvolvimento excessivo dos mesmos. Adicionalmente, este fenótipo originou regularmente gomos axilares desprovidos de folhas jovens que envolvem e protegem os meristemas neles incluídos. Devido à ausência destas, esses meristemas ficam sujeitos às agressões do meio, acabando por ficar danificados, principalmente devido à secura que leva à morte dos tecidos (figura 4.3d).

Figura 4.2: Plantas com fenótipo normal. a) Árvore no campo com 1,5 anos. b) Ápice caulinar com fenótipo normal c) Amostra de um ramo com fenótipo normal. d) Gomo apical. e) Gomos axilares.

Figura 4.3: Plantas com fenótipo anómalo. a) Árvore no campo com 1,5 anos de idade. b) Elevada proliferação dos gomos axilares. c) Amostra de um ramo com fenótipo anómalo. d) Gomos axilares com elevada secura dos tecidos. e) Proliferação excessiva dos gomos axilares.

4.3. Análise molecular

Todas as 324 amostras tiveram o seu DNA extraído de forma bem-sucedida após a otimização do protocolo de extração de DNA genómico (anexo 3), tendo sido obtidas concentrações finais na ordem dos 0,3 µg/mL e razões A₂₆₀/A₂₈₀ entre 1,03 e 2,53. As amplificações das regiões genómicas nestes DNAs com os doze microssatélites nem sempre resultaram para a totalidade das amostras, no entanto, todas as amostras possuíram informação suficiente para serem incluídas na análise parental executada pelo software Cervus. A tabela 4.1, relativa ao sucesso de amplificação de cada microssatélite, mostra que, alguns SSRs possuem uma maior, ou menor, facilidade em ser amplificados do que outros. Embra119 foi o microssatélite com mais dificuldades na amplificação, uma vez que não resultou em 32 dos 324 indivíduos. Pelo contrário, Eg65 foi o microssatélite com maior facilidade em amplificar, apenas não resultando para um individuo. Em algumas plantas não ocorreu amplificação para mais do que um microssatélite em simultâneo. Mais precisamente, 1,6% das amostras não obtiveram resultados com 2 microssatélites, 3,7% das amostras com 3 microssatélites, 1,2% com 4 e 0,3% com 6. A tabela mostra, também, a variabilidade das regiões genómicas destes microssatélites refletida no número de alelos encontrados. Todos obtiveram mais de 10 alelos diferentes exceto Emcrc7 onde apenas se encontraram 8. Embra37, por outro lado, apresentou 23 alelos, sendo o microssatélite mais variável. Esta variabilidade foi pertinente para se conseguir obter uma boa resolução das amostras, diferenciando todos

os indivíduos e perceber quais eram as árvores do pomar responsáveis pelos cruzamentos que lhes deram origem. Os testes de paternidade, com o auxílio do Cervus, definiram, com sucesso, todos os cruzamentos da ascendência dos indivíduos da amostragem. Conhecendo o pedigree destes cruzamentos, foi possível estimar o coeficiente de consanguinidade (F) médio de cada indivíduo, essencial nas análises que se seguem.

Tabela 4.1: Resumo dos resultados dos microssatélites. A tabela inclui o nome dos microssatélites, todos os alelos amplificados, o número de alelos diferentes e o número de indivíduos que não obtiveram o respetivo microssatélite amplificado. Os alelos foram obtidos através da análise dos resultados da eletroforese capilar (realizada pela empresa StabVida) utilizando o Peak Scanner v2.0.

Microssatélites	Alalas	N° de	Nº de indivíduos
	Aleios	alelos	sem amplificação
Embra11	95/99/103/105/107/109/111/113/115/119/127/131/	17	7
Linorari	133/135/137/139/143	17	/
Embra119	177/185/187/189/191/193/195/197/199/201/203/205/209	14	32
Linoiarry	/211	17	52
Emerc8	229/231/233/235/237/239/241/243/245/247/249/251/253	17	5
Linereo	/255/257/259/261	17	5
Emcrc7	277/281/283/285/289/291/293/295	8	4
Embro 22	111/113/115/117/119/121/123/125/127/129/131/133/137	15	12
Ellibrazo	/143/147	15	
Embro/1	175/177/179/181/183/185/187/189/191/197/199/201/203	15	3
Lill01a41	/205/209	15	5
Embra227	302/306/308/312/314/316/318/322/324/326	10	14
En15	69/77/81/83/85/89/91/93/95/97/99	11	2
E-76	120/126/128/130/134/136/138/140/142/144/146/150/152	10	4
ES70	/154/156/158/160/164	18	
E~65	226/228/234/236/242/244/246/248/250/252/252/256/260	10	1
Egos	/262/264/266/272/290	18	1
Emplan 27	118/120/122/124/126/128/130/132/134/136/138/140/144	22	17
Embra37	/146/148/152/154/156/158/160/164/168/170	25	1/
En12	208/212/214/218/220/222/224/226/228/230/232/234/238	17	2
En12	/244/246/248/256	1/	2

4.4. Avaliação da descendência

A descendência amostrada provinha de 11 mães diferentes sendo que apenas 7 (M74, M07, M13, M89, M18, M49 e M28) apresentavam um número de descendentes suficiente para o cálculo de percentagens de *inbreeding* e de contaminação. Estes valores foram calculados para três anos de recolha de sementes diferentes, 2013/2014, 2014/2015 e 2015/1016 (tabela 4.2), visto que existiam diferenças na quantidade de flores e tempo de floração das árvores do pomar.

No ano 2013/14, a percentagem de *inbreeding* e de contaminação de todas as mães que tiveram a sua descendência amostrada foi de 0%, um resultado surpreendente uma vez que foi um dos primeiros anos do Pomar em que a floração foi menos abundante (Araújo, comunicação pessoal). Nos restantes anos já se verificou alguma variação, seja na consanguinidade seja na taxa de contaminações externas ao Pomar. No ano 2014/15, as percentagens de *inbreeding* entre mães variaram. Os progenitores M74, M07 e M13 apresentaram valores baixos, 11,1%, 9,7% e 8,8%, respetivamente, enquanto as mães M49 e M28 tiveram valores muito elevados (96,3 e 88,2%). As percentagens de contaminação também

aumentaram relativamente ao primeiro ano, excetuando M74 que permaneceu nos 0%. Para as restantes mães, a taxa de contaminação variou entre 3,7 e 16,1%. No último ano amostrado, 2015/16, as taxas de consanguinidade e contaminação mostraram novamente alguma variação. A percentagem de *inbreeding* de M74 aumentou para mais do triplo, alcançando 36,8%, enquanto M07 e M13 mantiveram a ordem de grandeza do ano anterior. Pelo contrário, M49 e M28, reduziram bastante esta percentagem embora mantendo valores consideráveis (nos 57,1% e 14,3%, respetivamente). No que toca às percentagens de contaminação, todas aumentaram relativamente aos anos anteriores, exceto M89 que não possuía medições nos restantes anos, e que no presente não registou qualquer tipo de contaminação. O maior aumento foi o da mãe M07 com um incremento de 17,2% relativamente ao ano 2014/15, chegando aos 33,3%, o valor mais alto entre as mães amostradas nesse ano.

Ano 13/14 (Ensaio A)					
ID Mãe	Descendentes	Inbred	%	Contaminados	% Contaminação
			Inbreeding		
M74	9	0	0,0%	0	0,0%
M07	13	0	0,0%	0	0,0%
M13	15	0	0,0%	0	0,0%
M18	18	0	0,0%	0	0,0%
		Ano 14/15	5 (Ensaios B e C	<u>(</u>)	
ID Mãe	Descendentes	Inbred	%	Contaminados	% Contaminação
			Inbreeding		
M74	27	3	11,1%	0	0,0%
M07	31	3	9,7%	5	16,1%
M13	34	3	8,8%	5	14,7%
M49	27	26	96,3%	1	3,7%
M28	17	15	88,2%	1	5,9%
		Ano 15/16	6 (Ensaios D e E	E)	
ID Mãe	Descendentes	Inbred	%	Contaminados	% Contaminação
			Inbreeding		
M74	19	7	36,8%	3	15,7%
M07	15	1	6,7%	5	33,3%
M13	20	2	10%	4	20%
M89	24	16	66,7%	0	0,0%
M49	21	12	57,1%	2	9,5%
M28	21	3	14,3%	4	19%

Tabela 4.2: Número de indivíduos descendentes de cada genótipo (Mãe) pertencentes ao grupo principal de análise. A tabela inclui as percentagens de *inbreeding* e de contaminação dos 3 anos de colheita de sementes. Cada ano inclui entre parênteses os ensaios que foram instalados utilizando as plantas dessas campanhas de colheita.

4.5. Influência da consanguinidade na produtividade de E. globulus

Como referido anteriormente, a análise de perfis genéticos através de microssatélites permitiu identificar o *pedigree* completo de todos os indivíduos amostrados que, por sua vez, possibilitaram o cálculo do coeficiente de consanguinidade (F), sendo esta variável utilizada para perceber a influência da consanguinidade no crescimento em altura. O valor máximo de F presente nos dados foi de 0,5, que indicava um indivíduo proveniente de autopolinização, de uma mãe que, tanto quanto se pode determinar, não tinha, ela própria, acumulado nenhum *inbreeding*. Porém, os dados incluem várias descendências com valores intermédios de F. O modelo linear misto revelou que o coeficiente de consanguinidade. Como seria de esperar, a altura é afetada negativamente com o grau de consanguinidade. Por cada unidade de F, a altura das árvores é reduzida, em média, 0,96 m \pm 0,29 (tabela 4.3), ou seja, um indivíduo descendente de autopolinização (com F = 0,5) perde, em média, 0,48 metros em relação a descendências não consanguíneas, um valor de depressão endogâmica de cerca de 11%.

Tabela 4.3: Estimativas dos efeitos fixos da interceção e declive da covariável F, respetivos erros padrão e p-value (Pr(>|t|)). As variâncias dos efeitos aleatórios para a Mãe e Ensaio são igualmente apresentadas. Os resultados do modelo estão detalhados no anexo 6 - figura 1.

Modelo 1: ALT ~ F + (1 Ensaio) + ((1 Mãe) + (0 + F Mãe))				
Efeitos fixos	Estimativa	Erro padrão	Significância	
μ	4,4310	0,7520	Pr(> t) = 0,00391**	
F	-0,9566	0,2889	Pr(> t) = 0,02188 *	
Efeitos aleatórios	Variância	Significância	Observações	
Mãe	0,2320	(A) Pr(>Chisq) = 0,0588 ·	LRT: retirado o efeito da Mãe e $F_{mãe}$ e comparado com modelo 1	
F _{Mãe}	0,0308	(B) Pr(>Chisq) = 0,4028 NS	LRT: retirado o efeito da $F_{M\tilde{a}e}$ e comparado com modelo 1	
Ensaio	2,7901	(C) $Pr(>Chisq) = 2,2x10^{-16} ***$	LRT: retirado o efeito do ensaio e comparado com modelo 1	
Resíduo	0,3734	-	-	

Códigos de significância: *** < 0,001; ** < 0,01; * < 0,05; • < 0,1; NS – não significativo

A: Probabilidade LRT entre modelo 1 e 1A Modelo1: ALT ~ F + (1|Ensaio) + ((1|Mãe) + (0+F|Mãe)) Modelo1A: ALT ~ F + (1|Ensaio)

B: Probabilidade LRT entre modelo 1 e 1B Modelo1: ALT ~ F + (1|Ensaio) + ((1|Mãe) + (0+F|Mãe)) Modelo1B: ALT ~ F + (1|Ensaio) + (1|Mãe) C: Probabilidade LRT entre modelo 1 e 1C Modelo1: ALT ~ F + (1|Ensaio) + ((1|Mãe) + (0+F|Mãe)) Modelo1C: ALT ~ F + ((1|Mãe) + (0+F|Mãe))

É possível notar com maior clareza o efeito negativo do grau de consanguinidade na altura, representado pelo declive decrescente da reta (figura 4.4).

Figura 4.4: Altura das árvores em relação ao coeficiente de consanguinidade para a média dos ensaios.

Com a atual amostragem, não foi possível obter significância estatística (P = 0,4028) que suportasse o facto de descendências de diferentes mães pudessem ser mais, ou menos, afetadas pela perda de produtividade relacionada com a consanguinidade. No entanto, o modelo 1 possibilitou reportar as diversas interações entre o coeficiente de consanguinidade e as diversas mães através dos efeitos aleatórios "(1|Mãe) + (0+F|Mãe)", que dão liberdade ao modelo para variar a interceção e o declive da reta consoante a mãe seguindo uma distribuição normal com variância 0,2320 e 0,0308, respetivamente. Os valores das interceções e declives referentes a cada mãe obtidos pela função "coef", estão representados na tabela 4.4.

Tabela 4.4: Depressão endogâmica, dado como o declive da regressão entre altura e grau de consanguinidade (bF) para cada uma das mães representadas no estudo, bem como o seu valor genético representado pelas diversas interceções.

Mãe	Interceção	bF
M74	4,674	-1,486
M18	4,330	-0,933
M49	4,439	-0,796
M28	4,506	-0,750
M07	4,260	-1,090
M13	4,334	-0,515
M89	4,473	-1,127
Média da População	4,431	-0,957

Todas as sete mães revelaram uma diferença relativamente aos valores populacionais apresentados anteriormente (interceção = 4,431; declive = -0,957). É de notar que apesar de existirem diferenças, todos os declives continuam negativos, indicando uma perda de produtividade associada ao grau de consanguinidade em todas as descendências. Esta diferença foi mais acentuada em certas mães do que outras, o que revela uma possível influência do fator materno nesta perda, podendo existir uma maior, ou menor, depressão consoante a descendência considerada. A mãe M74 possui a maior estimativa de perda igual a -1,486, ou seja, indica uma diminuição de altura de 1,486 metros por cada unidade de "F". Por outro lado, com um declive aparentemente menos acentuado relativamente às restantes, encontra-se a mãe M13 apresentando maior tolerância à endogamia. As restantes mães possuem valores entre as duas mencionadas, aproximando-se da média. A figura 4.5 realça a influência do fator materno na relação da consanguinidade com a produtividade das árvores. A representação gráfica foi baseada nos coeficientes da tabela 4.4 originando sete retas com interceções e declives variáveis e uma reta igual à média populacional proveniente da figura 4.4, para fins comparativos.

Figura 4.5: Altura das árvores em relação ao coeficiente de consanguinidade por mãe.

4.6. Relação entre a consanguinidade e os fenótipos anómalos

A avaliação do efeito do *inbreeding*, representada pelo coeficiente de consanguinidade "F" (tabela 4.5), nos fenótipos anómalos descritos anteriormente (figura 4.3), revelou que não existia uma associação significativa entre ambos. Esta avaliação foi efetuada através do teste de qui-quadrado, que testou se existia uma dependência entre as duas variáveis. Os resultados não permitiram rejeitar a hipótese nula ($\chi^2(4) = 2,4277$; p = 0,6576), indicando que o coeficiente de consanguinidade parece ser independente dos fenótipos anómalos.

Tabela 4.5: Tabela de contingência utilizada como *input* no teste de qui-quadrado realizado em R. A tabela apresenta a contagem de indivíduos com fenótipos normais e anómalos relativamente a cada valor de coeficiente de consanguinidade (F).

Coeficiente de Consanguinidade	Fenótipo Normal	Fenótipo Anómalo
(F)		
0	160	17
0,063	33	2
0,125	11	0
0,25	3	0
0,5	87	11

Apesar de não se conseguir demonstrar a existência de uma relação entre o grau de consanguinidade e os fenótipos anómalos, estes podem estar relacionados com alguns cruzamentos ou progenitores serem particularmente propícios a expressar esta característica.

A tabela 4.6, sumariza todos os cruzamentos considerados no presente estudo. É de notar que os fenótipos anómalos estão dispersos pelos vários cruzamentos. No entanto, em alguns destes a incidência de anormalidades foi maior. O cruzamento M49 com M28 produziu 7 indivíduos com anormalidades num total de 22. Quando comparado aos restantes cruzamentos com um universo amostral semelhante, é de facto, o cruzamento com maior número de descendência anómala, com uma percentagem de ocorrência de aproximadamente 31,8%. O cruzamento 100841010 com M18, apesar de possuir um universo amostral muito reduzido, também encontrou valores mais elevados em comparação com os restantes. Este originou 4 descendentes com fenótipos anómalos num total de 10.

Tabela 4.6: Número de descendentes com fenótipo normal ou anómalo resultantes dos cruzamentos obtidos na análise. Os cruzamentos incluídos têm no mínimo 10 descendentes e são representados pela junção dos progenitores A com B. Os progenitores indeterminados são fruto de contaminações do pomar com pólen externo não permitindo a sua identificação.

