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The intensities of far-field diffraction patterns of orientationally aligned

molecules obey Wilson statistics, whether those molecules are in isolation

(giving rise to a continuous diffraction pattern) or arranged in a crystal (giving

rise to Bragg peaks). Ensembles of molecules in several orientations, but

uncorrelated in position, give rise to the incoherent sum of the diffraction from

those objects, modifying the statistics in a similar way as crystal twinning

modifies the distribution of Bragg intensities. This situation arises in the

continuous diffraction of laser-aligned molecules or translationally disordered

molecular crystals. This paper develops the analysis of the intensity statistics of

such continuous diffraction to obtain parameters such as scaling, beam

coherence and the number of contributing independent object orientations.

When measured, continuous molecular diffraction is generally weak and

accompanied by a background that far exceeds the strength of the signal.

Instead of just relying upon the smallest measured intensities or their mean

value to guide the subtraction of the background, it is shown how all measured

values can be utilized to estimate the background, noise and signal, by

employing a modified ‘noisy Wilson’ distribution that explicitly includes the

background. Parameters relating to the background and signal quantities can be

estimated from the moments of the measured intensities. The analysis method is

demonstrated on previously published continuous diffraction data measured

from crystals of photosystem II [Ayyer et al. (2016), Nature, 530, 202–206].

1. Introduction

The statistics of diffraction intensities in protein crystal-

lography have guided data analysis and data verification, such

as providing the basis for a treatment of negative diffraction

intensities (French & Wilson, 1978), and the identification of

crystal symmetries (Wilson, 1949; Rogers, 1950) and crystal

twinning (Rees, 1980). The probability distribution of Bragg

intensities in the X-ray diffraction pattern of a molecular

crystal was first considered by Wilson (1949), now referred to

in the field as Wilson statistics. The assumptions on which the

derivation of these statistics depends, namely that the atoms in

the molecule are random and independent, apply equally to

the case of continuous coherent diffraction of a single mol-

ecule (Huldt et al., 2003). Such diffraction does not contain

Bragg peaks since the object is not periodic, but is instead

proportional to the squared modulus of the continuous

Fourier transform of the molecule, such as the computed

patterns shown in Fig. 1. These are also known as speckle

patterns and are similar to the patterns that can be observed

by shining an optical laser beam on a uniformly rough surface
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such as a painted wall. In both cases the contrast of the

speckles is high and their size, which is roughly homogeneous,

is inversely proportional to the size of the illuminated object

(the diameter of the molecule or laser beam). This similarity

holds for the statistical description of the intensities. Speckle

patterns of laser beams reflected from rough surfaces also

obey Wilson statistics and a body of literature, parallel to that

of macromolecular crystallography, has presented derivations

of intensity distributions and their experimental verifications,

explored methods to reduce the contrast of speckle in cases

where it is considered a nuisance, and utilized the statistics to

determine coherence or roughness properties (Dainty, 1976;

Goodman, 1985, 2007). Although optical speckle patterns

were observed in the nineteenth century and explained by von

Laue (1914) and Lord Rayleigh (1918), it was not until the

invention of the laser that detailed examination was taken up.

It is interesting that there was no such hindrance in X-ray

crystallography, where X-ray sources provided beams that

could be made coherent enough – using collimating devices –

to give rise to coherent diffraction patterns (consisting of

Bragg peaks obeying Wilson statistics) from molecular

crystals.

With the more recent measurements and studies of

continuous diffraction patterns of molecular samples, such as

X-ray or electron diffraction of aligned molecules (Küpper et

al., 2014; Hensley et al., 2012), single un-oriented molecules

and viruses (Seibert et al., 2011; Aquila et al., 2015), or

translationally disordered crystals (Ayyer et al., 2016), an

understanding of the distribution of continuous diffraction

intensities is required for the same reasons as mentioned

above for crystallography. The motiva-

tion for these studies is clear: the

continuous diffraction, when sampled at

or beyond its Nyquist frequency,

provides a complete description of the

diffracted wavefield and directly gives

access to the full un-aliased auto-

correlation function of the object.

Under most conditions, the information

content of the measurable diffraction

intensities exceeds that required to

describe the electron density of the

sample completely, allowing iterative

algorithms to retrieve the diffraction

phases directly without the need for

prior knowledge about the object, a

method known as diffractive imaging

(Thibault & Elser, 2010).

Perhaps the most crucial aspect of

primary data analysis of continuous

diffraction measurements is to deter-

mine the contribution of any incoherent

background to the pattern. Unlike the

narrow Bragg peaks in the diffraction

patterns of crystals, which can be

distinguished reasonably well from a

slowly varying background (Parkhurst

et al., 2016), the morphology of a

continuous speckle pattern makes this

discrimination less straightforward. In

addition, without the ‘coherency gain’

that concentrates intensity into Bragg

peaks (Sayre & Chapman, 1995),

continuous diffraction is much weaker

per pixel than Bragg diffraction and any

incoherent background may far surpass

the strength of the signal of interest. As

we shall see, the common assumption

that local minima of the diffraction

pattern should be zero and can thus be

attributed to background is not always

correct, especially when the particles
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Figure 1
(a) A central section of diffraction intensities of PS II complex from a calculation at 4753 points in a
three-dimensional array of reciprocal space, centred on the origin. The resolution at the centre edge
of the simulated array is 0.33 Å�1 and intensity samples are spaced by 0.0014 Å�1, which is twice the
Nyquist sampling of the intensities of an object 178 Å wide. (b) Histogram of intensity values at
samples in a shell of reciprocal space of width 0.0325 Å�1 and centred at q = 0.23 Å�1 (blue), and
the negative exponential of equation (1) in orange. (c) A central section from the same three-
dimensional array after applying symmetry operations of the 222 point group, displayed on the same
colour map as part (a), which ranges from zero counts in white to maximum counts in black. The
section is only perpendicular to one twofold axis, which is horizontal in this view. Visually, the
pattern has lower contrast than part (a), which is confirmed in (d) the histogram of intensity values
which has a smaller width (i.e. smaller variance) for the same reciprocal-space shell as for part (b).
The Gamma distribution p(I; 4) of equation (3) is given in orange.



are oriented in several discrete orientations, as can be the case

for continuous diffraction of a translationally disordered

crystal.

Indeed, the stimulus for this work was to better treat the

continuous X-ray diffraction patterns that were measured

from imperfect crystals of photosystem II (PS II) (Ayyer et al.,

2016). The presence of Bragg peaks in a diffraction pattern

indicates a high degree of correlation of objects in a regular

arrangement, over a number of objects that is inversely

proportional to the width of the Bragg peak and to a precision

determined by the highest scattering angles (the highest

resolution) to which those Bragg peaks exist. Crystals of large

protein complexes, such as membrane proteins, often only give

Bragg diffraction to a limited resolution. The lack of corre-

lation beyond this limit may be due to the objects being

different from one another at this length scale, or to them

being structurally alike but randomly displaced from the

regular lattice. Combinations of these effects may also occur,

including rotational disorder of rigid objects or translational

disorder of conformationally varying molecules, but it is the

lack of translational correlation that causes the Bragg peaks to

vanish beyond a certain resolution. Scattering from the crystal

still occurs beyond the highest-angle Bragg peaks, since the

atomic scattering factors and numbers of atoms do not change

just because the crystal is not ordered. In the case of trans-

lational disorder of repeating rigid units, the diminishing

Bragg efficiency with increasing resolution is balanced by an

increase in the incoherent sum of the continuous diffraction

patterns of those units. This continuous diffraction is identical

to that from a gas of molecules that are oriented in the discrete

crystallographic orientations and is amenable to direct phasing

using iterative methods, as demonstrated by Ayyer et al.

(2016). It should be noted that continuous diffraction from

molecular crystals is observed for a wide variety of systems

and can take many general forms that can be more compli-

cated than described by these two cases (Doucet & Benoit,

1987; Wall et al., 1997; Pérez et al., 1996; Van Benschoten et al.,

2016). Such ‘diffuse scattering’ is often of interest for the study

of conformational variabilities of proteins. The correlations

that give rise to such scattering can be anisotropic or localized

in particular regions of reciprocal space (Welberry et al., 2011).

Such cases are not considered in this paper, although the

concepts developed here might find some use to improve their

analysis if properly adapted to the particular situation.

In this paper we review, in x2, the statistics of continuous

speckle patterns of ensembles of molecules aligned in one or

several discrete orientations for both centric and acentric

structures. These statistics follow familiar distributions of

Bragg intensities of twinned crystals, since the intensities arise

in both cases from an incoherent sum of independent coherent

diffraction patterns. As is also well known in the field of

speckle metrology, this incoherent sum reduces the contrast of

the pattern and increases the most common intensity value

from zero. The consideration of coherence is more critical for

continuous diffraction than for Bragg diffraction, since partial

coherence reduces the contrast of speckle patterns and

modifies their statistics, with consequences for the ability to

phase them. We verify the predicted distribution of intensities

of partially coherent diffraction patterns by simulation. Even

when using a coherent source such as an X-ray free-electron

laser (XFEL), the finite size of pixels in the diffraction

detector gives the same effect, by reciprocity, as partial

coherence.

In x3 we consider the statistics of the continuous diffraction

of translationally disordered crystals or other collections of

molecules in discrete orientations. While this continuous

diffraction follows the point-group symmetry of the crystal, as

does the Bragg diffraction, the distribution of intensities may

be different from that of the Bragg intensities owing to the

incoherent addition of diffraction from rigid units, compared

with the coherent addition of scattering from the entire

contents of the unit cell that gives rise to Bragg diffraction. We

consider some special central sections of reciprocal space that

are perpendicular to the symmetry axes of the point group and

which possess distributions that do not occur in diffraction of

twinned crystals, and give some examples to highlight how the

statistics of continuous diffraction could indicate or verify the

symmetry of the rigid unit in a translationally disordered

crystal.

We derive, in x4, the distributions of diffraction intensities

consisting of the continuous diffraction of discretely oriented

structures accompanied by an incoherent background. While

the implications of subtracting background from Bragg data

and the aforementioned treatment of negative intensities have

long been considered (French & Wilson, 1978), with recent

work improving the estimation of background in the neigh-

bourhoods of Bragg peaks (Parkhurst et al., 2016), there has

not been a detailed investigation of the statistics of diffraction

intensities in the case where the standard deviation of the

background is a significant fraction of, or is larger than, the

diffraction signal. We consider first the case where the back-

ground is normally distributed and give an explicit expression

for the distribution of the intensities. Although we cannot

obtain a similar expression for the case of photon-counting

measurements, where the background follows a Poisson

distribution, we determine the moments of intensities for both

cases, and show that the parameters of the background (mean

and variance in the case of a normal distribution) and the

scaling of the signal can be solved from the moments of the

measured intensities, given that the number of independent

orientations of the diffracting structures is known. In x5 we

apply this estimation of parameters in shells of reciprocal

space to diffraction patterns measured from translationally

disordered PS II crystals, as previously published (Ayyer et al.,

2016). In that work, the background was estimated simply

from the average intensities in circular rings of constant q, but

we show here improved results obtained by estimating the

background level and diffraction signal scaling from the

moments of the intensities. In x6, we examine the statistics of

aggregated three-dimensional continuous diffraction from the

scaled and background-corrected PS II patterns and find that

the acentric intensities fit a distribution corresponding to the

incoherent summation of four independent structures,

consistent with the four crystallographic orientations of the PS
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II dimer. Finally, in x7 an improved cross correlation is

observed between the background-corrected continuous

diffraction and simulated diffraction from an atomic model of

a PS II dimer.

