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Background. Urolithiasis is the process of stone formation in the urinary tract. Its etiology is only partly known, and efficient
therapeutic approaches are currently lacking. Metabolomics is increasingly used in biomarkers discovery for its ability to
identify mediators of relevant (patho)physiological processes. Amino acids may be involved in kidney stone formation. The aim
of the present study was to investigate the presence of an amino acid signature in stone former urine through a targeted
metabolomic approach. Methods. A panel of 35 amino acids and derivatives was assessed in urines from 15 stone former
patients and 12 healthy subjects by UPLC-MS. Partial Least Squares Discriminant Analysis (PLS-DA) was used to define amino
acid profiles of cases and controls. Results and Discussion. Our approach led to the definition of a specific amino acid fingerprint
in people with kidney stones. A urinary amino acid profile of stone formers was characterized by lower levels of α-aminobutyric
acid, asparagine, ethanolamine, isoleucine, methionine, phenylalanine, serine, tryptophan, and valine. Metabolomic analysis may
lend insights into the pathophysiology of urolithiasis and allow tracking this prevalent condition over time.

1. Introduction

Urolithiasis is the process of stone formation in different
portions of the urinary tract, including the kidneys, bladder,
and/or urethra. It represents a worldwide problem associated
with high healthcare costs due to surgical interventions for its
resolution and subsequent medical care [1–4]. Management
of urolithiasis is complex and suffers three main issues:
(a) its high prevalence, (b) the high probability of recur-
rence [5], and (c) the lack of effective interventions, either
dietary or pharmacological [6]. The etiology of the disease
is only partly known. Urolithiasis is caused by the forma-
tion of crystals in the urinary tract, when the urine becomes
supersaturated, due to a reduced urine volume or excessive
excretion of solutes. The aggregation of crystals and their

growth lead to the formation of stones that can present dif-
ferent compositions. Urinary and kidney stones are most
commonly composed by calcium oxalate mono- and dihy-
drate, calcium phosphate, ammonium urate, magnesium
ammonium phosphate, calcium hydrogen phosphate dihy-
drate, uric acid, and its salts and cysteine [7–9]. The crys-
tallization process may be modulated by promoters or
inhibitors of crystallization or by the presence of a matrix
of crystalline material present in the renal papilla (Randall’s
plaques), found in most patients with calcium urinary
stones [10]. Another important indicator of the disease is
the onset of relapses, which defines a specific “metabolic
activity” in patients predisposed to the formation of multi-
ple kidney stones. Although knowledge on relapse risk fac-
tors and pathogenesis has increased [11, 12], the early
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identification of patients at higher risk of relapse is not yet
possible, although relative supersaturation estimates have
been shown to predict the risk of recurrence [13].

Metabolomics is the study of small molecules present
in a cell, tissue, or organism that result from the metabolic
processes occurring in both physiologic and pathologic
conditions [14]. Metabolomics has therefore become a cor-
nerstone approach in biomarker discovery and for the
development of personalized medicine strategies [15].

Both targeted and untargeted metabolomic approaches
have been used in nephrology research to identify novel
markers of kidney disease and its complications [16–18].
Recently, a NMR-based metabolomic study found that four
metabolic pathways, including glyoxylate and dicarboxylate
metabolism; glycine, serine, and threonine metabolism;
phenylalanine metabolism; and citrate cycle (TCA cycle),
were closely associated with kidney stone [19].

The aim of the present investigation was to determine
the amino acid profile of a group of patients with urolith-
iasis and healthy controls through a targeted UPLC-MS
method coupled with multivariate chemometric analysis.
This approach may provide novel insights into the role
played by protein/amino acid metabolism in kidney stone
formation and candidate biomarkers for the early diagno-
sis of urolithiasis.

2. Material and Methods

2.1. Study Participants. This pilot study was conceived as
a cross-sectional, case-control investigation. Briefly, after
obtaining written informed consent, twenty-four-hour urine
samples were collected from a small group of patients hospi-
talized for lithiasis (stone formers, SF) in the Division of
Nephrology of IRCCS Policlinico Gemelli Foundation and
were analyzed in the Division of Laboratory Diagnostic Area.
All patients were recurrent stone formers with no active
pharmacological treatment at the time of evaluation. Second-
ary causes of renal lithiasis were excluded. For patients who
had recently undergone an endourological procedure or
ureteral stent removal, the metabolic evaluation was per-
formed after at least 3 weeks from the procedure. Healthy
subjects without history of kidney stones or major urologi-
cal problems were taken as controls (CNT). After collec-
tion, all urinary aliquots were immediately stored at −80°C
until analysis.

