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Abstract
Inflammatory demyelinating lesions of the central nervous system are a common feature of

both neuromyelitis optica and multiple sclerosis. Despite this similarity, it is evident clinically

that the accumulation of disability in patients with neuromyelitis optica is relapse related and

that a progressive phase is very uncommon. This poses the question whether there is any

pathological evidence of disease activity or neurodegeneration in neuromyelitis optica

between relapses. To investigate this we conducted a longitudinal advanced MRI study of

the brain and spinal cord in neuromyelitis optica patients, comparing to patients with multi-

ple sclerosis and controls. We found both cross-sectional and longitudinal evidence of dif-

fusely distributed neurodegenerative surrogates in the multiple sclerosis group (including

thalamic atrophy, cervical cord atrophy and progressive widespread diffusion and myelin

water imaging abnormalities in the normal appearing white matter) but not in those with neu-

romyelitis optica, where localised abnormalities in the optic radiations of those with severe

visual impairment were noted. In addition, between relapses, there were no new silent brain

lesions in the neuromyelitis optica group. These findings indicate that global central nervous

system neurodegeneration is not a feature of neuromyelitis optica. The work also questions

the theory that neurodegeneration in multiple sclerosis is a chronic sequela to prior inflam-

matory and demyelinating pathology, as this has not been found to be the case in neuro-

myelitis optica where the lesions are often more destructive.

Introduction
Neuromyelitis optica is a rare severe relapsing inflammatory central nervous system disorder
that is typically focused on the spinal cord and optic nerves [1]. The associated demyelination
led it to be previously classified as a variant of multiple sclerosis. More recent evidence suggests
it is a primary astrocytopathy [2, 3] consequent to the discovery of pathogenic antibodies to
aquaporin-4 water channels that are concentrated on the foot processes of astrocytes [4, 5].
These antibodies can be detected in the serum of the majority of neuromyelitis optica patients
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and appear highly specific for this disorder [6]. However not all patients have this antibody,
and some patients are difficult to distinguish from multiple sclerosis.

In contrast to neuromyelitis optica, the cause of multiple sclerosis–a much more common
disease in the western world—is undetermined despite many decades of intense research activ-
ity. It is thought to be T cell mediated and there are likely to be both genetic and environmental
contributions [7]. The majority of multiple sclerosis patients develop a progressive phase either
from onset, or more commonly secondary to a relapsing phase, and it is during this progressive
phase that the majority of disability is incurred [8, 9]. A neurodegenerative process is thought
to be the pathological substrate of this progression [10]. Understandably preventing neurode-
generation is the current focus of ongoing pharmaceutical research.

Imaging and pathological studies of multiple sclerosis have recognised that ‘normal
appearing’ brain tissue on conventional imaging is not normal [11] and that subclinical
activity with ongoing lesion formation and progressive atrophy occurs in clinically stable
patients [12–14]. It is possible that the ‘unseen’ and chronic subclinical pathology, distinct
from inflammatory lesions, may contribute to the neurodegenerative pathology in multiple
sclerosis and progressive disability. An alternative explanation is that neurodegenerative
changes occur as a result of chronic axonal demyelination secondary to inflammation [15,
16]. Notably, there is no progressive phase in neuromyelitis optica and the disability is solely
relapse related [17, 18]. Thus studying neuromyelitis optica may help to determine which of
these two scenarios is more likely. If previous attacks of severe demyelination are a cause of
subsequent continuous neurodegeneration, then in neuromyelitis optica, where the demye-
lination is generally more severe than in multiple sclerosis [19, 20], one would expect ongo-
ing tissue damage and non-relapse related progression. However if subclinical activity and
non-lesional pathology is driving the progressive phase of multiple sclerosis then these fea-
tures may be absent in neuromyelitis optica. To date, there are no reported prospective
imaging studies in neuromyelitis optica and cross-sectional retrospective studies give vary-
ing results [21], perhaps due to the inclusion of seronegative neuromyelitis optica patients
in several studies or the relative lack of sensitivity to change in cross-sectional compared to
longitudinal analyses.

