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An information-theoretic framework for
deciphering pleiotropic and noisy biochemical
signaling
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Many components of signaling pathways are functionally pleiotropic, and signaling responses

are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of

signaling require quantitative support to explain how complex stimuli (inputs) are encoded in

distinct activities of pathways effectors (outputs). A unique perspective of information theory

cannot be fully utilized due to lack of modeling tools that account for the complexity of

biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a

modeling framework of information theory that allows for efficient analysis of models with

multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of

how signals flow through shared network components; and is not restricted by limited

variability of responses. The framework allows us to explain how identity and quantity of type

I and type III interferon variants could be recognized by cells despite activating the same

signaling effectors.
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B iochemical signaling is a key mechanism to coordinate an
organism in all aspects of its function. In a typical
example, cells detect extracellular stimuli (input), e.g.,

growth factors, cytokines, or chemokines, with specific trans-
membrane receptors binding a ligand, which results in a bio-
chemical activity on the inside of the cell, for example, the
activation of a receptor-associated kinase1. The initial stimuli
are processed in an intracellular relay mechanism and culmi-
nate in effectors (output), which might be transcription
factors. The effectors carry information about the identity and
intensity of the stimuli in order to initiate distinct cellular
responses, which might involve gene transcription, or any
other cellular process. Biochemical descriptions do not directly
lead to understanding how the stimuli are translated into dis-
tinct responses as signaling processes are immensely
complex2,3. Many components of signaling pathways are
functionally pleiotropic:4–6 (i) a single stimulus often activates
multiple effectors, (ii) a distinct effector can be activated by
numerous stimuli, and (iii) signals triggered by different sti-
muli often travel through shared network components. Besides,
(iv) biochemical signaling processes are intrinsically stochastic
and responding cells exhibit quite varied behaviors
when examined individually7,8, and (v) temporal dynamics of
signaling in individual cells is correlated with physiological
responses6,9,10. In light of these observations, understanding of
how information about a complex mixture of extracellular
stimuli is processed and translated into distinct
cellular responses remains deficient2,3. For instance, human
type I and type III interferons (IFNs) signal through
distinct cell-surface receptors that appear to induce a shared
signaling pathway. Yet, they can evoke different physiological
effects11. The mechanism mediating this differential activity
and signaling through common pathways remains largely
unknown11–15.

Understanding how cellular signaling processes can derive a
variety of distinct outputs from complex inputs appears to
be beyond solely experimental treatment. Therefore, an ade-
quate modeling formalism is required. Following Berg and
Purcell16, probabilistic modeling has been applied to examine
fidelity of receptors as well as more complex biochemical
signaling systems19. Specifically, information theory has been
deployed as an integrated measure of signaling accuracy,
a term known as information capacity, C*. Information
capacity is expressed in bits, and generaly speaking, 2C

�

represents the maximal number of different inputs that a
system can effectively resolve (e.g. different ligand con-
centrations)17. So far, both experimental and computational
analysis of biochemical signaling within information theory
revealed several unique aspects of how signaling pathways
transmit information18–24. A tangible obstacle to further
utilize the potential of information theory is the lack of
computationally efficient tools that can account for com-
plexities of biochemical signaling. Existing techniques
are based on Blahut–Arimoto algorithm18,25, small noise
approximation19,26, or density estimation22 and their appli-
cation so far has been limited to relatively simple systems,
usually with one input and one output only. As analysis of
systems with multiple inputs and outputs appears to be
essential for deciphering of biochemical signaling27–29, we
currently need new tools to study such systems. Here, we
developed a computational framework of information theory
that alleviates several drawbacks of existing tools, primarily by
allowing efficient analysis of complex models with multiple
inputs and multiple outputs. The method allowed us to pro-
vide an insight to one of the long-standing problems in sig-
naling: how type I and type III interferon signaling can be

recognized by cells despite activating the same signaling
effectors.

