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Abstract

In this paper, we investigate the mesoscale structure of the World Trade Network. In
this framework, a specific role is assumed by short- and long-range interactions, and
hence by any suitably defined network-based distance between countries. Therefore,
we identify clusters through a new procedure that exploits Estrada communicability
distance and the vibrational communicability distance, which turn out to be particu-
larly suitable for catching the inner structure of the economic network. The proposed
methodology aims at finding the distance threshold that maximizes a specific quality
function defined for general metric spaces. Main advantages regard the computational
efficiency of the procedure as well as the possibility to inspect intercluster and intr-
acluster properties of the resulting communities. The numerical analysis highlights
peculiar relationships between countries and provides a rich set of information that
can hardly be achieved within alternative clustering approaches.
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1 Introduction

International trade is based on a set of complex relationships between different coun-
tries. Both connections between countries and bilateral trade flows can be modelled as
a dense network of interrelated and interconnected agents. A long-standing problem
in this field is the detection of communities, namely subset of nodes among which the
interactions are stronger than average. Indeed, the community structure of a network
reveals how it is internally organized, highlighting the presence of special relationships
between nodes, that might not be revealed by direct empirical analyses.

In this framework, a specific role is assumed by the distance between nodes. Indeed,
the neighbours of a given node are immediately connected to such a node and they can
affect its status most directly. Nonetheless, more distant nodes can influence this node
while passing through intermediary ones. In the economic field, a network perspec-
tive is actually based on the idea that indirect trade relationships may be important
(see, for example, Fagiolo et al. 2015). For instance, Abeysinghe and Forbes (2005)
explain the impact of shocks on a given country by indirect trade links. Based on a
global VaR approach, Dées and Saint-Guilhem (2011) show that countries that do not
trade (very much) with the USA are largely influenced by its dominance over other
trade partners linked with the USA via indirect spillovers. In Ward et al. (2013), the
bilateral trade is assumed not independent of the production, consumption and trading
decisions made by firms and consumers in third countries. A measure of the distance
between nodes that also considers indirect connections is therefore crucial to catch
deep interconnections between nodes. In this work, we will focus on two measures
of distance or metrics on the network: the Estrada communicability distance (Estrada
and Hatano 2009) and the vibrational communicability distance (Estrada and Hatano
2010a). They both go beyond the limits of the immediate interaction between neigh-
bours, and they look simultaneously, albeit differently, at all the possible channels of
interactions between nodes. The nearest two nodes are in each metric, the stronger is
their interaction or, in other words, the higher is the level of communicability between
them.

With this paper, we contribute to the literature by proposing a specific method-
ology that exploits such metrics to inspect the mesoscale structure of the network,
in search for strongly interacting clusters of nodes. Indeed, our purpose is twofold.
We reveal hidden relationships between nodes due to non-immediate connections and
long-range interactions, and we show how this approach turns out to be particularly
suitable when applied to a dense network like the World Trade Network (WTN). More
specifically, we exploit communicability and vibrational communicability metrics to
group nodes whose mutual distances are below a given threshold, i.e. whose interac-
tions are stronger than a given value. Then, we identify the optimal partition according
to a maximum quality function criterion. It is well-known that classical modularity is
a way to measure if a specific mesoscopic description of the network in terms of com-
munities is more or less accurate. But, unlike the Girvan—-Newman approach (Newman
and Girvan 2004), we will refer to the partition quality index proposed in Chang et al.
(2016) for general metric spaces. In this way, we can exploit the additional information
contained in the metric structure of the network. Among all the different partitions we
get at different thresholds, we select the one providing the maximum quality index,
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according to the criterion described in Chang et al. (2016). Our proposal is very effi-
cient from a computational viewpoint. Indeed, given the specific distance matrix, the
optimal solution can be easily evaluated varying the threshold. We cluster nodes going
beyond the interactions between neighbours and considering all possible channels of
interaction between them. We allow for a degree of flexibility by introducing a thresh-
old. Varying the threshold, it is possible to depart from the optimal solution so that
only the strongest (or the weakest) channels of communications emerge.

The paper is organized as follows. After a short review of the literature in Sect. 2,
main preliminaries and the definitions of the communicability functions are revised
in Sect. 3. These functions lead to two important metrics on networks, which are
described in Sect. 4. Section 5 contains the description of the proposed methodology,
which is also tested on a suitable toy model. In Sect. 6, we apply our methodology to the
World Trade Network. In particular, main characteristics of the network are described
in Sect. 6.1. The steps of the methodology are summarized in Sect. 6.2. We report in
Sect. 6.3 main results based on communicability and resistance distance, respectively.
We show how the proposed methodology is able in capturing key economic clusters
as well as in providing additional insights into intracluster and intercluster character-
istics and of countries’ relevance both in the community and in the whole network.
Conclusions follow. Technical details are left in “Appendices A and B”.

2 Literature review

Community detection is an important topic in the analysis of the topological structure
of complex systems. Its importance has grown over time in light of the remarkable
progress in the description of large networks, together with the development of new
powerful data analysis tools (Lancichinetti and Fortunato 2009). These advances have
made it possible to extend the field of applicability of the theory not only to networks
of enormous dimensions but also to weighted networks and direct networks (Fagiolo
2007; Rattigan et al. 2007; Clemente et al. 2018; Cerqueti et al. 2018). Various methods
and algorithms to detect communities on networks have been studied. Some methods
are algorithm-based, such as methods based on hierarchical clustering or edge removal
(Newman 2004). Other methods are based on the optimization of specific criteria over
all possible network partitions. In this context, it is well-known optimization of a
modularity function according to Newman’s definition (Newman and Girvan 2004).
An exhaustive review about methods and algorithms can be found in Fortunato (2010)
and Fortunato and Hric (2016). Some authors proposed to detect communities by
means of a quality measure called surprise (Traag et al. 2015; Nicolini et al. 2017).
Inspired by this literature, recently Van Lidth de Jeude et al. (2019) deal with detection
of general mesoscale structures, such as core-periphery structures.

More recently, the role of non-local interactions between nodes has been high-
lighted, that s, interactions that do not exclusively involve the immediate neighbours of
a given node. In particular, results connected to the idea of communicability introduced
by Estrada in 2004 have proved to be extremely effective (Estrada and Rodriguez-
Velazquez 2005; Estrada and Hatano 2008, 2009; Estrada 2012a). All the more so by
allowing a metric different from the shortest path metric to be introduced on the net-
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work. The purpose of this new metric is precisely to take into consideration long-range
interactions between institutions. Some important similarities can be found between
this new metric and the resistance distance, a well-known metric in network theory
derived from the study of electric circuits (Klein and Randic 1993; Estrada and Hatano
2010a; Lee et al. 2019), and its interpretation in terms of vibrational communicability
(Estrada and Hatano 2010b; Bozzo 2013; Ferraz de Arruda et al. 2014; Van Mieghem
et al. 2017).

An area in which these concepts allow us to gain a deep insight into the hidden
structures of the network is properly the WTN. The topology of the world trade web
has been extensively analysed over time (Serrano and Boguifid 2003; Li et al. 2003;
Garlaschelli and Loffredo 2004, 2005; Garlaschelli et al. 2007; Fagiolo et al. 2008).
The behaviour of international trade flows, the impact of globalization on the inter-
national exchanges, the presence of a core-periphery structure or the evolution of the
community centres of trade are just some of the issues addressed by the recent devel-
opments (Serrano et al. 2007; Tzekina et al. 2008; Fagiolo et al. 2010; De Benedictis
and Tajoli 2011; Blochl et al. 2011). Many works have dealt with the network from
a multi layers perspective (Snyder and Kick 1979; Barigozzi et al. 2011) or aim to
emphasize financial implications of the world trade or contagion processes on the
network (Wilhite 2001; Reyes et al. 2008; Schiavo et al. 2010; Fagiolo et al. 2013;
Fan et al. 2014; Varela et al. 2015; Giudici and Spelta 2016; De Benedictis and Tajoli
2016; Cepeda-Lopez et al. 2019; Cerqueti et al. 2019).