Studying the imaging features of neuromyelitis optica and contrasting them to multiple
sclerosis is important for understanding the relationship between inflammation, demyelin-
ation and neurodegeneration. The primary objective of this study was to assess whether non-
lesional pathology and chronic subclinical activity occurs in neuromyelitis optica as it does in
multiple sclerosis using quantitative MRI. To address this aim we conducted a longitudinal
MRI study of aquaporin-4 antibody positive neuromyelitis optica patients, relapsing remit-
ting multiple sclerosis patients and healthy controls. We included quantitative MR acquisi-
tion methods: diffusion tensor imaging to measure neuronal and glial integrity [22], myelin
water imaging to indicate myelin density and damage [23, 24], and magnetization transfer
imaging of the spinal cord [25] to show areas of damage to the normal appearing tissue. To
detect atrophy we used volumetric measures of brain, subcortical and cervical spinal cord
volume that have become accepted surrogates of neurodegeneration [26, 27]. Subclinical
lesion activity was assessed by comparing baseline and one year lesion loads, in the absence
of relapses. In a follow up to our previous work in identifying conventional imaging features
that separate neuromyelitis optica from multiple sclerosis [28] we explored whether these
quantitative imaging measures can help to distinguish neuromyelitis optica and multiple
sclerosis using discriminant analysis.
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Materials and Methods

Ethics and design
The study was designed as a prospective longitudinal MRI study consisting of brain and cervi-
cal spinal cord imaging at baseline, and brain imaging at one year follow up. It was approved
by the South East Hampshire NHS Research Ethics Committee (REC reference number 09/
H0501/55), in accordance with the declaration of Helsinki.

Subjects
Patients and controls over the age of 18 were eligible for this study. 18 neuromyelitis optica
patients recruited from the NHS Neuromyelitis Optica Highly Specialized Service in Oxford,
15 relapsing remitting multiple sclerosis patients who fulfilled MacDonald’s revised criteria
[29], and 17 healthy controls attended for the baseline cross-sectional study. All participants
gave informed written consent to participate. 16 neuromyelitis optica patients, 13 multiple scle-
rosis patients and 16 healthy controls returned for a one year follow-up. All subjects were tested
for the presence for serum aquaporin-4 antibodies using the cell-based assay method [6]. All
neuromyelitis optica patients were positive, whereas the multiple sclerosis patients and controls
were all negative. All multiple sclerosis patients had previously had two or more relapses dis-
seminated in time and space.

Imaging
The MRI brain scan was performed at 3 Telsa (Siemens Magnetom Verio, Erlangen, Germany)
using a 32 channel receive head coil. Brain MRI included structural 3-dimensional T1 weighted
scans for volumetric analysis with axial 2-dimensional T2, proton density and FLAIR imaging
for lesions detection, 60 direction diffusion tensor imaging and myelin water imaging using the
mcDESPOT multicomponent technique [30]. The cervical spinal cord MRI included structural
T1 and T2 weighted sequences for volumetric analysis, and magnetization transfer weighted
imaging. This full MRI protocol was repeated at one year.

Imaging sequences are given in detail in the supporting information (S1 Text).

MRI Analysis
MRI analysis was carried out with the FMRIB Software Library (FSL version 4.1.9 [31]).
Detailed explanations of the MRI analysis pipelines can be found in the supporting information
(S1 Text).

Baseline and 1 year Lesion load
T2 lesions were manually segmented from the baseline and one year FLAIR images, using the
T2 and proton density volumes for reference. Lesion load (i.e. the total volume of lesions) was
calculated using FSL, and the lesion number counted manually.

Volumetrics
Whole brain volume. This was normalised for intra-cranial volume. Cross-sectional nor-

malized brain volume and percentage volume change were analysed using the semi-automated
software SIENAX and SIENA respectively [32].

Thalamic volume. This was calculated using the semi-automated segmentation tool
FIRST [33]. Prior to segmentation the images were bias-field corrected and lesions filled as
described by [34]. They were then normalized for intra-cranial volume.

Longitudinal Imaging of NMO and MS
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Voxel-Based Morphometry. Group differences in regional brain volumes were also inves-
tigated using FSL-VBM, a voxel-based morphometry style analysis [35].