2. Statistics of diffraction intensities of aligned
molecules

The distribution of intensities measured in the diffraction

pattern of a molecular structure can be derived by considering

the coordinates xi of atoms in the object to be rationally

independent or random (Schmueli & Weiss, 1995). Under

those conditions, for a structure that is not centrosymmetric

and for a large number of atoms with approximately equal

atomic scattering factors, the contributions of atoms to the

phases of the diffraction amplitudes, �i = 2�q � xi, are

uniformly distributed (between 0 and 2�) for any given

photon momentum transfer q. The distribution of the

magnitudes of the diffraction amplitudes, each a sum over the

contributions from each atom, can then be estimated by

analogy with a random walk in the complex plane or by

application of the central limit theorem (Schmueli & Weiss,

1995; Dainty, 1976). Using the latter approach and for the case

of unpolarized radiation, it is seen that, at a particular q (= |q|)

shell (where atomic scattering factors do not vary), the real

and imaginary parts of the complex-valued diffraction ampli-

tudes are both normally distributed with a mean of zero and a

mean square proportional to hsin2 �ii = 1/2 or hcos2 �ii = 1/2.

The diffraction intensities, I, are equal to the sum of the

squares of the real and imaginary parts. The distribution of a

sum of squares of k independent standard normal random

variables is given by a �2 distribution of order k, which can be

scaled to any particular variance (Papoulis, 1991). Thus, the

intensities I in a given shell of q are distributed according to a

scaled �2 distribution of order 2, with a probability distribu-

tion function given by

pðIÞ ¼
1

�
exp

�I

�

� �
; I> 0: ð1Þ

The mean of the intensity is � and it is set by the choice of the

variance of the individual normal distributions. The variance

of this distribution is �2 and the most common value (the

mode) of I is zero. [This distribution is also referred to as a

negative exponential distribution of scale �, an Erlang

distribution with shape parameter 1 and rate 1/�, or a Gamma

distribution with shape parameter 1 and scale �. In the

notation of statistics, I � Gamma(1, �), meaning that the

random variable I has a probability distribution of

Gamma(1, �).]

When the structure is real and centrosymmetric, then the

phases of the diffraction amplitudes take on values of 0 or �,

which is to say that the imaginary parts of the diffraction

amplitudes are zero. This is also true for diffraction amplitudes

on a central section (or zone) of reciprocal space perpendi-

cular to any projection of the structure that is centrosym-

metric, such as a projection along the twofold symmetry axis of

a crystal. By the Fourier slice theorem, the Fourier transform

of a real-space projection, an integration along a real-space

direction of an object, is equal to the central section perpen-

dicular to that direction of the three-dimensional transform of

the object. The real parts of the diffraction amplitudes of the

centrosymmetric object or projection will still follow a normal

distribution, and thus the intensities, equal to their squares,

will have a scaled �2 distribution of order 1 (which can also be

derived from the normal distribution by a change of variable),

given by

pðICÞ ¼
1

ð2�IC�Þ1=2
exp

�IC

2�

� �
; IC > 0; ð2Þ

with a mean of �, a variance of 2�2 and a mode of zero. The

intensities IC are referred to as centric.

Equations (1) and (2) are the well known Wilson statistics

applicable to crystals of P1 symmetry and P1 symmetry,

respectively (Schmueli & Weiss, 1995), also referred to as

Rayleigh statistics in the field of speckle metrology (Dainty,

1976; Goodman, 2007). The derivation of these statistics

makes no assumption of crystallinity of the sample and hence

they are as equally applicable to the continuous diffraction of

a single object (Huldt et al., 2003) [such as the calculated

single-molecule diffraction of a PS II complex shown in

Fig. 1(a)] as they are to the Bragg diffraction from a protein

crystal, coherent diffraction from atomic glasses (Hruszke-

wycz et al., 2012), or that resulting from the reflection of a

monochromatic and polarized laser beam from a random

rough surface (Dainty, 1976; Goodman, 2007). The applic-

ability of Wilson statistics to single-molecule diffraction is

demonstrated in Fig. 1(b), where the distribution of simulated

point-sampled intensities in a shell of reciprocal space is

plotted for the single PS II complex.

Equations (1) and (2) predict that the most common

intensity value for molecular diffraction is zero. This is

consistent with the view of a single-molecule diffraction

pattern as made up of speckles that are surrounded by low

values, such as seen in Fig. 1(a). The speckle nature of the

diffraction is less easily observed in Bragg diffraction, but is

certainly true given that the diffraction pattern of a crystal can

be described as a modulation of the continuous diffraction of

the unit cell with the reciprocal lattice. A difference from

Bragg diffraction, however, is that single-molecule diffraction

can be more readily affected by the spatial coherence of the

illumination or, equivalently, the detector pixel-shape func-

tion, as discussed below in x2.3.

One insightful application of Wilson statistics is to identify

the presence of crystal twinning purely from observations of

diffraction intensities (Rees, 1980, 1982). The same tests can

be carried out on diffraction of oriented single molecules. For

example, alignment of molecules with an AC laser field gives

rise to equal populations of molecules aligned parallel and

anti-parallel to a laboratory-frame vector (Spence & Doak,

2004). As with the case of merohedral twinning of a crystal,

the diffraction intensities of the two populations sum in-

coherently. As long as the intensities at R �q are independent

of those at q for the rotation operator R describing the
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twinning, then the distribution of the summed intensities

follows the sum of two scaled �2 distributions of order 2 (for a

noncentrosymmetric object), which from the definition of a �2

distribution is a �2 distribution of order 4. In general, the

diffraction intensity from N equal twin fractions (each with

mean �/N) is given by a scaled �2 distribution of order 2N,

also equivalent to I � Gamma(N, �/N), with a probability

distribution function

pðI; NÞ ¼
NNIN�1

�N�ðNÞ
exp

�NI

�

� �
; I> 0; ð3Þ

where � is the Euler Gamma function, equal to (N � 1)! for

whole numbers of N. Some plots of p(I; N) are given in

Fig. 2(a). The most common value for the continuous

diffraction intensity for N > 1 orientations is not zero but

(N � 1)�/N. The mean of this distribution is � and the

variance is reduced compared with the single object to a value

of �2/N (see Table 1). The reduction in variance is quite

noticeable in the simulated diffraction intensities shown in

Fig. 1(c), which is the calculation of the incoherent sum of the

diffraction of PS II complexes oriented in

the four different orientations of the 222

space group (any orientation is related to

another through a rotation of 180� about

one of the three orthogonal axes). For the

same mean, the standard deviation is halved

in this case and the distribution of the

simulated intensities agrees with equation

(3) for N = 4, as seen in Fig. 1(d).

In the case of centrosymmetric objects in

N unique orientations (whether due to crystal symmetry or

twinning), the probability distribution will be given by the sum

of random variables with scaled �2 distributions of order 1,

which is a scaled �2 distribution of order N, I � Gamma(N/2,

2�/N), with a probability distribution function

pðIC; NÞ ¼
ðN=2ÞN=2I

N=2�1
C

�N=2�ðN=2Þ
exp

�NIC

2�

� �
; IC > 0: ð4Þ

The distribution of equation (4) has mean � and variance

2�2/N, and is equal to p(I; N/2) when N is even. This will be

the case for central sections of q that are perpendicular to the

twofold rotation axis of a dimer, for example. In the limit of an

infinite number of orientations, such as in the case of solution

scattering of unoriented molecules, it can be found through

the central limit theorem that p(I; N) and p(IC; N) both

approach a normal distribution with a mean and variance both

equal to � (Siegrist, 2015), which is also the limit of Poisson

statistics.

We note that equations (1)–(4) hold for any scaling of

intensities I, whether they be recorded as photon counts or as

‘detector units’, referred to herein as adu. For example, for a

detector gain a, the intensities in detector units I = aI for the

continuous diffraction of N orientations are distributed as I �

Gamma(N, a�/N), giving a probability distribution p(I) =

apð I Þ with a mean a� and variance a2�2/N.

A case that breaks the independence between diffraction

intensities at R �q and q is when the electron density of a single

molecule is real valued, so that the diffraction intensities are

centrosymmetric and the operator R is a rotation by 180�.

Under this condition, the diffraction intensities I(q) of any

object will be equal to I(R �q) for values of q in a central

section that is perpendicular to the twofold rotation axis. In

this reciprocal-space plane it would appear that the number of

orientations of rigid objects is reduced by half or, equivalently,

that the number of orientations does not change but the

object’s projection is centrosymmetric. These diffraction

intensities can thus be considered centric, even though the

object itself is not centrosymmetric. Although similar to the

case mentioned above of a crystal with a twofold rotation axis,

there is a difference in that the projection of the structure of

the crystal along the twofold axis is centrosymmetric, whereas

it is the incoherent sum of the projections of aligned and anti-

aligned molecules that is centrosymmetric. In the case of N

equally populated alignment fractions, the centric reflections

are those in central sections perpendicular to any twofold

rotation axes in the point group of the alignments. In those
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Table 1
Moments of the distribution of intensities obeying noisy Wilson statistics.

pNW(I; N) pNW(I; N � 1, 1) pDNW(I; N)

Mean (�NW) �þ� �þ� �þ�

Variance (�2
NW) �2 þ�2=N �2 þ�2=N þ�2=N2 �þ�þ�

2
=N

Skewness (sNW)
2�3

N2 �2=N þ �2ð Þ
3=2

2ð3þNÞ�3

N2 �2=N þ�2=N2 þ �2ð Þ
3=2

�þ�þ 3�
2
=N þ 2�

3
=N2

ð�þ�þ�
2
=NÞ3=2

Figure 2
Plots of the distributions of diffraction intensities of disordered crystals
with P212121 symmetry with a mean of � = 10 for continuously distributed
values (lines) and for photon counting (dots). (a) Linear and (b)
logarithmic plots of p(I; 4), p(I; 3, 1), p(I; 2) and p(I; 1), all without
background, corresponding to the distributions for acentric continuous
diffraction intensities, partly centric continuous diffraction intensities,
centric continuous diffraction intensities (on central sections normal to
crystallographic twofold axes) and acentric Bragg intensities, respectively.
(c) Linear and (d) logarithmic plots of the ‘noisy Wilson’ distributions for
the same cases with a background of � = 6 and � = 2.45. The dashed
vertical lines correspond to the value of the mean signal, �, in parts (a)
and (b), and the mean background, �, and background plus signal, � + �,
in parts (c) and (d).



planes, for a real-valued structure, the distribution of diffrac-

tion intensities will be given by equation (4) since the number

of independent normal distributions being summed is reduced

by half.