The impact of topology and metric properties on the stability and resilience of an
economic or financial system has been widely studied in order to describe the large-
scale pattern of dynamical processes inside the network (Smith and White 1992; Kali
and Reyes 2007; Piccardi and Tajoli 2018). These processes determine the subsequent
diversification of the export of a country, which can be compared with descriptive
empirical indices of its potential growth, such as the one introduced in a very fruitful
way in Hausmann et al. (2014).

3 Communicability in complex networks

The idea of communicability on a network is based on the ways in which a pair of
nodes can communicate, namely through walks connecting them. In the literature, two
different definitions of communicability have been introduced: the Estrada Commu-
nicability and the Vibrational Communicability (Estrada and Hatano 2008, 2010b).
We recall them in this section.

3.1 Preliminary definitions

First of all, we briefly remind some preliminary definitions. A network is formally
represented by a graph ¢4 = (V, E) where V and E are the sets of n nodes and m
edges, respectively. Two nodes i and j are adjacent if there is an edge (i, j) € E
connecting them. The network is undirected if (j, i) is an element of E whenever
(i, j)issuch. Ai — j-path is a sequence of distinct vertices and edges between i and
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Jj. The shortest path, or geodesic, between i and j is a path with the minimum number
of edges. The length of a geodesic is called geodesic distance or shortest path distance
d(i, j) = djj. A graph ¢ is connected if, Vi, j € V, ai — j-path connecting them
exists.

Adjacency relationships are represented by a binary symmetric matrix A (adjacency
matrix). Graphs considered here will be always connected and without self-loops; in
this case a;; =0Vi =1, ..., n. We denote with | > A > --- > A, the eigenvalues
of A, and ¢;,i = 1, ..., n the corresponding eigenvectors.

The degree k; of a node i is the number of edges incident on it. The diagonal
matrix whose diagonal entries are k; is K. The Laplacian matrix is L = K — A.
L is a positive semidefinite symmetric matrix. We denote the eigenvalues of L by
U1 > p2>--->u, =0and y;,i =1,...,n the corresponding eigenvectors.

A graph ¢ is weighted when a positive real number w;; > 0 is associated with the
edge (i, j). We define the strength s; as the sum of the weights of the edges adjacent
to i. The definition of geodesic path still holds, and it is a weighted path with the
minimum sum of edge weights. In this case, the adjacency matrix is a nonnegative
symmetric matrix W. When w;; = 1if (i, j) € E, then the graph is unweighted.
Thus, the unweighted case can be viewed as a particular weighted one.

3.2 Estrada communicability

The Estrada communicability (Estrada and Hatano 2008) between two nodes i and j

is defined as:
+o0

Gij = Y Aty =[] . )
k=0
As the i j-entry of the k-power of the adjacency matrix A counts the number of walks
of length k starting at i and ending at j, G;; accounts for all channels of communication
between two nodes, giving more weight to the shortest routes connecting them. It can
also be interpreted as a measure of the probability that a particle starting at i ends up
at j after wandering randomly on the complex network. The communicability matrix
is denoted by G.
By definition, it follows that G;; > 0. Moreover, G;; can be conveniently expressed
using the spectral decomposition of A as follows (Estrada and Hatano 2008):

n
Gij =Y olDgr(j)e™,
k=1

where ¢y (i) is the i-component of the kth eigenvector associated with Ag.

It is worth noting that since G;; characterizes the importance of a node according to
its participation in all closed walks starting and ending at it, we recover the so-called
subgraph centrality (see Estrada and Rodriguez-Velazquez 2005).
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In the case of a weighted network, the communicability function is defined as

= 1 1 1\k (Sf%WS’%)

Gij =) [(s—zws—z) } = e @)
k=0 Ly ..

ij

where S is the diagonal matrix whose diagonal entries are the strengths of the nodes.

We will call this quantity weighted communicability.

3.3 Vibrational communicability

Vibrational communicability represents an alternative definition of communicability,
different from Estrada communicability, and which can be introduced through the
following model. Let us suppose that nodes of the network are objects of negligible
identical mass connected by springs in a plane grid. Nodes can oscillate in the direction
perpendicular to the plane and the displacement of the node i from its rest position
is z;. The elastic force applied to node i is given by F; = K> j Aij(zi — zj), where
K is the common elastic constant of each spring. An elastic potential energy can be
assigned to each perturbed spring, and the potential energy of all the springs connected
with node i is given by U; = 5 ye Z Aij(zi — z])
The overall potential energy of the network is therefore

1 , 1
U:ZIC;AU(ZI'—ZJ') ZEK;Z[LUZ]' (3)

where L;; is the ij-entry of L.

The reciprocal influence of two nodes i and j in their positions z; and z; is computed
by means of the Green’s function, according to the classical Boltzmann’s distribution
(Estrada and Hatano 2010a, b). This mutual influence can be interpreted as the corre-
lation function between the displacements z of two nodes in the network:

1
Gl (B) = (zizj) = E/ZiZje_ﬂUdZ

where f is a constant and Z = [ e~PUdz is the partition function. Using the nonzero
eigenvalues of L, Z can be expressed as

n—1
1 2
z=/e*7ﬂ’czfﬂf“ﬂf| [dzi =] )
k it ¥ PR

so that the correlation function can be rewritten in the final form

Vi)Y (j)
5
G/;(B) = kil BK g (&)
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where v is the eigenvector associated with py. Introducing the Moore—Penrose
pseudo-inverse of the Laplacian LT (Bozzo 2013; Gutman and Xiao 2004), the vibra-
tional communicability between nodes i and j is defined as

v 1 +
G;;(B) = ,B_ICLU (6)

The vibrational communicability matrix is denoted by G”. In the remainder of the
paper, we will assume § = 1 and K = 1, so that G:?j = Ll"]r
The detailed computations for previous formulas are reported in “Appendix A”.

4 Metrics on networks

Metric properties play an important role in the study of the structure and dynamics
of networks. The best known metric is the so-called shortest path distance. In the
literature, other metrics have been defined, each one stressing different features of
the network. We remind the definitions of communicability distance and resistance
distance, in view of their following application to the WTN.

4.1 Communicability distance

The communicability distance §;; is defined as (see Estrada 2012a):
§ij =Gii —2Gij +Gjj. (N

As already observed, G;; is the subgraph centrality of i and it measures the amount
of information that starts from and returns to node i after having wandered through
the network. On the other hand, G;; measures the amount of information transmitted
from i to j. Notice that the word information is meant in its broadest sense. Therefore,
information flow can be any kind of flow along edges: money, current, traffic and so
on. Thus, the quantity &;; accounts for the difference in the amount of information that
returns to the nodes i and j and the amount of information exchanged between them.

The greater is G;;, the larger the information exchanged and the nearer are the
nodes; the greater are G;; or G j;, the larger the information that comes back to the
nodes and the farther are the nodes. In a matrix form, &;; can be expressed as follows:

E =gu’ —2G +ug’

where g = [Gqy, ..., GnnlT is the vector of subgraph centralities and u the all 1’s
n—vector. Since &;; is a metric, G;; + Gj; > 2G;j, i.e. no matter what the structure
of the network is, the amount of information absorbed by a pair of nodes is always
larger than the amount of information transmitted between them.
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4.2 Resistance distance

The vibrational communicability distance between i and j is defined as (see Estrada
and Hatano 2010a; Van Mieghem et al. 2017):

wij = Gl —2GY + G, (8)

Formula 8 can be written in a more suitable way. Indeed, recalling that G;’j = L:;,
we have: N N .
wij = L;; — ZLU + ij

= (ei —¢;) LT (e; —¢))

-1
= (e —e))" |:<L + lJ) - lJ:| (e; —ej) ©)
n n

~1
= (e; —ej)T <L+ %J) (e; —ej)

where ex, k = 1,...,n, is the standard basis in R” and J = uu” is the matrix
whose entries are all 1. Note that in the previous chain of equalities, we made use of

the following expression of the pseudo-inverse LT = (L + %J)71 — %J , proved in
Gutman and Xiao (2004).