Cervical spinal cord volume of the normal appearing tissue. 14 of the neuromyelitis
optica patients and 10 of the multiple sclerosis patients had evidence of spinal cord lesions
within the cervical spinal cord (the area of interest) at the time of the baseline scan, as visual-
ized on the T2 weighted sagittal and axial images. All slices containing lesions were excluded
for examination of the normal appearing spinal cord tissue. The superior cervical spinal cord
was used for atrophy measurements due to better quality or image acquisition of this portion
of the cord. During acquisition the first (or most superior) axial slice was positioned at the
superior border of C2 (i.e. the odontoid process of the epistropheus or axis) using a sagittal T2
weighted image. The spinal cord was segmented using the Horsfield method [36] now incorpo-
rated into Jim 6.0 (Xinapse Systems). The volume of the spinal cord was measured over 11
axial slices of 3.3mm starting with the most superior slice. The options used were 32 shape
coefficients to describe the complexity of the cord outline and an order of 12 polynomial varia-
tions of the shape coefficient along the cord.

Quantitative Imaging of the Normal Appearing Tissue
Diffusion tensor imaging of the normal appearing white matter. Voxel-wise statistical

analysis of the fractional anisotropy (FA) data was carried out using Tract-Based Spatial Statis-
tics (TBSS; [37]).

A subgroup region of interest analysis was conducted using the mean derived TBSS skeleton
for the neuromyelitis optica versus controls group analysis. A white matter atlas was used to
manually define the region of interest within the optic radiations. The mean FA and standard
deviation for each subject’s optic radiations were extracted for right and left separately exclud-
ing lesions. From the neuromyelitis optica group, two subgroups were selected; four patients
with bilateral severe visual impairment (visual acuity� 0.1) due to previous optic neuritis and
six patients with good functional vision (visual acuity�6/9; n = 6).

Myelin water imaging of the normal appearing white matter. mcDESPOT processing
was performed as described by [30] and [38] to form the myelin water fraction (MWF). This
MWF data was aligned to standard space using non-linear registration and then projected onto
a white matter skeleton using the projections that were derived from the TBSS analysis of FA
described above.

Cervical cord magnetisation transfer contrast normalized with CSF signal (MTCSF) of
the normal appearing tissue. The magnetization transfer weighted slices were acquired from
the top of the superior border of C2, i.e. the superior border of the odontoid peg, positioned
using a T2 weighted sagittal image. The most superior six slices, each of 4mm thickness, were
examined which covered approximately the C1-C2 spinal cord segment. Each slice was nor-
malized by dividing the intensity values by the mean intensity value of the CSF in a region of
interest taken from the non-magnetisation transfer weighted volume of the same slice. Other
regions of interest were taken in the normal appearing grey matter and white matter. Whole
slices containing lesioned tissue were excluded. To quantify loss of tissue integrity (which
would be seen visually as a lack of contrast between white and grey matter) a ratio of white:grey
matter normalized contrast was calculated for each patient, in each separate slice from C1-C6,
and averaged across each group.

Statistics
The group average brain, thalamic, spinal cord volumes and MTCSF white:grey matter ratios,
FA and MWF and optic radiation FA were compared with analyses of co-variance (ANCOVA)
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with age (and time between scans for the longitudinal data) as co-variates, with a Tukey test to
indentify the pairwise differences between the three groups (controls, multiple sclerosis and
neuromyelitis optica).

Longitudinal changes in brain volume within each group, measured using the SIENA soft-
ware, were also tested with a voxelwise analysis that identifies atrophy or growth and the loca-
tion of the change [32].

FA and MWF data were compared voxel-wise according to group using permutation-based
non-parametric testing, and corrected for multiple comparisons. Lesion maps were entered as
a nuisance regressor in the final model i.e. lesions were excluded. For the longitudinal data a
mid-space template, was used to register both sets of images.

A paired comparison of baseline and one year lesion load was made using Wilcoxon sign-
rank test.

Discriminant Analysis. To explore whether it is possible to find a method of distinguish-
ing neuromyelitis optica and multiple sclerosis using the measures derived above, a discrimi-
nant analysis was performed using the quantitative imaging measures derived. A discriminant
analysis is a method akin to regression that is used for classification when the dependent vari-
ables are categorical, and the predictor variables are at interval level. The analysis was auto-
mated and run using SPSS version 19. The outcome variable was group (i.e. MS or
neuromyelitis optica), and all cross-sectional and longitudinal predictor variables were
included. A stepwise approach was used where the derivation was simplified by disregarding
variables that highly correlate with the variable that explains the greatest variance.