2.1. Discrete distribution

Many of today’s X-ray detectors are sensitive to single

photons, and diffraction measurements made with them are

therefore governed by counting statistics. It is well appreciated

that this discretization leads to a signal described by Poisson

statistics. For example, the counts in a particular pixel on the

detector in a diffraction experiment of a static object illumi-

nated with a beam of constant flux will follow the probability

distribution

pðIÞ ¼
� I exp ð�Þ

I!
; ð5Þ

for a mean number of photons �, where I are the discrete

numbers of photons per pixel (here the bar indicates values in

photon counts). One feature of this distribution is that the

variance is equal to the mean, � 2 = �. For large values of I this

distribution approaches a normal distribution with �2 = �. The

statistics for the discrete diffraction of a molecule, measured at

a particular q shell, are found by selecting a random variable

from the appropriate Gamma distribution [e.g. equation (3)]

and then realizing a particular value of that variable by feeding

it as the mean value of a Poisson distribution. This is known as

a mixture distribution and is conceptually quite different from

the distribution of the sum of random variables discussed

above. The mixture distribution of photon counts, where the

Poisson mean is distributed according to GammaðN;�=NÞ for

N equal twin fractions, is given by the negative binomial

distribution NegativeBinomial½N;N=ðN þ�Þ�,

pðI; NÞ ¼
N

N þ�

� �N
�

N þ�

� �I
ðN � 1þ IÞ!

ðN � 1Þ! I!
; I � 0; ð6Þ

with a mean � and variance �ðN þ�Þ=N (ch 10.4 of Siegrist,

2015; Goodman, 2007). Thus, this distribution approaches the

Poisson distribution for large N and the variance is greater

than for the non-discrete distribution of equation (3). Some

plots of the distributions are given in Figs. 2(a) and 2(b) for the

case of � = 10 counts.

2.2. Linear polarization

In the above we have assumed that the incident radiation is

unpolarized. In that case, atomic scattering factors are

dependent only on the magnitude of the photon momentum

transfer q, giving rise to diffraction intensities that follow a

given Gamma or negative binomial distribution for detector

pixels located on a shell of constant q. Radiation at synchro-

tron and XFEL facilities is usually linearly polarized, which

modifies the diffraction intensities by a factor equal to the

square of the dot product of the electric field vectors of the

incident and scattered rays (which themselves are perpendi-

cular to the direction of propagation of the rays). For example,

for horizontally (x) polarized radiation, the intensity pattern is

modulated by

Pðkx; kyÞ ¼ 1�
�

2�

� �2

k2
x; ð7Þ

where kx and ky are the scattered wavevector components in

the detector plane. The measured intensities of each diffrac-

tion pattern Iðkx; kyÞ can be corrected by dividing by Pðkx; kyÞ.

For measurements of a non-discrete diffraction signal, this

correction will have the intended consequence of generating

signals that follow the statistics of the Gamma distribution on

a particular q shell. For photon-counting measurements this is

not the case, since multiplying counts by a variable correction

will alter the variance by a different factor than the mean.

After correcting for polarization, counts in a q shell of the

diffraction of an unstructured object will no longer obey

Poisson statistics.

In our analysis below we utilize the variance to determine

parameters such as the scaling and background of diffraction

patterns. For discrete measurements we must first account for

the polarization in this analysis, as follows.

First, the polarization-corrected diffraction pattern is aver-

aged in thin shells of q (or k) from which a two-dimensional

polarization-uncorrected average is regenerated:

Iavðkx; kyÞ ¼
Iðkx; kyÞ

Pðkx; kyÞ

� �
jkj

Pðkx; kyÞ: ð8Þ

This average no longer contains any speckles but it can be

contoured to find sets of detector pixels (or coordinates kx, ky)

with equal mean counts � in the polarization-uncorrected

measurement. These contoured regions are then used instead

of shells of equal q to determine the distribution of intensities.

This approach will account for any signal or background

originating from elastic scattering from a region near the

sample, but will not account for so-called detector dark noise,

X-ray fluorescence, or scattering from sources far upstream or

downstream of the sample.

2.3. Spatial coherence and pixel size

Continuous diffraction from single objects can be sampled

arbitrarily finely, unlike the discrete locations of Bragg peaks.

The simulated diffraction intensities shown in Fig. 1(a) were

calculated at twice the Nyquist sampling rate required to fully

describe the continuous intensity wavefield, which is to say

four times the sampling density in each dimension that would

be obtained from Bragg peaks of a P1 crystal in which the

molecules were packed in the smallest possible P1 unit cell

(see e.g. Thibault & Elser, 2010). At high sampling rates there

are obviously correlations between neighbouring intensities,

since they are likely to be sampling the same speckle. Even so,

this ‘oversampling’ does not affect the statistics in the limit of

randomly positioned atoms. The simulation does, however,

differ from actual measurements of a diffraction pattern, in

that intensities will not in reality be sampled at points but will

be averaged over the active areas of the detector pixels,

described by the convolution
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Imðkx; kyÞ ¼ Iðkx; kyÞ 	 sðkx; kyÞ; ð9Þ

where sðkx; kyÞ is the pixel response function. The statistics of

the measurements Im will clearly differ from those of I if the

pixel is larger than the speckle size. The blurring by the pixel

response reduces the contrast of the speckles, eliminating

zeroes and raising low-intensity values as well as reducing the

peak intensities. This can be seen in the plots of Fig. 3(a),

where histograms of the simulated intensities of a PS II

complex are given after first convoluting the patterns with

cubic voxels of varying sizes. The distributions become more

truncated and narrower, with an appearance similar to the

distributions of the incoherent sum of N independent patterns

as shown in Fig. 2.

The effect on the intensity statistics of a continuous speckle

pattern convoluted with a pixel shape was examined by Dainty

(1976), who showed that the variance of the intensities is

reduced from the ideal value of �2 by a factor given by the

ratio of the speckle size (equal to the inverse of the width of

the autocorrelation function of the object) divided by the pixel

area in q space. In particular, Dainty posited that the inten-

sities Im of equation (9) can be expressed as a weighted sum of

independent random variables, and that the distribution can in

fact be approximated (for a wide range of pixel response

functions and molecule autocorrelation functions) by the

Gamma distribution of equation (3). In this case N = NS, the

number of speckles per pixel, need not be a whole number. In

Fig. 3(a), these distributions are additionally plotted and can

be compared with the histograms of the convoluted simulated

diffraction patterns. The distributions show a good agreement

with the simulations by setting 1/NS = Var[I] /Mean[I]2. This

parameter, referred to as the ‘speckle contrast’ (Dainty, 1976),

can be considered as the degree of purity of the measurement

in a detector pixel, or in other words an indicator of the degree

of coherence, as discussed below. A plot of 1/NS versus the

voxel width of the recording process is given in Fig. 3(b), and

1/NS is found to decrease with width roughly as a Gaussian.

Here, the width is normalized to the Nyquist sampling width of

the diffraction intensities (the inverse of twice the width of the

molecule), which is about half the width of a speckle. The

width of the Gaussian plotted in Fig. 3(b) is 2, equal to a

speckle width.

The speckle contrast in a diffraction pattern can be used as a

measure of coherence (Dainty, 1976). Reducing the spatial

coherence of the illumination will reduce the variance of the

diffracted intensities. This can be quite clearly understood in

the Gauss–Schell model of partial coherence (Mandel & Wolf,

1995), where a partially coherent beam is equivalent to one

produced by an incoherent source of finite extent. In this

model, any point in the source gives rise to a fully coherent

beam that produces a fully coherent diffraction pattern posi-

tioned relative to the axis defined by the line joining that

source point and some arbitrary but common point in the

object. For a small enough angular extent of the source, the

pattern from each source point will be an identical but shifted

version of that produced by any other source point. The

patterns produced by each source point will be mutually

incoherent, so in the limit of a small angular extent of the

source the resulting diffraction pattern will be a convolution of

the coherent pattern with a function describing the angular

distribution of the source intensity. Thus, equation (9) also

represents the case of partially coherent diffraction, where s

describes the angular extent of the source, also equal to the

Fourier transform of the mutual coherence function

(Goodman, 1985). Again, this coherence length w can be

expressed in terms of the parameter NS, equal to the fractional

number of speckles that lie in the angular extent of the source.

In the case of N independent orientations of a molecule

measured with NS speckles per detector pixel or coherence

area, the distribution will be modified in a similar way as for a

single orientation. For a given mean �, the variance will be

modified from �2/N by an additional division by NS to �2/N 0,

where N 0 = NNS, and the distribution of intensities will be

approximated by I � Gamma(N 0, �/N 0) as per equation (3).

The phasing of continuous diffraction patterns using itera-

tive algorithms depends critically on accurate sampling of the

intensities. Any reduction in contrast or addition of a constant

will eliminate intensity zeroes and cause discontinuities of

phased amplitudes, a situation that is inconsistent with

diffraction arising from a compact object. Much progress in

diffractive imaging was made recently by accounting for the

research papers

1090 Henry N. Chapman et al. � Continuous diffraction J. Appl. Cryst. (2017). 50, 1084–1103

Figure 3
(a) Distributions of the simulated intensities of a single PS II complex
after convoluting the three-dimensional reciprocal-space array of
diffraction intensities with cubic voxels of widths 1, 2 and 3 times the
Nyquist sampling rate of the continuous diffraction intensity. The
negative exponential distribution of the point-sampled intensities is
shown with the dashed line. (b) Plot of 1/NS = Var[I] / Mean[I]2 versus the
voxel width, w. The voxel width is normalized to the Nyquist sampling
distance. Shown in orange is a Gaussian of width 2.



decrease in contrast in continuous diffraction caused by partial

coherence (Whitehead et al., 2009). The coherence width, or

equivalently the detector pixel width, is usually required as a

fixed parameter in schemes of partially coherent diffractive

imaging, and measurements of the coherence properties of the

beam must often be made to carry out these schemes (Flewett

et al., 2009; Chen et al., 2012). For macromolecular diffractive

imaging, where the object is typically less than several

hundred ångströms in width, achieving the necessary coher-

ence width of the beam, equal to double the object width

(Spence et al., 2004), is routinely achieved, and the necessary

sampling density and pixel width can be determined by

examining the autocorrelation of the object. Nevertheless, the

beam coherence, pixel width, sample heterogeneity and errors

in aggregating data from many diffraction patterns may all

give rise to an effective degree of coherence that can be

determined directly from the intensity statistics if the number

of object orientations is known. A variation in the determined

coherence as a function of q may indicate rotational disorder

of the molecules, or an alignment error in aggregating data

from many single-molecule diffraction snapshots.