Equation 9 offers an interesting interpretation of the resistance distance. We synthe-
size here the main idea, referring to “Appendix B” for a more detailed discussion. Let
vV =|[v,vy,..., vn]T be a vector representing attributes of the nodes—for instance,
the gross domestic product (GDP) of a country or the assets of a financial institution—
and suppose that there are currents or flows (of money, for instance) along the edges of

the network. The operator (L + %J )_1 allows to obtain the state vector that gives rise
to a given set of flows. In Formula 9, the vector (e; —e;) refers to a global flow equal to
+1 from node i, a flow equal to —1 into node j and a flow equal to O for the other ones.
When we apply (L + %J)_l to (e; —e;), we get the state vector v = [vy, v2, ..., Up]
of attributes on nodes that gives rise to these flows. Finally, the left inner product with
(e; —e;) in Formula 9 gives v; — v;, namely the difference between attributes of nodes
i and j. This gradient produces exactly the flow 41 from node i and —1 to node j.
If v; — v; is big, we need a big difference in order to produce such a unit flow and
so we have a big resistance between nodes i and j. If v; — v; is small, it is enough a
low difference in order to produce such a unit flow and so we have a low resistance
between nodes i and j. If w;; is big, we have a high resistance distance between i and
Jj. Therefore, these two nodes do not communicate easily. Vice versa a low value of
w;j means a high level of communication between the nodes. w;; is called effective
resistance between nodes i and j and £ = [w;;] is the resistance matrix.
In the literature, it is known an important close form for LT in terms of :

L 1T 1
L7 =5 | ~(R1+]9) — 2] - £
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which allows us to rewrite the diagonal elements of the matrix Lt in a useful form!
1 R
= ; Z wj j -
j
where

wi; = i =—u TQu=nouLt=n) —
Z =YY W) Z

i=1 j=i+l1

is the effective graph resistance (or Kirchhoff index) of the network, i.e. the sum of
the resistances between all possible pairs of nodes in the graph (see, for example,
Klein and Randic 1993). R reflects the overall transport capability of the network:
The lower R, the better the network conducts flows. In particular, it has been shown
that this index is able to catch the average vulnerability of a connection between a pair
of nodes, and therefore, it is a suitable tool for assessing the ability of a network to
well react when it is subject to failure and/or attack (see Ellens et al. 2011; Wang et al.
2014; Clemente and Cornaro 2019).

Effective resistances allow to give a specific definition of the centrality of a node
in the network. Indeed, the best spreader (or best connected) node in the network is
the node i* that minimizes the quantity Z?:l wi+j = (2u);+, i.e. the sum of all its
resistance distances from any other node in the network. Since L;'; equals the difference
between the average resistance between node i and all the other nodes in the network
and the overall network mean resistance, the best spreader node i* is the one such that
th:* < L+1 for any j # i*. Node i* can be regarded as the best diffuser of a flow to
the rest of the network, and, to some extent, it is the most influential with respect to a
diffusion process inside the network, since it guarantees the highest flow towards other
nodes (see Van Mieghem et al. 2017). Best diffuser means that most of the information
coming out from this node is absorbed by other nodes. If L:lf is big, then most of this
information comes back to node i and does not reach other nodes. The reciprocal of
Ll.f. can then be regarded as a centrality measure of a node, and it is called vibrational
centrality.

5 Community detection based on communicability metrics
5.1 The model
As discussed in the previous section, §;; = Gi; —2Gj; + G jj and wi; = G;; —2G}; +

G‘; ; Tepresent the two metrics induced on the network by the Estrada communicability
and the vibrational communicability, respectively.

VLh = 5 @D+ 50 — 279D — 3 @i = 5 Y00 + 25 X dijeji -

1 T —0= LS e LSy LN, L R
57 2k Jij@jkIki =0 =27 3 wij + 25 X 0ij — 53 D i 0jk = 5 X 0ij ~ -
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In an economical context, referring to the international trade network, they measure
how well two countries, or companies, communicate in terms of commercial and trade
exchanges. For instance, the attributes on nodes may be identified with the GDP and
the currents along nodes with the total trade or money flow between two countries.
Information on the network may be replaced by money flow. Therefore, the quantity
&;j of Eq. 7 accounts for the difference in the amount of money flow that returns to the
nodes i and j and the amount of money flow exchanged between them. The bigger
is Gjj, i.e. the money flow exchanged, the nearer are the nodes; the bigger are G;;
or Gjj, i.e. the amount of money flow that comes back to the each node, the farther
they are. A similar interpretation holds for w;;. In a trade network, w;; accounts for
the difference between the mean resistance to export a given money flow from each
country and the correlation between them. The bigger is G}’j, the more interconnected
they are and the nearer they are in the resistance metric; the bigger are G, and G; i
the more isolated they are in the network and between them and the farther they are.

In light of these observations, we formulate our proposal,” considering as mem-
bers of the same cluster nodes whose mutual distance is below a given threshold &.
Specifically, we construct a new community graph where the elements of the adjacency
matrix M = [m;;] are given by:

P 1 if &; <&
Y 0 otherwise

with & threshold distance such that &) € [Emin, Emax], being &min and &max the mini-
mum and the maximum distances between couples of nodes, respectively. In this way,
clustered groups of nodes that strongly communicate emerge, in dependence of the
threshold. If & is high enough, all nodes in the network are at a mutual distance lower
than the threshold and the whole network behaves like a unique community. As &
decreases, there will be nodes too far, such that to be considered disconnected and then
members of different clusters, entailing the emergence of islands of connected nodes.
Hence, the number of communities depends on the threshold; precisely, it increases
as &y decreases.

It is important to observe that, with the proposed methodology, we do not choose
any a priori optimal number of communities. Our approach is more in line with the
classic Girvan—Newman approach (Newman and Girvan 2004).

The optimal partition is determined according to an optimization problem whose
objective function is based on the idea of cohesion between nodes. Specifically, since
we deal with distances, following the approach for clustering in metric spaces proposed
by Chang et al. (2016), we provide a cohesion measure y;; between two nodes i and
J, as follows:

vii=E —§&) — (& —&)

2 In what follows, we will refer to the communicability distance &, but similar arguments may be repeated
identically for the resistance distance w.
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where & = ﬁ Zk# &ir is the average distance between i and nodes other than i

and & is the average distance over the whole network. Thus, i £ represents the
relative distance between nodes i and j and &§; — & represents the relative distance
from a random node to the node j.

Two nodes i and j are said to be cohesive (or incohesive) if y;; > 0 (y;; < 0).
Notice that y;; > 0 yields &;; + E<&+4E j» 1.e. intuitively, two nodes are cohesive
if they are close to each other and, on average, they are both far away from the other
nodes. In other words, y;; can be interpreted as the gain (when positive) or the cost
(when negative) related to the grouping of nodes i and j in the same cluster of a given
partition.

We assume to maximize an objective function that represents the global cohesion
function based on the mutual relative distances between every pairs of nodes. There-
fore, we refer to a specific partition quality index defined as

0= Z%’jxij (10)
i,j

where x;; is a binary variable equal to 1 if two nodes are in the same cluster and 0
otherwise and y;; is the cohesion measure between nodes i and j. It is worth to notice
that when the partition is made up of a unique community, equal to the entire network,
xij = 1Vi, j.In this case’

0 =Zj/ij = Zéj +Z§i —Zé —Zfij
ij i.j ij i,j i,j
=n) Ei+n) &§-nE-) &
j i i,J

= 2n2§ — nzé —n(n — )&
= né.

On the other hand, when the partition consists of n isolated nodes, x;; = 0 Vi # j
then

0= vi=y G-8—Ei—& =2) &—né=ni.

Thus, in these two extreme cases, Q provides the same value n§

5.2 Anillustrative example

We start by testing our methodology on a simple example. Let us consider the weighted
undirected network displayed in Fig. 1. The network has 10 nodes and 32 edges. The
thickness of links is proportional to weights. The network allows to easily identify two

3 Notice that £ = %Zl & = ﬁ Y ki
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A\

Fig. 1 A weighted undirected network with 10 nodes and 32 edges. Edges weights have been randomly
sampled with replacement from integers between 1 and 6. The thickness of edges is proportional to the
weights. Nodes of two relevant communities are highlighted in blue and red (colour figure online)

natural communities, which are highlighted by the two closed lines containing nodes
1 to 5 (on the left) and nodes 6 to 10 (on the right).

