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Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. 
The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently 
available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) 
or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach 
for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context 
of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prog-
nosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/
adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by 
research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. 
However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers 
reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD 
pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological 
mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (includ-
ing BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and 
NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
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Introduction

Worldwide, approximately 50 million people are living 
with dementia, with Alzheimer’s disease (AD) comprising 
60–70% of cases [391]. AD is a progressive, neurodegenera-
tive disease characterized clinically by cognitive decline and 
behavioural disturbances and pathologically by the accu-
mulation of amyloid beta (Aβ) plaques and neurofibrillary 
tangles formed by tau fibrils, together with degeneration of 
neurons and their synapses, glial activation, and neuroin-
flammation [37, 149, 314]. The incidence of AD increases 
with age, and the prevalence is growing as a result of the 
ageing of the population [6]. To date, no disease-modifying 

therapy (DMT) has been successful [18]. This lack of suc-
cess may be partly explained by AD having a complex aeti-
ology and considerable heterogeneity in its pathophysiol-
ogy, and by limitations in past clinical trial designs, which 
have generally enrolled participants later in the course of 
the disease (e.g. mild-to-moderate AD), and which did not 
enrich for Aβ-positive individuals, resulting in substantial 
misclassification (i.e. inclusion of participants without Aβ 
pathology) [12, 241, 317].

Biomarkers hold promise for enabling more effective 
drug development in AD and establishing a more person-
alized medicine approach [126, 127, 314]; they may soon 
become essential in staging, tracking, and providing a more 
quantitative categorization of the disease, as well as for doc-
umenting the effect of potential therapeutics. These points 
are underscored in the 2018 draft guidance documents issued 
by both the US Food and Drug Administration (FDA) (Early 
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Alzheimer’s disease: developing drugs for treatment; draft 
guidance for industry) [96] and the European Medicines 
Agency’s (EMA) Committee for Medicinal Products for 
Human Use (CHMP) (Guideline on the clinical investigation 
of medicines for the treatment of Alzheimer’s disease) [78]. 
Fluid biomarkers have the potential to be easy to implement 
in clinical trials, and several biomarkers reflecting different 
pathophysiological mechanisms can be analyzed in the same 
sample. Furthermore, cerebrospinal fluid (CSF) or blood 
may provide a window for detection of some biomarkers 
that cannot be identified via brain imaging [125].

CSF represents a logical source for developing viable bio-
markers in AD given its direct interaction with the extracel-
lular space in the brain, thus potentially reflecting the associ-
ated pathophysiological alterations [32]. The overall safety 
record of lumbar puncture is strongly supported by extensive 
meta-analyses [76, 262]. However, fluid biomarkers are una-
ble to reflect brain regional pathogeographies, which may 
be particularly important during early AD [47, 281]. Other 
limitations of CSF include the relative invasiveness of CSF 
collection by lumbar puncture, limited access and accepta-
bility in some countries, the inability to collect samples from 
large populations especially if serial measures are needed, 
concerns over slowing for subject recruitment into clinical 
trials, educational gaps on the safety of lumbar puncture, 
development and validation of CSF assays, and clinical util-
ity. Some of the limitations of CSF have prompted research 
efforts into the development and validation of diagnostic or 
prognostic AD biomarkers in blood [215, 216]. Indeed, the 
Biofluid Based Biomarkers Professional Interest Area [of the 
Alzheimer’s Association International Society to Advance 
Alzheimer’s Research and Treatment (ISTAART)], an inter-
national working group of leading AD scientists, has been 
established to scrutinize potential blood-based biomarkers 
and to provide standards for the collection of biofluids [128, 
140, 268, 269].

The ideal fluid biomarker for AD would be reliable, repro-
ducible, non-invasive, simple to measure, and inexpensive 
[360], as well as easy to implement into large populations 
such as clinical trials and the primary care setting. Impor-
tantly, biomarkers used in drug-development programmes 
should be qualified for a specific context of use (COU); these 
include (but are not limited to) patient/clinical trial diagno-
sis and subject selection, assessment of disease state and/or 
prognosis, assessment of mechanism of action, dose optimi-
zation, drug–response monitoring, efficacy maximization, 
and toxicity/adverse reaction identification and minimization 
[95]. For successful AD drug development, it is critical to 
ensure that subjects enrolled into clinical trials are those who 
have AD pathology and are most likely to progress along the 
disease continuum. Fluid biomarkers could have an impor-
tant role in clinical trial subject selection (including subject 
enrichment or stratification) [123, 126, 127], and could be 

useful for measuring target engagement of the drug and the 
impact of the drug on the pathogenic mechanisms [184, 
279]. Additionally, fluid biomarkers, especially blood bio-
markers, could be used in early screening in primary care to 
identify potential clinical trial subjects and patients at risk of 
AD, thereby improving early diagnosis and enabling longi-
tudinal tracking of various disease indicators over extended 
periods of time [22, 128].