3. Statistics of diffraction intensities of translationally
disordered crystals

The diffraction pattern of a crystal exhibiting a degree of

translational disorder consists of Bragg peaks, modulated by a

q-dependent Debye–Waller factor, and continuous diffraction

that arises contrariwise to the decrease in Bragg intensities.

Ayyer et al. (2016) considered a disordered finite crystal

consisting of a particular (and unique) rigid object that is

repeated M times in different orientations and positions

according to the crystal symmetry, in each of K unit cells of the

crystal. Here a rigid unit is an object that can be considered as

a single rigid body, such as the full photosystem II dimer in the

case of the crystals in the study of Ayyer et al. (2016). The

structures of these rigid units are identical, at least to the

resolution considered in the diffraction pattern. The rigid

bodies need not be an entire molecule or complex, however,

and there may be several different rigid-body structures in the

crystal. The three-dimensional diffraction pattern of such a

crystal, with identical rigid units that are randomly displaced

from their ideal crystallographic positions in each direction

following a normal distribution of variance �2
�, is then given by

IðqÞ ¼K
XM

m¼1

FðRm � qÞ
�� ��2" #

1� exp �4�2�2
�q2

� �	 


þ
XM

m¼1

FðRm � qÞ exp ð2�iq � tmÞ

�����
�����

2


 exp ð�4�2�2
�q2Þ

XK

j¼1

XK

k¼1

exp ½2�iðaj � akÞ � q�; ð10Þ

where F(q) is the complex-valued Fourier transform of the

density of the single rigid unit, Rm and tm are the rotation and

translation operators, respectively, for the mth rigid unit, and

ak are the real-space lattice positions of the crystal. [Pre-

factors in equation (10) are ignored.] Note that the isotropic

mean-squared displacement of rigid units in three-dimen-

sional space is equal to 3�2
�. The second term of equation (10)

is the squared modulus of the Fourier transform of the entire

unit cell, modulated by a Debye–Waller factor and by the

double product that gives the reciprocal lattice. The first term

is markedly different and is given by the incoherent sum of the

Fourier transforms of the rigid object in each of its crystal-

lographic orientations, all modulated by a function, the

complementary Debye–Waller factor, that increases mono-

tonically with q. This term is not multiplied by a reciprocal

lattice, and is thus continuous and proportional to the single-

molecule diffraction when there is only one orientation of the

rigid randomly translated object per unit cell. In the more

general case, it is equal to the incoherent sum of the diffraction

from N unique orientations of the rigid unit. The number of

unique orientations of the rigid unit may be a subset of those

given by the point group of the crystal if the rigid unit itself is

crystallographically symmetric (i.e. not non-crystallographic),

or there may be more orientations than dictated by the crystal

symmetry if the rigid units are oriented according to non-

crystallographic symmetry. An example of the former situa-

tion is given below for photosystem I crystals in the space

group P63.

The Bragg intensities are proportional to the coherent

diffraction of the entire unit cell of the crystal [indicated by

the squared modulus outside the sum in the second term of

equation (10)] and hence depend on the space-group

symmetry of the crystal. The continuous diffraction is

proportional to the incoherent sum of the diffraction of the

independent rigid objects in the crystal, subject to the

(possibly reduced) point-group symmetry of the crystal given

by the number of unique orientations of the (possibly

symmetric) rigid objects. The statistics of the Bragg and

continuous diffraction intensities are therefore different,

depending on these symmetries. The Bragg reflections obey

Wilson statistics with a symmetry dependence examined by

Rogers (1950). The continuous diffraction will obey Wilson

statistics such as given by equation (3) or (4), subject to the

symmetry of the rigid unit and the number of unique orien-

tations of that rigid unit. Equations (3) and (4) assume equal

populations of objects in each of the orientations. In some

crystals this will not be true, in which case the distributions can

be derived from sums of squares of normally distributed

random variables with different variances (Rees, 1982). In

general, for a rigid unit with NR non-crystallographic rotation

operations and NC crystal point-group operations, the centric

intensities corresponding to any one of the non-crystal-

lographic symmetries will be given by the incoherent sum of

the centric diffraction from those objects in a particular

orientation and the acentric diffraction from the rest of the

objects. Assuming that the populations of rigid units in each

crystallographic orientation are equal, these intensities will

have a distribution I � Gamma(NC � 1, �/NC) + Gamma(1/2,

2�/NC). The probability distribution function of the sum of

two random variables is equal to the convolution of their
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distributions, which can be calculated through the product of

their inverse Fourier transforms. In statistics these are referred

to as the characteristic functions (Papoulis, 1991; Schmueli &

Weiss, 1995).

As an example, consider a PS II crystal in space group

P212121. This consists of four dimers in unique orientations

found by rotating any one of them by 180� about each of the

three orthogonal axes of the orthorhombic cell. The twofold

rotation symmetry of the dimer is non-crystallographic in this

case, and the axis is not aligned along any of the crystal-

lographic axes. The Bragg intensities are therefore in general

acentric, given by equation (1). In central sections of reci-

procal space perpendicular to the orthogonal crystal axes,

however, the Bragg intensities are centric since projections of

the crystal structure down those axes will be centrosymmetric,

with a distribution given by equation (2). The projection of the

crystal structure down the dimer twofold axis of any of the

four dimers will not be centrosymmetric, however, since the

crystal as a whole does not share this symmetry. The contin-

uous diffraction of a PS II crystal with translational disorder

will be governed by the incoherent sum of diffraction of equal

populations of dimers in each of four orientations, given by

equation (3) with N = 4, and will thus exhibit mmm symmetry.

If the rigid unit is the dimer, then central sections perpendi-

cular to the dimer twofold axis should include diffraction from

the one-quarter of all dimers whose projections are centro-

symmetric in that view. The statistics in that case will be

determined by a sum given by three parts acentric random

variables and one part centric random variables, resulting in

I � Gamma(3, �/4) + Gamma(1/2, �/2) which has the distri-

bution

pðI; 3; 1Þ ¼
4

�1=2�3

(
FD

2I

�

� �1=2
" #

ð16I2 þ 8�I þ 3�2Þ

� ð2�IÞ
1=2
ð4I þ 3�Þ

)
expð�2I=�Þ; I> 0: ð11Þ

Here, FD is the integral

FDðxÞ ¼ expð�x2
Þ

Zx

0

expðy2
Þ dy

¼
�1=2

2
expð�x2ÞErfiðxÞ; ð12Þ

and Erfi is the imaginary error function, Erfi(x) = Erf(ix)/i.

Plots of p(I; 4) and p(I; 3, 1) are given in Figs. 2(a) and 2(b),

showing that the dimer symmetry causes a higher probability

of high intensities compared with the completely acentric

reflections. It should therefore be possible to detect the non-

crystallographic symmetry of the rigid object from the devia-

tions of the statistics in particular central sections of reciprocal

space.

The central sections perpendicular to the three orthogonal

crystal axes of PS II are all perpendicular to a twofold rotation

axis and so, to the extent that the structure is real valued, these

intensities will be centric, with a distribution given by

equation (4) with N = 4. This is equal to the acentric distri-

bution with N = 2, shown in Fig. 2.

As another example we consider a crystal of photosystem I,

which has a hexagonal space group P63 . The structure consists

of trimers with threefold rotational symmetry, located in

alternating layers where the trimers are rotated by 60� about

this threefold axis and translated perpendicular to it. The

trimer symmetry is crystallographic. If the rigid object was

hypothetically the entire trimer then the continuous diffrac-

tion arising from translational disorder would consist of the

incoherent sum of the trimer in only these two orientations.

Thus, in general, the probability distribution of the continuous

diffraction intensities in any given q shell will be equal to

p(I; 2) [equation (3) with N = 2]. The continuous diffraction of

the trimer will have threefold rotational symmetry and, if the

electron density of the trimer is real valued, will be centro-

symmetric. In the central section perpendicular to the three-

fold axis the diffraction from the 60� rotated real-valued

trimer will be identical, and hence in this plane of reciprocal

space it will appear as if there is only one object contributing

to the diffraction (or two centrosymmetric objects). These

intensities can therefore be considered as centric, with a

distribution in a given q shell equal to p(I; 1) [equation (3)

with N = 1 or equation (4) with N = 2]. The Bragg reflections in

general positions will be centric (N = 1), or acentric in the hk0

zone. Thus, comparisons of the statistics of Bragg and

continuous diffraction in centric and acentric zones can, in

principle, be used to constrain the number of rigid-body units

contributing to the continuous diffraction. In practice, the

contribution of noise to the measurement must be taken into

account, since this modifies the intensity distributions, as

discussed in the next section.

4. Modified statistics with background noise

The continuous diffraction from a disordered crystal can be

phased using iterative phasing algorithms, as has been well

established for coherent diffractive imaging of single non-

periodic objects. One of the experimental issues that can arise

in coherent diffractive imaging is the incoherent addition of

background intensity. For diffraction of disordered crystals,

the diffuse scattering from the solvent adds to the pattern

incoherently. This incoherent background must be estimated

and subtracted, since otherwise phasing cannot be reliably

achieved – the intensity sum does not match the squared

modulus of the Fourier transform of an object of compact

support. The complication can be appreciated by considering

diffraction amplitudes that vary from positive to negative; for

example, phases that vary from � to ��. The diffraction

amplitude must therefore pass through zero, which cannot be

satisfied if the measured intensity is everywhere greater than

zero owing to a background.

When utilizing Bragg peaks alone, as is usual practice in

crystallography, the background can be reliably estimated

from the measured intensity values surrounding the peak. This

obviously cannot be done for continuous diffraction. In that

case, the background is often estimated from a measurement
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without the sample in place. In macromolecular crystal-

lography, the sample is usually surrounded by solvent, which

creates a diffuse background with a characteristic profile

(including the so-called ‘water ring’). However, the crystal

itself contains solvent which may differ in composition from

the pure buffer solution, so the amount of background is not

necessarily equal to the no-sample pattern. One way to esti-

mate a smoothly varying background is to fit a function to the

local minima of the diffraction pattern. This is a valid

approach for an object of a single orientation whose distri-

bution of diffraction intensities follows equation (1), but not

when N > 1. A much better approach is to utilize all intensity

values in a reciprocal shell, not just the minima, and to fit the

appropriate distribution to estimate the background. We

explore this approach here by examining the properties of the

distribution expected of intensities in a reciprocal-space shell

from a disordered crystal with an incoherent background. This

is carried out first for the case of non-discrete intensity

measurements where the background in shells of q is consid-

ered to be normally distributed. This is the limiting case for

large photon counts per pixel and allows analytical expres-

sions of the resulting distribution of the sum of the aligned-

molecule diffraction with the background. The case of discrete

signals is presented in x4.2, where the background is assumed

to follow Poisson statistics.