We compute the Estrada communicability matrix G; then, we get the communicabil-
ity distance matrix Z. The nearest nodes are 1 and 3 with a communicability distance
equal to &min = &13 = 1.18 and farthest nodes are 3 and 6 with a communicability
distance equal to £max = &3¢ = 1.49. Figure 2 summarizes the number of communities
identified at different thresholds. The blue line represents the number of communities,
while the red line represents the quality index Q of the corresponding partition. When
the threshold is greater than or equal to &y = 1.38, all nodes are connected and the
network is partitioned in a single community, with quality index Q = né&. As the
threshold decreases below 1.38, the network begins to split into disconnected compo-
nents. When the threshold becomes lower than the minimum distance, the network is
partitioned into ten communities and each node belongs to a different community. The
best partition according to the maximum quality index criterion splits the network into
two clusters, which are easily identified with the two expected natural communities.
The composition of the communities for alternative thresholds is reported in Fig. 3. It
is noticeable that, lowering the threshold, the procedure allows to disentangle tightest
relationships. For instance, when &y = 1.23, only nodes connected by edges with
highest weights are kept in the same community.

Similar results are derived by applying the procedure based on the vibrational
communicability. The nearest nodes are 1 and 3 with a resistance distance equal to
®min = w13 = 1.22, and farthest nodes are 3 and 8 with a resistance distance equal
to wmax = w3g = 1.69. Again if we move the threshold from the maximum distance
to the minimum distance, we get an increasing number of communities from 1, the
whole network, to 10, isolated nodes. The best partition according to the maximum
quality index criterion splits the network into the two expected communities, as shown
in Fig. 4.
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Fig.2 Quality index Q of the partition computed according to Formula 10 and number of components (on
the secondary scale) for different threshold values. The communicability distance has been used for the
identification of the communities
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Fig.3 Community structure at different thresholds

6 Application to the World Trade Network

In this section, we apply the proposed model in order to detect relevant communities
of countries in the WTN. As described before, the method aims at grouping strongly
interacting countries by means of their mutual distances. Two alternative distance
functions will be tested. On the one hand, we find clusters exploiting communicability
distance. Therefore, we detect how much two countries are close in the network con-
sidering all possible weighted walks connecting them. On the other hand, we select
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Fig. 4 Quality index Q of the partition and number of components (on the secondary scale) for different
thresholds. The resistance distance has been used for the identification of the communities

clusters by means of resistance distance. In this case, countries are grouped together
if they have a similar relevance in the network in terms of vibrational centralities as
well as if they are correlated in terms of their expositions towards common countries.

We start with a general description of the dataset and the main characteristics of the
WTN. Then, we briefly summarize the primary steps of the methodology, providing
a pseudo-code of the algorithm. Finally, we report the results in terms of community
structure with the related discussion.

6.1 Dataset and main characteristics of the WTN

We refer to the World Trade Data, available on the Observatory of Economic Com-
plexity database.* The database has been developed by the Research and Expertise
Center on the World Economy at a high level of product disaggregation, and it is based
on original data provided by the United Nations Statistical Division (UN Comtrade).
In particular, a harmonization procedure, that reconciles the declarations of exporters
and importers, enables to extend considerably the number of countries for which trade
data are available, as compared to the original dataset. In this analysis, we refer to
the last version published in 2017, based on the Harmonized Commodity Description
and Coding System, and that provides aggregated bilateral values of exports for each
couple of origin and destination countries, expressed in billion dollars. We focus on
the aggregated data of last available year, namely 2016.

Hence, we construct a weighted network where each node is a country and weighted
links represent the amount of product traded between couple of countries (see Fig. 5).

4 The Observatory of Economic Complexity (OEC) is the world’s leading data visualization tool for inter-
national trade data. Data can be found at: https://atlas.media.mit.edu/en/.
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Fig.5 WTN based on 2016 data.
Nodes are countries, and links
are product trades between pair
of countries. The size of the node
is proportional to its strength

The mutually exchanged products between two countries are different in terms of
entity, so that they can be better represented by oriented links from a country to another
one. However, we observed a strict relation between in and out strength distribution
with a Spearman correlation coefficient equal to 0.956. Hence, countries are ranked
in a very similar way in terms of in and out strength. Thus, we perform all the analysis
assuming the network as undirected.

The undirected network is characterized by 221 nodes and 14933 links. The network
is connected, and its density is approximately 0.614: on average, each country has
trades with more than a half of the entire network. However, the network is not regular
and is far from being complete. In other words, most countries do not trade with all
the others, but they rather select their partners. Furthermore, main trade flows tend
to be concentrated in a specific subgroup of countries and a small percentage of the
total number of flows accounts for a disproportionately large share of world trade. For
instance, the top 10 countries export more than 50% of the total flow. The maximum
weight corresponds to the channel between China and the USA and its value amounts
to 277 billion dollars. Minimum, non- null, weights are involved in the trade between
a number of very small countries, far from each others, and they are approximately
around 1 thousand dollars.

Finally, we expect that several countries trade with their geographical neighbours
so that we investigate the correlation between flows and geographical distance of
countries. We computed the Spearman rank correlation between link weights (i.e.
monetary flows between countries in the network) and the great circle distance between
capital cities in kilometres. We obtained a rank correlation of —0.27 that confirms a
little preference for trading with physical neighbours. However, as stressed before,
our aim is to go beyond immediate neighbours by means of both communicability and
resistance distances.
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6.2 Summary of the methodology

In this section, we summarize by means of a pseudo-code the main steps of the
methodology we are proposing. The code has been written taking into account the
communicability distance matrix E, but the same procedure can be easily applied by
considering the resistance matrix €2.

1. let ¢ be the original directed weighted network with n nodes and weighted adja-
cency matrix W;

2. build the undirected weighted network ¢; with a symmetric adjacency matrix
defined as W = %(W +WTy:

3. build the undirected weighted network % with normalized weighted adjacency
matrix Wy = S™/2W,S~1/2 where S is the diagonal matrix of the strengths of
the network ¥ ;

4. construct the distance matrix £ = gu’ —2G +ug’ based on the communicability
matrix G;

5. define the threshold interval [Emin, Emax ], Where &min and &,y represent the min-
imum and the maximum communicability distances between couples of nodes,
respectively, and set &, = Epip, with h = 0;

6. define an x n matrix My, = [m;;] such that

)

e — 1 if§; <é,andi # j
Y710 otherwise

7. build the undirected unweighted network 43 j from the binary adjacency matrix
My
8. select the partition P, given by the components of the network 3 j;
9. compute the quality index Q = Zi’ j vijxij of the network %, with respect to the
partition Pp;
10. set the number of iterations r, compute k = E’““"rﬂ, set &, = &,—1 + k and
h = h + 1 and repeat steps 6-9 while &, < &nax;
11. select the optimal partition P as the partition P, that provides the maximum
quality index Q.

We stress some key points of the presented methodology. We aim at clustering
countries on the basis of a specific distance. The two distances we have chosen highlight
relationships of a different nature between countries, and the different community
structure emerging will support this fact. Varying the threshold, we can disentangle
the role of very tight relationships between couples of countries. Of course, reducing
the threshold distance a great number of isolated nodes may appear. They are typically
very small countries whose trade volume is very low and whose commercial partners
are few. They play a marginal role in the WTN, and they do not affect in a significant
way the structure of the network in terms of relevant communities. This is the reason
why we will focus our attention on the main communities that are produced by our
methodology.
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6.3 Results
6.3.1 Results in terms of communicability metric

We initially applied the methodology described in Sect. 6.2 by using the communi-
cability distance. The rationale for using the communicability metric on the WTN is
the following. Two countries share a total volume of trade because they exchange a
given set of products, of any kind. But they can be linked even if they do not exchange
each other a given product; that is, there is no direct flow of such product between
them. A higher order exchange may occur between them. For instance, a country A
exports some raw materials—let’s say, iron—to a country B; country B produces
mechanical parts from iron and exports them to country C. A and C communicate via
a higher-order walk, and they depend on each other even if the two countries are not
neighbours in the network. Indeed, communicability takes into account precisely all
possible weighted walks between two nodes.