Results
Quantification of information transfer in signaling systems.
Within information theory, a signaling system is typically
considered as a probability distribution P(Y|X= x) that for
a given level of input, x, elicits output, Y. In a typical example,
the input is the concentration of a ligand that activates
a receptor, and the output is the activity of a signaling effector,
which might be the nuclear concentration of an activated
transcription factor. The output, Y, carries information
about the level of the input, x. How much information is
transferred depends on the signaling system itself, i.e., on its
noise levels and sensitivity to changes of input values, as well
as on how frequently different input values are transmitted.
To illustrate the latter, consider two possible sets of input
values. One set of input values generates similar and/or irre-
producible outputs, while the other generates distinct
and reproducible outputs. If a pathway encounters signals
from the first set more frequently than from the second
one, its information transfer will be on average lower. The
mutual information, I(X,Y), quantifies information transfer of
a given signaling system, P(Y|X= x), that encounters input
values following a given distribution, P(X) (see Methods).
The maximal mutual information, with respect to all input
distributions, termed information capacity, C*, quantifies
information transfer under the most favorable distribution of
input values

C� ¼ max

PðXÞ
IðX;YÞ: ð1Þ

The distribution for which the maximum of mutual
information is achieved is called the optimal input distribution
and denoted as P*(X). The information capacity, C*, is
expressed in bits, and 2C

�
can be interpreted, within the

Shannon’s coding theorem17,30,31, as the number of input
values that the system can effectively resolve based on the
information contained in the output. For instance, if C*= 2,
there exist four concentrations that can be distinguished with,
on average, negligible error. Available approaches to compute
information capacity are briefly described in Methods, whereas
more background on information theory is provided in Section
1 of Supplementary information (SI).

Efficient calculation of information capacity in complex
models. In a general setting, calculation of the information
capacity, C*, is computationally expensive, if not prohibitive.
Here, we propose a framework to study information flow
in biochemical signaling models that alleviate several of the
important drawbacks related to available approaches19,22,25,32.
Specifically, the proposed framework is based on analytical
solutions. This, in turn, leads to an efficient computational
algorithm that accounts for the complexity of signaling, most
importantly multidimensional inputs and outputs.

We propose to calculate the information capacity, using an
asymptotic approach. Precisely, we consider a system with an
output, YN= (Y(1),...,Y(N)), that consists of N independent copies
of Y � Pð�jX ¼ xÞ, where Y itself can be multidimensional, e.g., a
time series of induced levels of transcription factors. Biologically,
N can be interpreted as the number of cells that independently
sense the signal, X. The corresponding information capacity
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problem is then written as

C�
N ¼ max

PNðXÞ
IðX;YNÞ: ð2Þ

C�
N quantifies information about the input, X, jointly stored in

N cells. For large N, Eq. (2) has an exact and computationally
efficient solution based on the Fisher information matrix (FIM),

FIMijðxÞ ¼ E
∂logPðYjX ¼ xÞ

∂xi

∂logPðY jX ¼ xÞ
∂xj

" #
; ð3Þ

where i and j refer to elements of the vector x= (x1,…,xk), i.e.,
multidimensional input. Specifically, it has been shown in the
statistical theory of reference priors30,33 that if FIM is non-
singular, i.e., all inputs have a non-redundant impact on the
output, then

P�
NðxÞ �!

N!1
P�
JPðxÞ; ð4Þ

where

P�
JPðxÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jFIMðxÞj

p
; ð5Þ

and |⋅| denotes the matrix determinant. The distribution P�
JPðxÞ is

known as the Jeffrey prior (JP). Similarly, it can be shown, see
Section 1.4 SI and ref. 30, that

C�
N � k

2
log2ðNÞ �!

N!1
C�
A; ð6Þ

where k is the dimension of input, and

C�
A ¼ log2 ð2πeÞ�k

2

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jFIMðxÞj

p
dx

� �
; ð7Þ

where X is the space of signal values, x.
As suggested by Eq. (6), we will call C�

A as the asymptotic
information capacity, where asymptotics is meant with respect to
the number of cells, N. Equation (6) implies that C�

A can be used
to approximate the joint capacity of N cells

C�
N � C�

A þ k
2
log2ðNÞ: ð8Þ

The approximation demonstrates that the joint capacity of N
cells depends on the baseline, asymptotic, capacity, C�

A, and on the
number of cells via k

2 log2ðNÞ, where the latter term vanishes for N
= 1. Therefore, in terms of Eq. (8), the asymptotic capacity C�

A can
be interpreted as the contribution of an individual cell to the
capacity of an ensemble of N cells. Equivalently, the number of
inputs resolvable by N cells increases linearly with N

k
2 at the rate 2C

�
A

2C
�
N � 2C

�
A � Nk

2: ð9Þ

In terms of Eq. (9), the asymptotic capacity C�
A defines a rate, at

which the number of resolvable states increases with N.
Importantly, asymptotic capacity, C�

A, can take negative values,
which has a precise interpretation. The scaling law of Eqs. (8) and
(9), which is warranted to be correct by convergence in Eq. (6),
implies that C�

A must be allowed to take negative values. If C�
A was

guaranteed to be positive then, any signaling system composed of
N cells would be guaranteed to have the capacity C�

N larger than
k
2 log2ðNÞ, which obviously is not the case. In other words, if the
number of resolvable inputs 2C

�
N increases slowly with N then 2C

�
A

must be accordingly small, which means negative C�
A. For

illustration, consider two systems with asymptotic capacities, C�
A,

of, say, −1 bit and 1 bit. Then, the capacity C�
N , of the first is

smaller by 2 bits compared to the second, for large N.
Equivalently, the number of resolvable inputs of the first systems
increases at the fourth of the rate of the latter. Besides, Eq. (7),
implies that for systems with low Fisher information the number
of resolvable inputs increases slowly with N.

Conveniently, C�
A reduces the problem of calculating the

information capacity to the problem of calculating the FIM and
we propose to take advantage of this. Fisher information can be
calculated for systems with multiple inputs and outputs, and
therefore the above approach allows simple computation of
information capacity for such systems. To the best of our
knowledge, this method has not been used to analyze biochemical
signaling, most likely due to technical difficulties in calculating
the FIM, which was, to a considerable degree, alleviated by
methods recently developed34,35. In Section 6 of SI we discuss in
details how FIM can be calculated in different scenarios.

Asymptotic capacity does not deviate substantially from non-
asymptotic capacity in the test model. The asymptotic capacity,
C�
A, and the capacity of an individual cell, C�

1 , are related but not
the same quantities. As we discuss in Section 1 of SI, differences
arise from non-identical optimal input distributions of single cells
and population of cells as well as the way in which information
from different cells adds up. In the literature, so far, the interest in
C�
1 is dominating. Therefore, even though C�

A has a meaningful
interpretation on its own, we have compared values of C�

A and C�
1

in a test model. Blahut–Arimoto algorithm was used to calculate
the exact C�

1 . In the comparison we have also included the
established, and virtually the only available method to approx-
imate C�

1 , i.e., the small noise approximation19, denoted here as
C�
SN. We have designed a test model, for which all methods are

computationally feasible, and which challenges the assumption of
our method, i.e., asymptotics, and of the small noise approx-
imation, i.e., limited stochasticity. Precisely, we considered a
model of a biochemical sensor described by the binomial dis-
tribution Y � BinðhðSÞ; LÞ with the output Y being the number of
active sensors and L being the copy number of sensors. The
probability of the sensor being active was assumed to be the
Michaelis–Menten function, h(S)= S/H/(1+ S/H), with S= X +
XF/λ, where X is the concentration of a cognate and XF of a non-
cognate ligand, and λ is the selectivity factor (the ratio of the
binding affinities, Kd’s, of the non-cognate and cognate ligands,
λ ¼ HF

H ). The higher the value of λ, the less likely the receptor
binds the false ligand. We have assumed that the concentration of
the true ligand, X, is the input of the system and varies according
to the optimal input distribution, P*(X), whereas the variability of
the non-cognate ligand, modeled as the probability distribution P
(XF), is the source of noise that leads to information loss. For
calculation of C�

1 with Blahut–Arimoto algorithm, we used a
complete model without any approximations.

Changing the settings of this model allowed us to challenge the
tested methods thoroughly. In total, we have considered 27
different scenarios by combining different variants of the
probability distributions P(XF); sensor copy number, L; and of
the selectivity factor, λ. In each scenario, we have calculated
capacities as a function of the standard deviation of the
distribution P(XF), denoted as σXF

. Relative deviations of C�
A and

C�
SN from C�

1 , averaged over all considered scenarios of the test
model, are presented in Fig. 1, whereas comparison for each
scenario is presented in Supplementary Figures 1–3. For limited
variability, i.e., small σXF

, both methods have similar accuracy.
When the variability increases both methods become less accurate;
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however, C�
A has half lower error compared to C�

SN. High
variability violates the assumption of the small noise approxima-
tion, which explains higher error for high σXF