Α	В	Fenótipo Normal	Fenótipo Anómalo
M49	M28	15	7
M49	M49	37	1
100841010	M18	6	4
M07	M89	12	0
M07	100841010	11	1
M07	100881019	13	0
M07	Indeterminado	9	1
M13	M89	33	1
M89	M89	13	3
M28	M28	18	0
M74	M89	16	0
M74	100841010	10	0
M74	M74	10	0

5. Discussão de Resultados

5.1. Avaliação do sucesso de amplificação dos microssatélites

A utilização de microssatélites como marcadores para testes de paternidade permitiu compreender a relação entre a consanguinidade e a produtividade/fenótipo expresso em Eucalyptus globulus. Os microssatélites mostraram diferentes níveis de sucesso de amplificação, resultando em indivíduos com algumas falhas no seu perfil, porém suficientes para realizar a identificação dos parentes masculinos (mínimo 6 loci). O microssatélite Embra119 foi o marcador com menor sucesso de amplificação, não tendo sido possível obter amplificação deste loci em 32 indivíduos. O loci Embra119 é amplificado por um dos primers mais pequenos dos 12 utilizados neste estudo, com apenas 18 pares de base (anexo 4 – tabela 3). Avaliando o sucesso de amplificação tendo por base apenas o tamanho dos primers, seria de esperar que este primer não tivesse dificuldades em formar ligações com o DNA, concluindo-se não ser possível relacionar o tamanho com o sucesso de amplificação. O nível de insucesso pode estar relacionado com a ocorrência de mutações nas zonas adjacentes aos microssatélites de alguns indivíduos, dificultando a ligação dos primers por falta de complementaridade e por conseguinte originando alelos nulos (Primmer et al., 1995; Dakin e Avise, 2004). Possivelmente, também pode ser justificado pela eventual degradação das cadeias de DNA de algumas amostras que resulta na inibição da amplificação de um ou vários microssatélites (Akane et al., 1993; Fisher et al. 1993). 7,1% das amostras analisadas consistem em plantas com 2 ou mais SSRs não amplificados. Indivíduos com DNA degradado têm maior probabilidade de reduzir o sucesso de amplificação de vários microssatélites em simultâneo. Por outro lado, após a observação dos indivíduos sem amplificação referidos na tabela 4.1, as falhas aparentam, em alguns casos, demonstrar um padrão. No caso do microssatélite Eg65, que apenas apresentou um indivíduo sem amplificação, o seu perfil continha não só a falha para este microssatélite, mas também para o En15 e Es76, sendo os três do mesmo multiplex (anexo 4 - tabela 3 e 4). O Embra41 é outro exemplo com poucos insucessos e de igual forma, os 3 indivíduos com amplificação nula para este microssatélite também apresentam falhas para o Embra23 e Embra227, novamente pertencentes ao mesmo multiplex. O Embra119, ao contrário dos anteriores e como foi referido anteriormente, possui a maior taxa de insucesso, no entanto só 15,6% dos indivíduos partilham a falha com os restantes microssatélites do multiplex. Este padrão aconteceu em 3,4% dos indivíduos amostrados, sendo o critério possuírem no mínimo um multiplex inteiro em falta, o que reflete 35% das amplificações falhadas. Estes valores indicam que o insucesso de amplificação pode não só estar relacionado com a degradação do DNA ou com as mutações das regiões adjacentes aos SSRs, mas também com problemas relacionados com os multiplexes, visto que estes possuem um elevado número de interações complexas (Álvarez-Fernandéz, 2013) que podem pontualmente inibir a amplificação.

5.2. Dinâmica de cruzamentos do pomar de polinização aberta

Para além do sucesso de amplificação, este estudo também confirmou que *E. globulus* possui uma variabilidade considerável de alelos de microssatélites. Esta variabilidade foi útil para diferenciar indivíduos, etapa essencial neste projeto, mas também é uma indicação da presença de alguma variabilidade genética na população (Steane *et al.*, 2001; Ribeiro *et al.*, 2011; Costa *et al.*, 2017), visto que esta se tende a perder com os cruzamentos sucessivos dos programas de melhoramento genético. A heterozigotia representa um fator importante para dar continuidade à espécie e permitir que esta tenha um background genético alargado para se adaptar a diversas adversidades do meio (Sellis *et al.*, 2011). A heterozigotia é muito importante para este estudo em particular, pelo facto de o pomar de sementes

ser de polinização aberta, ocorrendo inbreeding. A existência de autopolinização poderia causar efeitos negativos muito agravados se existisse uma frequência de homozigotia elevada (Whitlock et al., 2000; Charlesworth e Willis, 2009). Conforme apresentado nos resultados (tabela 4.2), o *inbreeding* registado para a descendência de cada mãe foi variável em cada ano de colheita de semente. Isto deve-se ao facto de a floração ser variável consoante o ano, existindo uma maior ou menor disponibilidade de pólen no pomar. Quando a disponibilidade de pólen é menor, existe uma maior tendência para as espécies monoicas, como é o caso do eucalipto, se autopolinizarem resultando numa percentagem de *inbreeding* mais elevada. As árvores possuem uma base genética que regula e determina o tempo de floração de cada indivíduo (Birtchnell e Gibson, 2006; Ehrenreich et al., 2009; Andrés e Coupland, 2012), podendo originar situações em E. globulus onde a antese não é sincronizada (Jones et al., 2011), diminuindo a concentração de pólen disponível em simultâneo no pomar e aumentando os autocruzamentos. Neste estudo, a mãe M49 e M28 apresentaram elevadas taxas de *inbreeding* de forma consistente nos dois anos que produziram descendência (tabela 4.2). Estes valores são possivelmente justificados por ambas manifestarem o pico de floração em novembro (Araújo, comunicação pessoal), um período precoce em comparação às restantes árvores do pomar, ficando apenas disponível o seu próprio pólen para fecundar. Por outro lado, todas as outras mães analisadas possuem o pico de floração em dezembro-janeiro ou janeiro-fevereiro (Araújo, comunicação pessoal), resultando numa percentagem de inbreeding mais baixa. Esta variação entre famílias pode também estar relacionada com mecanismos de auto incompatibilidade que impedem a maturação da semente proveniente de self (McGowen et al., 2010). McGowen refere que encontrou mecanismos de auto incompatibilidade em E. globulus com uma eficácia em média de 91%, mas que dependendo do genótipo essa eficácia variava entre 8% e 100%. A variabilidade genética existente nos diversos genótipos deverá estar presente nas árvores do pomar, explicando os diferentes valores de autopolinização obtidos nas diversas mães analisadas. As percentagens de contaminação também foram variáveis consoante o ano de colheita, no entanto com uma tendência crescente ao longo dos anos. Estas percentagens dependem em grande parte da quantidade e tempo de floração das árvores circundantes, para além de fatores ambientais como a atividade dos polinizadores. É de esperar que as mães em floração localizadas na periferia do pomar tenham uma maior contaminação com pólen externo, visto que estão mais próximas da fonte de contaminação (figura 3.1a). Relativamente ao primeiro ano de colheita, 2013/2014, e para toda a amostragem analisada, não se encontraram indivíduos resultantes de *inbreeding* nem de contaminação. Estes valores não significam necessariamente que não existam de todo cruzamentos consanguíneos ou contaminações nesse ano, constituindo uma indicação de que, a existir, estariam presentes numa baixa percentagem.

5.3. Qual o impacto do inbreeding no pomar de Eucalyptus globulus?

O efeito da consanguinidade no *fitness* já foi relatado para diversas espécies através de variáveis como a depressão endogâmica e a carga do *inbreeding*, sendo sempre descrito como negativo (Charlesworth e Willis, 2009). No presente trabalho em *E. globulus*, foi determinada e quantificada a influência do grau de parentesco na produtividade da descendência de um pomar de produção de sementes, nos primeiros anos de vida. Os resultados mostraram que existe um decréscimo da média das alturas da descendência à medida que aumenta o grau de consanguinidade dos pais, representado pelo coeficiente de *inbreeding*, F (tabela 4.3). A estimativa do modelo populacional, -0,957, que representa a carga do *inbreeding*, indica que um individuo proveniente de cruzamento self apresenta, em média, uma perda de 0,48 metros quando comparado a um totalmente *outcross*, representando cerca de 11% de depressão endogâmica. Pode parecer um valor insignificante, mas tendo em conta que este estudo inclui apenas indivíduos em início de vida (1,5 anos a 2,6 anos de idade), com alturas entre 1,2 e 8,5 metros,

esse valor pode ter um maior impacto. Uma perda de vigor nos primeiros ciclos de crescimento origina um desequilíbrio na competição intraespecífica inicial. As árvores circundantes vão originar um maior ensombramento e, por conseguinte, vão alcançar produtividades superiores aos indivíduos afetados. Adicionalmente, árvores de maior dimensão possuem, de forma proporcional, um sistema radicular mais desenvolvido que irá permitir uma eficácia superior na absorção de nutrientes e água, conseguindo obter uma maior percentagem dos recursos disponíveis no meio (Tomé *et al.*, 1994; Weiner e Damgaard, 2006; McGowen *et al.*, 2010; Costa e Silva *et al.*, 2011; Zhang *et al.*, 2017). Assim, árvores afetadas por esta depressão no início de vida, podem, no futuro, acusar uma perda de produtividade maior que a inicial devido a uma competição assimétrica (Tomé *et al.*, 1994), tornando-se numa característica indesejada para fins comerciais.

A depressão de consanguinidade implica a presença na espécie de uma variabilidade de alelos que afetem o *fitness* (neste caso o crescimento) (Husband e Schemske, 1996; Keller e Waller, 2002; Charlesworth e Willis, 2009), alelos estes que podem ser provenientes de mutações deletérias presentes na população a uma frequência muito baixa. Devido à sua natureza recessiva, estas características são potenciadas pelo *inbreeding* uma vez que este aumenta a frequência de homozigotia na população (Hedrick *et al.*, 2016), aumentando também a expressão destes efeitos (Whitlock *et al.*, 2000; Charlesworth e Willis, 2009). Por outro lado, este efeito proveniente da consanguinidade pode também ser justificado pela sobredominância genética, ou seja, a presença de um fenótipo mais vantajoso quando os indivíduos são heterozigóticos (Charlesworth e Charlesworth, 1987; Lynch e Walsh, 1998; Charlesworth e Willis, 2009; Hedrick *et al.*, 2016). Este é um tópico controverso, no qual não se sabe qual dos efeitos genéticos é responsável pela depressão de consanguinidade, no entanto as duas hipóteses não são mutuamente exclusivas (Costa e Silva *et al.*, 2011; Hedrick *et al.*, 2016).

Este projeto corrobora diversos estudos que mencionam a relação negativa entre o *inbreeding* e a produtividade em E. globulus. Costa e Silva (2011), apesar de não utilizar diretamente a altura como medida de produtividade, encontrou no seu modelo linear misto uma diminuição do diâmetro à altura do peito em média -0,026 cm \pm 0,004 e -0,015 cm \pm 0,02 (dois locais diferentes) por cada unidade de F de medições de E. globulus de 2 anos de idade (Costa e Silva et al., 2011). Hardner (1995) também verificou uma diminuição em média de 17% de altura na comparação entre indivíduos descendentes de self e outcross com idade de 8 meses. Além disso, concluiu que a depressão aumentava com o tempo de vida das árvores, subindo de 17% para 22% com 1,58 anos e 26% com 3,58 anos (Hardner e Potts, 1995). Nickolas (2019) também reportou um efeito negativo do inbreeding nos primeiros anos de vida de E. globulus, na ordem dos 22% a 27% de redução na altura em comparação aos outcross, no entanto, o pico da depressão foi atingido aos 4 anos de idade e rapidamente diminuiu até se tornar insignificante numa idade mais avançada (3% aos 13 anos). Por outro lado, a viabilidade das árvores diminuiu refletindo-se no aumento da depressão na sobrevivência dos indivíduos provenientes de autocruzamentos que foi aumentando drasticamente com o avanço da idade até atingir um valor máximo de 64% aos 28 anos. Estes resultados mostram que a sobrevivência depende do crescimento no início de vida e que indivíduos resultantes de selfs com um menor crescimento têm maior probabilidade de serem eliminados (Nickolas et al., 2019). Tudo indica que a descendência do pomar analisada neste trabalho, também segue a tendência de depressão endogâmica encontrada na bibliografia. No entanto, os dados analisados não permitem tirar conclusões sobre a sobrevivência dos indivíduos visto que são referentes aos 2,6 primeiros anos onde a mortalidade no campo é ainda similar aos outcross (Nickolas et al., 2019).

5.4. A depressão endogâmica difere entre genótipos?

Um terceiro objetivo (3) deste estudo era perceber se existia alguma diferença na depressão endogâmica quando explorada ao nível individual, sendo neste caso marcada pelo efeito das mães no modelo (tabela 4.4). Apesar de não ser suportada estatisticamente devido à reduzida amostragem que resulta num erro padrão muito elevado, a variação dos diferentes declives apresentados na figura 4.5 aparenta indicar que possivelmente a descendência é afetada de forma diferente pelo coeficiente de consanguinidade consoante a mãe considerada. Alguns progenitores originam árvores que são mais afetadas pela depressão, como é o caso da mãe M74, cuja descendência self perde em média 0,74 metros em relação aos indivíduos outcross. Por outro lado, outros progenitores não são tão afetados, por exemplo a descendência da mãe M13 que possui uma perda mais ligeira, na ordem dos 0,26 metros. Esta variação pode ser explicada pela variabilidade genética inerente aos indivíduos que resulta em cargas genéticas diferentes (Charlesworth e Willis, 2009; Costa e Silva et al, 2010). Certas mães podem ter herdado um maior número de mutacões deletérias em determinados alelos que têm os seus efeitos expressos de forma mais intensa na sua descendência inbred. Uma vez que existe esta variação, parece indicar que a população do pomar ainda mantem alguma variabilidade genética, apesar de ter tendência de a perder com os diversos ciclos de melhoramento genético do qual deriva. A variabilidade genética também explica os diferentes valores de interceções para cada mãe, encontrados na tabela 4.4. As interceções são o valor genético intrínseco a cada genótipo. Existem mães naturalmente mais produtivas que outras e que apresentam, em média, descendências com alturas mais elevadas. Toda a informação reportada é essencial num contexto de produção de sementes, onde se pretende escolher os indivíduos superiores para originar uma descendência com produtividade elevada e menos suscetível à consanguinidade, aumentando desta forma a qualidade do pomar. Os resultados do modelo podem ser vistos como uma mera indicação da qualidade de cada clone, sendo necessário alargar a amostragem para cada mãe de modo a diminuir o erro padrão e aumentar a significância estatística.

5.5. As anormalidades fenotípicas são efeitos da consanguinidade?

Este estudo pretendeu ainda perceber se os fenótipos anómalos encontrados nos descendentes do pomar (figura 4.3) estavam relacionados com o grau de parentesco dos respetivos pais. Populações de plantas derivadas de cruzamentos outcross apresentam uma baixa frequência de indivíduos com anormalidades fisiológicas e morfológicas, no entanto estes carregam uma carga genética composta por mutações de alelos recessivos que manifestam o seu efeito em homozigotia (Klekowski, 1988; Fuchs et al., 2015). Por esse motivo, colocou-se a hipótese do inbreeding ter como consequência a expressão de alelos menos vantajosos que resultassem na expressão dos fenótipos anómalos encontrados nas plantas no campo, uma vez que este aumenta a frequência de homozigotia na população. Foram encontrados nos 5 ensaios avaliados, 30 indivíduos anómalos e 294 normais, distribuindo-se maioritariamente pelo F = 0 e F = 0.5, ou seja, resultantes de cruzamentos *outcross* e *self*, respetivamente. Utilizando os dados referidos, foi possível realizar um teste de qui-quadrado de independência para verificar se existia uma relação entre os fenótipos e o coeficiente de consanguinidade. O teste não permitiu rejeitar a hipótese nula e concluir que o fenótipo expresso era dependente do coeficiente de consanguinidade ($\chi^2(4)$ = 2,4277; p = 0,6576). Deste modo, existe a mesma proporção de plantas *inbred* e *outcross*, tanto com fenótipos normais como anormais. Este resultado não parece ser suportado pela bibliografia, que menciona o inbreeding como um potenciador destas anomalias morfológicas/fisiológicas (Fuchs et al., 2015). Fuchs relatou diversas características anormais em Eucalyptus grandis, desde o menor tamanho da raiz, à diferente forma das folhas, mas nomeadamente a ramificação excessiva dos ramos laterais. Esta última característica é semelhante à encontrada em E. globulus, que desenvolve uma proliferação dos gomos axilares, resultando, num estado mais avancado, ao crescimento de ramos laterais excessivos e à aparência arbustiva. É sugerido que estas características tenham origem num efeito pleiotrópico de um gene principal, aparentemente recessivo (Fuchs *et al.*, 2015).

Por outro lado, Moraes, em dois momentos distintos, refere que a utilização de paclobutrazol, um biorregulador de crescimento largamente utilizado em pomares de produção de sementes para induzir a floração, é responsável pela alteração do aspeto morfológico em *Eucalyptus grandis* (Moraes *et al.*, 2012; 2014). Um dos fenótipos reportados baseou-se na quebra de dormência dos gomos axilares, que promoveu a proliferação de diversos ramos laterais (Moraes *et al.* 2014). Este fenótipo assemelha-se ao descrito no presente projeto, levantando a hipótese de este estar relacionado com um possível efeito residual do biorregulador utilizado no pomar na descendência analisada.

Apesar de não ser possível relacionar o *inbreeding* com o aparecimento destes fenótipos, é de notar que existem cruzamentos específicos (Mãe x Pai) que aparentam ter uma maior incidência destas características (tabela 4.6). O cruzamento dos indivíduos M49 e M28 produziu 7 plantas com anormalidades perfazendo 31,8% da sua descendência e o cruzamento 100841010 e M18, apesar de possuir uma amostragem menos representativa, desenvolveu 4 casos em 10. Devido à amostragem reduzida, apenas seria uma indicação que estes cruzamentos possam ser preferenciais para este efeito, no entanto, seria uma perspetiva futura estudar as interações de ambos com uma amostragem dedicada para aumentar a fiabilidade dos resultados e perceber o que está na base do aparecimento destes fenótipos anómalos.

6. Conclusão

Eucalyptus globulus é uma espécie de elevado valor comercial para a produção de pasta de papel e a sua exploração em pomares de polinização aberta é uma forma económica e lucrativa de produzir sementes para a venda ao público. No entanto, este projeto mostrou que o pomar, no geral, apresenta *inbreeding* e contaminações, reduzindo a produtividade das sementes produzidas. Adicionalmente, foi concluído que a produtividade da descendência era influenciada negativamente pelo grau de parentesco dos progenitores e que, provavelmente, esta variava consoante o genótipo considerado. A informação obtida relativamente aos melhores/piores progenitores é essencial para construir e gerir o pomar, visto que se pretende obter as árvores que originem descendências mais produtivas e menos influenciadas pelo *inbreeding*. Estes resultados apesar de promissores, apenas podem ser vistos como uma indicação, sendo que no futuro, o aumento da amostragem da descendência de cada mãe, irá aumentar a fiabilidade do modelo, onde poderão também ser incluídos todos os progenitores do pomar. Por último, os resultados relativamente aos fenótipos anómalos não são conclusivos, mas não aparentam estar relacionados com o *inbreeding*. No entanto, será necessária uma amostragem direcionada para explorar as possíveis hipóteses e tentar perceber a origem deste problema.

7. Referências

Akane, A., Shiono, H., Matsubara, K., Nakamura, H., Hasegawa, M., & Kagawa, M. (1993). Purification of forensic specimens for the polymerase chain reaction (PCR) analysis. Journal of Forensic Science, 38(3), 691-701.