Therefore, we calculate the communicability matrix G on the normalized network
%, and the corresponding communicability distance matrix E. Using this metric, we
find that the nearest countries are the USA and Canada with adistance &p,;, = 1.242 and
the farthest countries are the USA and Seychelles Islands with a distance &, = 1.470.
Lowering the threshold distance value from maximum to minimum with a 0.001 step,
we look at the corresponding partition in communities. In Fig. 6, we plot the value of
partition quality index Q (in red) and the number of communities (in blue), counting
each isolated node as an independent one. Both values are expressed as functions of
the threshold &j,. The maximum of Q is reached at a threshold distance &, = 1.392.
It corresponds to 106 communities, among which we have 87 isolated nodes. Hence,
we observe 19 significant communities other than isolated nodes.

We display in Fig. 7 communities in the optimal partition, and we list in Table 1
the countries belonging to the ten biggest communities in terms of numerousness.

Going deeper into the composition of the communities, the biggest one (see commu-
nity 1 in blue) includes almost all continental European countries, with Great Britain
and Ireland. This community acts on the screen of the global network as single player.
It is worth pointing out also the presence of Morocco, confirming positive effects of
bilateral trade agreements (see, for example, Van Berkum 2013). We also notice the
presence of South Asian countries that are economically linked together by the South
Asian Association for Regional Cooperation. The presence of these countries in the
community is also an effect of the bilateral foreign relations between the European
Union (EU) and the Association of Southeast Asian Nations (ASEAN). The partner-
ship between the EU and ASEAN dates back to 1972 when the EU countries became
ASEAN’s first formal dialogue partner. Finally to the same community belong African
countries that are characterized by close economic and cultural ties to European coun-
tries, in particular to France (see, for instance, Ivory Coast, Burkina Faso, Angola,
Senegal).

Opposed to this community, we see the second largest community (see community
2 in red) which sees the USA and China as main actors. This means that in Europe,
there are preferential channels of internal exchanges, whereas, outside Europe, most
communication channels seem to be polarized around the exchange channel between
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Fig. 6 Partition quality index Q (red line) and number of communities (blue line) as functions of the
threshold communicability distance &;,. Maximum Q is observed for &, = 1.392 (colour figure online)
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Fig. 7 Optimal community structure based on communicability distance. Results have been derived by
means of a maximum quality index criterion, with threshold &, = 1.39 (Max Q Partition). Isolated nodes
appear in white

China and the USA and all their satellites countries. Moreover, we can recognize other
well-identified and coherent communities.

Furthermore, it is interesting the decomposition of post-Soviet States. While Baltic
and Eastern Europe States (except for Ukraine) have main partners in European coun-
tries, and Central Asian countries have Russia as their leading trade and economic
partner (see community 3). Although a positive trade balance and a priority of Russian
government of an increasing participation in the economic relations of Asia-pacific
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Table 1 Members of the top ten communities in terms of number of countries

Size Members

Community 1 54 AFG AGO ARE AUT BFA BGR BHR BIH BLX
CHE CIV CYP CZE DEU DNK ESP EST FIN
FRA GBR GRC GRL HRV HUN IND IRL IRN
IRQ ITA JOR LTU LVA MAR MDA MKD MLI
MNE NGA NLD NOR NPL OMN PAK POL PRT
ROU SAU SEN SRB SVK SVN SWE TUR YEM

Community 2 21 AUS CAN CHN HKG IDN JPN KHM KOR LAO
MEX MHL MMR MYS NZL PHL PNG SGP THA
USA VNM XXB

Community 3 7 BLR KAZ KGZ RUS TJK UKR UZB

Community 4 6 ARG BOL BRA CHL PRY URY

Community 5 6 BDI COD KEN RWA SSD UGA

Community 6 5 BES COL ECU PAN PER

Community 7 5 CRI GTM HND NIC SLV

Community 8 4 GUY JAM SUR TTO

Community 9 4 MOZ ZAF ZMB ZWE

Community 10 3 ARM AZE GEO

region (see Kuznetsova et al. 2016), at moment, results show preferential channels
with border countries. Transcaucasia is instead detected as a separate community (see
community 10).

Except for Mexico, characterized by strong ties with the USA, the Latin American
and the Caribbean Economic System is decomposed into four relevant communities
(see communities 4, 6, 7 and 8). In particular, it is noticeable community 4 developed
on the basis of the South Common Market, namely the so-called Mercosur. Mercosur’s
purpose is to promote free trade and the fluid movement of goods, people and currency
in south America. Since its foundation, Mercosur’s functions have been updated and
amended many times; it currently confines itself to a customs union, in which there is
free intra-zone trade and a common trade policy between member countries. In 2019,
the Mercosur had generated a nominal gross domestic product (GDP) of around 4.6
trillion US dollars, reaching the fifth economy of the world.

Finally, significant blocks are also observed in central and south Africa (commu-
nities 5 and 9, respectively), polarized around Democratic Republic of the Congo and
Republic of South Africa.

If we reduce the threshold, we let very strong channels of communication between
countries emerge. For instance, Figs. 8 and 9 show the community structure lowering
the threshold distance (equal to §, = 1.37 and &, = 1.35, respectively). Moving from
1.39 to 1.37, some loose connections are lost (see Fig. 8). Scandinavia and the Nordic
Region split up from community 1 creating a separate cluster together. The South
East Asian and former Yugoslavia appear as separate communities characterized only
by most relevant partnerships, Australia goes out from community 2, and the strong
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Intermediate Communities
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Fig.8 Intermediate connected community structure—&;, = 1.37

community in the South of Africa loses some country. Furthermore, in South America,
only the relation between Brazil and Argentina survives. This result is in line with the
fact that the strategic relationship between Argentina and Brazil is considered to be at
the highest point in history: Brazil accounts indeed for Argentina’s largest export and
import market.

Reducing further the threshold to 1.35, only the most closely interrelated commu-
nities survive. The strongest community counts now, among its members, all North
America, Mexico, China and Japan (in red in Fig. 9). In Europe, two communities
are saved. On the one hand, the relation between Spain and Portugal is preserved. On
the other hand, a community emerged in central Europe around the channel between
France and Germany. Finally, community 3 in Table 1, including Russia and Central
Asian countries, resists also when the threshold is lowered.

A significant feature of our approach is the fact that it allows to get deeper insight
into the internal structure of each community and to give a measure of the mutual
relationships between communities. Let us refer now to the clusters depicted in Fig. 7
and detected with the maximum quality index criterion. In this regard, we display in
Fig. 10 the distributions of the communicability distances between pair of countries
that belong to the same community. In particular, we compare the distributions for the
first two relevant communities listed in Table 1

In fact, if we focus, for instance, on communities 1 and 2, we can inspect and
compare their internal structure by providing some synthetic indicators in Table 2.
From the analysis of Fig. 10 and of the values shown in Table 2, we can say that
the community 2 (let’s say, the USA—China) shows slightly more intense interactions
than community 1 (let’s say, Europe) since in the former, the average intracluster
distance is slightly lower than in the latter. However, although the largest number of
countries that belong to community 1, a more compact distribution is observed with a
lower volatility. Trading interactions between countries in community 1 appear indeed
somehow more homogeneous than between countries in community 2. This is partially
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related to the geographical distribution of the countries inside the two communities.
We have indeed that community 2 can be interpreted as the aggregation of different
blocks mainly developed around the USA, China and Japan.

Last column of Table 2 provides the same indicators computed on intercluster basis.
This analysis allows to provide additional information in terms of heterogeneity in the
group and between groups. It is worth pointing out the lower intercluster standard
deviation. It means that couple of countries that belong to a different community has
a similar distance between them.