. Lower approxima-
tion accuracy of C�

A results from the lack of asymptotics, i.e., N=
1. When using C�

A or C�
SN as approximations of C�

1 , which is a
positive quantity, one should monitor for negative values and set
approximation to zero. Supplementary Figure 1 shows that in the
test model both approximations fell below zero for several model
settings, specifically these corresponding to low copy number and
highest considered σXF

. In Section 1.5 of SI we present an auxiliary
approximation of C�

1 that is guaranteed to be positive, but is
computationally not as efficient as C�

A.
In summary, our numerical analysis demonstrates that C�

A
provided a more accurate approximation of C�

1 than C�
SN. The

approximation error is at the order of maximum 30%, which
indicates that the asymptotic capacity, C�

A, served as a reliable
approximation of the capacity of an individual cell, C�

1 .

Information transmission is maximized when frequent signals
are recognized with high precision. How much information is
transferred in a given signaling system depends on three factors:
(i) sensitivity of the output to changes in the input, (ii) variability
of output given input, and (iii) how frequently do different inputs
occur. The first two are modeled by the input–output distribu-
tion, P(Y|X= x), and the third is represented by the maximiza-
tion problem in Eq. (2). Here we show that our approach allows
for an insightful interpretation of the input distribution that is
optimal for signaling. Precisely, consider an asymptotically effi-
cient estimator, x̂ðYNÞ value, x, i.e., an estimator that achieves
lowest possible variance for large data, e.g., maximum likelihood
estimator. Then, the variance of this estimator, Σðx̂ðYNÞÞ, is
asymptotically described by the inverse of the Fisher information

Σðx̂ðYNÞÞ �!N!1ðN � FIMðxÞÞ�1: ð10Þ

Given the above, the optimal distribution of inputs,
P�
JPðxÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijFIMðxÞjp
, is defined in terms of the uncertainty of

inferences, Σ x̂ðYNÞð Þ, that cells can draw about the input value, x.
Precisely, for large N, P�

JPðxÞ / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ x̂ðYNÞð Þj jp

. Therefore, the
optimal distribution, P�

JPðxÞ, states that the system performs best
in terms of the information capacity if frequent values are
recognized and processed with high precision, whereas more
rarely occurring signals need not be transmitted with similarly
high accuracy. This is visualized in Fig. 2 for a scenario with a
one-dimensional input: in the optimal scenario signals occur at a
frequency that is proportional to the inverse of the uncertainty
measured as the standard deviation of the estimate of the signal,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σðx̂ðYNÞÞ
p

.
Signaling precision is also closely related to the discrimination

error. This is relevant as the information capacity per se does not
indicate which exact states can be effectively discriminated.
Precisely, consider two close input values x0 and x1, and the
probability, ε(x0, x1, YN), of not detecting the change x0→ x1
based on observations YN. Within the statistical framework of
hypothesis testing, the probability ε(x0, x1, YN) is approximated
as17

εðx0; x1;YNÞ � e�Nðx1�x0ÞFIMðx0Þðx1�x0ÞT : ð11Þ

Therefore, changes in input concentrations that are easily
recognized are these along sensitive directions of the FIMs. These
directions and can be determined in our framework.

Signaling dynamics allows discrimination between identity and
quantity of type I and type III interferons. In order to
demonstrate how our method can be applied to provide a unique
insight regarding the functioning of signaling pathways, we have
addressed the problem of the type I and type III interferons
signaling. Both IFN types induce the same signaling effectors and
it is currently not clear how their identity and quantity is
recognized by cells to induce distinct physiological responses12–
15,36. Both IFN types have several variants and here we have
selected IFN-α and IFN-λ1 as representatives of type I and type
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Fig. 1 Asymptotic capacity, C�
A, does not deviate substantially from non-

asymptotic capacity, C�
1 , in the test model. Average deviation of C�

A and C�
SN

from C�
1 calculated based on all 27 considered scenarios of the test model are

plotted against the standard deviation of the model noise, σXF
. C�

1 was
computed without approximations using BA algorithm. Scenarios used to
calculate the deviations were combinatorially generated by considering different
values of L, λ, and non-cognate ligand distributions (see Section 2 of SI).
Capacities for each considered scenario are shown in Supplementary Figure 1