Álvarez-Fernández, R. (2013). Explanatory chapter: PCR primer design. Methods in Enzymology, 529, 1–21. https://doi.org/10.1016/B978-0-12-418687-3.00001-X

Alves, A., Pereira, J., & Silva, J. (2007). A introdução e a expansão do eucalipto em Portugal. Em A. Alves, J. Pereira, & J. Silva (Eds.), O Eucaliptal em Portugal: Impactes Ambientais e Investigação Científica (pp. 13–24). ISAPress.

Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13(9), 627–639. https://doi.org/10.1038/nrg3291

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Birtchnell, M., & Gibson, M. (2006). Long-term flowering patterns of melliferous *Eucalyptus* (Myrtaceae) species. Australian Journal of Botany, 54(8), 745–754. https://doi.org/10.1071/BT05160

Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J., & Rolf, B. (1998). Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. The American Journal of Human Genetics, 62(6), 1408-1415.

Burdon, R. D., & Shelbourne, C. J. A. (1971). Breeding populations for recurrent selection: Conflicts and possible solutions. New Zealand Journal of Forestry Science, 1(2), 174-193.

CELPA – Associação da Indústria Papeleira (2016). Boletim Estatístico 2016. http://www.celpa.pt/category/boletins-estatisticos/

Charlesworth, D., & Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics, 18(1), 237–268. https://doi.org/10.1146/annurev.es.18.110187.001321

Charlesworth, D., & Willis, J. H. (2009). The genetics of inbreeding depression. Nature Reviews Genetics, 10(11), 783–796. https://doi.org/10.1038/nrg2664

Costa e Silva, J., Hardner, C., & Potts, B. M. (2010). Genetic variation and parental performance under inbreeding for growth in *Eucalyptus globulus*. Annals of Forest Science, 67(6), 606–606. https://doi.org/10.1051/forest/2010019

Costa e Silva, J., Hardner, C., Tilyard, P., & Potts, B. M. (2011). The effects of age and environment on the expression of inbreeding depression in *Eucalyptus globulus*. Heredity, 107(1), 50–60. https://doi.org/10.1038/hdy.2010.154

Costa, J., Vaillancourt, R. E., Steane, D. A., Jones, R. C., & Marques, C. (2017). Microsatellite analysis of population structure in *Eucalyptus globulus*. Genome, 60(9), 770–777. https://doi.org/10.1139/gen-2016-0218

Dakin, E. E., & Avise, J. C. (2004). Microsatellite null alleles in parentage analysis. Heredity, 93(5), 504-509.

de Nettancourt, D. (1999). Homomorphic Self-Incompatibility in Flowering Plants. Em M. Cresti, G. Cai, & A. Moscatelli (Eds.), Fertilization in Higher Plants: Molecular and Cytological Aspects (pp. 101–112). Springer. https://doi.org/10.1007/978-3-642-59969-9_9

Dodds, W., & Whiles, M. (2010). Freshwater Ecology: Concepts and Environmental Applications of Limnology (2nd ed., Vol. 22). Academic Press.

Ehrenreich, I. M., Hanzawa, Y., Chou, L., Roe, J. L., Kover, P. X., & Purugganan, M. D. (2009). Candidate gene association mapping of *Arabidopsis* flowering time. Genetics, 183(1), 325–335. https://doi.org/10.1534/genetics.109.105189

Fisher, D. L., Holland, M. M., Mitchell, L., Sledzik, P. S., Wilcox, A. W., Wadhams, M., & Weedn, V. W. (1993). Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone. Journal of Forensic Science, 38(1), 60-68.

Fuchs, M. C. P., Tambarussi, E. V., Lourenção, J. C., Nogueira, L. M., Bortoloto, T. M., González, E. R., Oda, S., & Marino, C. L. (2015). Molecular marker associated with a deleterious recessive anomaly in *Eucalyptus grandis* seedlings. Annals of Forest Science, 72(8), 1043–1052. https://doi.org/10.1007/s13595-015-0502-9

Funda, T., & El-Kassaby, Y. A. (2012). Seed orchard genetics. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 7(13). https://doi.org/10.1079/PAVSNNR20127013

Ghazoul, J. (2005). Pollen and seed dispersal among dispersed plants. Biological Reviews, 80(3), 413–443. https://doi.org/10.1017/S1464793105006731

Griffiths, C. J., Jones, C. G., Hansen, D. M., Puttoo, M., Tatayah, R. V., Müller, C. B., & Harris, S. (2010). The Use of Extant Non-Indigenous Tortoises as a Restoration Tool to Replace Extinct Ecosystem Engineers. Restoration Ecology, 18(1), 1–7. https://doi.org/10.1111/j.1526-100X.2009.00612.x

Hardner, C. M., & Potts, B. M. (1995). Inbreeding depression and changes in variation after selfing in *Eucalyptus globulus* ssp. Globulus. Silvae Genetica, 44(1), 46–54.

Hiscock, S., & McInnis, S. (2003). The Diversity of Self-Incompatibility Systems in Flowering Plants. Plant Biology, 5, 23–32. https://doi.org/10.1055/s-2003-37981

Horsley, T. N., & Johnson, S. D. (2007). Is *Eucalyptus* cryptically self-incompatible?. Annals of Botany, 100(6), 1373-1378.

Hoy, M. A. (2013). Insect Population Ecology and Molecular Genetics. Em Insect Molecular Genetics (pp. 591–659). Elsevier. https://doi.org/10.1016/B978-0-12-415874-0.00013-5

Husband, B. C., & Schemske, D. W. (1996). Evolution of the Magnitude and Timing of Inbreeding Depression in Plants. Evolution, 50(1), 54–70. JSTOR. https://doi.org/10.2307/2410780

ICNF, I. (2015). Inventário Florestal Nacional 2015. http://www2.icnf.pt/portal/florestas/ifn/ifn6

Jones, R. C., Vaillancourt, R. E., Gore, P. L., & Potts, B. M. (2011). Genetic control of flowering time in *Eucalyptus globulus* ssp. Globulus. Tree Genetics & Genomes, 7(6), 1209–1218. https://doi.org/10.1007/s11295-011-0407-1

Keller, L. F., & Waller, D. M. (2002). Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17(5), 230–241. https://doi.org/10.1016/S0169-5347(02)02489-8

Klekowski, E. J. (1988). Genetic load and its causes in long-lived plants. Trees, 2(4), 195-203. https://doi.org/10.1007/BF00202374

Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits (Vol. 1, pp. 535-557). Sunderland, MA: Sinauer.

McCubbin, A. G., & Kao, T. (2000). Molecular recognition and response in pollen and pistil interactions. Annual Review of Cell and Developmental Biology, 16, 333–364. https://doi.org/10.1146/annurev.cellbio.16.1.333

McGowen, M. H., Vaillancourt, R. E., Pilbeam, D. J., & Potts, B. M. (2010). Sources of variation in self-incompatibility in the Australian forest tree, *Eucalyptus globulus*. Annals of Botany, 105(5), 737–745. https://doi.org/10.1093/aob/mcq036

Moraes, C., Carignato, A., Uesugi, G., Abilio, F., Palomino, E., & Mori, E. (2014). Variabilidade genética e alterações morfológicas em progênies de polinização aberta de *Eucalyptus grandis* sob o efeito de paclobutrazol. Revista Científica, 42, 396–403. https://doi.org/10.15361/1984-5529.2014v42n4p396-403

Moraes, C., Uesugi, G., Zimback, L., Guerrini, I., & Mori, E. (2012). Alterações morfológicas em *Eucalyptus grandis* sob aplicação de biorreguladores no período juvenil. Revista do Instituto Florestal, 24, 251–257.

Nickolas, H., Harrison, P. A., Tilyard, P., Vaillancourt, R. E., & Potts, B. M. (2019). Inbreeding depression and differential maladaptation shape the fitness trajectory of two co-occurring *Eucalyptus* species. Annals of forest science, 76(1), 10.

Pound, L., Patterson, B., Wallwork, M., Potts, B., & Sedgley, M. (2003). Pollen competition does not affect the success of self-pollination in *Eucalyptus globulus* (Myrtaceae). Australian Journal of Botany, 51(2), 189-195. https://doi.org/10.1071/BT02082

Pound, L., Wallwork, M., Potts, B., & Sedgley, M. (2002). Self-incompatibility in *Eucalyptus globulus* ssp. Globulus (Myrtaceae). Australian Journal of Botany, 50, 365–372. https://doi.org/10.1071/BT01076

Primmer, C. R., Møller, A. P., & Ellegren, H. (1995). Resolving genetic relationships with microsatellite markers: A parentage testing system for the swallow Hirundo rustica. Molecular Ecology, 4(4), 493–498. https://doi.org/10.1111/j.1365-294x.1995.tb00243.x

Pupin, S., Sebbenn, A. M., Cambuim, J., da Silva, A. M., Zaruma, D. U. G., Silva, P. H. M., Rosse, L. N., Souza, I. C. G., Marino, C. L., & Moraes, M. L. T. (2019). Effects of pollen contamination and non-random mating on inbreeding and outbreeding depression in a seedling seed orchard of *Eucalyptus urophylla*. Forest Ecology and Management, 437, 272–281. https://doi.org/10.1016/j.foreco.2019.01.050

Radich, M. C. (1994). Uma exótica em Portugal. Ler História, 25, 11-26

Ralls, K., Frankham, R., & Ballou, J. D. (2013). Inbreeding and Outbreeding. Em Encyclopedia of Biodiversity (pp. 245–252). Elsevier. https://doi.org/10.1016/B978-0-12-384719-5.00073-3

Ribeiro, M. M., Sanchez, L., Ribeiro, C., Cunha, F., Araújo, J., Borralho, N. M. G., & Marques, C. (2011). A case study of *Eucalyptus globulus* fingerprinting for breeding. Annals of Forest Science, 68(4), 701–714. https://doi.org/10.1007/s13595-011-0087-x

Rosenzweig, M. (2001). The four questions: What does the introduction of exotic species do to diversity? Evolutionary Ecology Research, 3, 361–367.

Sedgley, M. (1994). Self-incompatibility in woody horticultural species. Em E. G. Williams, A. E. Clarke, & R. B. Knox (Eds.), Genetic control of self-incompatibility and reproductive development in flowering plants (pp. 141–163). Springer Netherlands. https://doi.org/10.1007/978-94-017-1669-7_8.

Sellis, D., Callahan, B. J., Petrov, D. A., & Messer, P. W. (2011). Heterozygote advantage as a natural consequence of adaptation in diploids. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20666–20671. https://doi.org/10.1073/pnas.1114573108

Silva, N. F., & Goring, D. R. (2001). Mechanisms of self-incompatibility in flowering plants. Cellular and Molecular Life Sciences: CMLS, 58(14), 1988–2007. https://doi.org/10.1007/PL00000832.

Singh, R. P., Singh, P. K., Gupta, R., & Singh, R. L. (2018). Biotechnological Tools to Enhance Sustainable Production. In Biotechnology for Sustainable Agriculture (pp. 19-66). Woodhead Publishing.

Steane, D. A., Vaillancourt, R. E., Russell, J., Powell, W., Marshall, D., & Potts, B. M. (2001). Development and characterisation of microsatellite loci in *Eucalyptus globulus* (Myrtaceae). Silvae Genetica, 50(2), 89-91.

Steane, D., Conod, N., Jones, R., Vaillancourt, R., & Potts, B. (2006). A comparative analysis of population structure of a forest tree, *Eucalyptus globulus* (Myrtaceae), using microsatellite markers and quantitative traits. Tree Genet Genomes, 2, 30–38. https://doi.org/10.1007/s11295-005-0028-7

Tomé, M., Tomé, J. A., Araújo, M. C., & Pereira, J. S. (1994). Intraspecific competition in irrigated and fertilized eucalypt plantations. Forest Ecology and Management, 69(1), 211–218. https://doi.org/10.1016/0378-1127(94)90230-5

Van Buijtenen, J. P. (1984). Strategies for maintaining the genetic base. How will advanced generation tests differ from first. In Progeny testing: proceedings of Servicewide Genetics Workshop (pp. 566 – 572). Washington DC: USDA Forest Service.

Vieira, M. L. C., Santini, L., Diniz, A. L., & Munhoz, C. de F. (2016). Microsatellite markers: What they mean and why they are so useful. Genetics and Molecular Biology, 39(3), 312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

Weiner, J., & Damgaard, C. (2006). Size-asymmetric competition and size-asymmetric growth in a spatially explicit zone-of-influence model of plant competition. Ecological Research, 21, 707–712. https://doi.org/10.1007/s11284-006-0178-6

Wellmann, R. (2019). Optimum contribution selection for animal breeding and conservation: the R package optiSel. BMC bioinformatics, 20(1), 1-13.

Whitlock, M. C., Ingvarsson, P. K., & Hatfield, T. (2000). Local drift load and the heterosis of interconnected populations. Heredity, 84(4), 452-457.

Zhang, Z., Papaik, M. J., Wang, X., Hao, Z., Ye, J., Lin, F., & Yuan, Z. (2017). The effect of tree size, neighborhood competition and environment on tree growth in an old-growth temperate forest. Journal of Plant Ecology, 10(6), 970-980. https://doi.org/10.1093/jpe/rtw126
8. Anexos

Anexo 1 - Condições edafoclimáticas dos ensaios.

Tabela 1 – Condições edafoclimáticas dos diferentes ensaios. Apresenta o volume anual de precipitação (P_anual (mm)), a litologia do solo, classificação do solo (fonte: FAO) e as temperaturas médias, mínimas e máximas anuais em °C (Tmed, Tmin e Tmax, respetivamente) (Informação cedida pelo RAIZ).

Ensaio	Instalação	Concelho	P_anual (mm)	Litologia	FAO	Tmed	Tmin	Tmax
А	26/11/2015	Fundão	1400- 1600	Xistos e grauvaques Leptossolo hiperesquelético húmico assoc. a Leptossolo esquelético húmico		13,39	8,09	18,87
В	31/12/2016	Abrantes	800-900	Areias, calhausRegossolo epilético arénicorolados, arenitosassoc. Regossolopouco consolidados,endoléptico arénicoargilasesquelético		15,1	8,49	21,82
С	28/03/2017	Oleiros	1200 - 1400	Xistos, grauvaques	Leptossolo hiperesquelético húmico assoc. a Leptossolo esquelético húmico	13,17	8,13	18,59
D	15/12/2017	Abrantes	700-900	Arenitos, calcários mais ou menos margosos, areias, cascalheiras, argilas	Regossolo endoléptico arénico húmico esquelético assoc. Regossolo epiléptico arénico esquelético	15,24	8,93	21,84
Е	15/12/2017	Nisa	800-900	Xistos, grauvaques	Leptossolo hiperesquelético assoc. a Leptossolo esquelético	15,65	10,06	21,21

Anexo 2 - Caracterização do pomar de sementes de polinização aberta do RAIZ

Tabela 1 – Progenitores do pomar e respetivo número de rametos.

Figura 1 – Distribuição dos rametos pelo pomar.

Anexo 3 - Protocolo da Extração de DNA Genómico de Eucalipto.

Material biológico: folhas jovens recém-colhidas conservadas em raminhos a 4°C, não mais de 5 dias, ou folhas secas à temperatura ambiente durante 1 mês.

Sistema de maceração mecânica: sistema FastPrep – Bio101

Preparação:

- Marcar tubos (por amostra)
- Ligar banho maria a 65°C
- Aquecer "Eucalyptus DNA extraction buffer" (Adap. 2) após adição de 0,2% mercaptoetanol

- Verificar a existência de isopropanol a -20°C, de CIA (24:1), etanol (70%) e etanol absoluto a 4°C

Procedimento:

- 1. Sobre uma superfície plana revestida de toalhetes, excisar 3 discos foliares de 5 mm de diâmetro, evitando a nervura principal (aproximadamente 9-10 mg de tecido).
- 2. Colocar os discos num tubo de 2.0 ml estéril (tubo de maceração) contendo no fundo uma esfera de cerâmica. Adicionar um cilindro de cerâmica de forma a que o material vegetal fique entre as duas partículas de cerâmica. Deve-se trabalhar, no máximo, com doze tubos em cada ciclo (capacidade do aparelho).
- 3. Adicionar rapidamente 400 μl de "Eucalyptus DNA extraction buffer (Adap. 2)" previamente aquecido a 65°C.
- 4. Provocar a disrupção mecânica do tecido sujeitando os tubos ao movimento proporcionado pelo rotor do sistema FastPrep Bio101, devendo-se selecionar a velocidade de 4,5 m/s por um período de 30s. Verificar a maceração (quanto menos tempo, melhor).
- 5. Incubar os tubos 1 hora, num banho a 65°C. Inverter vigorosamente os tubos de 10 em 10 minutos.
- 6. Deixar arrefecer à temperatura ambiente aproximadamente por 3 minutos.
- Adicionar 400 μl de CIA [clorofórmio: álcool isoamílico (24:1)], misturar por inversão (cerca de 100x) até se obter uma boa emulsão.
- 8. Centrifugar a RCF 16250 por **10 minutos**¹.
- Transferir a fase aquosa superior para um tubo "eppendorf" branco de 1,5 ml, evitando (importante!) contaminações entre as fases (sugestão: calibrar a pipeta P200 para 100 μl e retirar não mais de 3x esse volume).
- Adicionar 260 µl de isopropanol (a -20°C) suavemente através da parede do tubo. Misturar suavemente por inversão e manter as amostras a -20°C por 30 min (não mais, de forma a evitar a precipitação de contaminantes).
- 11. Centrifugar (se possível a 4°C) a **RCF 10500 por 20 minutos**². Desprezar o sobrenadante, tendo em atenção a permanência do *pellet* no fundo do tubo.
- 12. Lavar o *pellet* obtido com 1 ml de **wash buffer***³ (durante a noite) à temperatura ambiente (se possível com agitação moderada). É importante soltar o *pellet* do tubo, de maneira que flutue no etanol. Centrifugar **10** minutos a RCF 5000 a 4°C⁴ para fixar o pellet antes de substituir a solução de lavagem. Desprezar o *wash buffer* e fazer nova lavagem com 1 ml de etanol absoluto, centrifugar 5 minutos a RCF 16250 para fixar o *pellet*.
- 13. Secar muito bem o *pellet* deixando os tubos abertos **aproximadamente 45 minutos**⁵. O DNA deverá encontrar-se bem seco antes de se proceder à sua ressuspensão.
- 14. Proceder à ressuspensão completa do *pellet* em 100 μl de uma solução preparada a fresco de 1x TE (pH 8,0) + RNAse (10 μg/ml), centrifugar brevemente (*spin*). Incubar a 37°C por 60 minutos, dando duas agitações intermédias e com *spin* no final.
- 15. Quantificar o DNA das amostras através de espetrofotometria.
- 16. Conservar as soluções a 4°C para uma utilização a curto prazo (máximo 1 mês) e a -20°C para ensaios de curto/médio prazo (máximo 1 ano).
- * Wash buffer: Acetato de amónio 0,01 M em 76% de etanol

Otimizações

¹ Alterado de 5 minutos para 10 minutos (melhor separação de fases)

- ² Alterado de 16250 g para 10500 g e de 10 minutos para 20 minutos (melhor fixação do *pellet*)
- ³ Alterado de Etanol 70% para *wash buffer* (lavagens do DNA mais eficientes)

⁴ Alterado de 3 minutos para 10 minutos e de 16250 g para 5000 g a 4°C (melhor fixação do *pellet*)

⁵ Tempo de secagem alterado de durante a noite para 45 minutos (maior facilidade na ressuspensão do *pellet*)

Referências: Doyle, J. J., & Doyle, J. L. (1987). Isolation of DNA from fresh plant tissue. Focus, 12, 13-15.