Currently, three core AD CSF biomarkers are included 
in research guidelines for AD and are being increasingly 
used in clinical trials as inclusion criteria and/or outcome 
measures: CSF amyloid beta 42 (Aβ42), total tau (t-tau), 
and tau phosphorylated at threonine 181 (p-tau) [75, 214, 
217, 247, 298]. These biomarkers have been validated as 
core CSF biomarkers of AD pathophysiology [33, 99, 122, 
124]. Qualification opinions have also been published for 
CSF Aβ42 and t-tau by the EMA, supporting their use as 
patient-selection tools [153]. Although these core biomark-
ers are now recognized for their diagnostic utility, there is a 
need to identify additional fluid biomarkers for other COUs 
such as subject enrichment, risk stratification, prognosis, 
and (eventually) drug–response monitoring, and to better 
understand the complex heterogeneity of AD pathology [78, 
96]. Several novel biomarkers have been proposed; some 
have been extensively investigated, but they have yet to be 
validated and integrated into guidelines for use in clinical 
practice and drug development [99, 206].

This review summarizes some of the pathological mecha-
nisms implicated in sporadic AD (Fig. 1) and highlights sev-
eral established and novel fluid biomarkers associated with 
each mechanism. For each biomarker, a summary of pub-
lished studies, the stage of assay development (Table 1), and 
the potential COU (Table 2) are discussed. Most of the fluid 
biomarkers examined in this review are CSF biomarkers, 
owing to the limited number of published studies on blood-
based biomarkers. It should be noted that unselected bio-
marker combinations (“panels”) identified through “omics” 
technologies are not included; this topic has been recently 
reviewed elsewhere [46, 219, 222, 260].

Alzheimer’s disease pathological 
mechanisms

Extracellular plaque deposits of Aβ peptides and intraneu-
ronal tau-containing neurofibrillary tangles (NFTs) and 
neuropil threads (NTs), are the defining neuropathological 
features of AD brains [238, 314]. Aβ-plaque deposition is 
an insidious process that occurs over decades, well before 
symptoms emerge [156, 379]. Approximately one-third of 
people over the age of 65 years who are cognitively normal 
have Aβ-plaque deposition equivalent to that of someone 
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with AD [305]; the significance of this finding is a topic of 
intensive evaluation.

In AD, comorbid pathology is often present and con-
tributes to the clinical symptoms. For example, there is an 
increasing burden of cerebrovascular pathology as a func-
tion of age, and approximately 30% of AD patients have 
concomitant cerebrovascular disease [365]. In addition to 
plaques and tangles, more than half of AD patients also 
show widespread cortical Lewy bodies (LBs) and Lewy 
neurites formed by misfolded α-synuclein like those found 
in patients with Parkinson’s disease dementia (PDD) or 
dementia with Lewy bodies (DLB) [121, 207]. Conversely, 
approximately 40% of DLB patients have AD pathology as 
determined by their CSF-biomarker profile [199]. Further-
more, up to half of AD patients harbour transactive response 
DNA-binding protein 43 (TDP-43) inclusions that are char-
acteristic of frontotemporal lobar degeneration (FTLD) and 
sporadic amyotrophic lateral sclerosis (ALS) [7, 50, 159]. 
Amylin deposits, which are found in the pancreas of most 
patients with type 2 diabetes mellitus, have also been found 

in AD (and type 2 diabetes) brains [157]. Thus, although 
AD is typically characterized by Aβ plaques and NFTs, most 
AD patients have multiple pathologies and different types of 
brain proteinopathies [21]. In the Center for Neurodegenera-
tive Disease Research (CNDR) Brain Bank at the University 
of Pennsylvania, only 35% of 247 autopsy-confirmed AD 
brains examined for the presence of tau, Aβ, α-synuclein, 
and TDP-43 deposits had only plaques and tangles as the 
underlying cause of dementia, while 22% had all four of 
these pathologies [300]. This finding emphasizes the urgent 
need for biomarkers that can indicate the presence of mul-
tiple pathologies in AD patients, with the methodological 
attributes of being reliable, accessible, and cost-efficient.