4.1. Non-discrete intensities with a normal-distributed
background

We refer to the distribution of the incoherent sum of the

non-discrete acentric diffraction and a normally distributed

background as the ‘noisy Wilson’ (NW) distribution. For a

background mean � and variance �2, added to molecular

diffraction of mean � from N orientations, the distribution is

given by pNW(I) in equation (16) in Appendix A. Some

examples of the distribution are plotted in Figs. 2(c) and 2(d),

where it is seen that pNW(I) is skewed. This skewness is a

property of the signal following the Gamma distribution,

rather than the skew-less normal-distributed noise. In situa-

tions of low signal to background, this skewness can therefore

indicate the presence of a continuous diffraction signal.

However, as we shall see in x4.2, unlike the normal distribu-

tion the Poisson distribution is skewed, with a skewness

decreasing with the inverse of the square root of the mean

counts. This is significant for mean counts approaching almost

100 photons, so the application of the results here requires

suitably large signals or averages over many patterns.

As mentioned above, equation (16) can also be evaluated

by the Fourier transform of the product of the characteristic

functions of the Gamma and normal distributions. Likewise, it

is possible to derive the moments of pNW(I) from the Fourier

transform of the derivatives of its characteristic function. Such

an analysis can also be carried out for the partially centric

intensities that arise owing to non-crystallographic symmetry

of the rigid unit, such as for the probability distribution

pNW(I; N � 1, 1), even though an expression for the prob-

ability distribution cannot be readily derived. Expressions for

these moments are given in Table 1 for the acentric and

partially centric intensities. From the expressions in Table 1 it

is possible to solve for the parameters �, � and �2 from the

moments of the measured intensities in a given q shell. These

parameters are, respectively, the mean of the continuous

diffraction, the mean of the background and the variance of

the background in that shell. This is far less computationally

expensive than fitting a probability distribution function to

those intensities to obtain the parameters. The solution to the

simultaneous set of equations given by the first column of

Table 1 yields the following expressions:

� ¼ ðN2sNW=2Þ1=3�NW;

�2
¼ �2

NW 1� ðN=4Þ1=3
s

2=3
NW

	 

;

� ¼�NW ��:

ð13Þ

These estimates can be influenced by intensity values that do

not conform to the expected distribution pNW(I), such as from

Bragg peaks or centric intensities. The procedure of fitting the

probability distribution function pNW(I) to the histogram of I

tends to avoid the influence of outliers, but ideally any Bragg

peaks should be identified and excluded from the analysis. The

parameters �, � and �2 can be estimated in a number of

reciprocal-space shells (e.g. 50 equally spaced shells) so that a

smooth curve can be fitted to each of the parameters as a

function of q. In this way a radially symmetric background

�(q) can be subtracted from the diffraction pattern. The curve

�(q) can be used to generate a Wilson plot of the continuous

diffraction (French & Wilson, 1978), the radially weighted

average of which can be used to scale each pattern before

merging with others to form a three-dimensional array of

intensities. The error in the intensity measurements due to

background can be estimated from �(q).

4.2. Discrete intensities with a Poisson-distributed back-
ground

The Poisson distribution is given by equation (5). The

variance of this distribution is equal to the mean, � 2 = �, and

the skew is equal to ��1=2, giving appreciable values of skew

even for signals of tens of photons and showing that the

analysis of x4.1 is suitable only in the limit of large photon

counts. The distribution of the sum of acentric diffraction and

unstructured background is given by I �NegativeBinomial[N,

N/(N + �)] + Poisson(�). We refer to this as the ‘discrete noisy

Wilson’ (DNW) distribution. An analytical expression for this

distribution cannot be readily determined, but the probability

distribution functions can be evaluated numerically using a

program such as Mathematica (Wolfram Research, Cham-

paign, Illinois, USA), as shown in Figs. 2(c) and 2(d). Addi-

tionally, the moments can be found from the characteristic

functions of the distributions and these are given in the third

column of Table 1 for intensities measured in photon counts.

In this case, the expressions for the mean and variance are

analogous to those for the normal-distributed background

(replacing �2 for �) but the skewness differs in that it has a

contribution from the background in the numerator. Unlike

the case of the normal-distributed background, the skew is not
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a unique identifier of the presence of aligned-molecule

diffraction. The mean acentric diffraction � and mean back-

ground � are determined by easily solving the two equations

for �DNW and � 2
DNW in Table 1:

� ¼ N � 2
DNW � �DNW

� �	 
1=2
;

� ¼�DNW ��:
ð14Þ

Compared with the continuous case, the presence of the signal

is revealed by an excess of the variance of the intensities over

the mean. Equality of these quantities would occur if the

intensities followed a Poisson distribution, which would occur

if no aligned-molecule diffraction signal were present. If

� 2
DNW < �DNW then the best estimate of � is zero.

The gain and offset of the detector can be estimated from a

pattern recorded without any aligned-molecule diffraction but

only a Poisson-distributed background, such as scattering from

a liquid, or fluorescence. For a detector gain a and offset b, the

mean intensity in detector units is a�þ b and variance a2 �.

A linear fit to a plot of the sample variance as a function of the

sample mean for different exposures or shells of q, for

example, will give a slope equal the gain a and an offset b,

assuming that the detector properties are the same over all

pixels. For patterns recorded with linear incident polarization,

the procedure outlined in x2.2 must be used to find groups of

pixels in the polarization-uncorrected pattern from which to

compute the mean and variance.

We note that, for an integrating detector, the noise model

could be improved by adding a normal distribution corre-

sponding to the detector noise. For the CSPAD detector

(Philipp et al., 2011; Hart et al., 2012) used in the experiments

described below, the standard deviation of the detector noise

is below the signal for a single photon count, and thus only has

a significant effect on the computation of statistics for patterns

with very low detector counts. We ignore this consideration

here.

5. Analysis of continuous diffraction patterns

We demonstrate our analysis approaches on continuous

diffraction patterns of PS II, previously measured at an XFEL

(Ayyer et al., 2016) by the method of serial femtosecond

crystallography. Crystals in liquid suspension were jetted

across the focus of the X-ray beam while snapshot patterns

were recorded on every X-ray pulse (Chapman et al., 2011;

Boutet et al., 2012) on a CSPAD detector. Measurements were

carried out in a vacuum. The concentration of crystals in the

jet was such that only a fraction of the pulses hit a crystal, and

a set of diffraction patterns was selected by searching for the

presence of Bragg peaks.

5.1. Statistics of a single pattern

A typical snapshot pattern (from a still, not rotating,

crystal) is given in Fig. 4(a), without any background

subtraction or correction for the polarization of the incident

beam. The Bragg peaks obviously influence the statistics of the

intensities and must be excluded from our analysis of the

continuous diffraction. For this, they must first be identified,

which was done by comparing the pattern with a version of

itself that was modified by applying a median filter of width

9 pixels. A mask was defined by choosing pixels where the

original values exceeded the median filtered values by an

amount equal to the mean intensity value in the shell. This

mask was then dilated using a kernel that was 7 pixels wide.

While this was quite aggressive in removing regions around

Bragg peaks, there were still a large number of pixels left to

obtain histograms of the continuous diffraction intensities.

A pattern free of crystal diffraction

and showing scattering from the liquid

jet that carries the crystals is displayed

in Fig. 4(b). Following the analysis

procedure of x2.2, groups of pixels

(excluding those that were masked)

were determined by contouring

Iavðkx; kyÞ of equation (7) at levels

spaced by 20 adu. A linear regression of

the variances of the polarization-

uncorrected intensities within these

groups to the means showed a high

degree of correlation (with a correlation

coefficient of 0.998), giving a detector

gain of 28.7 adu photon�1 and an offset

of 29 adu.

The distribution of intensities in a

region of the pattern in Fig. 4(a) in a

ring centred at about q = 0.15 Å�1

(260 pixel radius) is plotted in Fig. 5(a),

in addition to the fits of pNW and pDNW

with N = 4. The parameters obtained

from the fit of pNW were � = 269,
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Figure 4
(a) Single-pulse FEL snapshot diffraction pattern of PS II, showing Bragg peaks and continuous
diffraction from the disordered crystal and diffuse scattering from the solvent medium. (b) Single-
pulse FEL pattern from the jet that was free of crystals, showing only the scattering from the liquid.
The colour scale spans 0 to M = 3000 adu for part (a) and 0 to M = 2000 adu for part (b). The
incident beam was linearly polarized, in the horizontal direction in this view. The patterns have not
been corrected by the polarization factor.



� = 532 and � = 104 adu. Thus, the intensities are dominated

by the background, as is obvious from Fig. 4(a). From the

detector gain and offset determined above, these correspond

to � = 9.4, � = 18.6 and � = 3.6 photons. The variance of the

background �2 does not match the mean of the background,

suggesting that the model of normal-distributed background

does not well describe the data. By applying equations (14),

the model of discrete statistics, to the same region after first

converting the detector signal into photon counts, we obtain

estimates of � = 5.9 and � = 21 photons. That is, the discrete

model yields a larger estimate for the background and a

smaller estimate for the molecular diffraction. The non-

discrete analysis determines the magnitude of the molecular

diffraction signal based on the skew of the distribution, but

photon counting creates an inherent skew in any case.

A plot of the estimated background �, as a function of q, is

given in Fig. 6(a) for the pattern of Fig. 4(a). The values

obtained from the moments of the intensity values using

equations (13), assuming non-continuous statistics, are plotted

in blue, and those using equations (14) are plotted in sky blue.

As with the values shown in Fig. 5(a) at q = 0.15 Å�1, the use

of discrete distributions consistently estimates a higher back-

ground. The radial average of the no-sample background is

also plotted (in red), scaled to fit the background estimates.

The form of the background �(q) matches the no-sample

signal, but there are some differences which could possibly be

due to a different composition of the solvent in the crystal

compared to that in the buffer. Plots of the estimated signal

�(q) are shown in Fig. 6(b). Here again, the estimate based on

discrete statistics appears more reasonable, decreasing to

nearly zero at the highest values of q. In that region the

variance of the photon counts is approximately equal to the

mean and hence is attributed to the Poisson-distributed

background. We expect, from equation (10), that the contin-

uous diffraction should be zero at q = 0 and modulated by

1� expð�4�2�2
�q2Þ. Nevertheless, even with this modulation

which approaches unity at large q, the diffraction signal

diminishes with q owing to its dependence on the atomic form

factors and possibly to conformational variations in the

molecules.

Background-corrected patterns, obtained by subtracting

backgrounds �ðkx; kyÞ from the pattern of Fig. 4(a), are shown
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Figure 6
Plots of estimates of (a) the background and (b) the signal mean for the
pattern of Fig. 4(a), obtained independently from contoured regions of
the pattern obtained from the polarization-uncorrected radial average.
Dark blue: �(q) and �(q) obtained by applying equations (13) (non-
discrete statistics) to the moments of the intensity values. Sky blue: �(q)
and �(q) obtained by applying equations (14) (discrete statistics) to the
moments of the intensity values. Red: fitted radial average of a summed
no-sample signal.