Grattapaglia, D and B Crane. 1993. Construction of linkage maps using RAPD markers. NCSU Biotech. Summer course BIT 697E.

Tabela 1 – Constituição do Eucalyptus DNA Extraction Buffer (adap. 2)

Reagentes	Stock	Concentração Final	100 ml
NaCl		1,4 M	8,2 g
CTAB ¹		2%	2 g
EDTA pH 8	0,5 M	20 mM	4 ml
Tris HCl pH 8	1 M	100 mM	10 ml
PVP		1%	1 g

- ¹ Adicionar após a dissolução do sal;

- Perfazer volume com SDW ou H₂O bidestilada;

- Autoclavar

Anexo 4 - Protocolo de amplificação de DNA

Tabela 1 – Reagentes e suas respetivas concentrações necessárias para a reação de amplificação. Entre parenteses estão os volumes otimizados.

Amplificação	Stock	Condições de reação	Por amostra (µl)	Por reação (µl)	Por reação (µl)	Por reação (µl)	Por reação (µl)
DNA Genómico		20 ng	2	2	2	2	2
Mix				•			
SDW		-		1,8	2,1 (1,5)	1,9 (1,5)	2,1
DMSO	50%	5%		1	1	1	1
Tampão (Promega)	5 x	1 x		2	2	2	2
MgCl ₂ (Promega)	25 nM	2 mM		0,8	0,8	0,8	0,8
dNTP's	2,5 nM	0,2 mM cd		0,8	0,8	0,8	0,8
Primer Fwd	5 μΜ	0,15 µM		0,3	0,3	0,3	0,3
Primer Rev	5 μΜ	0,15 µM		0,3	0,3	0,3	0,3
Primer Fwd	5 μΜ	$0,075-0,15\ \mu M$		0,15	0,2 (0,3)	0,3	0,3
Primer Rev	5 μΜ	$0,075-0,15\ \mu M$	8	0,15	0,2 (0,3)	0,3	0,3
Primer Fwd	5 μΜ	$0,05-0,075~\mu M$		0,15	0,1 (0,3)	0,1 (0,3)	
Primer Rev	5 μΜ	$0,05 - 0,075 \ \mu M$		0,15	0,1 (0,3)	0,1 (0,3)	
Primer Fwd	5 μΜ	0,075 μM		0,15			
Primer Rev	5 μΜ	0,075 μM		0,15			
GoTaq G2 Flexi DNAPolymerase (Promega)	5U (µl)	0,5 U		0,1	0,1	0,1	0,1
Fwd – Forward: Rev – Rev	erse		Embra11 Embra119 Emcrc8 Emcrc7	Embra23 Embra41 Embra227	En15 Es76 Eg65	Embra37 En12	
			Multiplex 1	Multiplex 2	Multiplex 3	Multiplex 4	

Tabela 2 – Condições de PCR

Tempo	Temperatura	Número de Ciclos	
30''	94°C		
30''	94°C	15 sistes diminuindo 0.2%	
30''	56°C	15 ciclos, diminumao -0,2 C	
45''	72°C	caua	
30''	94°C		
30''	53°C	20 ciclos	
45''	72°C		
7"	72°C		

Microssatélite	Sequência	Tamanho dos fragmentos
Embra11F	GCTTAGAATTTGCCTAAACC	04 147
Embra11R	GTAAAATCCATGGGCAAG	94-147
Embra119F	GGAATTTCCCGTCAAATC	117 224
Embra119R	CTGAAGCTTGACAATCAGG	11/-224
Emcrc8F	CCAGATTGTAGCCCTTATGTG	220.262
Emcrc8R	CATCCCAATCAAACGAAC	229-203
Emcrc7F	CGAATCAAGTCGACATGTGTG	765 217
Emcrc7R	CCGTCGACCGCCCTAT	203-517
Embra23F	GGTTGTTTCATCTTTTCCATG	114 150
Embra23R	AGCGAAGGCAATGTGTTT	114-150
Embra41F	ATGATTTTGTGCGTGGAC	174 210
Embra41R	TCAGGTGAAAGGATGGAG	174-210
Embra227F	CGAATGCCATAGATTGTCAG	200 224
Embra227R	CAGGCATCTCGTACGTGGA	500-524
En15F	TCCTCGTGCTCATACTCAAA	70.104
En15R	ATGGCTGGAAGTAACCGAGA	70-104
Es76F	AATGCTGCTGTAGACGATGC	125 177
Es76R	AAGACAAATCAAGCAAGTCAGC	123-177
Eg65F	CGGCCTCATTTCTCTAGGTG	228 201
Eg65R	GGCTAGACTAGGGGAAAGCG	228-291
Embra37F	CACCTCTCCAAACTACACAA	114 170
Embra37R	CTCCTCTCTCTCTCACCATTC	114-170
En12F	CAGAACCCAGCGGAGGA	210 252
En12R	GGAAACGCCAATGTAGCTCT	210-232

Tabela 3 – Microssatélites e as suas respetivas sequências dos *primers forward* (F) e *reverse* (R) e tamanho dos fragmentos. Fonte: RAIZ.

Anexo 5 - Dados Amostrados

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
1	A (394)	8	2,6	M74	M49	0,063	0	7,7
2	A (394)	27	2,6	M13	M89	0	0	4,2
3	A (394)	30	2,6	M18	100841010	0	0	6,6
4	A (394)	31	2,6	M18	100841010	0	1	3,8
5	A (394)	32	2,6	M13	100841010	0,063	0	6,8
6	A (394)	50	2,6	M07	M89	0	0	7,1
7	A (394)	71	2,6	M18	100841010	0	0	8
8	A (394)	73	2,6	M74	M89	0	0	7,5
9	A (394)	91	2,6	M13	M89	0	0	7,1
10	A (394)	92	2,6	M13	M89	0	0	7,6
11	A (394)	119	2,6	M18	M28	0	0	7,1
12	A (394)	139	2,6	M74	100841010	0,125	0	7,1
13	A (394)	140	2,6	M13	100841010	0,063	0	7
14	A (394)	143	2,6	M18	100841010	0	0	7,3
15	A (394)	145	2,6	M07	100841010	0,063	0	7,1
16	A (394)	154	2,6	M13	M89	0	0	7,3
17	A (394)	156	2,6	M13	M89	0	0	7,9
18	A (394)	161	2,6	M18	100881019	0	0	6,1
19	A (394)	176	2,6	M07	M89	0	0	6,9
20	A (394)	178	2,6	M07	M89	0	0	6,2
21	A (394)	202	2,6	M13	M07	0,063	0	7
22	A (394)	218	2,6	M07	M89	0	0	6
23	A (394)	221	2,6	M74	1235	0	0	7,8
24	A (394)	227	2,6	M18	100881019	0	0	7,4
25	A (394)	232	2,6	M07	100841010	0,063	0	7,2
26	A (394)	237	2,6	M18	100841010	0	0	6,6
27	A (394)	247	2,6	M18	100841010	0	1	4,3
28	A (394)	250	2,6	M18	100820011	0,063	0	6,2
29	A (394)	252	2,6	M74	M49	0,063	0	7,6
30	A (394)	254	2,6	M13	M89	0	0	8,5
31	A (394)	256	2,6	M13	M89	0	0	5,3
32	A (394)	288	2,6	M07	M89	0	0	6,9
33	A (394)	305	2,6	M07	M89	0	0	7,1
34	A (394)	308	2,6	M07	M89	0	0	7,3
35	A (394)	311	2,6	M18	M28	0	0	7,3
36	A (394)	312	2,6	M18	1213	0,25	0	
37	A (394)	314	2,6	M13	100841010	0,063	0	7,8
38	A (394)	345	2,6	M74	M49	0,063	0	7,5

Tabela 1 – Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
39	A (394)	349	2,6	M18	100841010	0	0	6,6
40	A (394)	352	2,6	M07	M89	0	0	7,2
41	A (394)	362	2,6	M74	M89	0	0	6,9
42	A (394)	371	2,6	M18	M28	0	0	6,4
43	A (394)	384	2,6	M13	M89	0	0	6,6
44	A (394)	401	2,6	M74	M49	0,063	0	7,6
45	A (394)	414	2,6	M18	M89	0	0	6,1
46	A (394)	424	2,6	M18	100841010	0	0	7,1
47	A (394)	428	2,6	M07	M89	0	0	6,8
48	A (394)	441	2,6	M13	100856002	0,063	0	7,1
49	A (394)	448	2,6	M07	M89	0	0	7
50	A (394)	449	2,6	M07	1235	0	0	6,8
51	A (394)	450	2,6	M13	M89	0	0	6,7
52	A (394)	463	2,6	M18	M89	0	0	7,5
53	A (394)	479	2,6	M13	100841010	0,063	0	7,5
54	A (394)	480	2,6	M74	1235	0	0	8
55	A (394)	492	2,6	M18	M28	0,25	0	7,1
56	B (407)	15	1,6	M74	M89	0	0	
57	B (407)	17	1,6	M13	0	0	0	
58	B (407)	18	1,6	M13	M07	0,063	0	4,1
59	B (407)	19	1,6	M13	0	0	0	3,3
60	B (407)	43	1,6	M07	0	0	0	
61	B (407)	44	1,6	M07	100881019	0	0	3,8
62	B (407)	45	1,6	M07	100841010	0,063	0	
63	B (407)	46	1,6	M07	0	0	0	4,2
64	B (407)	47	1,6	M07	100841010	0,063	0	
65	B (407)	91	1,6	M74	M28	0	0	4,5
66	B (407)	92	1,6	M74	M89	0	0	5,1
67	B (407)	94	1,6	M74	M74	0,5	0	3,3
68	B (407)	99	1,6	M49	0	0	0	4,1
69	B (407)	100	1,6	M49	M49	0,5	0	
70	B (407)	101	1,6	M49	M49	0,5	0	
71	B (407)	103	1,6	M49	M49	0,5	0	4,3
72	B (407)	121	1,6	M74	100881019	0	0	
73	B (407)	122	1,6	M74	M89	0	0	5,1
74	B (407)	124	1,6	M74	M89	0	0	4,9
75	B (407)	125	1,6	M49	M49	0,5	0	3,9
76	B (407)	128	1,6	M49	M49	0,5	0	
77	B (407)	129	1,6	M49	M49	0,5	0	3,3
78	B (407)	163	1,6	M13	M89	0	0	
79	B (407)	164	1,6	M13	M89	0	0	

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
80	B (407)	165	1,6	M13	M13	0,5	0	3,9
81	B (407)	166	1,6	M13	M89	0	0	5
82	B (407)	213	1,6	M07	M13	0,063	0	4,4
83	B (407)	214	1,6	M07	M89	0	0	4,2
84	B (407)	215	1,6	M07	100891004	0	0	4,4
85	B (407)	216	1,6	M07	100841010	0,063	0	
86	B (407)	217	1,6	M07	100881019	0	0	3,7
87	B (407)	223	1,6	M49	M49	0,5	0	4
88	B (407)	224	1,6	M49	M49	0,5	0	
89	B (407)	227	1,6	M49	M49	0,5	0	
90	B (407)	260	1,6	M13	M89	0	0	4,2
91	B (407)	261	1,6	M13	M89	0	0	
92	B (407)	262	1,6	M13	0	0	0	4
93	B (407)	263	1,6	M13	M89	0	0	3,9
94	B (407)	264	1,6	M13	0	0	0	4,3
95	B (407)	269	1,6	M07	100881019	0	0	4,1
96	B (407)	270	1,6	M07	0	0	0	
97	B (407)	271	1,6	M07	0	0	0	
98	B (407)	272	1,6	M07	100881019	0	0	5,3
99	B (407)	298	1,6	M74	M89	0	0	
100	B (407)	299	1,6	M74	100841010	0,125	0	4,7
101	B (407)	345	1,6	M07	100881019	0	0	4,6
102	B (407)	346	1,6	M07	0	0	0	5,1
103	B (407)	347	1,6	M07	M07	0,063	0	3,9
104	B (407)	348	1,6	M07	M07	0,5	0	4,2
105	B (407)	349	1,6	M07	M89	0	0	
106	B (407)	350	1,6	M49	M49	0,5	0	4,5
107	B (407)	351	1,6	M49	M49	0,5	0	
108	B (407)	352	1,6	M49	M49	0,5	0	4,4
109	B (407)	354	1,6	M49	M49	0,5	0	
110	B (407)	426	1,6	M13	M89	0	0	
111	B (407)	427	1,6	M13	M89	0	0	
112	B (407)	428	1,6	M13	100856002	0,063	0	
113	B (407)	429	1,6	M13	M89	0	0	5
114	B (407)	430	1,6	M13	100841010	0,063	0	4,4
115	B (407)	437	1,6	M74	M89	0	0	4,3
116	B (407)	438	1,6	M74	M89	0	0	4,5
117	B (407)	440	1,6	M74	M89	0	0	5,3
118	B (407)	481	1,6	M07	100881019	0	0	4,7
119	B (407)	482	1,6	M07	100881019	0	0	4,4
120	B (407)	483	1,6	M07	100841010	0,063	0	

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
121	B (407)	484	1,6	M07	100841010	0,063	0	5,2
122	B (407)	485	1,6	M07	100881019	0	0	
123	B (407)	504	1,6	M18	100841010	0	1	2,5
124	B (407)	513	1,6	100841010	100841010	0,5	1	3,7
125	B (407)	525	1,6	M74	M89	0	0	5,1
126	B (407)	526	1,6	M74	100841010	0,125	0	5,1
127	B (407)	527	1,6	M74	1213	0,25	0	4,2
128	B (407)	536	1,6	M49	M49	0,5	0	3,8
129	B (407)	537	1,6	M49	M49	0,5	0	
130	B (407)	538	1,6	M49	M49	0,5	0	4,2
131	B (407)	539	1,6	M49	M49	0,5	0	
132	B (407)	540	1,6	M49	M49	0,5	0	5,2
133	B (407)	551	1,6	M13	M89	0	0	4,9
134	B (407)	553	1,6	M13	100881019	0	0	4,5
135	B (407)	554	1,6	M13	M89	0	0	4,4
136	C (416)	1	1,5	1552	1552	0,5	1	2,4
137	C (416)	3	1,5	M28	0	0	0	4,3
138	C (416)	6	1,5	M13	M89	0	0	3,5
139	C (416)	11	1,5	M28	M49	0	1	2,5
140	C (416)	15	1,5	M13	1552	0	0	4,8
141	C (416)	16	1,5	M28	M28	0,5	0	4,9
142	C (416)	44	1,5	M49	M49	0,5	0	4,2
143	C (416)	57	1,5	1552	1552	0,5	1	1,4
144	C (416)	63	1,5	M74	M89	0	0	5,6
145	C (416)	68	1,5	M74	100856002	0	0	4,1
146	C (416)	69	1,5	M07	100841010	0,063	1	3,5
147	C (416)	90	1,5	M28	M28	0,5	0	3,7
148	C (416)	97	1,5	M28	M28	0,5	0	2,8
149	C (416)	109	1,5	M49	M49	0,5	0	4,5
150	C (416)	119	1,5	M13	M89	0	0	4,6
151	C (416)	125	1,5	M28	M28	0,5	0	4,1
152	C (416)	142	1,5	M49	M49	0,5	0	3,3
153	C (416)	167	1,5	M28	M28	0,5	0	3,9
154	C (416)	173	1,5	M07	100881019	0	0	3,9
155	C (416)	185	1,5	M13	M89	0	0	4,7
156	C (416)	188	1,5	M74	100881019	0	0	4,9
157	C (416)	198	1,5	M28	M28	0,5	0	4,3
158	C (416)	212	1,5	M74	M89	0	0	3,9
159	C (416)	239	1,5	M28	M28	0,5	0	3,8
160	C (416)	241	1,5	M13	M89	0	0	4,5
161	C (416)	247	1,5	M49	M49	0,5	0	3,3