2.2. Chemicals and Reagents. Amino acid standards were
purchased from Sigma (Saint Louis, MS, USA). Isotopically
labeled amino acid standards were from Cambridge Isotope
Laboratories (Andover, MA, USA). AccQ-Tag Ultra eluent
concentrates and an AccQ-Tag Ultraderivatization kit were
purchased from Waters Corporation (Milford, MA, USA).
Acetonitrile was from (Merck KGaA, Germany). Deionized
water was from (Merck KGaA, Germany).

2.3. Amino Acid Determination. For the metabolomic analy-
sis, the sample purification and derivatization were carried
using the AccQ-Tag kit (Waters Corporation, USA) accord-
ing to manufacturer instructions. Briefly, 50μL of sample

was mixed with 100μL of 10% (w/v) sulfosalicylic acid con-
taining an internal standard mix (50μM) and centrifuged at
1000 × g for 15min. Ten μL of the supernatant was trans-
ferred into a vial containing 70μL of borate buffer to which
20μL of AccQ-Tag reagents (Waters Corporation, Milford,
MA) was subsequently added. Samples were then vortexed
for 10 s and heated at 55°C for 10min. The chromatographic
separation was performed by ACQUITY H-Class (Waters
Corporation) using an ACQUITY CORTECS C18 column
(Waters Corporation) eluted at a flow rate of 500μL/min
with a linear gradient (9min) from 99 to 1 water 0.1% formic
acid in acetonitrile 0.1% formic acid. MS was an ACQUITY
QDa single quadrupole equipped with an electrospray source
operating in positive mode (Waters Corporation). The ana-
lytical process was monitored using amino acid controls
(level 1 and level 2) manufactured by the MCA laboratory
of the Queen Beatrix Hospital (The Netherlands). Urinary
amino acid concentrations were determined by comparison
with values obtained from a standard curve for each amino
acid (0,5-2,5-125-250-500μmol/L for all amino acids only
for cystine 1-5-50-250-500-1000μmol/L). Through this
method, it is possible to assess simultaneously 35 amino
acids (alanine, α-aminobutyric acid, aminoadipic acid, anser-
ine, arginine, asparagine, aspartic acid, β-alanine, β-amino-
butyric acid, carnosine, citrulline, cystine, ethanolamine,
γ-aminobutyric acid, glycine, glutamic acid, histidine, iso-
leucine, 4-hydroxyproline, leucine, lysine, methionine, 1-
methylhistidine, 3-methylhistidine, ornithine, phenylalanine,
phosphoethanolamine, proline, sarcosine, serine, taurine,
threonine, tryptophan, tyrosine, and valine) in several bio-
logical matrices such as urine, plasma, and saliva. For data
analysis (calibration curves and amino acid quantitation),
the instrument software TargetLynx was used.

3. Statistical Data Analysis

3.1. Univariate Analysis. Comparisons between SFs and
CNTs for normally distributed continuous variables were
performed by t-test statistics. Mann-Whitney U test was
applied to quantify differences for nonnormally distributed
continuous data.

Descriptive analyses were performed using the GraphPr-
ism 5.03 software (GraphPad Software, Inc., San Diego, CA),
with a statistical significance set at p < 0:05. All values
obtained were expressed as mean ± standard error of mean
(SEM). Mann-Whitney U test was performed to compare
the difference in the means between the stone formers and

Table 1: Main characteristics of people involved in the study,
according to the presence of urolithiasis.

CNT (n = 12) SF (n = 15)
Male (n (%)) 4 (47) 9 (60)

Age 32 (21-56) 57 (30-70)

BMI (kg/m2) 20.9 (17.6-26.0) 25.1 (21.3-36.3)

Data are expressed as median (min-max value) for continuous variables
and count (%) for categorical ones. Abbreviations: BMI: body mass
index; CNT: controls; SF: stone formers.
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controls. A p value < 0.05 was considered as statistically
significant.

