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A recent technique for the numerical boundary conditions in 1D shallow water flow models is able to preserve
the good properties of a conservative scheme used for the interior points. The implementation in a conservative
scheme is shown in a test cases with exact solution and applied to the simulation of a real river flood wave
leading to very satisfactory results.

1 INTRODUCTION

In order to reach the correct numerical solution in a general unsteady case, it is clear that the numerical scheme
chosen for the interior points is as important as the method applied to discretize the boundary conditions. As for
the boundary conditions, the starting point is the theory of characteristics. It provides a clear idea of the space-
time directions followed by the information, of the influence regions and of the required number of boundary
conditons to have a well posed problem (Kreiss 1970). When, in the x− t plane, a characteristic curve enters the
computational domain, the region of influence is exterior to the domain and an additional condition is required.
This is called a physical boundary condition. On the other hand, if the curve leaves the domain, the region of
influence falls within the computational domain and the boundary condition depends exclusively in the interior
variables. These are called numerical boundary conditions and their correct discrete representation is the main
objective of this work.

The usual methods to discretize the numerical boundary conditions generate error in the global mass con-
servation. In this work, a recent method based on the integral form of the mass conservation equation extended
to the full domain (global mass conservation) is also considered. It was first introduced in (Burguete et al.
2002; Burguete et al. 2006) and preliminarily used. The technique can be adapted to any conservative numerical
scheme used for the interior points leading to a machine accuracy global mass conservation in all steady or
unsteady situations.

2 METHODOLOGY

2.1 Basic equations

1D shallow water flows can be modelled by means of the Saint-Venant equations. The conservative form of
such equations admits a vectorial expression as follows:

∂U

∂t
+

∂F

∂x
= H (1)

with U the vector of conserved variables, F the fluxes and H the source terms:

U =
(

A
Q

)

, F =

(

Q
Q2

A
+ gI1

)

, H =
(

0
g [I2 +A (S0 − Sf )]

)

(2)

where A is the wetted cross section, Q the discharge, g the acceleration constant of gravity, I1 and I2 represent
the pressure force integrals, S0 the bed slope and Sf the friction slope that is commonly modelled with the
Gauckler-Manning law (Chow 1959). Defining the Jacobian of the conservative flux:

J =
∂F

∂U
=
(

0 1
c2 − u2 2u

)

(3)

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36136484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Here u = Q
A

is the flow velocity, c =
√

gA
B

the speed of the small surface waves and B the wetted cross section

top width. The eigenvectors of J are:
λ1 = u+ c, λ2 = u− c (4)

and the matrices which diagonalize the jacobian:

P =
(

1 1
λ1 λ2

)

, L =
(

λ1 0
0 λ2

)

, J = PLP
−1 (5)

2.2 Numerical scheme

Having stated that our main goal is the derivation of a globally exact conservative scheme for the shallow
water equations, conservative numerical methods are required both for the interior and the boundary points. The
conservative form of the system of differential equations (1) can be solved by means of a conservative scheme.
The following vector is defined for convenience (Burguete and Garcı́a-Navarro 2001):

Gi+(1/2) =

(

H −
δF

δx

)

i+(1/2)

(6)

The unified discretization of the friction term consists of discretizing flux, friction and other source terms in
the equation in a similar form. A general conservative scheme with unified discretization can be expressed as
(Burguete and Garcı́a-Navarro 2001):

∆U
p
i = ∆t

(

G
L
i−(1/2) + G

R
i+(1/2)

)

(7)

where GL,R represents the wave discretization particular to each numerical scheme.
We shall definine the upwind matrices as:

O
± =

1

2
P

(

1± sign(λ1) 0
0 1± sign(λ2)

)

P
−1 (8)

Then, the wave decomposition of the explicit upwind scheme is (Burguete and Garcı́a-Navarro 2001):

G
L
i+(1/2) =

(

O
+

G − ν
δU

δx

)

i+(1/2)

, G
R
i+(1/2) =

(

O
−

G + ν
δU

δx

)

i+(1/2)

(9)

with ν the entropy artificial viscosity as in (Burguete et al. 2006).

2.3 Numerical boundary conditions

Numerical boundary conditions are those additional equations required to enable the correct numerical resolu-
tion at the boundary points. They carry some kind of information from the calculation domain. The method of
global mass conservation (Burguete et al. 2002; Burguete et al. 2006) for 1D schemes is based on enforcing the
integral form of the mass conservation extended to all the computational domain in combination with a conser-
vative scheme for the interior points to generate the numerical boundary condition. This method is sensitive to
the form the mass of the system is evaluated and to the physical boundary conditions.