Results
Subject characteristics are given in Table 1. There was good matching between sex and disease
duration was obtained. However, multiple sclerosis patients were younger than the controls
and neuromyelitis optica patients, therefore all between groups comparison are corrected for
age. The disability of the neuromyelitis optica patients was higher due to previous severe trans-
verse myelitis and/or optic neuritis. Neuromyelitis optica patients were receiving immunosup-
pressant medication and active relapsing multiple sclerosis patients were on disease modifying
therapy.

Longitudinal Lesion Load
No patients relapsed in the one year follow up, probably related to their immunosuppressive/
immunomodulatory therapy. Within the neuromyelitis optica cohort baseline (2049.7 mm3)
and one year (1929.7 mm3) mean lesion load did not differ significantly. There was no change
in the number of lesions for the whole neuromyelitis optica group. In comparison there was a
significant difference in mean baseline (8648.8 mm3) and one year (9581.3 mm3) lesion load
(p = 0.021) in the MS cohort, with an average change of +10.6%. Correlation analysis between
the change in lesion load and change in normal appearing white matter FA over one year was
conducted in the MS group showing no correlation (Pearson’s correlation coefficient of 0.293).

Cross-sectional Quantitative Imaging
The results of the quantitative imaging studies are summarised in Table 2.

Volumetrics. There were no significant differences between baseline whole brain volume
between the three study groups (Fig 1A). However average thalamic volume was significantly
lower in multiple sclerosis patients when compared to both neuromyelitis optica and controls
(Fig 1B). There was no significant difference between neuromyelitis optica and controls.

Longitudinal Imaging of NMO and MS
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Normal appearing tissue mean spinal cord volumes for the C1 and C2 segments were signif-
icantly lower in the multiple sclerosis group than both the control and neuromyelitis optica
groups (Fig 1C).

Voxel-based morphometry of the cross-sectional data comparing multiple sclerosis with
controls also showed prominent grey matter volume loss in the thalami of multiple sclerosis
patients (Fig 2) as well as in the region of the left caudate nucleus. There was no significantly
different area of grey matter volume between the controls and neuromyelitis optica patients.

Diffusion tensor imaging of the normal appearing white matter. Tract-wise comparison
of normal appearing white matter FA between neuromyelitis optica patients and controls, and
multiple sclerosis patients and controls, showed notable differences in the location of abnor-
malities in each condition. Neuromyelitis optica is associated with a significantly reduced FA
in the normal appearing white matter of the optic radiations (Fig 3A). There are also some sig-
nificant FA reductions in parts of the splenium of the corpus callosum and the posterior corona
radiata. Multiple sclerosis is associated with widespread changes throughout the normal
appearing white matter (Fig 3B) when compared to controls. There were also widespread sig-
nificant reductions in the FA of the multiple sclerosis cohort when compared to neuromyelitis
optica (Fig 3C). Significant differences were observed throughout the supra and infratentorial
white matter in regions including the superior longitudinal fasciculus, corpus callosum, corona
radiata, internal and external capsule, inferior longitudinal fasciculus and cerebellum. Con-
versely, no areas of significant FA reduction were found in the neuromyelitis optica cohort
when compared to multiple sclerosis.

Region of interest analysis comparing the mean FA within the optic radiations of a sub-
group of neuromyelitis optica patients with bilateral severe visual impairment (visual

Table 1. Subject Characteristics.

Subject Group NMO MS Control

Number attending baseline 18 15 17

Age, Range (median) 20–76 (46) 22–62 (38) 21–77 (47)

Sex 15F, 3M 11F, 4M 13F, 4M

Aquaporin-4 antibody positive 18 0 0

EDSS, range (median) 2–6 (4) 0–5 (2) -

Disease Duration, range (median) 12–186 (57.5) 24–240 (72) -

Number Attending Follow-up at 1 year 16 13 16

Age attending follow-up, range (median) 20–76 (46) 29–62 (40) 21–77 (47)

Number of days to follow-up, range (median) 350–456 (386) 346–420 (378) 340–430 (372)

Immunomodulation Aza 9, Mtx 2, Pred 1, Aza+Pred 3, Mtx+Pred 3 Inf 3, Glt 6, None 6 -

Number with brain lesions at baseline MRI 13 15 -

Number with cervical spinal cord lesion at baseline MRI 14 10 -

Number with severe visual impairment (VA � 0.1). 9 (4 of which had bilateral severe visual impairment) 0 -