It is noteworthy that additional insights can be provided by assessing the relevance
of each country in the community. Indeed, communicability distance matrix provides
a metric on the network and on each subnetwork, like a community. Therefore, we
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Table 2 Intercluster and intracluster characteristics of the distributions of communicability distances

Intracluster Intercluster
Community 1 Community 2 Community 1 versus 2

Number of nodes 54 21 -

Mean distance 1.414 1.409 1.423

Min distance 1.325 1.242 1.393

Closest countries NLD-BLX USA-CAN SAU-KOR

Max distance 1.444 1.467 1.469

Furthest countries DEU-AFG USA-LAO USA-MNE

Standard deviation 0.012 0.028 0.011

Columns community 1 and community 2 refer to the intracluster properties of the two main detected
communities, in terms of number of nodes. Last column reports the corresponding intercluster properties
computed between the same two communities

adapt the idea of closeness to our context, by providing the following communicability
closeness to assess how effectively a node is supposed to spread trade flows through
the network. Similarly to the definition of closeness, we define the communicability
closeness as:

1
Ci==—— (11)
> e Sij
where the sum is over all the internal nodes of the cluster ¢ to which the node i

belongs.

To exemplify, we rank in Fig. 11 (left-hand side) the top 20 countries of community
2 on the basis of values of C;. It is worth to stress that the centre of this community is
located in China, Japan and South Korea and not in the North American subcommunity.
The three Asian nations are nowadays major traders, and their high-level economic
cooperation has been strengthened also because of the speed-up of the negotiations on
the trilateral Free Trade Agreement. The three parties unanimously agreed to further
increase the level of trade and investment liberalization based on the consensus reached
in the Regional Comprehensive Economic Partnership Agreement.’

Moreover, it is interesting to see that most central country in a community has not
necessarily the same relevance on the whole network. We have indeed that, in terms
of subgraph centrality, when we deal with the whole network (see Fig. 11, right-hand
side), USA appears as the key player followed by China and Germany. This ranking
is in line with the top three countries provided by the World Trade Organizations, in
terms of world’s leading traders of goods and services (WTO 2017).

Additionally, it is interesting to highlight that the relevance of countries reported
in Fig. 11 (right-hand side) is consistent with the Economic Complexity Index (ECI),
introduced by Hausmann et al. (2014). The ECI allows to rank countries in the WTN
according to the diversification of their export flows, which reflects the amount of

5 See “Fifteenth Round of Negotiations on a Free Trade Agreement among Japan, China and the Republic
of Korea”, 12 April 2019, Ministry of Foreign Affairs of Japan and Free Trade Agreement (FTA) and
Economic Partnership Agreement (EPA), 4 November 2019, Ministry of Foreign Affairs of Japan.
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Fig. 11 On the left-hand side, values of communicability closeness C; for the top 20 countries inside
community 2; on the right-hand side, world top 20 countries according to subgraph centrality rankings

knowledge that drives their growth. The higher is the ECI, the more advanced and
diversified is an economy. In particular, countries whose economic complexity is
greater than expected (on the basis of their global income) tend to grow faster than
rich countries with a low ECI. In this perspective, ECI represents a suitable tool for
comparing countries in the WTN independently of their total output and it has been
extensively validated as a relevant economic measure by showing its capability to
predict future economic changes and to explain international differences in countries
incomes.

Although the network we analysed in the present work is based on the total nor-
malized output and this fact prevents us from comparing directly their values with the
ECI for a given country, there is a positive correlation between them. All the top 20
countries in Fig. 11 (right-hand side) show a positive and high value of ECI. More
specifically, they kept a high value of ECI during the years preceding the year to which
the network refers (2016) and this can justify the high value in the aforementioned
centrality measures.

Finally, from the point of view a single country, it is worth to look for the closest
trade partners, that is, the nearest nodes in terms of communicability distance. Fig-
ure 12 shows the distance profiles for China and Germany, respectively. For instance,
looking at Fig. 12 (right-hand side), we can notice countries, as Austria, Poland, Czech
Republic that are characterized by a condition of strong dependence on Germany, that
is, a major player in the network. Similarly, Fig. 12 (left-hand side) shows how strong
is the commercial relationship between China and Hong Kong, also as a result of the
trade agreements between the two countries, like CEPA (Closer Economic Partnership
Arrangement) aimed at eliminating duties on large categories of products. Indeed, it
is well known that, for the Chinese trade market, Hong Kong plays a crucial role since
foreign companies use Hong Kong as a springboard to invest in China thanks to its
infrastructure network that has no equal in the world, investor protection, transparent
and efficient judicial system, legal certainty.
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Fig. 12 Top 20 nearest countries for China (left) and Germany (right)

6.3.2 Results in terms of resistance metric

The methodology described in Sect. 6.2 has also been applied using the resistance
distance w. In this case, we consider the total trade of a given country as flow of the
global wealth that has been produced during a year. Therefore, the gross domestic
product (GDP) is the attribute of interest on each node. In this regard, the effective
resistance of an edge expresses how easily (or not) a unit flow moves from a country to
another one, i.e. how easily two countries trade a unit of wealth, independently of its
nature. It is noteworthy that, according to Formula 8, the resistance distance between a
pair of countries depends on the values of the vibrational centralities of both countries
(the more central these countries are in the network, the less is the resistance distance
between them) and on the value of their mutual correlation (the more correlated they
are and again the less is their distance).

Therefore, we construct the vibrational communicability matrix G¥ on the nor-
malized network ¥, and the corresponding resistance distance matrix . Using this
metric, we find that the nearest countries are, again, the USA and Canada with a
distance wpip, = 1.238 and the farthest countries are the USA and Germany with a
distance wmax = 1.497. For each value of the threshold distance between minimum
and maximum, we obtain the corresponding partition in communities. The maxi-
mum partition quality index Q corresponds to 15 communities plus isolated nodes. In
Fig. 13, we plot the value of Q in red and the number of communities, counting each
isolated node as an independent one, in blue as functions of the threshold wy. The
maximum quality index Q is reached at a threshold distance w;, = 1.365. The main
characteristic of this partition is the presence of a giant component of 127 nodes e 14
other components with few nodes.

Main results in terms of geographical distribution are displayed in Fig. 14, and as in
the previous section, we summarize in Table 3 main composition of top communities
in terms of number of constituents.

With respect to results based on communicability, we have that the first community
has a larger number of countries (equal to 127). Additionally, the larger community
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Fig. 13 Partition quality index Q (red line) and number of communities (blue line) as functions of the
threshold resistance distance. Maximum Q is observed for w;, = 1.365

includes again main Asian and Oceanian countries as well as several African coun-
tries. It is noteworthy that North America behaves as a separate cluster. This result is in
line with the literature that emphasizes the interesting economic relation between Asia
and Oceania. Several works showed that the Asia-Oceania community collapsed after
China entered the WTO in 2001 and built strong trade relationships with other com-
munities, especially with the external cores (i.e. the USA and Germany). China then
became regionally attractive and restored the Asia-Oceania community as the com-
munity leader after it gained a significant portion of trade globally (see, for example,
Zhu et al. 2014).

Significant differences are also observed for the European community (see commu-
nity 2 in Table 3). Norway and Sweden and Great Britain and Ireland provide indeed
two separate groups with respect to main European economic groups.

It is worth pointing out that communities detected above represent groups of
countries showing a positive correlation in their trade strength, whereas members
of different clusters show a negative correlation. Being strongly anti-correlated means
that when the total trade deficit of a country grows, the total trade surplus of a sec-
ond country grows too. For instance, Japan and the USA have been classified by the
methodology in different communities. Indeed, in the literature, empirical analyses
show a negative correlation coefficient between normalized trade strengths of these
countries (see, for example, Kozmetsky and Yue 2012; del Rio-Chanona et al. 2017).
Similar arguments can be extended also to other pairs of countries. For instance, Ger-
many is negatively correlated with the USA (see Kozmetsky and Yue 2012) and shows
a high positive correlation with Belgium and France (see del Rio-Chanona et al. 2017)
that belong to the same community.