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
162	C (416)	263	1,5	M13	M13	0,5	0	4,3
163	C (416)	270	1,5	M28	M28	0,5	0	
164	C (416)	288	1,5	M74	M89	0	0	4,3
165	C (416)	290	1,5	M74	M89	0	0	4,3
166	C (416)	295	1,5	M13	M89	0	0	4,9
167	C (416)	311	1,5	M28	M28	0,5	0	4,1
168	C (416)	320	1,5	1552	1552	0,5	1	0,6
169	C (416)	328	1,5	M28	M28	0,5	0	1,2
170	C (416)	337	1,5	M28	M28	0,5	0	3
171	C (416)	344	1,5	M07	100841010	0,063	0	3,7
172	C (416)	357	1,5	M13	M89	0	0	4,2
173	C (416)	362	1,5	M49	M49	0,5	0	2,4
174	C (416)	369	1,5	M74	100841010	0,125	0	4,2
175	C (416)	380	1,5	M13	0	0	0	4
176	C (416)	387	1,5	M74	100841010	0,125	0	4,1
177	C (416)	388	1,5	M28	M28	0,5	0	3,5
178	C (416)	412	1,5	M13	M89	0	1	2
179	C (416)	413	1,5	M49	M49	0,5	0	4,5
180	C (416)	415	1,5	M07	100841010	0,063	0	3,2
181	C (416)	421	1,5	M74	M74	0,5	0	3,9
182	C (416)	423	1,5	1552	1552	0,5	1	1
183	C (416)	445	1,5	100840012	100840012	0,5	0	2,2
184	C (416)	447	1,5	M28	M28	0,5	0	3,7
185	C (416)	450	1,5	M13	M13	0,5	0	4,4
186	C (416)	480	1,5	1552	1552	0,5	1	2,6
187	C (416)	491	1,5	M07	M07	0,5	0	2,5
188	C (416)	505	1,5	M07	100881019	0	0	3,3
189	C (416)	511	1,5	M74	M74	0,5	0	3,7
190	C (416)	517	1,5	M28	M28	0,5	0	4,5
191	C (416)	537	1,5	M74	M89	0	0	4,3
192	C (416)	540	1,5	M49	M49	0,5	0	2,4
193	C (416)	557	1,5	1552	1552	0,5	1	1,9
194	C (416)	560	1,5	M07	100881019	0	0	2,7
195	C (416)	564	1,5	M13	M89	0	0	3,3
196	C (416)	577	1,5	M28	M28	0,5	0	4,7
197	C (416)	579	1,5	M13	M89	0	0	3,9
198	C (416)	594	1,5	M74	100841010	0,125	0	3,8
199	C (416)	598	1,5	M13	M89	0	0	2,8
200	C (416)	601	1,5	M49	M49	0,5	0	1,9
201	D (421)	8	1,5	M07	100881019	0	0	3,7
202	D (421)	18	1,5	M13	M13	0,5	0	3,03

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
203	D (421)	35	1,5	M89	M89	0	1	2,77
204	D (421)	40	1,5	M13	100881019	0	0	4,4
205	D (421)	54	1,5	M07	0	0	0	3,8
206	D (421)	56	1,5	M28	M49	0	0	3,68
207	D (421)	63	1,5	M13	0	0	0	3,37
208	D (421)	70	1,5	M28	M49	0	0	3,49
209	D (421)	82	1,5	M07	M07	0,5	0	3,37
210	D (421)	83	1,5	M49	M28	0	1	2,98
211	D (421)	85	1,5	M89	M89	0,5	0	3,61
212	D (421)	91	1,5	M89	100881019	0	0	4,4
213	D (421)	95	1,5	M49	M49	0,5	0	4,8
214	D (421)	103	1,5	M74	100841010	0,125	0	3,84
215	D (421)	107	1,5	M28	M49	0	0	4,02
216	D (421)	124	1,5	M74	M28	0	0	4,43
217	D (421)	128	1,5	M49	M49	0,5	0	3,79
218	D (421)	153	1,5	100890020	100890020	0,5	1	1,75
219	D (421)	155	1,5	M49	M28	0	0	3,7
220	D (421)	174	1,5	M74	100841010	0,125	0	4
221	D (421)	176	1,5	M18	M49	0,063	1	2,1
222	D (421)	195	1,5	M74	100881019	0	0	5,2
223	D (421)	200	1,5	M89	100841010	0	0	4,24
224	D (421)	210	1,5	M28	0	0	0	3,84
225	D (421)	239	1,5	M74	100841010	0,125	0	3
226	D (421)	259	1,5	M13	0	0	0	3,99
227	D (421)	264	1,5	M49	0	0	0	4,2
228	D (421)	265	1,5	M89	100841010	0	0	4,34
229	D (421)	267	1,5	M28	M49	0	0	4,24
230	D (421)	276	1,5	M89	100841010	0	0	3,87
231	D (421)	281	1,5	M74	M74	0,5	0	3,4
232	D (421)	284	1,5	M13	0	0	0	1,4
233	D (421)	285	1,5	M49	M49	0,5	0	3,85
234	D (421)	288	1,5	M89	M89	0,5	0	3,59
235	D (421)	304	1,5	M07	M49	0	0	3,86
236	D (421)	332	1,5	M49	0	0	0	4,03
237	D (421)	339	1,5	M89	M89	0,5	0	3,75
238	D (421)	343	1,5	M28	0	0	0	4,43
239	D (421)	344	1,5	M13	100881019	0	0	3,68
240	D (421)	359	1,5	M07	1213	0	0	3,32
241	D (421)	365	1,5	M28	M49	0	1	1,5
242	D (421)	379	1,5	M89	M89	0,5	0	2,72
243	D (421)	381	1,5	M13	100841010	0,063	0	3,98

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
244	D (421)	391	1,5	M28	M28	0,5	0	3,46
245	D (421)	392	1,5	M13	1213	0	0	4,6
246	D (421)	413	1,5	100841010	M89	0	0	4,22
247	D (421)	433	1,5	M49	M28	0	0	3,58
248	D (421)	442	1,5	M74	M74	0,5	0	3,16
249	D (421)	454	1,5	M49	M28	0	0	4,52
250	D (421)	457	1,5	M74	M74	0,5	0	3,15
251	D (421)	464	1,5	M89	100881019	0	0	4,47
252	D (421)	474	1,5	M18	100841010	0	1	2,42
253	D (421)	482	1,5	M74	0	0	0	4,33
254	D (421)	488	1,5	M49	M49	0,5	0	3,53
255	D (421)	494	1,5	M28	M49	0	1	1,95
256	D (421)	498	1,5	M89	M89	0,5	0	3,02
257	D (421)	500	1,5	M28	M49	0	1	1,8
258	D (421)	517	1,5	M28	M49	0	1	2,25
259	D (421)	519	1,5	M89	M89	0,5	0	4,61
260	D (421)	545	1,5	M07	100841010	0,063	0	3,45
261	D (421)	556	1,5	M13	M89	0	0	4,1
262	D (421)	586	1,5	M74	100841010	0,125	0	3,93
263	D (421)	589	1,5	M89	100841010	0	0	4,4
264	D (421)	590	1,5	M13	M89	0	0	4,29
265	D (421)	595	1,5	M49	M28	0	0	4,25
266	E (423)	14	1,6	M49	M49	0,5	1	2
267	E (423)	18	1,6	M07	0	0	0	3,1
268	E (423)	29	1,6	M13	100841010	0,063	0	2,21
269	E (423)	40	1,6	M28	M49	0	0	2,4
270	E (423)	50	1,6	M89	100841010	0	0	2,4
271	E (423)	78	1,6	M49	M49	0,5	0	2,7
272	E (423)	91	1,6	M07	1213	0	0	2,25
273	E (423)	100	1,6	M74	1235	0	0	2,4
274	E (423)	103	1,6	M13	100881019	0	1	1,95
275	E (423)	115	1,6	M89	M89	0,5	1	1,8
276	E (423)	119	1,6	M28	M49	0	0	3
277	E (423)	124	1,6	M13	100841010	0,063	0	2,1
278	E (423)	130	1,6	M89	100841010	0	0	2,2
279	E (423)	148	1,6	M74	M49	0,063	0	3,15
280	E (423)	156	1,6	M49	M49	0,5	0	1,7
281	E (423)	158	1,6	M28	M49	0	0	2,1
282	E (423)	161	1,6	M07	0	0	0	2,75
283	E (423)	181	1,6	M49	M49	0,5	0	2,6
284	E (423)	184	1,6	M13	M89	0	0	2,4

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ν	Ensaio	Indivíduo	Idade	Mãe	Pai	F	Р	ALT
285	E (423)	209	1,6	M07	0	0	1	1,45
286	E (423)	215	1,6	M89	M89	0,5	0	1,75
287	E (423)	223	1,6	M74	M74	0,5	0	2,1
288	E (423)	224	1,6	M28	M49	0	0	3,6
289	E (423)	240	1,6	M74	0	0	0	2,7
290	E (423)	251	1,6	M28	M49	0	0	2,05
291	E (423)	259	1,6	M13	0	0	0	1,55
292	E (423)	279	1,6	M49	M49	0,5	0	2,1
293	E (423)	287	1,6	M89	M89	0,5	0	2,1
294	E (423)	297	1,6	M07	100841010	0,063	0	1,9
295	E (423)	321	1,6	M74	M28	0	1	2,65
296	E (423)	323	1,6	M49	M49	0,5	0	2,45
297	E (423)	332	1,6	M89	M89	0,5	0	1,75
298	E (423)	333	1,6	M28	0	0	0	2,1
299	E (423)	347	1,6	M13	100881019	0	0	2,25
300	E (423)	348	1,6	M89	M89	0,5	0	1,75
301	E (423)	383	1,6	M74	M74	0,5	0	1,45
302	E (423)	392	1,6	M07	M74	0	0	3,55
303	E (423)	395	1,6	M13	M13	0,5	0	3,05
304	E (423)	397	1,6	M49	M28	0	0	2,2
305	E (423)	411	1,6	M89	M89	0,5	0	1,5
306	E (423)	413	1,6	M28	M49	0	0	3,85
307	E (423)	426	1,6	M28	0	0	0	2,35
308	E (423)	445	1,6	M13	M89	0	0	2,45
309	E (423)	455	1,6	M74	M74	0,5	0	1,6
310	E (423)	461	1,6	M49	M49	0,5	0	2,25
311	E (423)	462	1,6	M89	M89	0,5	0	1,85
312	E (423)	470	1,6	M07	M28	0,125	0	1,85
313	E (423)	475	1,6	M28	M28	0,5	0	2,05
314	E (423)	510	1,6	M49	M28	0	1	1,2
315	E (423)	512	1,6	M74	0	0	1	1
316	E (423)	519	1,6	M07	0	0	0	1,7
317	E (423)	523	1,6	M13	M07	0,063	0	2,35
318	E (423)	531	1,6	M89	M89	0,5	0	2,2
319	E (423)	546	1,6	M74	M74	0,5	0	2,25
320	E (423)	550	1,6	M07	100881019	0	0	2,1
321	E (423)	561	1,6	M28	M28	0,5	0	3,2
322	E (423)	562	1,6	M13	M28	0,063	0	2,1
323	E (423)	585	1,6	M89	M89	0,5	1	1,5
324	E (423)	586	1,6	M49	M49	0.5	0	2,3

Tabela 1 – (Continuação) Dados obtidos no decorrer do projeto. Inclui o número do indivíduo (N), o respetivo ensaio, o nome da amostra, a idade em anos, o nome da mãe e do pai, o coeficiente de consanguinidade (F), o fenótipo expresso (P) – "0" representa um fenótipo normal e "1" um fenótipo anómalo – e a altura em metros de cada indivíduo.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
	M74	107	113	189	191	243	251	283	283
	1552	95	127	201	203	229	231	277	283
	M18	107	113	185	191	243	251	283	289
	1113	109	109	199	201	229	249	277	283
	1213	105	113	191	191	243	257	281	283
	100170003	107	137	191	209	233	257	277	283
	100890020	109	109	205	211	231	233	277	277
	M28	99	109	191	191	231	237	283	289
	100840012	99	109	201	203	231	251	283	283
	100891019	137	139	177	191	233	245	289	289
	100891004	103	137	187	191	233	235	289	289
	M89	107	111	195	209	233	243	277	283
	M13	109	143	195	197	231	239	277	289
Domor	100881019	107	109	189	191	235	247	277	289
Foiliai	100856020	105	125	191	191	231	261	277	283
	M07	105	105	187	189	231	261	277	283
	100834013	105	113	191	211	257	257	281	295
	100841010	105	137	195	201	251	257	277	283
	100856016	105	105	187	191	257	257	277	277
	M49	105	119	187	195	235	257	291	293
	100126020	107	119	199	203	245	257	289	291
	100820011	99	105	191	203	237	257	293	293
	1514	105	107	197	211	243	253	277	283
	100891010	137	139	187	191	235	247	289	289
	100856002	105	105	189	191	257	257	277	283
	100834009	109	113	191	209	251	257	281	289
	10083008	99	109	185	211	229	231	283	291
	1235	107	127	191	191	231	237	277	283
A (394)	8	105	113	191	195	235	243	283	291
A (394)	27	109	111	195	209	231	243	283	289
A (394)	30	113	137			243	257	283	283
A (394)	31	105	107	191	201	251	251	277	283
A (394)	32	137	143	197	201	231	257	277	283
A (394)	50	105	111	187	195	231	233	283	283
A (394)	71	113				243	251		
A (394)	73	107	107	191	195	243	243	283	283
A (394)	91	107	143	195	209	231	233	283	289
A (394)	92	107	109	195	197	239	243	277	277
A (394)	119	109	113	191		231	251	289	289
A (394)	139	105	107	189	195	243	257	277	283
A (394)	140	105	109			231	251	277	289
A (394)	143	105	113	107		243	257	277	289
A (394)	145	105	105	189	201	231	257	277	283
A (394)	154	109	109	195	195	231	243	277	289
A (394)	156	111	143	195	209	231	243	283	289
A (394)	161	107	107	185	191	235	251	289	289
A (394)	176	105	111	107	107	243	261	283	283
A (394)	178	105	111	187	195	231	233	277	277
A (394)	202	105	109	189	195	231	231	211	211
A (394)	218	105	107	18/	209	233	201	211	211

Tabela 2 – Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
A (394)	221	107	107	189	191	231	243	277	283
A (394)	227	107	109	185	191	247	251	283	289
A (394)	232	105	137	189	195	231	257	277	283
A (394)	237	105	107	191	201	243	257	277	289
A (394)	247	105	107	191	195	243	251	277	283
A (394)	250	105	107	191	191	237	243	289	293
A (394)	252	113	119	191		243	257	283	293
A (394)	254	107	109	195	209	231	243	277	277
A (394)	256	109	111			233	239	277	289
A (394)	288	105	107	187	209	233	261	283	283
A (394)	305	105	111	189	195	243	261	283	283
A (394)	308	105	111	189	195	231	233	277	283
A (394)	311	99	113	191	191	237	251	283	289
A (394)	312	107	113	185	191	243	251	283	283
A (394)	314	137	143	195	197	231	251	277	283
A (394)	345	105	113	189	191	251	257	283	293
A (394)	349	113	137	185	201	243	257	277	289
A (394)	352	105	111	189	209	233	261	283	283
A (394)	362	107	107	189	195	243	243	277	283
A (394)	371	99	107	185	191	237	251	283	289
A (394)	384	109	111	197	209	239	243	277	289
A (394)	401	107	119	187	189	235	243	283	291
A (394)	414	107	111	191	209	243	251	283	289
A (394)	424					257			
A (394)	428	105	107	187	195	231	243	277	283
A (394)	441	105	143	191	195	231	257	283	289
A (394)	448	105	111	189	209	233	261	277	277
A (394)	449	105	107	191	191	231	237	283	283
A (394)	450	109	111	197	209	231	243	277	289
A (394)	463	107	111	185	195	243	243	283	283
A (394)	479	137	143	195	195	239	251	277	277
A (394)	480	107	127	189	191	237	243	277	283
A (394)	492	99	107	185	191	237	243	283	289
B (407)	15	111	143			231	243	283	289
B (407)	17	105	143	191	197	235	239	289	291
B (407)	18	105	109	187	195	231	231	277	289
B (407)	19	127	143	191	197	239	257	277	281
B (407)	43	105	111	187	191	231	233	283	289
B (407)	44	105	107	187	189	247	261	277	277
B (407)	45	105	105	189	195	251	261	277	283
B (407)	46	105	131	187	191	251	261	283	285
B (407)	47	105	105	189	209	231	257	283	283
B (407)	91	99	113	189	189	231	243	283	283
B (407)	92	107	107	189	209	233	251	283	283
B (407)	94	113	113	189	191	243	251	283	283
B (407)	99							289	291
B (407)	100	105	119	187	195	235	235	291	293
B (407)	101							293	293
B (407)	103	119	119	187	195	235	257	291	293
B (407)	121	107	107	189	191	243	247	277	283

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
B (407)	122	107	111	191	195	233	251	283	283
B (407)	124	107	113	189	195	243	251	283	283
B (407)	125	119	119	187	187	257	257	291	293
B (407)	128	105	119			235	257	293	293
B (407)	129	105	119	187	187	257	257	291	293
B (407)	163	109	111	195	195	239	243	277	289
B (407)	164	107	143			231	243	277	289
B (407)	165	109	143			231	239	277	277
B (407)	166	109	111	197	209	231	233	277	283
B (407)	213	105	109	189	195	239	261	277	289
B (407)	214	105	107	189	209	243	261	277	277
B (407)	215	105	137	187	189	231	233	277	289
B (407)	216	105	137	189	201	231	257	277	277
B (407)	217	105	109	187	191	231	247	277	289
B (407)	223	105	119	187	195	235	235	293	293
B (407)	224	105	119	187	187	235	235	291	293
B (407)	227					235	235	291	293
B (407)	260	111	143	195	209	231	243	277	283
B (407)	261	109	111	197	209	231	243	277	289
B (407)	262	107	143	195	211	235	239	277	281
B (407)	263	107	143	197	209	233	239	277	289
B (407)	264	103	143	195	211	231	251	277	289
B (407)	269	105	109	187	191	247	261	277	289
B (407)	270	105	105	189	191	235	261	277	291
B (407)	271	105	113	187	189	251	261	283	283
B (407)	272	105	107	189	189	231	235	277	283
B (407)	298	107	113	191	195	243	243	277	283
B (407)	299	113	137	201	201	243	257	277	283
B (407)	345	105	107	189	189	231	235	283	289
B (407)	346	105	127	189	189	231	243	277	277
B (407)	347	105	105	189	189	231	261	277	283
B (407)	348	105	105	187	189	231	261	277	283
B (407)	349	105	107	189	189	231	243	277	283
B (407)	350	105	119	187	195	235	257	291	291
B (407)	351	105	119	187	187	237	237	291	291
B (407)	352	105	119	187	195	235	257	293	293
B (407)	354	119	119	187	195	257	257	293	293
B (407)	426	109	111	195	197	239	243	277	283
B (407)	427	111	143	197	209	231	243	277	289
B (407)	428	105	109			239	257	277	289
B (407)	429	111	143	195	195	239	243	277	277
B (407)	430	105	109	197	201	231	251	277	289
B (407)	437	113	113	189	209	243	251	277	283
B (407)	438	107	111	191	209	243	251	283	283
B (407)	440	111	113	191	195	233	251	283	283
B (407)	481								
B (407)	482	105	107	187	189	231	235	277	277
B (407)	483	105	137	189	201	231	251	277	283
B (407)	484	105	137	187	195	231	251	277	277
B (407)	485	105	107	187	189	231	235	277	277