Abbreviations:

Aza: Azathioprine

Glt: Glatiramer

Inf: β-Interferon

Mtx: Methotrexate

MS: Multiple sclerosis

NMO: Neuromyelitis optica

Pred: Prednisolone

VA: Visual Acuity.

doi:10.1371/journal.pone.0137715.t001
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acuity� 0.1) and a subgroup of neuromyelitis optica patients with good functional vision and
healthy controls showed significantly lower FA in the patients with bilateral blindness only
(p<0.05). This suggests that the FA reduction found within the optic radiations in the neuro-
myelitis optica group when compared to controls is driven by a subset of patients with severe
visual impairment. As there were no multiple sclerosis patients with severe chronic visual
impairment, and the white matter changes were more diffuse in the multiple sclerosis group,
there was no relationship between previous optic neuritis and a reduction of FA within the
optic radiations.

The mean FA of normal appearing white matter was significantly lower in the multiple scle-
rosis compared to control group. Taken as a whole, there was no significant difference between
the FA of normal appearing white matter of the multiple sclerosis and neuromyelitis optica
groups, however removing the four neuromyelitis optica patients with severe bilateral visual
impairment results in a statistical difference (FA, neuromyelitis optica>multiple sclerosis,
p = 0.043).

Myelin water imaging of the normal appearing white matter. Tract-wise analysis of the
normal appearing white matter myelin water fraction in multiple sclerosis and controls was
consistent with findings from diffusion-weighted imaging, with widespread significant reduc-
tions in the multiple sclerosis group (corrected p<0.05) relative to controls (Fig 4A) and to

Table 2. Group comparisons of quantitative imagingmeasures.

Group mean values (SD) Pairwise Comparisons (performed when
ANCOVA showed between groups
difference).

Control MS NMO ANCOVA F
Score (p)

NMO vs
Control

MS vs
Control

NMO vs
MS

Cross-sectional normalized brain
volume/ mm3

1431785
(75185)

1432448
(82061)

1440255
(66069)

0.269 (0.765) NS NS NS

Cross-sectional average thalamic
volume/ mm3

9864.9
(602.5)

8749.6
(866.1)

9991.4
(552.7)

10.34 (<0.001)* NS p<0.001* p<0.001*

Cross-sectional cervical spinal cord
volume of NAT/ mm3

2945.7
(148.5)

2684.3
(252.3)

2848.7
(131.8)

5.48 (0.003)* NS p = 0.001* p = 0.041*

DTI of NAWM (FA) 0.473 (0.015) 0.443 (0.029) 0.454 (0.027) 5.021 (0.011)* NS p = 0.010* NS

MWI of NAWM (MWF) 0.239 (0.005) 0.221 (0.009) 0.238 (0.008) 4.639 (0.014)* NS p = 0.013* NS

Cervical cord MTCSF white:grey ratio
of NAT/ mm3

0.847 (0.029) 0.887 (0.052) 0.833 (0.046) 0.033 (0.01)* NS p = 0.023* p<0.001*

Percentage change in brain volume
over one year / mm3

0.068 (1.078) -0.526
(1.135)

-0.222
(1.507)

1.089 (0.38) - - -

Change in average thalamic volume
over one year / mm3

75.34 (143.1) -136.24
(127.5)

158.54
(238.4)

9.272 (<0.01)* NS p = 0.007* p<0.001*

Abbreviations:

ANCOVA: analysis of co-variance

DTI: diffusion tensor imaging

MTSCF: Magnetisation transfer contrast normalized by CSF signal

MWI: myelin water imaging

NAT: Normal appearing tissue

NAWM: normal appearing white matter

NS: not significant

SD: standard deviation

*: significant difference (p<0.05).

doi:10.1371/journal.pone.0137715.t002
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neuromyelitis optica (Fig 4B). There was no significant difference in MWF between neuromye-
litis optica and controls.

The mean MWF in the normal appearing tissue is significantly lower in the multiple sclero-
sis compared to control group. There was no significant difference between the multiple sclero-
sis and neuromyelitis optica groups.