If we disentangle communities characterized by very tight relationships between
countries, the results seem strictly related to the ECI index. We may expect that if two
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Fig. 14 Communities detected by using the procedure based on the resistance matrix and considering the
threshold wj, that maximize the partition quality index Q

Table 3 Members for the seven main communities in terms of number of countries

Size Members
Community 1 127 AUS CHN HKG IDN IND IRN IRQ
JPN KOR LAO PHL THA and others
Community 2 11 AUT BLX CZE DEU ESP FRA HUN
ITA NLD POL PRT SVK
Community 3 3 CAN MEX USA
Community 4 2 NOR SWE
Community 5 2 GBR IRL
Community 6 2 BLR RUS
Community 7 2 ARG BRA

The optimal partition has been obtained by applying the procedure based on the maximum partition quality
index Q and a threshold depending on the resistance distance

countries communicate well, then their ECIs could be similar. That is, if their mutual
distance is small, both in terms of communicability metric and resistance metric, then
they display similar values of ECI. In fact, the existence of multiple channels of trade
exchange between them would result in a similar diversification of their output. This
means that countries inside each community (could) share homogeneous values of ECI.
Concerning Table 3, we notice small clusters whose components show homogeneous
values of the ECI index. For instance, community 6 is formed by Russia (with an ECI
of 0.855 in 2016) and Belarus (with an ECI of 0.744 in the same year). Similarly,
Canada (1.084), Mexico (1.160) and the USA (1.781); Norway (1.199) and Sweden
(1.862); the UK (1.549) and Ireland (1.409); and Brazil (0.648) and Argentina (0.380)
constitute communities 3, 4, 5 and 7, respectively.
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Table 4 Intercluster and intracluster characteristics of the distributions of resistance distances

Intracluster Intercluster
Community 1 Community 2 Community 1 vs 2
Number of nodes 127 12 —
Mean distance 1.414 1.391 1.418
Min distance 1.290 1.324 1.395
Closest countries CHN-HKG AUT-DEU SMR-DEU
Max distance 1.429 1.424 1.466
Furthest countries ARE-HKG AUT-PRT JPN-DEU
Standard deviation 0.008 0.026 0.010

Columns community 1 and community 2 refer to the intracluster properties of the two main detected
communities, in terms of number of nodes. Last column reports the corresponding intercluster properties
computed between the same two communities

As in the previous section, we explore main characteristics of two most relevant
communities (see Table 4). It is noticeable that although the two groups show a very
similar mean distance, European countries are characterized by a higher heterogeneity.
Focusing on intercluster indicators, we notice also a lower similarity between the two
communities with respect to Table 2 based on communicability.

The relevance of a country can be now assessed in terms of vibrational centrality.
To this end, we display in Fig. 15, the top 20 countries, calculated over the whole
network. China, the USA and Germany are again in the top 3, with China playing as
the best spreader node. Also in this case, almost all the top 20 has a positive ECI. A
comparison between Figs. 11 and 15 confirms the different role played by the USA
and China in the global network. As confirmed by WTO (2017), the USA is the leading
commercial service provider and in such a way, it is widespread well integrated in the
global market; on the other side, China plays the role of hub for goods and represents
the leading merchandise trader and this gives to the country a very robust position
which makes it less vulnerable to market turmoil.

Finally, from the point of view a single country, it is worth to look for the closest
trade partners, that is, the nearest nodes in terms of resistance distance. Figure 16 shows
the distance profiles for the most central country of communities 1 and 2, respectively.
These plots can be interpreted as the list, in decreasing order, of countries that are
most positively correlated with the selected centre, China or Germany. For instance,
while in terms of communicability distance, China is well communicating with the
USA (third position in Fig. 12), the USA does not belong to the top 20 most correlated
countries with China. Rather, the left-hand side in Fig. 16 clearly shows a driving and
synchronizing effect of the Chinese giant in the entire South-East Asia area. Similarly,
Fig. 16 (right-hand side) confirms the role of Germany in the European Union and the
strong correlation with Austria, Czech Republic and Poland.
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Fig. 15 World top 20 countries
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Fig. 16 Top 20 nearest countries for China (left) and Germany (right)

6.4 Comparison with different approaches applied to the same network

It is worth briefly comparing our results with those obtained by other methodolo-
gies on the same network (see Barigozzi et al. 2011; Piccardi and Tajoli 2012). In
particular, in Piccardi and Tajoli (2012), several approaches are proposed to analyse
the community structure of the WTN at different times. The authors showed that the
recognition of mesoscale structures is increasingly difficult also because the world is
becoming increasingly global over time. This makes even more compelling the search
for a method that forces even slight deviations from a random structure to emerge.
Both directed and undirected networks have been tested, although no significant dif-
ferences have been found. As in our case, results reported in Piccardi and Tajoli (2012)
show that geographical proximity still matters for international trade, jointly with trade
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agreements, common language or religion and traditional partnerships. In particular,
focusing on the application of a classical maximum modularity criterion, the authors
find in 2008 (the most recent year of their analyses) three big communities containing
68, 66 and 47 countries, with the largest cluster associated with Asia and Oceania.
This is partially in line with our result in which a large relevant community including
China, Oceania and North America is observed. On the other hand, by using either
communicability or resistance distance, we found a higher level of granularity. Addi-
tionally, our approach provides a higher flexibility allowing to emphasize stronger
connections when the threshold decreases.

Piccardi and Tajoli (2012) also adopt a notion of distance among nodes based
on random walks by row-normalizing the weighted matrix. Modelling the WTN by
stochastic matrix corresponds to moving from absolute to relative trade values. That
distance between nodes is defined by complementing a similarity measure. A dendro-
gram is computed initially by defining groups containing single nodes and then by
iteratively linking pairs of groups with minimal distance. This approach looks similar
to ours being based on a varying threshold. They choose to maximize the so-called
cophenetic correlation coefficient, which is defined as the linear correlation between
the distances and the cophenetic distances, which are the heights of the link joining
(directly or indirectly) nodes in the dendrogram.

Some common evidences are noticeable also in this case. The USA and Canada form
one of the strongest partnerships: their distance in the dendrogram stays constantly
very small over time. France is strongly connected to some of its former colonies, as
we also pointed out above, whereas Germany is close to other European countries.
Main differences are related to the behaviour of very small countries. While, in our
case, small countries are often classified as isolated nodes, in Piccardi and Tajoli
(2012), very small countries are connected to much larger ones as an effect of the
disassortativity observed in the WTN. These links tend to be small in absolute terms,
given the small economic size of the countries, but they appear as relevant in relative
terms, because of the strong preference for a given partner.

Piccardi and Tajoli (2012) also used stability and persistence to confirm their results.
A random walker starting in a community is likely to remain for quite a long time
within that community, before leaving it to enter another one. The analysis of the
persistence probabilities induced in a network by a given partition has recently been
proven to be an effective tool for testing the existence and significance of communities.
Also in this case, we observe that communities with high persistence probability have
common features with our results. Indeed, the top communities identified in Piccardi
and Tajoli (2012) consider the entire set of European countries, plus a number of
minor non-European partners, that is, in line with the top community selected by
the communicability approach. Similarly, the second large community with a high
persistence probability includes the entire North America and most of Central and
South America, plus China, Australia and many others. Although less granular, this
community is fully comparable with community 2 detected by the communicability
approach.

A quantitative correlation between the world partition in communities obtained by
a modularity criterion and geographical distances has been investigated in Barigozzi
et al. (2011). The authors, both at an aggregate level and at a number of commodity-
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specific levels, compare the two maximum modularity partitions of the input—output
network and of the weighted network of the geographical closenesses. They find a
high similarity between aggregate trade and geography-based communities, greater
than, for instance, communities determined by regional trade agreements. They con-
clude that geographically related factors explain the patterns of global trade more than
political determinants. Although a positive correlation is present between monetary
flows and geographical closenesses, we noticed that the geographical distances are
less relevant when indirect relationships are also considered via either communica-
bility or resistance distances.® As a consequence, the community structure we find
appears more granular than the groups found in Barigozzi et al. (2011) and the com-
position cannot be explained only by geographical patterns. Other factors are involved
as historical relationships, trade agreements and strategic economic alliances.

To conclude, although some common results with Barigozzi et al. (2011) and Pic-
cardi and Tajoli (2012) are observed, our methodology has the advantage of clearly
highlighting even small differences and forcing the emergence of very strong ties
between different countries through the use of a distance threshold. Furthermore, the
partition quality index Q we applied turns out to be a simple and flexible tool, more
homogeneous to the context of a network interpreted as a metric space.