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
B (407)	504	105	107	185	201	243	251	283	289
B (407)	513	105	137	195	201	257	257	277	283
B (407)	525	107	107	191	195	233	251	277	283
B (407)	526	105	107	191	201	243	257	277	283
B (407)	527	107	113	191	191	243	251	283	283
B (407)	536	105	119	187	187	257	257	293	293
B (407)	537	105	119	187	195	235	257	291	293
B (407)	538	119	119	195	195	235	257	291	293
B (407)	539	105	119	187	195	235	257	291	293
B (407)	540	105	105	187	187	235	257	293	293
B (407)	551	107	109	195	197	231	243	277	289
B (407)	553	109	109	191	195	231	247	277	289
B (407)	554	107	143	195	197	239	243	277	277
C (416)	1	95	127	201	203	229	229	277	283
C (416)	3	109	133	191	207	231	245	283	283
C (416)	6	109	109	197	209	231	243	277	289
C (416)	11	99	119	187	191	235	237	289	293
C (416)	15	95	143	197	203	231	231	277	277
C (416)	16	99	109	191	191	231	237	283	283
C (416)	44	119	119	187	195	235	257	291	293
C (416)	57	95	95	201	203	229	229	277	277
C (416)	63	107	111	191	201	233	251	277	283
C (416)	68	105	105	189	189	251	257	277	283
C (416)	69	105	137	189	201	251	261	277	277
C (416)	90	99	109			231	237	283	289
C (416)	97	99	109	189	191	237	237	289	289
C (416)	109	105	119	187	195	235	257	291	295
C (416)	119	111	143	195	195	231	233	277	277
C (416)	125	99	109	191	191	231	231	283	283
C (416)	142								
C (416)	167	109	109	191	191	231	237	283	289
C (416)	173	105	105	189	189	231	235	283	289
C (416)	185	107	143	195	197	239	243	277	283
C (416)	188	107	107	189	191	235	251	277	283
C (416)	198	99	109	191	191	231	231	289	289
C (416)	212	107	107	189	209	243	251	277	283
C (416)	239	99	109			231	237	283	289
C (416)	241	109	109	197	209	231	233	277	277
C (416)	247	105	119	195	195	257	257	291	293
C (416)	263	109	143	195	197	229	231	277	289
C (416)	270	109	109	191	191	231	237	289	289
C (416)	288	107	113	195	207	233	243	283	283
C (416)	290	107	111	191	209	243	251	283	283
C (416)	295	109	111	195	195	231	233	277	283
C (416)	311	99	109	191	191	231	237	283	289
C (416)	320	95	95	201	201	231	231	277	283
C (416)	328	99	109	191	191	231	231	283	283
C (416)	337	99	109	191	191	231	237	283	289
C (416)	344	105	105	189	195	251	261	277	283
C (416)	357	109	111	195	195	231	233	277	289

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
C (416)	362	119	119	187	195	235	257	293	293
C (416)	369	105	107	189	201	243	257	277	283
C (416)	380	109	109			241	243	277	283
C (416)	387	107	137	189	195	243	257	283	283
C (416)	388	99	109	191	191	231	237	283	289
C (416)	412	107	143	195	197	233	239	277	289
C (416)	413	119	119	187	195	235	235	291	293
C (416)	415	105	105	187	201	231	257	277	277
C (416)	421	107	113	189	191	251	251	283	283
C (416)	423	95	95	203	203	231	231	283	283
C (416)	445	99	109	203	203	231	251	283	283
C (416)	447	99	109	191	191	237	237	289	289
C (416)	450	109	143	195	197	231	239	277	277
C (416)	480	95	95	203	203	231	231	283	283
C (416)	491	105	105	187	189	231	231	277	283
C (416)	505	105	107	189	201	247	261	277	289
C (416)	511	107	113	189	191	251	251	283	283
C (416)	517	109	109	191	191	231	237	283	289
C (416)	537	107	111	189	195	233	243	283	283
C (416)	540	105	119	187	187	235	257	293	293
C (416)	557	95	127	203	203	229	229	277	283
C (416)	560	105	109	187	191	235	261	277	283
C (416)	564	109	111	195	209	239	243	277	277
C (416)	577	99	109	191	191	237	237	283	289
C (416)	579	111	143	195	195	239	243	283	289
C (416)	594	107	137	189	201	251	253	277	283
C (416)	598	111	143	195	195	239	243	277	289
C (416)	601	119	119	195	195	235	257	291	291
D (421)	8	105	109	187	191	231	247	283	289
D (421)	18	109	109	195	197	231	231	289	289
D (421)	35	111	111	195	195	233	243	277	283
D (421)	40	109	109	191	197	235	239	277	277
D (421)	54	105	107	189	189	231	251	277	283
D (421)	56	109	119	187	191	237	257	283	291
D (421)	63	119	143	197	203	231	257	277	291
D (421)	70	99	119			231	257	283	293
D (421)	82	105	105	187	189	261	261	277	283
D (421)	83	99	119	191	195	231	235	289	291
D (421)	85	111	111	195	209	233	233	283	283
D (421)	91	109	111	191	195	243	247	277	283
D (421)	95	119	119			235	235	291	293
D (421)	103	105	107	191	195	243	251	283	283
D (421)	107	109	119			231	235	289	291
D (421)	124	107	109	191	191	237	243	283	283
D (421)	128	105	119			235	235	293	293
D (421)	153	109	109	205	211	233	233	277	277
D (421)	155	105	109	187	191	231	257	289	291
D (421)	174	105	113	191	195	251	251	283	283
D (421)	176	113	119	185	187	243	257	283	293
D (421)	195	107	107	189	191	235	251	283	289

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
D (421)	200	111	137	195	201	233	257	277	283
D (421)	210	109	109	195	195	231	233	283	283
D (421)	239	107	137	191	195	243	257	277	283
D (421)	259	109	127	185	195	231	231	277	289
D (421)	264	115	119	191	195	251	257	283	293
D (421)	265	111	137	195	195	233	251	277	283
D (421)	267	99	119			231	257	283	291
D (421)	276	105	111			243	257	283	283
D (421)	281	107	113	189	191	243	243	283	283
D (421)	284	113	143	191	195	239	251	277	283
D (421)	285	105	119	187	195	257	257	291	293
D (421)	288	111	111	195	209	233	233	277	283
D (421)	304	105	119	187	195	235	261	277	293
D (421)	332	107	119	187	203	235	261	283	293
D (421)	339	107	111	195	209	233	243	277	277
D (421)	343	99	105	211	211	231	245	283	293
D (421)	344	109	109	191	197	231	247	277	289
D (421)	359	105	113	187	189	243	261	277	283
D (421)	365	109	119	191	195	235	237	289	293
D (421)	379	107	111	195	209	233	233	277	277
D (421)	381	137	143	195	195	231	251	277	289
D (421)	391	109	109			231	231	289	289
D (421)	392	109	113	191	195	231	251	277	283
D (421)	413	105	111	195	195	233	257	277	283
D (421)	433	99	119	187	209	231	235	283	291
D (421)	442	107	113	191	191	251	251	283	283
D (421)	454	105	109	195	195	231	257	283	291
D (421)	457	107	107	189	189	243	251	283	283
D (421)	464	107	107	191	195	233	235	277	289
D (421)	474	105	107	185	189	243	251	283	289
D (421)	482	105	113	191	191	243	245	283	283
D (421)	488	105	119	195	195	257	257	291	291
D (421)	494	105	109	187	187	235	237	289	293
D (421)	498	107	111	195	209	233	243	277	283
D (421)	500	99	119	187	191	235	237	289	293
D (421)	517	99	105	187	187	235	237	283	291
D (421)	519	107	111	195	209	233	243	277	283
D (421)	545	105	137	187	201	251	261	277	277
D (421)	556	109	111	195	209	233	239	283	289
D (421)	586	107	137	191	201	251	251	277	283
D (421)	589	105	111	195	209	243	251	277	283
D (421)	590	109	111	195	195	233	239	283	289
D (421)	595	99	119	187	197	231	257	289	293
E (423)	14	105	119	187	195	255	257	291	291
E (423)	18	105	113	189	189	231	251	283	283
E (423)	29	105	143	197	201	239	257	277	289
E (423)	40	99	119	191	195	231	257	289	293
E (423)	50	105	111	193	195	243	251	277	283
E (423)	78	105	119	187	195	235	235	291	291
E (423)	91	105	113	187	189	243	261	283	283

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
E (423)	100	107	127	191	191	231	243	277	283
E (423)	103	109	143	191	195	231	247	277	289
E (423)	115	107	111	195	209	233	243	277	277
E (423)	119	109	119	187	187	237	257	289	293
E (423)	124	105	143	197	201	231	257	277	289
E (423)	130	111	137			233	251	283	283
E (423)	148	105	107	187	191	235	243	283	293
E (423)	156	105	119	187	187	257	257	291	293
E (423)	158	99	105	191	195	231	235	289	293
E (423)	161	105	107	189	189	251	259	283	283
E (423)	181	105	119	195	195	235	257	291	291
E (423)	184	107	143	195	195	231	233	283	289
E (423)	209	105	107	187	203	231	237	277	283
E (423)	215	107	111	195	195	233	243	277	283
E (423)	223	107	107	189	191	243	251	283	283
E (423)	224	105	109	187	191	235	237	283	291
E (423)	240	113	113	189	189	249	251	277	283
E (423)	251	109	119	187	191	237	257	289	293
E (423)	259	131	143	187	197	237	239	277	289
E (423)	279	105	105	187	187	235	257	291	293
E (423)	287	107	111			233	243	283	283
E (423)	297	105	105	189	201	231	251	277	283
E (423)	321	109	113	189	191	237	243	283	283
E (423)	323	105	119	187	195	235	257	291	293
E (423)	332	107	111	209	209	243	243	277	277
E (423)	333	109	127			237	249	283	291
E (423)	347	109	109	191	197	235	239	277	289
E (423)	348	107	107	195	209	243	245	277	277
E (423)	383	113	113	189	191	243	251	283	285
E (423)	392	105	113	189	189	243	261	283	283
E (423)	395	109	111	195	197	231	239	277	289
E (423)	397	99	119	187	187	231	257	289	291
E (423)	411	107	111	195	195	243	243	283	283
E (423)	413	99	119	191	195	237	257	283	293
E (423)	426	109	109	203	203	231	233	283	289
E (423)	445	107	143	195	197	239	243	277	277
E (423)	455	113	113	189	189	243	251	283	283
E (423)	461	105	119	195	197	235	237	291	293
E (423)	462	107	107	195	209	233	243	277	283
E (423)	470	105	109	187	187	231	261	277	283
E (423)	475	99	109	191	191	231	237	289	289
E (423)	510	99	119	191	195	231	235	289	293
E (423)	512	107	107	189	191	243	251	283	293
E (423)	519	105	135	187	197	231	247	277	277
E (423)	523	105	143	187	195	231	239	277	289
E (423)	531	107	107	195	195	233	235	283	283
E (423)	546	107	107	191	191	243	251	283	283
E (423)	550	105	107	187	189	235	261	277	283
E (423)	561	99	109	191	191	237	239	283	289
E (423)	562	109	109	197	197	231	233	277	289

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Tabela 2 – (Continuação) Alelos de Embra11, Embra119, Emcrc8 e Emcrc7 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA11a	BRA11b	BRA119a	BRA119b	CRC8a	CRC8b	CRC7a	CRC7b
E (423)	585	107	111	195	195	233	235	277	283
E (423)	586	105	119	187	187	257	257	295	295

Tabela 3 – Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
	M74	143	147	187	191	306	324	83	83
	1552	125	133	177	197	308	318	77	95
	M18	143	143	185	187	306	314	93	93
	1113	115	131	187	197	314	322	91	95
	1213	113	143	179	187	306	306	83	93
	100170003	121	143	201	203	306	306	83	85
	100890020	115	131	177	185	306	306	81	97
	M28	113	125	175	185	322	324	93	95
	100840012	121	123	185	199	306	308	89	95
	100891019	113	121	189	209	308	322	77	91
	100891004	113	115	189	205	308	318	89	93
	M89	127	131	177	185	312	322	89	95
	M13	121	125	181	203	306	322	69	97
Domon	100881019	113	115	185	205	306	322	91	93
Politar	100856020	115	125	185	203	306	314	83	93
	M07	113	115	185	203	306	324	85	97
	100834013	125	143	179	185	306	308	83	83
	100841010	115	147	185	191	306	324	83	97
	100856016	123	125	185	203	306	314	85	97
	M49	111	131	181	199	306	318	83	95
	100126020	115	131	185	187	316	322	83	95
	100820011	119	119	181	201	306	312	93	95
	1514	125	129	187	197	306	314	93	95
	100891010	113	115	189	209	308	322	91	93
	100856002	113	123	175	185	314	322	83	93
	100834009	113	123	185	187	306	316	77	93
	10083008	123	143	177	185	302	306	77	93
	1235	121	123	185	189	312	322	93	97
A (394)	8	131	147	181	191	318	324	83	83
A (394)	27	125	127	185	203	322	322	69	95
A (394)	30	115	143	185	187	314	324	93	97
A (394)	31	115	143	187	191	306	306	83	93
A (394)	32	115	121	181	191	306	324	69	97
A (394)	50	115	127	177	185	322	324	85	89
A (394)	71	115	143	185	185	306	314	83	93
A (394)	73	127	143	185	187	306	312	83	89
A (394)	91	125	127	177	181	322	322	69	89
A (394)	92	121	131	177	181	306	312	69	95
A (394)	119	125	143	175	187	314	322	93	93
A (394)	139	143	147	185	191	306	306	83	83
A (394)	140	115	125	181	185	306	306	83	97

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
A (394)	143	115	143	185	185	306	314	83	93
A (394)	145	115	115	185	185	306	324	83	97
A (394)	154	121	127	181	185	312	322	95	97
A (394)	156	125	131	181	185	322	322	69	95
A (394)	161	113	143	185	205	306	322	93	93
A (394)	176	115	131	185	203	322	324	85	95
A (394)	178	113	127	177	185	306	312	85	95
A (394)	202	115	125	185	203	306	306	85	97
A (394)	218	115	127	185	203	312	324	85	95
A (394)	221	121	147	185	191	306	312	83	93
A (394)	227	113	143	185	205	306	322	91	93
A (394)	232	115	115	185	203	306	324	85	97
A (394)	237	143	147	185	191	306	314	83	93
A (394)	247	143	147	185	187	306	306	83	93
A (394)	250	119	143	181	185	312	314	93	95
A (394)	252	111	143	191	199	306	324	83	83
A (394)	254	121	131	185	203	306	312	69	89
A (394)	256	125	127	185	203	312	322	69	89
A (394)	288	113	131	185	185	306	322	85	95
A (394)	305	115	131	177	185	322	324	85	95
A (394)	308	113	127	185	203	306	322	85	95
A (394)	311	125	143	185	187	314	324	93	93
A (394)	312	143	143	187	187	306	306	93	93
A (394)	314	121	147	181	185	306	324	69	97
A (394)	345	131	143	191	199	306	324	83	83
A (394)	349	115	143	185	191	306	314	83	93
A (394)	352	115	131	185	203	322	324	85	89
A (394)	362	127	147	185	191	312	324	83	95
A (394)	371	125	143	185	187	306	322	93	95
A (394)	384	121	131	177	181	312	322	69	89
A (394)	401	131	143	181	191	306	318	83	83
A (394)	414	127	143	185	187	314	322	89	93
A (394)	424	115	143	185	187	314	324	93	97
A (394)	428	113	127	185	185	306	322	85	95
A (394)	441	113	121	175	203	322	322	83	97
A (394)	448	115	131	185	203	306	312	85	89
A (394)	449	113	121	185	185	322	324	97	97
A (394)	450	125	131	177	203	312	322	69	95
A (394)	463	131	143	177	187	306	312	89	93
A (394)	479	125	147	181	191	306	306	69	97
A (394)	480	123	143	185	187	306	312	83	93
A (394)	492	113	143	175	187	314	324	93	95
B (407)	15	121	127	177	181	322	322	69	95
B (407)	17	115	121	181	201	322	322	95	97
B (407)	18	113	121	181	203	306	322	97	97
B (407)	19	121	131	181	183	306	306	81	97
B (407)	43	113	123	179	203	306	324	83	97
B (407)	44	115	115	185	185	306	306	85	91
B (407)	45	113	147	185	191	306	324	97	97
B (407)	46	113	113	191	203	306	324	85	85

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
B (407)	47	115	115	191	203	324	324	85	97
B (407)	91	113	147	175	187	306	324	83	93
B (407)	92	131	143	177	191	306	322	83	95
B (407)	94	147	147	189	191	306	324	83	83
B (407)	99			181	205	306	314	83	89
B (407)	100	131	131	181	199	306	318	83	83
B (407)	101			181	199	306	306	83	83
B (407)	103	111	131	181	181	306	318	83	83
B (407)	121	115	143	191	205	306	306	83	91
B (407)	122	131	147	177	187	306	322	83	89
B (407)	124	127	147	177	187	312	324	83	89
B (407)	125	111	131	199	199	306	318	95	95
B (407)	128	131	131	181	181	306	318	83	95
B (407)	129	111	131	181	181	306	318	83	95
B (407)	163	121	131	177	181	312	322	89	97
B (407)	164	121	131	177	203	312	322	95	97
B (407)	165	121	121	181	181	306	306	69	97
B (407)	166	121	131	177	203	306	322	95	97
B (407)	213	115	125	181	185	306	322	85	97
B (407)	214	115	127	185	185	306	312	85	89
B (407)	215	115	115	203	205	306	318	85	89
B (407)	216	115	115	185	203	306	306	85	97
B (407)	217	115	115	203	205	322	324	85	91
B (407)	223	111	131	199	199	306	306	83	95
B (407)	224	111	111	181	199	306	318	83	83
B (407)	227			181	181	306	318	83	95
B (407)	260	125	127	181	185	306	312	69	95
B (407)	261	121	131	177	181	312	322	93	95
B (407)	262	125	143	203	203	306	306	85	97
B (407)	263	125	127	177	203	312	322	89	97
B (407)	264	121	137	181	181	316	322	89	97
B (407)	269	113	115	185	203	306	322	85	93
B (407)	270	115	123	185	197	306	322	85	95
B (407)	271	113	147	187	203	322	324	83	85
B (407)	272	115	115	185	205	306	324	85	93
B (407)	298	127	147	185	187	312	324	83	89
B (407)	299	115	143	185	187	306	324	83	97
B (407)	345	115	115	185	205	322	324	85	91
B (407)	346	115	133	201	203	306	322	81	85
B (407)	347	115	115	185	203	306	324	85	97
B (407)	348	113	115	203	203	306	324	97	97
B (407)	349	115	127	185	185	306	322	85	95
B (407)	350	111	131	181	199	318	318	83	95
B (407)	351	111	111	181	199	306	318	83	95
B (407)	352	111	131	181	181	306	306	83	95
B (407)	354	111	111	199	199	306	306	83	95
B (407)	426	121	131	177	181	306	322	69	95
B (407)	427	125	131	177	181	306	312	69	89
B (407)	428	113	125	175	181	306	322	69	83
B (407)	429	121	127	181	185	306	312	69	95