Cervical cord magnetisation transfer contrast normalized with CSF signal (MTCSF) of
the normal appearing tissue. There is a significantly higher white:grey matter ratio

Fig 1. Results of the cross-sectional volumetric analyses. The dots show individual patient results and the bars the group mean. Individual and mean
results have not been normalised for age. (A) Whole brain volume normalised for intracranial volume. (B) Thalamic volume normalised for intracranial
volume. (C) Cervical spinal cord volume. NS = not significant, * = significant difference (corrected p< 0.05).

doi:10.1371/journal.pone.0137715.g001
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Fig 2. Voxel-basedmorphometry of the multiple sclerosis group compared to controls. Showed relative atrophy of the thalami and caudate nuclei.

doi:10.1371/journal.pone.0137715.g002

Fig 3. Cross-sectional fractional anisotropy of the normal appearing white matter. Voxelwise comparison of fractional anisotropy (FA) within white
matter skeletons created with TBSS where significantly lower FA is shown in yellow for (A) neuromyelitis optica group versus control group, (B) multiple
sclerosis group versus control group, and (C) multiple sclerosis group versus neuromyelitis optica group.

doi:10.1371/journal.pone.0137715.g003
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(indicating a loss of spinal architecture) in the multple sclerosis group compared with the con-
trol and neuromyelitis optica groups (p<0.05; Fig 5). There were no significant differences in
the normal appearing tissue of neuromyelitis optica patients when compared to controls.

Longitudinal Quantitative Imaging
Volumetrics. The average percentage change in brain volume over one year in each sub-

ject group is shown in Fig 6A. It is greatest in the multiple sclerosis group, and least in the

Fig 4. Cross-sectional myelin water fraction (MWF) of the normal appearing white matter. Voxelwise analysis of MWF in the white matter skeleton
created with TBSS where significantly lower MWF is shown in red for (A) multiple sclerosis group versus control group, and (B) multiple sclerosis group MWF
versus neuromyelitis optica group.

doi:10.1371/journal.pone.0137715.g004

Fig 5. Bar graph showing average spinal cord MTCSFwhite:grey matter ratio in each patient group.
Error bars are +/- 2 standard errors of the mean.

doi:10.1371/journal.pone.0137715.g005
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control group but ANCOVA statistical testing with age as a co-variate found there was no sig-
nificant difference between groups (between groups effect is p = 0.375). However a voxel wise
examination (using the tool SIENAr) of whether there were any significant areas of whole
brain atrophy within the group showed a small area in the region of the left insula cortex in the
multiple sclerosis group (corrected P<0.05; Fig 6B) but no significant areas within the control
and neuromyelitis optica groups.

Repeated measures analysis of thalamic volume at baseline and one year showed a signifi-
cant decrease in the multiple sclerosis group compared to both the neuromyelitis optica and
control groups (p<0.01). Change in thalamic volume in each group (unadjusted for age) is
shown in Fig 6C.

Fig 6. Longitudinal volumetric measures. (A) Percentage change in brain volume over one year in subject groups. (B) Voxelwise within-group analysis
found a small significant area of atrophy in the region of the insula cortex within the multiple sclerosis group (shown) but not the neuromyelitis optica or control
groups over the course of one year. (C) Change in thalamic volume over one year. NS = not significant, * = significant difference (corrected p< 0.05).

doi:10.1371/journal.pone.0137715.g006
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Diffusion tensor imaging of the normal appearing white matter. There were no signifi-
cant changes in the normal appearing white matter FA between the baseline and one year
scans in the control and neuromyelitis optica groups. In the multiple sclerosis group there were
scattered areas of significant reduction in FA throughout the normal appearing white matter as
shown in Fig 7A. These regions include the right uncinate fasciculus, right corticospinal tract,
right internal capsule, right inferior longitudinal fasciculus, left anterior thalamic radiation,
right corona radiata, right juxtacortical white matter. Other left hand sided changes were also
seen in a similar distribution to the right that were just below the significance threshold (i.e. a
trend).

Myelin water imaging of the normal appearing white matter. There were no significant
changes between baseline and 1 year scans in the control and neuromyelitis optica groups. As
displayed in Fig 7B there are some areas of the significant reduction in MWF in the normal
appearing white matter of the multiple sclerosis group. These are in the regions of the left and
right juxtacortical white matter, the left and right corticospinal tracts, left and right internal
capsule, the body and genu of the corpus callosum, the right anterior and posterior thalamic
radiations, the right optic radiation, the left and right cerebral peduncles and inferior longitudi-
nal fasciculi.