P *(x )

x

P *(x ) ∝ √FIM (x )

x

Σ (x (YN )) ≈ 1/ √N · FIM (x)P (x (YN ))

Fig. 2 Information transmission is maximized when frequent signals are
recognized with high precision. Given the asymptotic interpretation (10),
for a system with one-dimensional input, the standard deviation of the
signal estimate is given as Σðx̂Þ � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � FIMðxÞp

. Then, the asymptotically
optimal input distribution, P�JPðxÞ, is defined in terms of uncertainty of
inferences, P�JPðxÞ / 1=Σðx̂ðYNÞÞ. In the optimal scenario, signals occur with
frequencies inversely proportional to the uncertainties
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III IFNs, respectively. IFN-α exerts its action through cognate two
subunits receptor complex IFNAR1/IFNAR2, whereas IFN-
λ1 signals through two subunit receptor complex IFNLR1/
IL10Rα. Simplistically, receptor ligand binding induces a cascade
of events. The cascade culminates with phosphoryled forms of
STAT1 and STAT2 proteins translocating to the nucleus as
homodimers (p-STAT1/1) and heterodimers (p-STAT1/2), where
they bind DNA to specific cognate sites (Fig. 3a). The mechanism
that explains the differential physiological effect of IFN-α and
IFN-λ1 despite inducing the same signaling effectors is largely
unknown12–14. Recent data12–14,37, however, support the
hypothesis that a differential temporal profile, understood as time
series of the copy numbers of nuclear p-STAT1/1 homodimers
and p-STAT1/2 heterodimers, carries information about identity
and quantity of both IFNs and is further propagated by the gene
expression machinery into distinct physiological responses. For
instance, western blot experiments show a prolonged phosphor-
ylation in response to IFN-λ1 compared to IFN-α14.

Our framework provides a natural, and computationally
feasible, framework to address IFN discrimination problem. As
four resolvable states are required to distinguish between presence
and absence of two stimuli, the capacity C�

N � 2 can be
interpreted as the potential of a population of N cells to
distinguish both identity and quantity of the two IFNs. Moreover,
Eqs. (8) and (11) imply that if FIM is non-singular the capacity
C�
N can be arbitrarily increased and the discrimination error ε(x0,

x1, YN) arbitrarily decreased with the population size N.
Therefore, information capacity and FIMs constitute suitable
tools to determine how information about identity and quantity
of both IFN is encoded in signaling responses.

To this end, we have built a probabilistic model of the
pathway’s input–output relationship, P(Y|X= x). Construction of
the model was accomplished by assembling and refining
model components of the JAK-STAT signaling available in
literature38–40 (Fig. 3a and Section 3 of SI). The input x= (xα, xλ1)
consists of concentrations of IFN-α and IFN-λ1, respectively. We
assumed that the pathway is exposed for 30 min to stimulation
with a mixture of IFNs specified by the input. The output is
defined as Y= (Y1/2(t1), Y1/1(t1),...,Y1/2(tn), Y1/1(tn)), where Y1/

2(ti) and Y1/1(ti) denote copy numbers of nuclear of p-STAT1/2
heterodimers and p-STAT1/1 homodimers, respectively, at time
ti. Times t1,…,tn serve as a proxy of the complete temporal profile.
To account for signaling noise, we assumed that the stochasticity
results from: (i) randomness of individual reactions and (ii) also
cell-to-cell variability in the copy numbers of STAT1 and STAT2
molecules as well as type I, RI, and type III, RIII, receptor
complexes. The two noise sources are seen as main contributors
of cell-to-cell heterogeneity in general41 and IFN signaling,
specifically42. The copy numbers of the above entities per cell was
assumed variable with the same coefficient of variation

cv ¼
σ i
μi
; ð12Þ

where μi is the mean copy number per cell, and σi is its standard
deviation, for i∈{STAT1,STAT2,RI,RIII}. Further, we considered
coefficient of variation from 0.3 to 1.5 to reflect typically
measured values43. Importantly, the model is in line with the
present biochemical knowledge14,37 by allowing the only
difference in responses to arise from the different kinetics of
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both receptor complexes. We quantified the difference in receptor
kinetics using the ratio of deactivation rates of the type III and
type I receptor complexes, k�RIII