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
B (407)	430	121	147	181	191	306	322	97	97
B (407)	437	127	147	177	191	312	324	83	95
B (407)	438	127	143	177	187	306	322	83	89
B (407)	440	127	143	177	191	322	324	83	95
B (407)	481	113	115	185	203	306	306	85	93
B (407)	482	113	113	203	205	306	306	85	91
B (407)	483	115	115	185	185	306	324	85	97
B (407)	484	115	147	185	191	306	306	97	97
B (407)	485	113	113	203	205	306	306	85	93
B (407)	504	115	143	185	185	314	324	93	97
B (407)	513	115	147	191	191	306	324	83	97
B (407)	525	127	147	177	191	306	312	83	89
B (407)	526	115	143	185	187	306	324	83	83
B (407)	527	143	143	187	187	324	324	83	83
B (407)	536	131	131	181	199	306	306	83	83
B (407)	537	111	131	181	199	306	318	83	95
B (407)	538	111	131	199	199	306	318	83	83
B (407)	539	111	131	181	199	306	318	95	95
B (407)	540	111	131	199	199	306	318	83	95
B (407)	551	121	127	181	185	312	322	69	89
B (407)	553	125	125	181	205	306	322	93	97
B (407)	554	121	127	181	185	306	312	95	97
C (416)	1	131	133	177	197	308	318	77	95
C (416)	3	123	125	175	203	314	324	93	93
C (416)	6	121	131	177	203	312	322	69	89
C (416)	11	113	131	175	199	306	322	83	93
C (416)	15	121	133	181	197	306	308	77	97
C (416)	16	113	125	175	175	322	324	93	95
C (416)	44	111	111	199	199	306	318	83	83
C (416)	57	125	133	177	197	308	308	77	77
C (416)	63	127	127	177	191			83	89
C (416)	68	123	143	175	191	306	314	83	83
C (416)	69	115	147	185	203	306	306	83	85
C (416)	90	125	125	185	185			93	99
C (416)	97	125	125	175	175	322	324	93	95
C (416)	109	111	131	181	199	306	318	83	83
C (416)	119	125	127	185	203	306	312	69	89
C (416)	125	113	125	185	185	324	326	93	95
C (416)	142	111	131	181	181	306	318	83	95
C (416)	167	113	125	175	185	322	324	93	95
C (416)	173	115	115	185	205	322	322	93	99
C (416)	185	121	127	185	203	306	322	95	97
C (416)	188	147	147	185	187	322	324	83	91
C (416)	198	113	125	185	185	322	324	93	93
C (416)	212	127	147	185	185	306	312	83	89
C (416)	239	113	113	185	185	322	324	93	95
C (416)	241	121	131	185	203	306	322	95	97
C (416)	247	111	131	181	199	306	318	95	95
C (416)	263	121	121	203	203	306	322	97	97
C (416)	270	125	125	175	185	322	322	93	95

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
C (416)	288			185	191			83	95
C (416)	290	127	147	177	191	306	322	83	95
C (416)	295	121	131	181	185	306	322	89	97
C (416)	311	113	125	185	185	322	324	93	95
C (416)	320	133	133	177	197	308	318	77	95
C (416)	328	113	125	175	185	322	324	93	95
C (416)	337	113	125	175	185	322	324	93	95
C (416)	344	113	113	185	203	306	324	85	97
C (416)	357	125	127	177	181	322	324	69	89
C (416)	362	111	131	181	181	306	306	83	83
C (416)	369			185	185			83	97
C (416)	380	121	121	181	185			69	69
C (416)	387	115	115	191	191	322	324	83	83
C (416)	388	113	125	175	185	322	324	93	93
C (416)	412	121	131	177	203	312	322	89	97
C (416)	413	111	131	199	199	306	318	83	99
C (416)	415	113	147	191	203	324	324	83	97
C (416)	421	143	143	191	191	306	324	83	83
C (416)	423							77	95
C (416)	445	121	123	185	199				
C (416)	447	125	125	175	185	322	322	93	93
C (416)	450	121	125	203	203	306	306	69	97
C (416)	480	125	125	177	197	318	318	77	95
C (416)	491	113	115	185	203	306	324	85	97
C (416)	505			185	203			85	99
C (416)	511	143	143	187	187	306	306	83	83
C (416)	517	113	125	175	185	322	324	93	93
C (416)	537	127	147	177	191	322	324	83	95
C (416)	540	111	111	181	199	306	306	83	95
C (416)	557	125	125	177	197	308	318	77	95
C (416)	560	113	115	185	185	306	306	85	93
C (416)	564	125	131	177	181	306	312	95	99
C (416)	577	113	125	185	185	322	324	93	93
C (416)	579	125	127	181	185	322	322	69	89
C (416)	594	115	143	185	185	306	324	83	97
C (416)	598	125	127	177	181	312	322	95	97
C (416)	601	111	131	181	199	306	318	83	95
D (421)	8	115	115	185	205	322	324	93	97
D (421)	18	121	125	181	203	306	322	69	97
D (421)	35	127	127	177	177	312	322	95	95
D (421)	40	113	121	181	185	306	306	69	91
D (421)	54	113	143	187	203	306	324	83	85
D (421)	56	111	113	185	199	318	324	83	95
D (421)	63	121	125	197	203	306	322	69	83
D (421)	70	125	131	181	185	306	324	93	95
D (421)	82	113	115	185	203	324	324	85	97
D (421)	83	111	125	185	199	318	322	83	95
D (421)	85	127	127	177	185	322	322	89	95
D (421)	91	115	127	185	185	306	322	93	95
D (421)	95	111	131	199	199	306	318	95	95

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
D (421)	103	115	143	185	187	306	324	83	97
D (421)	107	111	113	175	199	318	322	93	95
D (421)	124	113	143	175	187	324	324	83	95
D (421)	128	111	111	181	199	306	322	83	95
D (421)	153	115	115	177	177	306	306	81	97
D (421)	155	111	113	175	181	316	318	93	95
D (421)	174	143	147	185	191	306	324	83	83
D (421)	176	111	143	185	199	306	306	93	95
D (421)	195	113	147	187	205	322	324	83	93
D (421)	200	115	127	177	185	312	324	95	97
D (421)	210	113	143	175	185	306	324	85	93
D (421)	239	147	147	187	191	306	324	83	83
D (421)	259	125	125	201	203	306	322	69	83
D (421)	264	131	143	187	199	306	324	83	83
D (421)	265	115	131	177	185	306	322	83	95
D (421)	267	113	131	177	199	318	324	93	95
D (421)	276	127	147	185	191	322	324	89	97
D (421)	281	143	143	187	191	324	324	83	83
D (421)	284	125	143	187	203	306	324	83	97
D (421)	285	111	131	181	199	306	318	83	95
D (421)	288	127	131	177	185	312	322	89	95
D (421)	304	113	131	181	185	306	306	85	95
D (421)	332	111	129	185	199	306	306	85	95
D (421)	339	127	131	177	185	312	312	95	95
D (421)	343	113	113	175	199	312	324	95	95
D (421)	344	119	121	181	205	306	322	91	97
D (421)	359	113	147	185	187	306	306	83	97
D (421)	365	111	125	185	199	306	322	93	95
D (421)	379	127	127	177	185	312	322	89	89
D (421)	381	115	125	185	203	306	322	97	97
D (421)	391			175	185	322	322	93	95
D (421)	392	125	143	187	203	306	324	83	97
D (421)	413	131	147	185	191	312	324	95	97
D (421)	433	113	131	185	199	318	324	93	95
D (421)	442	143	147	187	187	306	324	83	83
D (421)	454	111	113	175	199	318	324	83	95
D (421)	457	147	147	191	191	324	324	83	83
D (421)	464	113	127	177	185	312	322	89	91
D (421)	474	143	147	185	191	314	324	83	93
D (421)	482	125	147	183	191	306	306	83	95
D (421)	488	111	111	199	199	318	318	83	95
D (421)	494	111	113	181	185	306	322	93	95
D (421)	498	127	131	177	177	312	322	89	89
D (421)	500	111	125	175	181	306	322	95	95
D (421)	517	125	131	175	199	318	322	93	95
D (421)	519	127	131	177	177			95	95
D (421)	545	115	147	185	203	306	306	83	85
D (421)	556	125	127	181	185	322	322	69	89
D (421)	586	115	143	185	191	306	306	83	97
D (421)	589	131	147	185	191	312	324	89	97

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
D (421)	590	121	127	177	203	322	322	69	89
D (421)	595	111	113	185	199	306	322	83	93
E (423)	14	111	131	181	181	306	318	83	83
E (423)	18	113	143	185	191	306	324	83	99
E (423)	29	115	125	191	203	306	322	69	83
E (423)	40	111	125	185	199	318	322	93	95
E (423)	50	115	127	185	191	306	322	83	89
E (423)	78	111	131	181	199	318	318	95	95
E (423)	91	113	143	191	203			83	85
E (423)	100	123	147	185	185	306	312	83	97
E (423)	103	115	125	181	185	306	322	69	91
E (423)	115			177	185	312	312	89	95
E (423)	119	111	113	175	199	306	322	83	93
E (423)	124	125	147	181	191	306	322	69	83
E (423)	130	115	127	185	185	322	324	83	95
E (423)	148	131	147	199	199	306	306	83	95
E (423)	156	111	111	181	181			83	83
E (423)	158	111	113	185	199	306	322	83	95
E (423)	161	113	143	185	191	324	324	83	85
E (423)	181	131	131	181	199	318	318	83	95
E (423)	184	121	127	177	203	322	322	69	89
E (423)	209	115	131	179	203	306	324	85	85
E (423)	215	127	127	177	177	312	312	89	95
E (423)	223							83	83
E (423)	224	111	113	185	199	318	322	93	95
E (423)	240			179	179			83	85
E (423)	251	111	125	175	199	306	322	83	93
E (423)	259	119	121	179	181	322	322	69	93
E (423)	279	111	111	181	181	306	318	83	83
E (423)	287	127	131	177	177	322	322	89	99
E (423)	297	113	147	185	191	324	324	85	97
E (423)	321	113	147	185	187	324	324	83	93
E (423)	323	111	111	199	199	306	318	83	95
E (423)	332	127	127	185	185	312	312	89	95
E (423)	333	113	143	185	201	322	324	91	95
E (423)	347	113	121	203	205	306	322	69	91
E (423)	348	127	127	185	185	312	322	89	89
E (423)	383	143	147	191	191	324	324	83	83
E (423)	392	113	147	185	191	306	324	83	85
E (423)	395	121	125	181	183	306	322	69	69
E (423)	397	111	113	175	181	318	322	93	95
E (423)	411	127	127	177	177	322	324	89	95
E (423)	413	125	131	185	199	306	322	95	95
E (423)	426	113	125	181	185	318	324	93	95
E (423)	445	121	131	185	203	306	312	69	89
E (423)	455	143	147	187	187	306	324	83	83
E (423)	461	131	131	181	181	306	318	83	95
E (423)	462	127	127	177	177	312	322	89	95
E (423)	470	113	113	185	203	306	322	95	97
E (423)	475	113	125	175	185	322	322	93	95

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Tabela 3 – (Continuação) Alelos de Embra23, Embra41, Embra227 e En15 para todos os indivíduos amostrados.
Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas
amplificações.

Ensaio	Indivíduo	BRA23a	BRA23b	BRA41a	BRA41b	BRA227a	BRA227b	En15a	En15b
E (423)	510	111	113	181	185	306	322	83	93
E (423)	512	121	147	191	201	312	324	81	83
E (423)	519	115	133	185	205	306	322	85	95
E (423)	523	113	125	181	203	306	322	69	97
E (423)	531	127	131	177	185	322	324	89	95
E (423)	546	143	147	187	187	324	324		
E (423)	550	113	113	185	203	306	324	85	93
E (423)	561	113	125	185	185	324	324	93	95
E (423)	562	113	121	185	203	306	322	95	97
E (423)	585	127	127	185	185	312	322	89	95
E (423)	586							83	83

Tabela 4 – Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
	M74	140	154	236	256	128	134	214	226
	1552	134	154	226	244	138	148	222	248
	M18	136	146	256	260	134	148	208	234
	1113	136	154	260	266	126	130	214	228
	1213	136	154	256	260	128	134	208	214
	100170003	126	160	260	264	124	136	212	256
	100890020	136	136	254	272	136	140	226	228
	M28	136	144	256	264	118	134	230	232
	100840012	126	136	248	256	132	164	208	234
	100891019	128	138	248	250	120	126	218	220
	100891004	130	138	248	266	154	156	218	220
	M89	150	154	256	272	136	170	226	228
	M13	140	164	252	266	130	144	218	234
Domon	100881019	126	138	248	266	126	138	220	222
Pomar	100856020	146	154	248	254	134	136	214	234
	M07	144	144	248	250	154	164	214	232
	100834013	136	150	244	256	128	170	208	226
	100841010	140	144	248	260	128	136	226	234
	100856016	144	154	254	264	136	154	224	232
	M49	146	156	254	260	124	148	214	220
	100126020	120	142	250	266	126	148	226	248
	100820011	144	146	254	260	136	138	214	234
	1514	144	158	254	264	130	148	208	208
	100891010	130	138	248	250	126	154	218	220
	100856002	144	146	248	250	134	136	224	232
	100834009	136	136	248	256	128	170	214	214
	10083008	136	150	248	260	134	138	214	234
	1235	128	146	248	254	136	156	214	234
A (394)	8	146	154	254	256	128	148	214	220
A (394)	27	154	164	252	256	130	170	218	228
A (394)	30	140	146	260	260	128	134	208	234
A (394)	31	136	144	248	256	134	136	226	234

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
A (394)	32	140	144	260	266	128	130	234	234
A (394)	50	144	150	250	256	154	170	214	228
A (394)	71	140	146	256	260	128	134	234	234
A (394)	73	150	154	236	256	134	136	226	226
A (394)	91	154	164	266	272	130	136	226	234
A (394)	92	150	164	252	272	136	144	228	234
A (394)	119	136	136	256	256	118	134	230	234
A (394)	139	140	140	236	260	128	128	214	226
A (394)	140	144	164	248	252	128	130	218	234
A (394)	143	144	146	248	256	128	134	208	234
A (394)	145	144	144	248	260	136	154	232	234
A (394)	154	150	164	252	256	144	170	218	226
A (394)	156	154	164	256	266	130	170	218	226
A (394)	161	126	146	248	260	126	148	222	234
A (394)	176	144	154	250	256	164	170	228	232
A (394)	178	144	154	248	256	164	170	226	232
A (394)	202	140	144	250	266	130	154	214	218
A (394)	218	144	154	248	272	136	154	214	228
A (394)	221	146	154	236	248	128	156	214	226
A (394)	227	138	146	260	266	126	148	208	220
A (394)	232	144	144	248	248	136	154	214	226
A (394)	237	136	140	248	256	128	148	226	234
A (394)	247	136	144	248	256	128	134	208	234
A (394)	250	146	146	254	260	136	148	208	214
A (394)	252	146	154	256	260	134	148	220	226
A (394)	254	154	164	266	272	136	144	226	234
A (394)	256	140	154	252	256	130	170	228	234
A (394)	288	144	154	248	272	154	170	214	226
A (394)	305	144	150	250	256	136	154	214	226
A (394)	308	144	150	248	256	136	164	228	232
A (394)	311	136	144	256	256	134	134	208	230
A (394)	312	136	136	256	260	134	148	208	234
A (394)	314	140	164	260	266	128	130	234	234
A (394)	345	140	156	256	260	124	134	214	220
A (394)	349	136	140	260	260	136	148	226	234
A (394)	352	144	154	248	256	164	170	214	226
A (394)	362	150	154	236	272	134	170	214	228
A (394)	371	144	146	256	256	134	134	208	232
A (394)	384	140	154	252	256	136	144	218	228
A (394)	401	140	156	236	260	124	128	220	226
A (394)	414	136	154	256	260	134	136	208	226
A (394)	424	144	146	256	260	134	136	226	234
A (394)	428	144	154	250	272				
A (394)	441	146	164	250	266	130	136	218	232
A (394)	448	144	154	250	272	136	164	214	228
A (394)	449	144	146	248	248	136	164	232	234
A (394)	450	140	154	252	256	130	136	226	234
A (394)	463	146	150	256	256	136	148	208	226
A (394)	479	144	164	252	260	136	144	226	234
A (394)	480	128	140	236	248	128	136	214	214