3.2. Multivariate Analysis. The strategy pursued to detect
biomarkers for kidney stone formation starts from the
calculation of a classification model. Partial Least Squares
Discriminant Analysis was used to distinguish people with
kidney stones (i.e., cases) from the other enrollees (i.e.,
controls). Then, two variable selection approaches, variable
importance in projection (VIP) and rank product (RP), were
used to detect the analytes contributing the most to the
characterization of the amino acidic pattern of case patients.
Finally, the statistical significance of the classification model
has been investigated through an inspection of the number
of misclassification (NMC), the area under the receiver oper-
ating characteristic curve (AUROC), and the discriminant
Q2 (DQ2).

3.3. Partial Least Squares Discriminant Analysis (PLS-DA).
Discriminant classifiers allow assigning samples to specific
categories or classes. In this work, Partial Least Squares Dis-
criminant Analysis (PLS-DA) [20, 21] was used to identify
people with kidney stones and discriminating them from
the controls. This classification method is advisable in this
framework, and it has been used in similar contexts [22–24]
because, among the other advantages, it is suitable for
handling correlated variables as the ones investigated in the
present study. Namely, PLS-DA exploits PLS regression to
find a set of latent variables (called scores) maximizing the
correlation between the predictors (i.e., the original features
collected on the investigated individuals) and a response
matrix encoding the class belongings [25].

The accuracy of the classification model was internally
validated, applying a double cross-validation (DCV) pro-
cedure [26].

3.4. Biomarker Selection. VIP [27] and RP [28] were used to
detect which biomarker contributes the most to the charac-
terization of people with nephrolithiasis and their distinction
from control cases. In the present work, these indices have
been calculated as described by Calvani et al. [29, 30].

3.5. Evaluation of the Statistical Significance through a
Permutation Tests. The statistical significance of the PLS-
DA results was investigated through the inspection of the
number of misclassification (NMC), the area under the
receiver operating characteristic curve (AUROC), and the
discriminant Q2 (DQ2) under the null hypothesis calculated
through a 1000-repetition permutation test [31]. The sig-
nificance threshold used is p value < 0.05.

4. Results and Discussion

Fifteen SFs and twelve CNTs were enrolled in the study. The
main demographic and anthropometric characteristics of the
study population according to the classification groups are
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Figure 1: Score plot showing the separation of participants (stone formers in green; healthy controls in red) on the space determined by the
LVs according to PLS-DA model. LV: latent variable; PLS-DA: Partial Least Squared-Discriminant Analysis.

Table 2: The urine average levels of discriminant amino acids in
patients and the control group.

AA
CNT SF

p value
Average ±SD Average ±SD

α-Aminobutyric acid 14.0 5.8 6.1 2.5 <0.0001
Asparagine 214.5 73.2 71.4 44.0 <0.0001
Ethanolamine 365.4 69.9 215.3 87.6 0.0003

Isoleucine 9.9 3.7 4.2 3.8 0.0029

Methionine 8.2 2.8 2.7 2.7 0.0003

Phenylalanine 49.5 13.2 24.7 15.4 <0.0001
Serine 354.1 109.0 105.6 93.8 <0.0001
Tryptophan 61.2 14.3 33.5 21.5 0.0023

Valine 34.4 12.0 15.2 11.4 0.0025
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presented in Table 1. Stone formers and controls were differ-
ent by age and body composition/BMI; for this reason, we
had extensively investigated whether this could lead to an
important bias for the results or not, collecting enough
evidences which allowed to rule out such possibility (see
Figures S1, S2, and S3).

A double cross-validated PLS-DA model was run in
order to evaluate the presence of a distinct amino acid profile
in people with renal lithiasis compared with control patients.
The best PLS-DA model was built using two LVs. A good
classification performance was obtained by the selected
PLS-DA model. Indeed, we were able to correctly classify
84:2 ± 3:6% of the study participants (82:2 ± 4:7% of cases
and 86:7 ± 4:7% of controls) in the internal DCV loop used
for model selection and 75:7 ± 3:2% (76:0 ± 5:1% of cases
and 75:3 ± 4:1% of controls) in the outer DCV loop, which
results from repeated cycles of external validation steps.
The differences in the amino acid profiles of cases and con-
trols as well as the evident classification performance of the
PLS-DA model are apparent when inspecting the projection
of the study participants’ scores over the space spanned by
the LVs (Figure 1).