Figure 5
(a) Histogram (in black) of counts in a region of the pattern shown in
Fig. 4(a), but prior to polarization correction, at a radius of approximately
260 pixels. The region was obtained by contouring the polarization-
uncorrected radial average [see equation (8)]. A fit of pNW(I; 4) is shown
in blue, yielding a value of � = 532 adu = 18.6 photons, as indicated by the
blue dashed line, and � = 269 adu = 9.4 photons. The discrete noisy
Wilson distribution obtained by applying equations (14) is shown in sky
blue and gives a higher estimate of the background with � = 23 photons
and � = 8 photons. (b) Histogram of counts in a region of the crystal-free
pattern of Fig. 4(b), with a fit of a Poisson distribution (sky blue) with a
mean of 18 photons. The dash–dotted grey lines indicate Gaussian fits,
shown to emphasize the skewness of the distributions.



in Fig. 7 for the cases of non-discrete and discrete statistics. For

discrete statistics, the background estimates were calculated in

regions obtained by contouring the average pattern as calcu-

lated by equation (8), subtracting this map from the polar-

ization-uncorrected pattern, before finally applying the

polarization correction. In this way the variance in each region

was calculated from the detected counts and was not affected

by the polarization correction factor. Again, it is clear that the

application of discrete statistics gives a more reasonable result.

The total photon count of the background-corrected

pattern shown in Fig. 7(b) is 2.7 
 106 photons, which is only

2.6% of the total count before background subtraction which

is 1.03 
 108 photons. Furthermore, the Bragg peaks account

for 0.58 
 106 photons. This was found by summing the values

in pixels defined by the dilated mask mentioned above, which

generously encompasses all Bragg peaks and thus could be

considered an overestimate. It may be somewhat surprising

that the continuous diffraction contains about 4.6 times the

number of photons contributing to Bragg peaks. The total

scattering power of the asymmetric units does not change,

regardless of whether those units are arranged in a strictly

periodic fashion or not, as can be seen from equation (10). The

continuous diffraction extends over a much larger area of

reciprocal space, which may account for the factor of 4.6.

However, the atomic scattering factors are stronger at low q

and so one may expect a greater proportion of the total

scattering in the Bragg peaks, depending on how many data

are missing at lowest q. Nevertheless, it is clear that the

continuous diffraction is not weaker in total than the Bragg

diffraction. Since it is not concentrated into narrow Bragg

peaks but spread over many pixels of the detector, the signal-

to-noise ratio of the continuous diffraction is lower than that

of the Bragg data. From Figs. 6(a) and 6(b) the noise, given by

� = � 1=2, is comparable to the signal. Note, however, that

individual speckles cover more than 100 pixels, so these are

measured with a higher signal-to-noise ratio.

5.2. Statistics of an ensemble of patterns

The analyses described in x5.1 can be repeated on the set of

snapshot diffraction patterns recorded in a serial crystal-

lography experiment, in order to obtain statistical measures of

the experiment or to guide strategies for combining patterns

into a data set (see x6). The PS II data set reported by Ayyer et

al. (2016) consisted of 25 585 snapshot patterns with Bragg

peaks that could be indexed to obtain the orientation of the

diffraction in the frame of reference of the crystal lattice. In

that work, the strongest 2848 patterns were oriented and
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Figure 7
The pattern from Fig. 4(a) after subtracting the background �(kx, ky) as calculated from the intensity moments for (a) non-discrete statistics and (b)
discrete statistics, and (c) after subtracting the scaled no-sample signal. The colour scale ranges from 0 to 600 adu, corresponding to 0 to 23 photons.

Figure 8
Plots of the total continuous diffraction signal strength, �T, (a) as a
function of the total background strength �T and (b) as a function of the
total Bragg counts. The continuous diffraction signal is correlated with
Bragg counts but not with the background. The continuous diffraction
signal of the strongest patterns is about 5–10% of the background and
more than four times the strength of the Bragg signal. The red points
indicate the pattern shown in Fig. 4(a).



aggregated in a three-dimensional reciprocal-space array for

phasing. That subset was re-analysed to obtain parameters

�ðkx; kyÞ and �ðkx; kyÞ in regions of near-constant photon

counts in the polarization-uncorrected patterns. The overall

strengths of the background �T and the continuous diffraction

signal �T in the PS II patterns was estimated for each pattern

by summing the parameters over the entire pattern, weighted

by the areas of each region. In Fig. 8(a) the dependence of the

total signal �T is plotted as a function of the background �T.

The strength of the diffraction is about 1–5% of the back-

ground. It is not strongly correlated with the background

except that the very strongest diffraction signals coincide with

the very strongest background. This trend may suggest that a

portion of the background is inherent to the liquid jet, with

higher pulse energies giving rise to both strong background

and strong diffraction. Atomic diffuse scattering caused by

disorder of the atoms in the molecules may also contribute to

some portion of the background, perhaps induced by the pulse

itself and building up during the course of the pulse (Barty et

al., 2012). The pattern shown in Fig. 4(a) is indicated by the

red dots in Fig. 8, with typical signal and

background strengths.

A plot of the continuous diffraction

signal as a function of the total Bragg

counts is given in Fig. 8(b), indicating a

high degree of correlation. As with the

pattern discussed in x5.1, the continuous

diffraction strength is about four times

that of the Bragg counts, on average. The

plot suggests that the strength of the

continuous diffraction depends on the

volume of the crystal in the same way that

the total Bragg count depends on the total

number of unit cells contributing. This

strong degree of correlation also indicates

that all crystals possess a similar degree of

disorder, such that the fraction of scat-

tered counts in Bragg peaks versus

continuous diffraction is roughly constant.

6. Statistics of the three-dimensional
continuous diffraction intensities

A three-dimensional data set of the

continuously varying diffraction inten-

sities of PS II was constructed using the

approach described by Yefanov et al.

(2014) and Ayyer et al. (2016). Briefly, in

this approach the orientation of each

snapshot diffraction pattern was deter-

mined by indexing its Bragg spots using

the software CrystFEL (White et al., 2012,

2016). The pattern was then interpolated

onto the appropriate spherical surface

(the Ewald sphere) in a three-dimensional

array of reciprocal space, where the

coordinates of the array were chosen to be

parallel to the reciprocal-lattice axes. Compared with the

previous work (Ayyer et al., 2016), the smoothed background

�(q), interpolated onto the detector plane, was first subtracted

from each pattern, which was also scaled by 1/�T, before

merging into the three-dimensional volume.

The 2514 strongest patterns were chosen based on the

values of �T. After merging the patterns into a three-dimen-

sional array, the symmetry operations of the point group 222

were then applied, corresponding to summing the three-

dimensional intensity array with copies of itself rotated about

each of the three orthogonal axes of the crystal. This

symmetrization simply averages equivalent observations of

intensities in order to increase the signal-to-noise ratio. There

is no loss of information in carrying out these operations since

the crystal exhibits this symmetry anyway and the averaging

cannot be avoided. We could also choose to impose centro-

symmetry, which loses any information pertaining to Bijvoet

differences. A map of the merged intensities in a central

section normal to the [101] axis of the crystal is given in

Fig. 9(a), which can be compared with the previously
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Figure 9
(a) A central section of the merged volume of continuous diffraction intensities using the method
of this paper, and (b) the previously published results [reproduced with permision from Ayyer et
al. (2016), copyright (2016) Nature Publishing Group]. The central sections are normal to [101],
chosen to avoid the centric planes. The colour scale is indicated to the right and varies from �0.6
to 6 for part (a) and �100 to 250 for part (b). (c) The scaling �(q) obtained by fitting the
distribution pNW(I; 4) to the merged continuous diffraction intensities in three-dimensional shells
of q. The dashed line gives the scaling corrected for the complementary Debye–Waller factor with
�� = 2.01 Å. (d) The scaling �(q) obtained by fitting pNW(I, 1) to merged Bragg intensities in
three-dimensional shells of q in blue and the fit to a Debye–Waller factor with �� = 2.01 Å in
orange.



published results in Fig. 9(b) that were obtained by subtracting

the radially averaged intensity from each pattern (Ayyer et al.,

2016). Fig. 9(b) appears to show more detail and contrast at

high resolution, at least with the chosen colour scale. This may

not be surprising, given that the no-crystal patterns were

typically fitted before subtraction, resulting in high contrast

and negative intensities, neither of which accurately repre-

sents the incoherent sum of molecules in several orientations.

The new method avoids over-subtraction of background and

provides an improved scaling of the patterns.

The statistics of the diffraction intensities in the three-

dimensional volume can be used to verify the scaling and

placement of the data and to verify the number of indepen-

dent orientations of the rigid objects. For PS II crystals, which

have P212121 symmetry, we expect that the non-centric

continuous diffraction follows the distribution pNW of equa-

tion (16) with a twinning of N = 4 and that the zones

perpendicular to each of the crystallographic twofold axes will

be twinned with N = 2. The intensities are expected to follow

the non-discrete Gamma distribution with a normally

distributed background since they arise from the sum of many

scaled (and background subtracted) patterns. Histograms of

intensities chosen from the shell lying between voxel radii of

170 and 185 (0.213 < q < 0.231 Å�1) are given in Fig. 10(a),

excluding the volume within 10 voxels of the three orthogonal

zones, and for only those voxels lying on the three orthogonal

zones. The histograms are normalized to total unity, giving an

experimental probability distribution. It is immediately seen

that the two distributions are indeed different, and fits of

equation (16) can be obtained for N = 4 and N = 2, respectively

(orange lines). Furthermore, the fits were obtained for almost

the same diffraction intensity mean, �, as expected. The fitted

parameters (in arbitrary units owing to the scaling) were � =

0.30 and � = 1.05 for the N = 4 ‘non-centric’ intensities, and � =

0.36 and � = 1.10 for the N = 2 centric intensities. Although

the residual background level given by � was low, it was

subtracted to set this to zero. Thus, there are some remaining

negative intensities due to the distribution of the noise. The

average per-voxel signal-to-noise ratio of the three-dimen-

sional intensities in this shell is �/� = 3.5, larger than that of

the individual patterns owing to signal averaging. With 2514

patterns included in this merged data set, the multiplicity at q =

0.22 Å�1 was 24. The larger standard deviation for the centric

intensities than for the non-centric intensities can be attrib-

uted to the smaller sample size (5.0 
 104 versus 4.9 


106 voxels).

The voxels of the three-dimensional array have a width of

0.00125 Å�1, which is larger than the width of the detector

pixels. The largest diameter of the PS II dimer is 178 Å, and

thus the largest extent of its autocorrelation is 356 Å. The

spacing for Nyquist sampling of the diffraction intensities,

which are equal to the Fourier transform of the intensity

pattern, is thus 1/356 Å�1 = 0.0028 Å�1, giving a voxel width

relative to this of w = 0.45. From Fig. 3(b) this should not have

an impact on the coherence of the merged pattern or the

intensity statistics.