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
A (394)	492	144	146	256	260	118	134	208	232
B (407)	15	154	164	252	256	130	170	228	234
B (407)	17	138	140	248	266	134	144	218	230
B (407)	18	144	164	250	252	130	154	232	234
B (407)	19	136	140	252	264	144	154	218	218
B (407)	43	144	146	248	252	134	164	214	234
B (407)	44	138	144	248	248	138	154	214	222
B (407)	45	144	144	248	250	136	164	214	226
B (407)	46	140	144	248	254	144	164	214	238
B (407)	47	140	144	250	260	128	164	214	234
B (407)	91	136	140	256	256	128	134	226	232
B (407)	92	140	154	236	272	134	170	226	226
B (407)	94	140	154	256	256	128	134	214	226
B (407)	99	146	154	256	262	130	148	220	220
B (407)	100	146	156	254	260	148	148	214	214
B (407)	101			252	260			214	220
B (407)	103	146	156	260	260	148	148	220	220
B (407)	121	126	140	236	266	134	138	214	222
B (407)	122	150	154	236	256	134	170	214	228
B (407)	124	150	154	256	256	128	170	226	226
B (407)	125	156	156	254	260	124	148	220	220
B (407)	128	146	146	254	254	148	148	214	220
B (407)	129	156	156	254	260	124	148	214	214
B (407)	163	140	150	252	272	130	136	228	234
B (407)	164	140	154	266	272	144	170	226	234
B (407)	165	140	164	252	252	130	144	218	234
B (407)	166	140	154	252	272	130	170	218	228
B (407)	213	144	164	250	252	144	164	214	234
B (407)	214	144	154	248	256	164	170	226	232
B (407)	215	130	144	248	248	156	164	214	220
B (407)	216	144	144	248	250	136	164	214	234
B (407)	217	138	144	248	250	126	164	222	232
B (407)	223	146	156	254	254	124	148	214	220
B (407)	224	146	156	254	254	124	148	214	220
B (407)	227	146	156	254	260	124	148	214	220
B (407)	260	154	164	256	266	130	170	218	228
B (407)	261	154	164	256	266	130	136	218	226
B (407)	262	140	146	248	266	144	164	218	230
B (407)	263	140	154	266	272	136	144	218	228
B (407)	264	136	164	248	266	118	144	226	234
B (407)	269	138	144	248	248	138	154	222	232
B (407)	270	138	144	248	256	154	164	232	234
B (407)	271	140	144	234	248	128	164	214	226
B (407)	272	138	144	248	250	138	154	214	222
B (407)	298	150	154	256	256	128	136	226	226
B (407)	299	140	140	256	260	128	136	226	234
B (407)	345	126	144	250	266	126	154	214	222
B (407)	346	144	146	236	250	136	154	214	232
B (407)	347	144	144	248	248	154	164	214	232
B (407)	348	144	144	248	248	164	164	214	232

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
B (407)	349	144	150	248	272	136	154	214	226
B (407)	350	146	156	260	260	124	148	214	220
B (407)	351	146	156	254	254	124	148	214	220
B (407)	352	156	156	254	260	124	124	220	220
B (407)	354	146	156	260	260	124	124	214	220
B (407)	426	140	150	252	256	130	170	218	226
B (407)	427	140	154	252	256	130	170	226	234
B (407)	428	144	164	250	252	130	136	218	232
B (407)	429	150	164	252	256	136	144	218	226
B (407)	430	140	140	248	266	128	130	218	234
B (407)	437	140	154	256	256	134	170	226	226
B (407)	438	154	154	236	256	134	170	214	228
B (407)	440	140	150	256	256	134	136	214	228
B (407)	481	138	144	248	266	138	164	220	232
B (407)	482	126	144	248	250	126	164	220	232
B (407)	483	140	144	248	260	136	154	232	234
B (407)	484	144	144	248	250	136	154	226	232
B (407)	485	126	144	248	250	126	154	220	232
B (407)	504	140	146	248	260	134	136	208	226
B (407)	513	140	144	248	260	136	136	226	234
B (407)	525	150	154	236	272	134	136	214	228
B (407)	526	140	154	236	248	128	136	214	234
B (407)	527	154	154	234	256	128	134	214	214
B (407)	536	156	156	254	260	148	148	214	220
B (407)	537	146	156	254	260	124	148	214	220
B (407)	538	146	146	254	260	124	124	214	214
B (407)	539	146	156	254	260	124	148	214	220
B (407)	540	156	156	254	260	124	148	214	220
B (407)	551	140	150	252	272	144	170	218	226
B (407)	553	138	164	252	266	130	138	218	222
B (407)	554	140	150	266	272	136	144	218	228
C (416)	1	134	154	226	244	138	148	222	248
C (416)	3	136	144	242	264	118	134	232	238
C (416)	6	140	154	252	256	144	170	218	228
C (416)	11	144	156	260	264	118	124	220	230
C (416)	15	154	164	228	266	138	144	218	222
C (416)	16	136	144	256	264	118	134	230	232
C (416)	44	146	156	260	260	124	148	214	220
C (416)	57	134	154	226	226	138	148	222	222
C (416)	63	150	154	236	256			226	228
C (416)	68	140	144	236	250	134	134	224	226
C (416)	69	140	144	248	260	136	164	214	234
C (416)	90	136	136	256	264			230	230
C (416)	97	144	144	256	264	118	134	232	232
C (416)	109	146	156	254	260	124	144	214	220
C (416)	119	150	164	256	264	144	144	218	226
C (416)	125	136	144	264	264	118	134	230	232
C (416)	142	156	156	254	254	148	148	220	220
C (416)	167	136	144	264	264	118	134	232	232
C (416)	173	126	126	250	266			220	232

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
C (416)	185	140	150	252	272			226	234
C (416)	188	126	154	236	266	128	138	214	214
C (416)	198	136	136	256	264	118	134	230	230
C (416)	212	140	140	236	256	134	136	214	228
C (416)	239	136	136	264	264	118	134	230	232
C (416)	241	140	154	252	272	136	144	226	234
C (416)	247	146	146	254	260	124	138	214	214
C (416)	263	140	164	266	266	130	144	234	234
C (416)	270	136	136	264	264			230	230
C (416)	288	140	150	236	236			214	226
C (416)	290	154	154	236	272	134	136	226	228
C (416)	295	152	164	252	256			226	234
C (416)	311	136	144	256	264	118	134	230	232
C (416)	320	134	134	226	226	138	138	244	246
C (416)	328	144	144	256	256	118	134	230	232
C (416)	337	136	144	256	264	118	134	230	232
C (416)	344	144	144	250	260	128	164	220	226
C (416)	357	150	164	252	256	144	144	226	234
C (416)	362	146	146	254	260	148	148	220	220
C (416)	369	140	140	236	248	134	136	218	226
C (416)	380	140	140	226	244			226	234
C (416)	387	140	144	236	260	128	134	226	226
C (416)	388	136	144	264	264	118	118	230	232
C (416)	412	140	150	252	272	130	130	218	226
C (416)	413			254	260	122	124	214	220
C (416)	415	140	144	248	248	136	154	214	226
C (416)	421	140	154	236	256	128	134	214	214
C (416)	423	154	154	226	226	138	148	222	222
C (416)	445			248	256	132	132	208	234
C (416)	447	136	144	256	264	118	134	230	230
C (416)	450	140	164	264	264	130	144	234	234
C (416)	480	134	154	226	244	138	148	222	222
C (416)	491	144	144	248	250	154	164	214	214
C (416)	505	126	144	248	250			222	232
C (416)	511	140	140	236	256	128	134	214	214
C (416)	517	136	144	264	264	118	134	230	232
C (416)	537	140	154	236	256	134	170	214	228
C (416)	540	156	156	254	254	124	148	214	220
C (416)	557	134	154	226	244	138	138	248	248
C (416)	560	138	144	248	250	138	154	214	222
C (416)	564	154	164	252	272	144	170	218	226
C (416)	577	136	144	256	264	118	134	230	232
C (416)	579	150	164	256	266	144	144	218	226
C (416)	594	140	140	236	260	128	136	214	226
C (416)	598	150	164	256	266	130	160	232	234
C (416)	601	146	146	260	260	124	124	214	220
D (421)	8	138	144	248	266	126	154	214	222
D (421)	18	164	164	252	252	130	144	218	234
D (421)	35	150	150	256	256	136	170	226	228
D (421)	40	138	140	266	266	130	138	218	222

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
D (421)	54	140	144	248	256	128	154	214	226
D (421)	56	144	156	260	264	124	134	220	230
D (421)	63	136	140	260	266	130	136	218	224
D (421)	70	144	146	256	260	118	124	214	232
D (421)	82	144	144	250	250	154	164	214	232
D (421)	83	144	146	256	260	124	134	214	230
D (421)	85	150	154	256	272	136	136	226	228
D (421)	91	138	150	256	266	126	136	220	228
D (421)	95	146	156	254	254	124	148	214	220
D (421)	103	144	154	248	256	128	128	214	226
D (421)	107	144	146	260	264	118	124	220	230
D (421)	124	144	154	236	264	118	134	214	230
D (421)	128	146	156	254	260	148	148	214	220
D (421)	153	136	136	254	272	140	140	228	228
D (421)	155	146	154	254	264	124	134	220	232
D (421)	174	140	144	248	256	134	136	214	234
D (421)	176	146	156	254	260	124	148	208	214
D (421)	195	138	140	236	248	134	138	214	220
D (421)	200	140	150	248	256	136	170	226	234
D (421)	210	144	150	256	264	118	130	226	230
D (421)	239	144	154	236	260	128	128	214	226
D (421)	259	130	140	252	254	130	148	212	218
D (421)	264	154	156	234	254	128	148	220	226
D (421)	265	140	150	248	256	128	170	228	234
D (421)	267	136	146	256	260	134	148	220	230
D (421)	276	144	154	248	256	128	136	226	228
D (421)	281	140	154	236	256	128	134	214	226
D (421)	284	140	164	256	266	134	144	218	226
D (421)	285	156	156	260	260	124	148	214	220
D (421)	288	150	154	256	256	136	170	226	228
D (421)	304	144	146	250	254	148	154	214	220
D (421)	332	140	156	244	254	130	148	214	230
D (421)	339	150	154	256	272	136	136	226	228
D (421)	343	144	158	254	264	134	164	226	230
D (421)	344	138	140	252	266	138	144	220	234
D (421)	359	144	154	250	256	134	154	214	214
D (421)	365	144	146	256	260	134	148	214	232
D (421)	379	150	154	256	256	136	170	226	228
D (421)	381	144	164	260	266	128	144	234	234
D (421)	391	136	144	264	264	118	134	230	232
D (421)	392	154	164	256	266	128	130	214	234
D (421)	413	144	150	248	256	128	136	226	226
D (421)	433	144	156	256	260	124	134	214	230
D (421)	442	154	154	236	256				-
D (421)	454	136	146	254	264	124	134	214	232
D (421)	457	140	154	236	256	128	134	214	226
D (421)	464	138	150	256	266	138	170	220	228
D (421)	474	140	146	256	260	128	134	214	234
D (421)	482	146	154	248	256	134	158	214	218
D (421)	488	146	146	254	254	124	148	214	220

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
D (421)	494	136	156	254	256	118	148	214	230
D (421)	498	150	154	256	272	136	170	226	228
D (421)	500	136	156	260	264	134	148	214	230
D (421)	517	136	156	254	264	118	124	220	232
D (421)	519	154	154	256	272	136	136	226	228
D (421)	545	140	144	250	260	136	164	214	234
D (421)	556	140	154	256	266	130	170	218	228
D (421)	586	140	144	236	248	128	128	226	226
D (421)	589	144	154	248	256	136	170	226	228
D (421)	590	154	164	252	256	130	136	226	234
D (421)	595	136	156	254	256	124	134	220	230
E (423)	14	146	156	254	254	124	124	214	214
E (423)	18	140	144	250	256	128	154	214	214
E (423)	29	140	140	248	252	136	144	234	234
E (423)	40	136	146	256	260	118	118	220	220
E (423)	50	144	150	248	256	128	136	226	226
E (423)	78	156	156	260	260	124	144	220	220
E (423)	91	144	154	250	256			214	214
E (423)	100	146	154	236	248	134	136	214	226
E (423)	103	138	164	252	266	138	144	222	234
E (423)	115	150	154	256	272	136	154	228	228
E (423)	119	136	156	256	260	118	124	214	230
E (423)	124	140	144	248	266	128	130	218	226
E (423)	130	140	150	256	260	136	136	226	226
E (423)	148	154	156	236	254	124	128	214	214
E (423)	156	156	156	254	260	124	124	214	220
E (423)	158	144	146	254	256	118	118	220	220
E (423)	161	140	144	236	250	134	154	214	214
E (423)	181	146	146	254	260	124	124	214	214
E (423)	184	150	164	252	272			234	234
E (423)	209	136	144	248	264	136	136	214	226
E (423)	215	150	154	256	256	136	136	226	226
E (423)	223	140	140	236	256	134	134	214	226
E (423)	224	144	156	254	266	134	148	220	220
E (423)	240	140	140	254	256			214	220
E (423)	251	144	156	254	264	118	118	220	232
E (423)	259	138	140	266	290	134	144	214	234
E (423)	279	156	156	254	260	124	124	214	220
E (423)	287	150	150	272	272			226	226
E (423)	297	140	144	248	250	128	128	214	226
E (423)	321	136	154	256	264	128	134	226	226
E (423)	323	146	156	254	260	124	124	214	220
E (423)	332	152	154	256	272	136	136	226	226
E (423)	333	134	136	248	264	118	130	226	226
E (423)	347	126	140	252	266	130	138	220	234
E (423)	348	150	154	272	272	136	170	226	228
E (423)	383	140	154	256	256	128	152	220	226
E (423)	392	140	144	248	256	134	154	214	226
E (423)	395	140	164	252	266	130	144	218	234
E (423)	397	136	156	260	264	124	134	214	220

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Ensaio	Indivíduo	Es76a	Es76b	Eg65a	Eg65b	BRA37a	BRA37b	En12a	En12b
E (423)	411	150	154	256	272	136	154	226	226
E (423)	413	144	146	256	260	118		220	232
E (423)	426	136	146	242	264	134	138	218	224
E (423)	445	140	150	266	272	144	144	218	226
E (423)	455	140	140	236	256	134	134	214	226
E (423)	461	146	146	254	260	124	124	208	214
E (423)	462	150	154	256	272	168	170	220	228
E (423)	470	144	144	248	264	134	134	232	234
E (423)	475	136	144	256	264	118	118	230	230
E (423)	510	144	146	254	264	118	146	220	220
E (423)	512	136	154	236	242	128	134	214	226
E (423)	519	138	144	248	248	136	154	208	214
E (423)	523	144	164	246	266	144	154	212	218
E (423)	531	150	150	272	272	136	170	218	226
E (423)	546					128	134	214	214
E (423)	550	126	144	248	248	138	138	222	232
E (423)	561	144	144	256	264	118	134	222	230
E (423)	562	136	140	252	264	118	144	232	234
E (423)	585	150	150	256	272	136	154	226	228
E (423)	586	156	156	254	260	124	148	214	220

Tabela 4 – (Continuação) Alelos de Es76, Eg65, Embra37 e En12 para todos os indivíduos amostrados. Cada microssatélite possui duas colunas referentes a cada alelo ("a" e "b"). Espaços em branco indicam falhas nas amplificações.

Tabela 5 - Tabela com estatística descritiva dos cinco ensaios. Os parâmetros utilizados para descrever os dados foram os mínimos, os máximos, os quartis, a mediana, a média e desvio padrão. A unidade de todos os valores da tabela é o metro.

Ensaio	Mínimo	1º Quartil	Mediana	3º Quartil	Máximo	Média	Desvio Padrão
А	4,2	6,78	7,1	7,5	8,5	7,02	0,71
В	3,3	4,1	4,4	4,85	5,3	4,40	0,53
С	1,2	3,35	3,95	4,3	5,6	3,84	0,83
D	1,4	3,51	3,85	4,27	5,2	3,84	0,61
E	1,45	2,05	2,21	2,45	3,85	2,31	0,54
Anexo 6 – Resultados das estatísticas em R

```
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
Formula: ALT ~ F + (1 | Ensaio) + (1 | Mãe) + (0 + F | Mãe)
 Data: dados_analise
REML criterion at convergence: 524.7
Scaled residuals:
 Min 1Q Median
                       3Q Max
-4.5788 -0.5200 0.0565 0.5746 2.4581
Random effects:
Groups Name
                   Variance Std.Dev.
               0.2320 0.4817
Mãe F
Mãe.1 (Intercept) 0.0308 0.1755
Ensaio (Intercept) 2.7901 1.6704
Residual
                0.3734 0.6111
Number of obs: 262, groups: Mãe, 7; Ensaio, 5
Fixed effects:
      Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.4310 0.7520 4.0768 5.892 0.00391 **
        -0.9566 0.2889 4.8979 -3.311 0.02188 *
F
____
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Correlation of Fixed Effects:
(Intr)
F -0.034
```

Figura 1 – Output detalhado do modelo linear misto desenvolvido em R.

\$Mãe F (Intercept) 100074002 4.674118 -1.4857161 100785018 4.330482 -0.9327317 100826049 4.438752 -0.7958127 100850028 4.506459 -0.7495394 100856007 4.260087 -1.0902663 100867013 4.334368 -0.5152283 100890013 4.473054 -1.1270650 \$Ensaio (Intercept) F A 7.094637 -0.9566228 B 4.537073 -0.9566228 C 4.022189 -0.9566228 D 3.980835 -0.9566228 E 2.520493 -0.9566228 attr(,"class") [1] "coef.mer"

Figura 2 – Coeficientes referentes aos efeitos aleatórios do modelo linear misto apresentado na figura 1.

Pearson's Chi-squared test

data: fenotipo_parentesco X-squared = 2.4277, df = 4, p-value = 0.6576

Figura 3 – output do teste de qui-quadrado de Pearson no R.

Anexo 7 – Gel de agarose

Figura 1 – Exemplo de um gel de agarose para confirmar a amplificação de 4 indivíduos. O gel é referente ao multiplex 4 onde se podem ver diversas bandas resultado das amplificações dos microssatélites Embra37 e En12. O C+ é um controlo positivo e C- um controlo negativo. As bandas do lado direito do controlo negativo são o marcador para verificar o tamanho dos fragmentos, estando os tamanhos das bandas detalhados a partir dos 500 pares de base (bp) até aos 100 bp

Anexo 8 – Output do PeakScanner Software 2

Figura 1 – Exemplo de um gráfico obtido pelo PeakScanner onde se pode ver o resultado da eletroforese capilar realizada pelo STABvida. O eixo vertical marca a intensidade do pico (pico de maior dimensão equivale a um maior número de fragmentos amplificados) e o eixo horizontal representa o tamanho dos fragmentos de onde se retiram os alelos do indivíduo. Os picos azuis são provenientes dos microssatélites com *primers* marcados com a sonda florescente 6-FAM e os verdes com a sonda HEX.