VIP and RP were used for detecting which amino acids
contribute the most to the solution of the classification
problem. The first nine biomarkers detected by the two
approaches are the same, indicating these analytes definitely
characterize the nephrolithiasis condition. In particular, stone
formers showed lower levels of α-aminobutyric acid, aspara-
gine, ethanolamine, isoleucine, methionine, phenylalanine,
serine, tryptophan, and valine, than healthy controls (Table 2).

Serum concentrations of nondiscriminant analytes
according to the PLS-DA model are reported in Table S1.

In order to test the statistical significance of the PLS-DA
model, NMC, AUROC, and DQ2 under the null hypothesis
were calculated through the 1000-repetition permutation test
(Figure 2). The outcome of this further investigation is that
the results obtained by the PLS-DA model are statistically
significant. In fact, inspecting Figure 2, it is straightforward
that, regardless the figure of merit investigated, the results
provided by the classification model on (unpermuted) real
data (red circles) fall on the edge of the null hypothesis
distribution, leading to p values of 0.026, 0.009, and 0.016
for NMC, AUROC, and DQ2, respectively.

Stone formers are more likely to have more significant
urinary and metabolic abnormalities compared with non-
stone formers [32]. At the moment, there are no reliable
biomarkers to predict risk of recurrent stones. 24-hour urine
and plasma routine analysis as part of the clinical evaluation
does not always accurately predict stone recurrence, although
their execution should be performed as recommended by
clinical guidelines. In this scenario, metabolomic analyses of
urine using innovative targeted approaches may help develop
new diagnostic and therapeutic algorithms to better predict
urinary stone recurrence.

Our preliminary results suggest that several metabolic
pathways are perturbed in nephrolithiasis. In particular, the
presence of low urinary levels of ethanolamine, serine, and
tryptophan seems to corroborate previous findings on people
with kidney stones [19]. Alterations in amino acid levels and
other metabolic abnormalities may be relevant to kidney
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Figure 2: Values obtained on the real dataset (red circles) fall outside of the corresponding null hypothesis distribution (blue histograms),
corresponding to a p < 0:05.
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stone formation. It is acknowledged that perturbations of
oxalate, calcium, citrate, and cystine metabolism are asso-
ciated to urolithiasis [33, 34]. In this context, altered uri-
nary levels in stone formers may be suggestive of altered
glycine metabolism that could lead to increased oxalate
production and stone formation [35]. Our findings are in
agreement with literature data [35–39], in which a decrease
in the concentration of amino acids, including alanine,
tryptophan, and threonine, was suggested to exert a possi-
ble inhibitory activity of crystalline aggregation [38, 39].
Moreover, renal oxidative vulnerability due to changes in
mitochondrial-glutathione and energy homeostasis was
described in a rat model of calcium oxalate urolithiasis
[40]. Interestingly, a role for α-aminobutyric acid has been
hypothesized in the regulation of glutathione biosynthesis
following oxidative stress stimulation [41]. Indeed, parallel
to the activation of glutathione synthesis, the production
of its analogue ophthalmic acid from α-aminobutyric acid
is initiated [42]. The reduced urinary levels of α-aminobu-
tyric acid found in people with kidney stones may thus be
the resultant of increased oxidative stress and/or a per-
turbed glutathione biosynthetic process [41].

Although reporting novel findings, the present study has
some limitations.

First, the population that was investigated was relatively
small, and numerous experimental variables were measured.
However, the analytical approach that was used, i.e., PLS-DA
plus a double cross-validation, is particularly suited to handle
such an experimental setting and provide stringent and
interpretable estimation of statistical significance.

Some factors might affect circulating amino acid concen-
tration. For instance, gut microbiota acts as a metabolic
modulator in nephrolithiasis condition and the decrease of
certain metabolites can be associated with disruption of the
intestinal microbiota due to exposure to antibiotic therapies.
Different levels of circulating amino acid can also be possible
due to diet and lifestyle [43–45]. Neither the amount of phys-
ical activity nor nutritional patterns were quantified in the
present study.

However, as recently showed, differences in circulating
amino acid levels seem to be less marked than those result-
ing from nutritional interviews [43]. The cross-sectional
nature of our study does not allow inference on cause-
effect relationships.

5. Conclusion

In this pilot study, we showed that a urinary amino acid
fingerprint exists in people with kidney stones. Such an
experimental approach may be used to improve our under-
standing of urolithiasis and, after a thorough validation in
independent cohorts, be used in the clinical evaluation of
this condition in addition to metabolic routine analysis
and nutritional assessment.
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