The Bragg intensities obtained by processing all 25 585

diffraction patterns using CrystFEL are found to follow a

negative exponential distribution, as shown in Fig. 10(b) for a

shell with 1/6 < q < 1/5 Å�1, excluding centric reflections. For

this shell the intensities could be fitted to the noisy Wilson

distribution pNW(I; 1) with a mean signal � = 116 units, a

background � =�10.3 units and a standard deviation � = 27.5.

The expected distribution in this case is for N = 1, since there is

no ambiguity of crystal orientation due to merohedry and

hence no effective twinning. The intensities arise from

coherent diffraction of the entire unit cell, and there is only

one instance of that unit cell contributing to the Bragg

intensities. The signal-to-noise ratio in this shell is �/� = 4.2,

which is only moderately greater than for continuous

diffraction, even though ten times the number of patterns

contribute and the intensities are concentrated into Bragg

peaks. The distribution of Bragg intensities is clearly different

from the continuous diffraction, as can be seen in the slopes of

the distributions in Fig. 10. Other values of N do not fit as well

to the distributions of continuous and Bragg intensities. The

fitting essentially amounts to the early twin tests (Rees, 1980),

which identified twinning by comparing the form of the

cumulative distribution of intensities to the appropriate

Gamma distributions. The fits here confirm that the
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Figure 10
(a) Normalized histograms of intensities in the three-dimensional
continuous diffraction for voxels excluding central sections parallel to
each of the twofold rotation axes (blue) and for voxels lying on those
planes (green), all contained within a shell 0.213 < q < 0.231 Å�1. The
orange lines are fits of pNW(I; 4) and pNW(I; 2). (b) Histogram of Bragg
intensities in a shell 1/6 < q < 1/5 Å�1 and excluding centric reflections
(blue), with a fit of pNW(I; 1) shown in orange. The orange dashed line is a
fit of pNW(I; 4), showing that the Bragg intensities do not result from
twinning.



continuous diffraction is indeed due to the incoherent sum of

four independent objects, whereas the Bragg diffraction arises

from a single untwinned crystal. This is supporting evidence

that the continuous diffraction measured from the PS II

crystals does indeed arise from translational disorder of PS II

dimers and not the monomers, since there are four orienta-

tions of PS II dimers in the crystal but eight orientations of

monomers. The statistics alone can not reveal if the four

objects are identical, but the symmetry of the continuous

diffraction suggests that, if they are different, then they are

equally distributed over the four orientations. The statistics

also suggest that the background-corrected continuous

diffraction does not have a significant contribution due to

structural variability such as conformational disorder, since

diffraction from many smaller sub-structures would give rise

to intensities approaching a Poisson distribution (the large-N

limit of a Gamma distribution) and such diffraction would

presumably not be completely rotationally invariant as was

the Poisson-distributed background that was subtracted from

each pattern. Some degree of orientational disorder of the

rigid units is certainly possible, which would have the effect of

reducing the diffraction contrast with increasing q, due to the

blurring of speckles, as discussed in x2.

The scaling of the Bragg intensities as a function of q is

shown in Fig. 9(d), plotted on a log scale, for comparison with

the continuous diffraction plotted in Fig. 9(c) on a linear

graph. This scaling predominantly follows the familiar Wilson

plot of Bragg intensities and the Debye–Waller factor

expð�4�2�2
�q2Þ was fitted with �� = 2.01 Å, which can be

equated with an overall B = 8�2�2
� = 320 Å2. That is, this is the

B factor computed by attributing the reduction in Bragg

intensity with q to atomic displacement, whereas it is clear

from the existence of continuous diffraction that the variation

in Bragg intensities with q is mainly due to rigid-body

displacements of the molecular complexes. The effect of the

complementary Debye–Waller factor 1� expð�4�2�2
�q2Þ on

the continuous diffraction is to suppress intensity at values of

q < 0.1 Å�1. At higher photon momentum transfer than this,

the factor is greater than 0.8 and thus has little effect. The

mean intensity of the continuous diffraction, corrected for this

factor, is given in Fig. 9(c) as the dashed line.

7. Comparison with atomic model

As a final analysis of continuous diffraction, we compare it

with the simulated continuous diffraction of a disordered

crystal of PS II as calculated from an atomic model. For the

model we used atomic coordinates obtained by a refinement of

a structure of the PS II dimer to the electron density obtained

by diffractive imaging (Ayyer et al., 2016). The molecular

transform F(q) of the PS II dimer was calculated by summing

diffracted waves scattered from each atom on a three-

dimensional array of q vectors spaced by 0.0025 Å�1 (twice

that of the merged experimental data). From this the squared

modulus |F(q)|2 was calculated, before applying the rotation

operations Rm of the point group of the crystal and
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Figure 11
(a) A central section of the merged volume of continuous diffraction intensities, normal to the [010] lattice vector, compared with (b) the same section of
the simulated continuous diffraction assuming a rotational disorder of 1� r.m.s. and a translational disorder of �� = 2.01 Å. (c) The difference between
the experimental and simulated intensities, shown on the same colour scale as parts (a) and (b). (d) Plot of the Pearson correlation in shells of q between
the experimental and simulated data.



incoherently summing the four equally weighted sets of

intensities. The three-dimensional array was then multiplied

by a factor 1� expð�4�2�2
�q2Þ using the previously deter-

mined value of �� = 2.01 Å. It was found that the Pearson

correlation between the experimental and computed data for

the volume within the shell 0.088 < q < 0.29 Å�1 was 0.67,

compared with a value of 0.55 obtained previously (Ayyer et

al., 2016). An even higher degree of correlation of 0.77 was

obtained by blurring the computed intensities slightly by

assuming rotational disorder of the PS II dimers by 1� r.m.s. To

simulate this disorder, the symmetrized intensities were

rotated in all three directions by amounts chosen from a

normal distribution with a width of 1�. This was repeated 500

times and the results averaged. Fig. 11 displays the experi-

mental and calculated intensities, this time on one of the

centric zones (normal to the 010 lattice vector), and the

difference, all on the same colour scale. No manipulation of

the background or scaling of the data was made – that is, there

are no fitted parameters other than the 1� rotational blurring.

A plot of the Pearson correlation coefficient computed in

shells of q is also given in Fig. 11. This reaches a maximum

value of 0.88. A very similar result was achieved by uniformly

convoluting the computed data by a 4
 4
 4 voxel kernel

instead of applying rotational blurring. The high degree of

correlation confirms the origin of continuous diffraction and

validates the approach of distinguishing molecular diffraction

from structureless background.

8. Discussion and conclusions

We have carried out an extensive analysis of the continuous

diffraction arising from translationally disordered crystals of

PS II that was used previously for macromolecular coherent

diffractive imaging (Ayyer et al., 2016). That the diffraction

could be directly phased and used to obtain a volume image of

the electron density of the PS II dimer was certainly strong

evidence that the continuous diffraction originates from the

incoherent sum of randomly displaced rigid objects (the PS II

dimers), but here that particular analysis was expanded with

rigorous statistical tests to gain a deeper understanding of the

nature of continuous diffraction and how to measure it. One of

the most crucial aspects in treating continuous diffraction is

distinguishing it from diffuse (i.e. structureless) background

scattering. Unlike Bragg peaks, which can easily be distin-

guished from slowly varying background in a diffraction

pattern, continuous diffraction cannot be readily separated

from such background. In the previous work (Ayyer et al.,

2016), the background was simply estimated from the radial

average of the patterns. Such background was fitted to each

crystal diffraction pattern, with the result of maximizing the

contrast of the speckles of the molecular diffraction that

ultimately led to an over-subtraction and negative intensities.

In this work the statistics of the molecular diffraction inten-

sities were exploited to obtain estimates of their scaling and

zero level. In particular, the intensities in a shell of reciprocal

space are assumed to follow a ‘noisy Wilson’ distribution,

which is the distribution due to the sum of random variables

describing the structured signal and the unstructured back-

ground, where the signal follows the familiar Gamma distri-

bution of Wilson statistics and the noise follows a normal

distribution. When photon counting is considered, this corre-

sponds to the sum of discrete random variables from a nega-

tive binomial distribution and a Poisson distribution.

The statistics of the structured component of continuous

diffraction depend on the number of independent objects

contributing, or the number of modes in the speckle pattern.

There are four orientations of dimers in PS II crystals and,

since the displacements of each are random and uncorrelated,

the diffraction from each orientation adds incoherently, giving

rise to continous diffraction with the same point-group

symmetry as the Bragg intensities. The statistics of the inten-

sities thus do not follow the usual negative exponential of a

single object, where the most common intensity value is zero

(in between speckles), but a Gamma distribution that shows it

is unlikely that zero intensity from one mode matches up with

zero intensity from other modes. This reduction in speckle

contrast must be taken into account when estimating the zero

level of the structured diffraction. One way to achieve this is to

fit the expected distribution to histograms of the measured

intensities. More conveniently, it is possible to solve for the

means of the signal and background from the moments of the

measured intensities using the formulae in Table 1.

Perhaps one of the surprising aspects of the analysis is that

continuous diffraction accounts for the majority of the

diffracted signal. With the ability to partition photon counts

into Bragg peaks, molecular diffraction and background, we

found that the continuous molecular diffraction is about four

times as strong as the Bragg diffraction. This is due to the

greater area of diffraction space that continuous diffraction

covers, compared with the Bragg peaks that only extend to a

resolution of about 5 Å. The molecules in the crystal scatter

the same number of photons whether those molecules are

perfectly registered on a lattice or randomly displaced, and

thus the diffraction counts beyond the cut-off of the Bragg

peaks should be similar to the case of a perfect crystal. In a

large ensemble of patterns, the total number of counts in the

continuous diffraction is found to be very strongly correlated

with the Bragg count, showing that the strength of both the

continuous and Bragg diffractions depends on the size of the

crystal. Of course, since those counts are not concentrated into

sparse Bragg peaks, the signal-to-background ratio of the

continuous diffraction is lower than that for Bragg peaks. For

example, if individual Bragg peaks fitted into a single pixel and

were spaced on average by 10 pixels in each direction, then the

counts per pixel in the continuous diffraction would be about

1% of the equivalent Bragg signal. Nevertheless, since indi-

vidual speckles cover similar areas to the spacings between

Bragg peaks (depending on the size of the rigid unit compared

with the width of the unit cell), the total count per speckle is

similar to the Bragg count and the signal-to-background ratio

is found to be almost comparable to the Bragg signal.