In a domain discretized using N cells, the mass increment ∆Mn in one time step is defined as:

∆Mn =
N
∑

i=1

∆An
i δx (10)

In a first step, a conservative scheme is used all over the domain neglecting contributions from outside cells.
The cross section increments predicted in one time step are:

∆Ap
i = −

∆t

δx

(

δQR
i+(1/2) + δQL

i−(1/2)

)

(11)

The total numerical mass variation ∆Mp produced by the scheme considered is (Burguete, Garcı́a-Navarro, and
Aliod 2002):

∆Mp =
N
∑

i=1

∆Ap
i δx = ∆t (Qn

1 −Qn
N) (12)
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Since the schemes used are conservative, this variation is only due to the boundaries and can be split into
numerical contribution at the inlet ∆Mp

in and at the outlet ∆Mp
out in the following form:

∆Mp = ∆Mp
in +∆Mp

out, ∆Mp
in = ∆tQn

1 , ∆Mp
out = −∆tQn

N (13)

If the physical boundary condition is, for instance, a certain mass input at the inlet ∆Mn
in or at the outlet

∆Mn
out, in order to ensure the global mass conservation of the scheme the numerical mass increment must be

corrected. This is achieved by (Burguete et al. 2006):

An+1
1 = Ap

1 +
∆Mn

in −∆tQn
1

δx
, An+1

N = Ap
N +

∆Mn
out +∆tQn

N

δx
(14)

Furthermore, for the the inner points:

An+1
i = Ap

i , Qn+1
i = Qp

i , ∀ i 6= 1,N (15)

3 APPLICATIONS

3.1 Test with analytical solution: discontinuous boundary conditions

One of the best forms to study the performance of the numerical schemes is to compare their numerical solution
with the analytical solution in problems in which this exists. If a discontinuity is enforced to enter the upstream
boundary of an ideal flat and smooth channel of uniform depth and discharge so that the flow properties on
both sides obey the Rankine-Hugoniot equations, the discontinuity will propagate unchanged along the channel
at a constant speed. From the initial conditions, the water depth hi and velocity ui are known in the channel.
Imposing h∗ or u∗ at the boundary, the other variable and the front speed can be worked out solving these
equations for the discontinuity. In the case of a prismatic rectangular channel and still water initial conditions
(ui = 0) (Burguete et al. 2006):

U =

√

g
h∗

hi

h∗ + hi

2
, u∗ =

(

1−
hi

h∗

)

U, Q∗ = σ0 (h∗ − hi)U (16)

The propagation of a non-transcritical discontinuity in a rectangular channel 10m width, with hi = 0.4m,
h∗ = 1m, Q∗ = 24.86021m3/s and U = 4.143385m/s is used to study the accuracy of the resulting combina-
tions of proposed numerical schemes for the interior points and methods for the numerical boundary conditions.

Figure 1 displays the numerical results obtained in this test using the explicit upwind scheme and the global
mass conservation approach for the discretization of the upstream numerical boundary condition. This method
achieves a reduction in the mass error to machine precision.
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Figure 1: (a) Water depth, (b) discharge using the upwind scheme, δx = 10m, CFL=0.9 and the global mass
conservation method for the upstream numerical boundary condition.
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3.2 River flow application: Ésera River

Ésera River is a Spanish river on the left bank of the Ebro River basin. It flows through a touristic mountain area
of the Pirynees. A study has been carried on led by the interest to evaluate the risk of inundation in a few nearby
camping sites. It is a typical, irregular and sloping mountain river (average slope around 4%). 32 measured cross
sections were used to define the 1Km long river reach bed form, a base discharge of 10m3/s to state the initial

flow conditions, and a high roughness Manning coefficient n = 0.03m−1/3s to model the stony bed according
to Chow (1959).

Four flooding discharges of 236, 344, 414 and 563m3/s, corresponding to return periods 10, 50, 100 and
500 year respectively were assumed in the study. There was no field information either at the reach outlet so
that, due the sloping character of the river bed, a critical outflow condition was assumed in case of downstream
subcritical flow. At the upstream boundary, the global mass conservation method was used for the numerical
condition discretization.

The calculation was performed in two steps. In a first step, the steady base flow was determined by sudden
introduction of the base discharge over dry bed initial conditions. After convergence, this led to the initial
conditions for the second run. Figure 2 is a plot of the water depth profiles corresponding to the base flow
discharge and the four inundation discharges all flowing in steady state as computed with the explicit upwind
scheme.
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Figure 2: Several steady flow water depth profiles in the Ésera River reach as obtained from the upwind scheme
using δx = 1m and CFL=0.9.

4 CONCLUSIONS

The global mass conservation method for the numerical boundary condition discretization is simple, is able to
solve accurately unsteady flow with discontinuities at the boundary and leads to an exactly conservative solution
when combined with any conservative explicit scheme for the interior points.
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