and k�RI
, respectively (see Sections

3.2–3.3 of SI),

δ ¼ k�RIII

k�RI

; ð13Þ

which we call the differential kinetics coefficient. For a given value
of δ (e.g. 0.5), upon activation, the type I receptor complex
remains active on average 1/δ (e.g. 2) times shorter than the type
III receptor. As responses to IFN-λ1 are prolonged compared to
IFN-α14, we have considered δ∈(0, 1). Values close to 0 and 1
denote dissimilar and similar receptor kinetics, respectively. The
model was numerically simulated within the framework of the
linear noise approximation that allows efficient calculation of the
FIMs34,35 using literature values of kinetic parameters (see
Supplementary Table 2). As shown in Fig. 3b the model provides
responses qualitatively consistent with experiments that show
prolonged responses to IFN-λ1 compared to IFN-α14. The
strength of this effect is controlled by the parameter δ. Low δ
implies a significantly longer response to IFN-λ1, whereas for δ
close to 1 responses to both IFNs appear to be indistinguishable.

First, we examined the potential of the differential signaling
dynamics to discriminate between identity and quantity of IFNs
under noise limited to stochasticity of individual reactions, cv= 0.
To this end, we considered outputs, Y, with different end time
points, tn’s, so that they contain only the information available to
the cell until time tn. For the values of δ used in Fig. 3b, we plotted
the information capacity, C�

A, as a function of tn (Fig. 4a) as well
as corresponding representative FIMs (Fig. 4b). For early times,
the capacities, C�

A are below 0, further, with increasing tn, raise
over 2 bits, and finally plateau. The time-windows of rapid
increase coincide with times, at which stimulation with different
combinations of the two IFNs generates distinguishable output
trajectories (compare with Fig. 3b and Supplementary Figures 4
and 5). Correspondingly, FIM is singular only for early tn and
high δ. Also, it becomes close to orthogonal for late tn and small δ.

These results indicate that for limited signaling noise,
differential signaling dynamics has a potential to ensure
discriminability between the two IFNs. Precisely, for all δ’s and
late tn, C�

A reaches high values, and FIMs are non-singular.
Therefore, at the population level, both capacity, C�

N , arbitrarily
increases (Eq. 8), and the discrimination error arbitrarily
decreases (Eq. 11), with N. Moreover, using C�

A as an
approximation of C�

1 , which can be safely done for high values
of C�

A, we can also conclude that the differential signaling
dynamics results with the single-cell capacity, C�

1 , significantly
higher than 2 bits. Two bits is a minimum necessary condition to
encode four input values, e.g., presence and absence of two
stimuli. However, Shannon information alone does not tell us
which exact input values can be discriminated. Therefore, we can
conclude only that individual cells can resolve at least four
combinations of both IFN concentrations.

Population level discrimination is possible even at high noise
and with minor kinetic differences. The above analysis
demonstrated that with limited noise signaling dynamics ensures
discrimination between both IFNs. Interestingly, the discrimina-
tion is possible even with modest differences in the kinetics of
both receptors, i.e., δ= 0.9, which corresponds to 10% difference
in the receptors deactivation rates. Noise in signaling processes is,
however, not limited to stochasticity of signaling reactions. In
mammalian signaling, the noise is thought to be dominated by
the copy number variability of signaling components8. Therefore,
we have considered several noise levels, and examined how the

information content of the complete temporal profile, tn= 180,
depends on the values of the differential kinetics coefficient, δ.
Fig. 4c presents the capacity, C�

A, as a function of δ for a range of
biologically feasible43 values of cv. Fig. 4d shows corresponding
FIMs. Not surprisingly, both noise and lack of kinetic differences
can severely compromise the information transfer (Fig. 4c). C�

A
falls substantially below 2 bits, reaching negative values for high
noise and similar kinetics. On the other hand, representative
FIMs are non-singular for all noise levels and values of δ.

The above results primarily show that discriminability at the
population level can be achieved even with minor differences in
kinetic rates, and despite high noise levels. This is implied by Eqs.
(8) and (11). As indicated by Eq. (8), high population capacity,
C�
N , can be ensured by large N, as long as C�

A is not prohibitively
low. Similarly, Eq. (11) shows that low discrimination error, ε(x0,
x1, YN), can be ensured by large N, as long as FIMs are non-
singular. Both conditions are satisfied in the considered scenarios
as shown in Fig. 4c, d. In addition, negative values of C�

A, for high
δ and cv, indicate slow increase of the overall number of
resolvable input values with N (Eq. 9).