The low number of photons per pixel in continuous

diffraction is of course one reason why less attention is paid to

it than to the easily measured Bragg peaks. This also demands
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a proper treatment of counting statistics when estimating the

contributions due to signal and background. For example, in

the case of a continuous random variable the structureless

background is considered to follow a normal distribution. This

distribution has no skew, and thus any skew in the distribution

of measured intensities is a signature of a structured diffrac-

tion signal. However, the Poisson distribution is skewed

because there are no negative photon counts, and the skew is

significant even at signal levels approaching 100 counts. It was

found that only the use of discrete statistics gave rise to a

reasonable estimate of the background of individual snapshot

patterns, whereas non-discrete statistics resulted in over-esti-

mation of the structured diffraction signal, as clearly illu-

strated in Figs. 6 and 7. The counting statistics are obviously

modified by any scaling of the measured intensities, such as

correction for the effect of linear X-ray polarization. In the

Poisson distribution the variance is equal to the mean, which is

not the case if the counts are multiplied by some factor.

Regions of near-equal counts from which to determine the

moments of the photon-counting distribution were therefore

obtained by averaging the polarization-corrected pattern in

shells of q and then reapplying the polarization factor. Such an

approach will not be valid for background due to fluorescence

or which is non-uniformly distributed across the detector face:

the conditions of the experiment must be carefully controlled

to avoid such contamination.

We are currently exploring the effectiveness of the

approach presented here on continuous diffraction data

recorded from other samples and with different types of

detector. Until then, it is premature to release software, but we

list in Appendix B the steps of the procedure used here to

obtain the three-dimensional array of continuous diffraction

intensities such as shown in Fig. 9(a).

The fruit of the method presented here is clearly seen in the

improved continuous diffraction intensity maps that are

obtained – compare for example Figs. 9(a) and 9(b). The

backgrounds subtracted from the individual patterns and from

the merged three-dimensional array are all smooth functions

that are rotationally symmetric (apart from the polarization

factor). Hence the manipulations do nothing to the speckles

other than locally alter their contrast. The result shows a very

high degree of correlation with the continuous diffraction

calculated from an atomic model, with an overall value of CC =

0.77, compared with a value of 0.55 reported previously

(Ayyer et al., 2016). The signal is well distinguished from

background, even in the case of a strong background that was

more than 25 times the diffraction signal. Stronger diffraction

should arise from larger crystals, and it is worth exploring the

quality of continuous diffraction with crystal size. Our first

demonstration of macromolecular diffractive imaging may

have been on the most challenging samples, but there may be

an advantage to collecting diffraction from small volumes.

Given the relative strengths of signal and background, the

volume of each crystal was about 4% on average of the total

probed volume of the jet, assuming the background is due

entirely to the jet [and not to pulse-induced disorder of the

molecules (Barty et al., 2012) or conformational variability

(Maia et al., 2009), for example]. The maximum jet diameter

was about 5 mm and the beam diameter was 1–2 mm, giving a

total probed volume of up to about 20 mm3. Thus, the

diffracting crystal volume was on average less than 1 mm3,

even though the crystals were visually more than ten times this

volume.

The analysis presented here may prove useful to studies of

protein dynamics, which have examined continuous diffraction

from crystals due to various kinds of differences of the

constituent molecules from the average (Doucet & Benoit,

1987; Wall et al., 1997; Pérez et al., 1996; Van Benschoten et al.,

2016). Such measurements are usually not time resolved and

hence cannot distinguish static from dynamic disorder, but

these measurements can be compared with diffraction calcu-

lations based on molecular dynamics trajectories to gain, it is

hoped, insights into protein motion and function. As shown

here and in the previous work (Ayyer et al., 2016), one can

establish the origin of continuous diffraction and account for

dominant effects (such as translation of rigid units) prior to

examining the effects of correlated motions. For example, the

autocorrelation function obtained by a Fourier transform of

the continuous diffraction intensities reveals the shape and

size of the rigid units. Indeed, previous studies of lysozyme

crystals determined from the speckle size that the rigid unit

was the size of a lysozyme molecule (Pérez et al., 1996), and

considerations of the mechanical properties of protein crystals

led to the conclusion that molecular translations and rotations

(dependent on the elastic and shear moduli, respectively) in

these bodies are inevitable (Morozov & Morozova, 1986).

Based on the formalism of Morozov & Morozova (1986), a

molecular displacement of �� = 2 Å at room temperature for a

molecular width of 178 Å implies a value of Young’s modulus

of only 0.01 GPa. This is similar to soft rubber, which is

consistent with experience in handling these crystals.

The statistics of diffraction intensities, and in particular the

speckle contrast, directly yield information on the number of

independent modes contributing to the diffraction. Together

with the symmetry of the crystal, this can indicate whether

such independent objects correspond to asymmetric units in

the crystal, but we stress that the methodology of our

approach may need to be modified to account for various

types of disorder that can occur in crystals or for conditions

other than the random and isotropic translational disorder

considered here. Comparing centric and acentric sections

gives further evidence for the origin of the diffraction. In all

studies of continuous diffraction it is imperative to measure

the diffraction accurately at a sufficient sampling in all three

dimensions, and to remove the background that accompanies

such measurements. The approach given here is shown to be

effective in extracting single-molecule diffraction from

patterns arising from translationally disordered crystals and it

is expected that it may similarly improve measurement of

continuous diffraction due to other kinds of disorder.

Although beyond the scope of this paper, we expect that the

improved treatment of the background should lead to better

structure determination from continuous diffraction through

iterative phasing. A better correlation with simulated
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diffraction was found by assuming a 1� rotational disorder of

the PS II dimers. For the 178 Å diameter dimer, this will cause

a blurring of the structure at resolutions beyond 3 Å, but by

using methods of partially coherent diffractive imaging

(Whitehead et al., 2009) it should be possible to take such

blurring into account, to a resolution where speckles are no

longer visible. That the speckles do indeed appear visible to

the edge of the detector at 2 Å resolution suggests that, with

more measurements, structural information should be

obtainable to at least that resolution.

APPENDIX A
The ‘noisy Wilson’ distribution

We consider non-discrete acentric diffraction intensities

incoherently summed with a background IB that is normally

distributed with a mean � and variance �2, IB�Nð�; �Þ, with

pBðIBÞ ¼
1

ð2�Þ1=2�
exp �

ðIB � �Þ
2

2�2

� �
: ð15Þ

We refer to the distribution of this sum I�Gamma(N, �/N) +

Nð�; �Þ as the noisy Wilson distribution, with a probability

distribution function found by convolution of equations (3)

and (15) as

pNWðI; NÞ ¼
2ðN�3Þ=2NN

�1=2�ðNÞ

�N�1

�N
exp �

ðIB � �Þ
2

2�2

� �


 hN

N�2 � ðI � �Þ�

21=2��

� �
; ð16Þ

where

hNðxÞ ¼�
N

2

� �
1F1

N

2
;

1

2
; x2

� �

� 2x�
N þ 1

2

� �
1F1

N þ 1

2
;

3

2
; x2

� �
ð17Þ

and 1F1 is the confluent hypergeometric function. For N = 1, 2,

4, 6 and 8, hN evaluates to

h1ðxÞ ¼ 2FHðxÞ;

h2ðxÞ ¼ 1� 2xFHðxÞ;

h4ðxÞ ¼ 1þ x2 � xð2x2 þ 3ÞFHðxÞ;

h6ðxÞ ¼
1
2 4þ 9x2 þ 2x4 � xð15þ 20x2 þ 4x4ÞFHðxÞ
	 


;

h8ðxÞ ¼
1
4

h
24þ 87x2 þ 40x4 þ 4x6

� xð105þ 210x2
þ 84x4

þ 8x6
ÞFHðxÞ

i
;

ð18Þ

where FHðxÞ is proportional to the scaled complementary

error function,

FHðxÞ ¼ expðx2Þ

Z1
x

expð�y2Þ dy

¼
�1=2

2
expðx2

Þ 1� ErfðxÞ½ �: ð19Þ

Some plots of pNW(I) are given in Figs. 2(c) and 2(d).

Equations (16) and (17) can be evaluated for non-integer

values of N, such as those needed to account for partial

coherence, by computing the series expansion of the confluent

hypergeometric function.

APPENDIX B
Procedure for processing diffraction data

The following itemizes the steps taken to process still

diffraction patterns of crystals recorded in random orienta-

tions or a series of orientations. Here, it is assumed that the

patterns are recorded with a common (unchanging) detector

geometry and wavelength, the incident beam is linearly

polarized, and the unstructured background is radially

symmetric when corrected by the polarization factor. The

procedure also assumes intensity data in units of photon

counts, obtained using either a well calibrated integrating

detector or a photon-counting detector.

(i) Process the data set using CrystFEL (White et al., 2012,

2016) to find the indexable patterns and the lattice orientation

for each indexed pattern, as well as to create a set of merged

Bragg intensities.

(ii) For each indexed pattern (calibrated and bad areas of

the detector masked, but otherwise uncorrected for polariza-

tion):

(a) Mask Bragg peaks using a threshold filter or the

peakfinder8 procedure from Cheetah (Barty et al., 2014).

Dilate the mask by a kernel about 7 pixels wide. The inten-

sities in the masked pixels are not included in any further

analysis.

(b) Create contours of Iav [equation (7)] at a spacing of

about 1 photon count, and from these determine contiguous

regions bounded by those contours.

(c) Calculate the moments (mean and variance) of

photon counts in each contiguous region to compute the

parameters of the discrete noisy Wilson distribution �, � from

equations (14) with the appropriate value of N (here N = 4).

(d) Set the background �ðkx; kyÞ to values � for each

region, then smooth with a square kernel about 3 pixels wide.

(e) Determine a scaling array �ðkx; kyÞ in a similar way to

Step (iid).

( f) Subtract the smoothed background of Step (iid) from

the pattern.

(g) Normalize the pattern by dividing by the sum of

�ðkx; kyÞ from Step (iie) over a predetermined range of |k|.

(h) Correct for polarization by dividing by the polariza-

tion factor Pðkx; kyÞ [equation (7)].

(iii) Merge the corrected patterns into a three-dimensional

reciprocal-space volume by interpolating each onto the

appropriate Ewald sphere in the frame of reference of the

crystal lattice (Yefanov et al., 2014). The spacing of voxels in

the three-dimensional array should be chosen to sample

sufficiently the highest frequencies of the continuous diffrac-

tion, �q < 1/(2w), where w is the width of the rigid body.

(iv) Apply the symmetry operations of the point group of

the diffraction to the three-dimensional array (here, point

group 222).
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(v) Calculate the moments of the scaled intensities in shells

of q from the three-dimensional array and calculate the

parameters of the noisy Wilson distribution �, � and � in

those shells via equations (13), avoiding centric zones.

(vi) Construct �(q) for all voxels of the three-dimensional

array, smooth it with a three-dimensional kernel about 3 pixels

wide and then subtract this from the merged intensities, to

account for residual background.

(vii) Determine the scaling and background of the merged

Bragg intensities [from Step (i)] in shells of q by applying the

same procedure as in Step (v) but with the appropriate value

of N (here N = 1). Fit the Debye–Waller factor to the values

�(q) for these Bragg intensities to obtain ��.

(viii) Correct the continuous diffraction intensities by

dividing by the complementary Debye–Waller factor

1� expð�4�2�2
�q2Þ.
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