7 Conclusions and further research

Community detection is a key topic in the analysis of complex systems, where discov-
ering the inner structure plays a relevant role. In particular, the centrality of countries
and the relationships between them assume specific relevance in the World Trade Net-
work, where economical and geopolitical phenomena affect over time the structure of
the global network. In this framework, this work aimed at detecting different levels
of clustered communities in the network on the basis of both communicability and
resistance distances. The proposed methodology allows to discover the hidden hierar-
chical structure of the network, as it presents a degree of flexibility highlighting very
tight relationships by varying the threshold parameter, and revealing in this way the
clusters of nodes that more easily communicate. Moreover, it performs well also for
weighted and extremely dense network, as the case of the WTN.

Features and properties of each community can be exploited in order to compare
the characteristics of different clusters and to detect the most central countries inside
the single community as well in the whole network.

Numerical results depict the structure of the economic trade detecting main relevant
communities. In particular, main community sees the USA and China as main actors.
Most flows are polarized around the exchange channel between China and the USA
and all their satellite countries. However, focusing on the correlation between trades,
the procedure emphasizes the different role of these two countries. In particular, it
is worth mentioning the emerging of China-Oceania community when deep links
emerge. Furthermore, it is confirmed that Germany plays a key role in Europe and

6 The rank correlation between these distances and the geographical distance between capital cities is lower
than 0.15.
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preferential channels of internal exchanges are observed in the European market. In
line with Zhu et al. (2014), emphasizing tight links, we obtain that although the strong
trade relationships with USA and Germany, China became regionally attractive and
restored the leadership of Asia-Oceania community. European community is highly
centralized around founding members of the European Economic Community with
the central role of Germany. High-income countries in Northern Europe are instead in
a separate community with a less relevant role in the network.
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Appendix A

We report here thorough computations and proofs of Formulae 3, 4 and 5 in Sect. 3.3.
The expression 3 of the total potential energy U can be handled in the following way:

U= ilCZAij[ziz —2z;7j +Z§]
ij
=%/C ZZ?ZA,‘]'—ZZAijZiZj-FZZ?ZAij
| i j ij j i
=%IC Zzizki—ZZAijz,-Zj+Zz§kj =%IC Zz,-zki—ZAijziZj
| i ij j i ij

1 1
=§IC ZZi(K'A)iij =§’C lzj:ZiLiij

i

We compute now the expression of the partition function Z in Formula 4. Using the
spectral decomposition of the Laplacian matrix L = MAMY , where A is the diagonal
matrix of the eigenvalues and M is the corresponding matrix of the eigenvectors, we
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have the following chain of equalities:

Z = fe_%ﬂKZif 2 (MAMT);;z l_[dzk = fe_%ﬁICZT(MAMT)Zl_[de

k k
:/ef%ﬂlC(MTz)TA(MTz)Hde:/ef%ﬂleTAxl_[dxk
k k
_ / e~ 3R] T dxy
k

where we set x = M’ z and dz = | det M|dx = dx.
As usual in the literature, we remove the contribution from u, = 0, providing
the modified partition function we still call Z, (see Estrada 2012b on page 117); this

yields:
n—1 . 5 n—1 2
Z = /\e_fﬂlcu“kxkdxk =
kI:II ,(1:[1 Bk

the last equality being valid because all integrals are Gaussian with u; > 0, k =
1,...,n—1.

Finally, we compute G;’j (B) (Formula 5):

1 _
Z/Zizje PU dg
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Notice that, computing the product of the two sums inside the integral above, all
the integrals involving mixed terms are null, as the integrand is an odd function and
the integral is extended to R for each xj. Then, only the squared terms remain inside
the integral, so that:

1 n
Gl = 2 f (W1 OV DAT + -+ YD (x2) [T 2P e
k=1
1

1 2
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1
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We remove once again the contribution from ,, = 0; then, computing the integrals,
we have:

1 V2 V2 V2r
G?. = — 1 i . e 4t
ii(B) = Z 1O () Gy VPR o
21 21 V2

VBERu1  BKup2 Y (/SICN'nf])3
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-zl | AR s ]‘; ST

1
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Appendix B

The expression of the pseudo-inverse of the Laplacian LT = (L + %J ) - %J allows
an interesting interpretation of the resistance distance w;; in an economic, or financial,
networked system.

Suppose that, to each node, a value of a given attribute is assigned through a state
vector v = [v1, 2, ..., vy]? (such an attribute could be, for instance, the GDP of a
country or the assets of a financial institution), and let /;; = v; — v; be the flow of
such an attribute from node i to node j. We denote by /; the total outgoing flow from
the node i to its adjacent nodes, i.e. [; = Z?Zl ajj(v; — vj).

In matrix form, the total outgoing flow of the nodes attribute is then

I=K-A)v=Lv.

The Laplacian matrix transforms nodes attributes v;, i = 1, ..., n into outgoing flows
from nodes /;, under the assumption that a flow /;; along a given edge is equal to
the gradient Av;; = v; — v;. This assumption is equivalent to choose an effective
resistance equal to 1 along all edges. Of course, we may have both outgoing and
ingoing currents according to the sign of Av;;: positive for outgoing flows from i and
negative for ingoing flows into i.

A similar meaning can be given to (L + %J) v. Indeed,

1 1
(L—i——J)v:LV—i——Jv:I—i—Eu,
n n

where v = % > %i—1 Uk, that is, the operator L + %J adds to the flows a constant term
given by the mean value of all the attributes of the nodes. Then, the matrix (L + %J)
transforms nodes attributes v into total outgoing flows I in the network, up to an
additive constant.

In a similar way, the inverse (L + %J)_l acts on a current vector I and produces a
state vector v, which can be interpreted as the cause of such currents in the network.
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Specifically,

N [ 1\ 1 1\
v=L"I= (L—i——J) -=J I=(L+—J> I-Tu
n n n

where, once again, the term %JI = Tu is the average value of the outgoing currents
coming from every node.

Suppose now that in the system, there are an outgoing flow equal to 1 from a node
(node 1, for instance), an ingoing flow equal to —1 into another node (for instance,
node 2), whereas for all the other nodes, the flow is zero. This is equivalent to a current
vectorequaltol = [1, —1,0, ..., 017 =e;—e,. Loosely speaking, a unit information
is coming out from node 1 and goes entirely into node 2. To produce these flows, we
have to start from an initial attributes vector on nodes given by

1 1
—1 —1

N 1N 0 1N o
v=L"(ej—e)=|[L+-J - =J =L+ -J
n n : n .
0 0
where the last equality holds because J(e; —ez) = 0, thatis 1 = 0. Thus, the resistance
distance between nodes 1 and 2 is given by

1\
wiy = (e —e)” (L + ;J) (e —e2) = v — vy = Avja.

If Avy; is small, a small gradient is enough to transmit such a unit flow from node
1 to node 2, whereas if v; — v, is big, a high gradient is needed in order to produce
the same unit flow. More in general, let’s imagine that in the node i, the value v; is
positive. Then, the fact that another attribute v; with j # i is positive means that
node i and node j are strongly correlated since it is enough a low attribute difference
to subtract from node i a unit flow. This means that these two nodes communicate
a lot. Whereas if for another node k with k # i, the corresponding component vy
is negative, this implies that node i and node k are strongly anti-correlated since, in
order to produce a unit flow from node i, node k has to be at a negative attribute,
i.e. the attribute difference between i and k must be high. This means that the two
nodes do not communicate well. The signs of the components of the vector v indicate
nodes that are positively or negatively correlated with node i according to the fact
these components have the same sign as v; or not. Let us observe that, in general,
v=LTI=L%e —¢;) =L — L;‘ with L] ith column of the matrix L. That
is, if we want to decrease by 1 the attribute of node i and increase by 1 the attribute
of node j, we have to take an initial distribution of attributes on nodes equal to the
difference between ith column of L1 and jth column of LT, and these columns are
also the values of vibrational communicability G’ between nodes, as defined in the
text.
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