Discriminant Analysis
The optimal discriminant function derived was:

D ¼ �0:01NWBV þ 2ATV � 0:891

where NWBV = cross-sectional normalised whole brain volume in cm3 and ATV = cross-sec-
tional average (of left and right) thalamic volume in cm3.

Fig 7. Longitudinal measures of the integrity of the normal appearing white matter. Voxelwise paired comparison of baseline and one year scans for
each subject group showed significant areas within the TBSS white matter skeletons of the multiple sclerosis group of (A) reduction in fractional anisotropy
shown in red/yellow, and (B) reduction in myelin water fraction shown in green.

doi:10.1371/journal.pone.0137715.g007
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Neuromyelitis optica cases would be expected to centre around 0.983 (standard deviation
0.86) and multiple sclerosis around -1.114 (standard deviation 1.22). 0.891 is a constant to
allow zero to be the dividing line for the groups. It is able to correctly classify 90.9% of subjects
when cross-validated (Table 3; Fig 8). This equates to 89.5% sensitivity, 92.9% specificity,

Table 3. Cross-validation of function for the separation of neuromyelitis optica andmultiple
sclerosis.

Predicted Group
Membership

MS NMO Total

Original Group Membership MS 13 2 15

NMO 1 17 18

doi:10.1371/journal.pone.0137715.t003

Fig 8. Histogram showing the frequency of subjects (x axis) classified into each group by their discriminant function score (y axis).

doi:10.1371/journal.pone.0137715.g008
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94.4% positive predictive value and 86.7% negative predictive value for the diagnosis of neuro-
myelitis optica.

Discussion
The consistent outcome of this study is that widespread neurodegenerative changes can be
demonstrated in the multiple sclerosis group, but not the neuromyelitis optica group, for both
the cross-sectional quantitative measures (thalamic volume, normal appearing white matter
FA and MWF, cervical spinal cord volume and MTCSF) and the longitudinal results (temporal
brain atrophy, thalamic atrophy, normal appearing white matter FA and MWF). More local-
ised changes have been noted in the neuromyelitis optica group with decreased FA in the optic
pathways that appear to be driven by the inclusion of patients who are blind or have severe
visual impairment. A further finding of this study is that in the absence of relapse lesion load
remains static in the neuromyelitis optica group. Together with the lack of progressive neural
damage in the normal appearing tissue over the one year period, this suggests that there is no
detectable disease activity in neuromyelitis optica between relapses.

Both multiple sclerosis and neuromyelitis optica involve inflammatory brain lesions, but the
diffuse neurodegenerative changes have only been found in multiple sclerosis. In support of
this finding is the clinical observation that progression is very rare or absent in neuromyelitis
optica [17, 18] whereas it occurs in the majority of multiple sclerosis patients, either as a pri-
mary phenomenon or secondary to a relapsing remitting phase. Furthermore to date there are
no published pathological studies that show axonal or myelin loss in the normal appearing tis-
sue of neuromyelitis optica patients. The inflammatory brain and spinal cord lesions in neuro-
myelitis optica tend to be pathologically more destructive than those in multiple sclerosis [19],
therefore the findings of our study cast doubt on the theory that the chronic neurodegenerative
changes found in multiple sclerosis are a secondary downstream/ upstream effect of active
demyelinating lesions. Further supporting this, the reduction in normal appearing white matter
FA in the multiple sclerosis group did not correlate with the increase in lesion load. Instead
either a more diffuse inflammatory process [39] or two separate disease mechanisms (i.e.
inflammatory and neurodegenerative) could be responsible [40].

This study also demonstrates the greater sensitivity of thalamic volume over whole brain
volume as a surrogate of neurodegeneration in small numbers of relapsing remitting multiple
sclerosis patients. Additionally we show diffusion tensor imaging and myelin water imaging
were more sensitive than whole brain atrophy in detecting changes over a year in a small multi-
ple sclerosis cohort, and that these changes were not present in neuromyelitis optica patients
studied over the same period. These methods may therefore be of use diagnostically, and in
clinical treatment trials of potential neuroprotective agents for multiple sclerosis.