Moreover, our analysis demonstrates that discriminability at the
population level does not require discriminability at the single-cell
level. This conclusion can be made on the following ground. The
capacity of two bits is a necessary condition to encode four input
values, e.g., presence or absence of both IFNs. In other words, a
system with capacity lower than two bits does not have a sufficient
discriminatory power to resolve presence and absence of the two
IFNs. Therefore if C�

1<2 the discrimination at the single-cell level
is not possible. Here, we calculated C�

A not C�
1 , which can only

serve as an approximation of C�
1 . However, C�

A falls substantially
below two bits. Therefore, even if C�

A was not a very accurate of
approximation of C�

1 , low values of C�
A strongly indicate that C�

1 is
smaller than two bits, which demonstrates that there is no
discriminability at the single-cell level. On the other hand, as
argued in the previous paragraph, discriminability at the
population can be achieved by increasing N.

Interestingly, our analysis also highlights the role of kinetic
rates in efficient information transfer. Primarily, the model
predicts that at the population level, the discriminability between
the two IFNs can be achieved even at high noise with differences
in kinetic rates at the order of 10%. This suggest that even minor
divergence of evolutionary related receptors might suffice to
augment information transfer. This prediction is in line with the
highly cross-wired architecture of signaling pathways29,44.
Secondly, Fig. 4c shows that loss of information due to noise
can be compensated by stronger kinetic differences, and vice
versa. This trade-off emphasizes the divergence of kinetic rates as
an easily accessible evolutionary strategy of increasing informa-
tion transfer. Reduction of noise level requires an increase in the
number of signaling molecules or/and sophisticated control
mechanisms. On the other hand, alteration of receptor kinetic
rates can be caused by a single mutation45.

Overall, our model predicts that the population can correctly
decode information even in cases where single cells cannot, due
to high noise or similar receptor kinetics. The question,
however, arises how the population should be able to make
correct decisions based on low capacity in single cells. To
illustrate this, consider the expression of IFNs induced genes as
a downstream output. Both IFNs induce expression of
hundreds of gene, including several chemokines from CXCL
and CCL family12,46,47. Specifically, it has been shown that
temporal profiles of CXCL10 expression differ in response to
both considered IFNs12.

One of the main function of these chemokines is to attract
different types of leukocytes to a site of an infection. Therefore,
concentration and timing of these chemoattractants can be seen
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as a decision of cellular population regarding which and how
many leukocytes are needed at a given time. Concentration and
timing are controlled jointly by a large number of cells due to
averaging of secretions in the intercellular space. In conse-
quence, the chemokine concentration depends on the informa-
tion encoded in nuclear levels of the p-STAT1/1 and p-STAT1/
2 dimers in multiple cells. Therefore, even if the capacity of
individual cells is low, and as a result expression of the
chemokine can be only vaguely controlled by IFNs level, the
high joint capacity of N cells may lead to a finely tuned level of
the chemokine in the intercellular space, as the differences in
secretion of individual cells would average out. To further
hypothesize how the high capacity of a population and low
individual capacity may be utilized, one can also anticipate a
different scenario. An initial stimulus leads to subsequent

rounds of cell-to-cell communication through paracrine
signaling. Low individual capacity implies that initially the
stimulus is recognized with low precision. In subsequent rounds
of communication information is exchanged between cells, and
as a result, the initial stimulus may lead to finely tuned
responses at later times.

Although the above hypothetical mechanisms are in line with
current understanding of IFN signaling, they imply the need for
more detailed experimental testing. They also rise an essential
questions regarding signaling processes: does effective informa-
tion transfer require discriminability of IFNs, and signaling
ligands more generally, at the single-cell level, or population level
suffices? So far, differential IFNs signaling dynamics have been
observed at the population level12–15,36. Experimental confirma-
tion of our theoretical prediction would be of high relevance for
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Fig. 4 Signaling dynamics has a potential to transfer information about identity and quantity of IFN-α and IFN-λ1. a Information capacity, C�
A, as a function of

the length of the output, tn, for different values of the differential kinetics coefficient, δ, and the coefficient of variation cv= 0. b Isolines of the quadratic
forms (x− x0)TFIM(x0)(x− x0) for FIMs corresponding to different values of tn and δ. Given Eq. (11), these isolines show concentration changes that are
detected with the same error. Further isolines have smaller error. Singularity (parallel lines) implies lack of discriminability. c Information capacity, C�

A, as a
function of the differential kinetics coefficient, δ for different values of cv assuming maximal considered output length, i.e., tn= 180. d As in b but for FIMs
corresponding to c. Non-singularity of FIM indicates that both IFNs can be discriminated for sufficiently large number of cells. Modeling details: In b and d,
we used x0 given by the receptors Kd’s, i.e., x0 ¼ ðkI�=kIþ; kIII� =kIIIþ Þ. Remaining parameters used for computations are given in Supplementary Tables 1 and 2
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reconciling the single-cell stochasticity with fine-tuned tissue level
responses.

Discussion
Information theory appears to have a potential to promote fur-
ther understanding of how cells translate information about
complex stimuli into distinct activities of the pathway’s effectors
using pleiotropic and stochastic mechanisms. Our theoretical
methodology establishes a general and computationally efficient
framework that enables analysis of models with multiple inputs
and outputs. Importantly, it also accounts for the temporal aspect
of signaling. Here, we have shown that even in the presence of
significant noise information about identity and quantity of IFN-
α and IFN-λ1 can be transmitted despite shared network com-
ponents. Discriminability at the population level can be achieved
without discriminability at the single-cell level, and with only
small differences in receptor kinetic rates. So far, signaling
responses to both IFNs have been measured at the population
level only12–15,36. Our analysis suggests that further verification at
the single-cell level could provide interesting conclusions
regarding how information processing differs between single cells
and cellular populations. Scenarios of pleiotropic signaling,
similar to IFNs, are common in signaling, e.g., Wnt, BMP29, as
well as in GPCR signaling48,49. Therefore, our framework seems
to offer an attractive opportunity to gain further insight into the
functioning of many complex signaling systems.

Methods
Mutual information. Within information theory, quantification of information
transfer of a given signaling system, P(Y|X= x), is performed in reference to the
distribution of input values P(X). Although, randomness of output, Y, prevents the
system from resolving a precise value of the input, x, the uncertainty regarding
input values cannot be higher than the uncertainty associated with the input dis-
tribution, P(X). Uncertainty is usually quantified by entropy

HðXÞ ¼ �
Z
X

log2ðPðxÞÞPðxÞdx; ð14Þ

where X is the space of possible values of the signal, X.
Observation of output has a potential to reduce uncertainty regarding input

value. Via the Bayes formula, plausible inputs that generated a specific output

value, y, are represented as the probability distribution PðXjY ¼ yÞ ¼ PðY¼yjXÞPðXÞ
PðY¼yÞ .

Uncertainty regarding input value can be then quantified by the entropy of the
distribution P(X|Y= y)

HðXjY ¼ yÞ ¼
Z
X

log2ðPðxjY ¼ yÞÞPðxjY ¼ yÞdx: ð15Þ

As the output is random, averaging H(X|Y= y) over all possible outputs
quantifies the average uncertainty regarding the input, given the output, H(X|Y)

HðXjYÞ ¼ �
Z
Y

HðXjY ¼ yÞPðyÞdy; ð16Þ

where is Y the space of possible values of the output, Y. The difference between H
(X) and H(X|Y) measures the average reduction in uncertainty regarding the input
resulting from observing an output and is referred to as mutual information, I(X,
Y), between the input and the output

IðX;YÞ ¼ HðXÞ � HðXjYÞ: ð17Þ

More background on information theory is provided in Section 1 of
Supplementary methods.

Existing methods to compute information capacity. Three main approaches are
available to calculate C* and P*(X). The state-of-the-art Blahut–Arimoto algorithm
is based on convex optimization25,32 and for systems with continuous variables it
requires discretization of input and output values18. Although it works efficiently
for systems with one-dimensional input and output, optimization may become
computationally prohibitive for higher dimensionalities. An alternative approach is
offered by the small noise (SN) approximation method19, which offers an analytical
solution, and therefore avoids heavy computations. However, it assumes a limited

stochasticity within the analyzed system. Recently, a method based on density
approximation was proposed in ref. 22 to account for temporarily resolved outputs.

Code availability. Computer code used to generate reported results is available
from authors upon request.

Data availability
The study did not involve any datasets.
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