A further outcome of this study is the derivation of a formula that utilises cross-sectional
normalized brain and thalamic volume to aid the separation of neuromyelitis optica and multi-
ple sclerosis with a high level of accuracy (89.5% sensitivity, 92.9% specificity). Fortuitously
from a translational point of view these volumetric measure can be calculated using semi-auto-
mated methods [32, 33], and therefore, if validated, there is potential to bring this into clinical
practice in the future.

Our earlier work in this area has shown that T2 lesion distribution on conventional MRI
can also be used to separate a cohort of 50 multiple sclerosis patients from 44 seropositive neu-
romyelitis optica patients with a 92% sensitivity and 96% specificity [28]. The two multiple
sclerosis patients in the present study that were misclassified as neuromyelitis optica by our
new discriminant function both had Dawson’s finger type lesions and therefore would have
satisfied the conventional imaging criteria for multiple sclerosis. Thus the combination of these
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validation methods may give greater accuracy when distinguishing multiple sclerosis from neu-
romyelitis optica. It should be noted that specificity and sensitivity values are relevant to the
mix of the population tested. If our discriminating algorithm was applied to a group of patients
with a larger proportion of multiple sclerosis patients then the specificity would be reduced.
We have assumed that these algorithms will be applied to a cohort of patients where an experi-
enced neurologist has already screened out conventional multiple sclerosis patients.

Previous literature in the field of quantitative imaging and neuromyelitis optica is inconsis-
tent [41]. Whilst there does seem to be greater evidence supporting the notion that widespread
neurodegeneration is absent in neuromyelitis optica [42–47], others have reported more diffuse
changes [48, 49]. With respect to previous DTI studies of neuromyelitis optica, some have
found localised differences in DTI indices in the optic radiations that corroborate with our
work [43–46], with the addition of changes within the cerebral coriticospinal tracts [43]. More
recent research has reported widespread DTI abnormalities [48, 49]. Similarly the results of
volumetric work range from no apparent changes [50], to differing anatomical regions of both
grey matter atrophy [51, 52] and white matter atrophy [53, 54]. Possible explanations for these
differences include population demographics including race. In addition the potential inclu-
sion of seronegative patients in studies of neuromyelitis optica introduces the risk that partici-
pants may have an opticospinal form of multiple sclerosis, misclassified as neuromyelitis
optica. A further potential reason could be due to the precise methods used to exclude lesions
from quantitative analysis of normal appearing white matter to avoid contamination.

There are limitations of this study. Although reductions in FA, MWF and basal ganglia vol-
umes have been found in multiple sclerosis over a one-year interval [55, 56], a potential limita-
tion of this work is that the follow-up period may not have been long enough to detect
neurodegenerative changes in neuromyelitis optica. Additionally the sample size of multiple scle-
rosis and neuromyelitis optica groups were small, and a small effect in neuromyelitis optica (less
than in multiple sclerosis) cannot be excluded – 280 relapsing remitting multiple sclerosis
patients are required to detect a 30% treatment effect on whole brain atrophy [57], therefore it is
not surprising that changes in whole brain volume, compared to controls over one year, were not
detected in our multiple sclerosis cohort. Clearly the rarity of neuromyelitis optica, and our stipu-
lation to only include patients antibody tested with the cell-based assay method to ensure a popu-
lation with definite disease, makes a larger study challenging. Quantitative imaging is a surrogate
of neurodegeneration and does not prove the pathological process, however it is currently our
best method of studying the activity of neurological diseases non-invasively in-vivo. Despite
these limitations our study does support the concept that there are differences in background dis-
ease activity and non-lesional pathology between neuromyelitis optica and multiple sclerosis.

Our study is the most comprehensive advanced neuroimaging study of neuromyelitis optica
and multiple sclerosis performed to date, and is reassuring evidence that whilst neuromyelitis
optica is clinically silent there appears to be no ongoing disease activity. It also further stimu-
lates the debate on the cause of neurodegeneration in multiple sclerosis that is the biggest con-
tributor to long-term disability, and for which we still have no effective treatments. Future
work may include using quantitative MRI to study neuromyelitis optica lesions in evolution to
try to reveal more about the mechanisms of astrocyte and myelin damage. Validation of our
work in independent cohorts would also be valuable.

Supporting Information
S1 Dataset. Minimum dataset for study. Includes demographic details for patients and quan-
titative imaging data.
(XLSX)
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