Aβ pathology

The “amyloid cascade hypothesis”, initially proposed in 
1992 [134], but essentially embedded in the reports of 
the initial discovery of the partial Aβ sequence in cerebral 

Fig. 1  Pathological mechanisms implicated in AD and associated 
fluid biomarkers. In this figure, the arrows reflect hypothetical rela-
tionships, not direct causal links between the pathological mecha-
nisms and neurodegeneration. Only select pathological mechanisms 
(and associated biomarkers) of AD are represented. Aβ38 amyloid 
beta 38, Aβ40 amyloid beta 40, Aβ42 amyloid beta 42, AD Alz-
heimer’s disease, BACE1 β-site amyloid precursor protein cleav-

ing enzyme 1, hFABP heart-type fatty acid-binding protein, IP-10 
interferon-γ-induced protein 10, NF-L neurofilament light, P-tau 
phosphorylated tau, SNAP-25 synaptosome-associated protein 25, 
TDP-43 transactive response DNA-binding protein 43, TREM2 trig-
gering receptor expressed on myeloid cells 2, T-tau total tau, VILIP-1 
visinin-like protein 1
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vessels [108, 109] and the whole 4  kDa Aβ peptide in 
plaques [239], is supported by genetic and biochemical data, 
and has been the dominant model of AD pathogenesis. The 
model is based on the gradual deposition of fibrillar Aβ as 
diffuse plaques, which triggers an inflammatory response, 
altered ion homeostasis, oxidative stress, and altered kinase/
phosphatase activity, leading to the formation of NFTs and 
to widespread synaptic dysfunction and neuronal loss [320]. 
Notably, recent experimental evidence suggests that the Aβ 
plaque environment can accelerate the templated spread of 
tau pathology [136].

Genetic data strongly implicate Aβ in AD pathogenesis 
[315, 390]. Whether monomeric or aggregated forms are 
more relevant to the neurodegenerative process remains 
unknown. Recent reports indicate that soluble Aβ oligom-
ers may be more toxic than Aβ neuritic plaques [320, 321], 
suggesting that other forms of Aβ may be more relevant to 
measure. Phase 3 clinical studies of solanezumab, a mono-
clonal antibody (mAb) that targets monomeric Aβ, resulted 
in very modest slowing of clinical decline [72], whereas a 
Phase 1b study of aducanumab, a mAb that targets soluble 
and insoluble forms of aggregated Aβ, demonstrated robust 
plaque reduction and a slowing of clinical decline [42, 323].

Fluid biomarkers of Aβ metabolism and aggregation

Aβ peptides

Aβ is generated as the result of the sequential cleavage of 
amyloid precursor protein (APP) by β-site amyloid precur-
sor protein cleaving enzyme 1 (BACE1) and γ-secretase 
[45, 394]. The cleavage position of the γ-secretase in the 
transmembrane domain of APP is imprecise, resulting in 
the production of Aβ peptides of variable length [166, 289]. 
Changes in some of these Aβ species have been associated 
with AD, as discussed below, but little is known about the 
changes over time in relation to clinical presentation.

Aβ42

The 42-amino acid form of Aβ, Aβ42, is a minor compo-
nent of Aβ peptides in the CSF [290] and plasma [277], but 
in AD brains, Aβ42 is the principal Aβ peptide in plaques 
[113, 155]. Decreases in CSF Aβ42 levels in AD patients 
were first reported by Motter et al. [256]. Several subsequent 
studies have consistently shown that CSF levels of Aβ42 
correlate inversely with plaque load as observed in autopsies 
and in vivo with positron emission tomography (PET) [82, 
114, 158, 343, 353]. CSF Aβ43 is also reported to decrease 
in AD, but it has similar diagnostic accuracy to CSF Aβ42 
[39, 193] so research has focused on the latter.

CSF Aβ42, together with t-tau and p-tau, are biomark-
ers accepted as supportive of an AD diagnosis [75, 247] Ta
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(Table 2), and evidence suggests they may be prognostic of 
disease progression in both cognitively normal individuals 
[84, 209] and those with mild cognitive impairment (MCI) 
[5, 9, 91, 133]. CSF Aβ42 has the potential to discriminate 
AD from FTLD but shows significant overlap with other 
non-AD dementias [80].

The development of automated assays to measure CSF 
Aβ42 will reduce variability among samples and laborato-
ries and make it easier to interpret results and implement 
this biomarker into routine clinical practice [295]. However, 
several unresolved issues remain when using CSF Aβ42 in 
clinical trials. First, there needs to be a better understanding 
of how to interpret changes in CSF Aβ42 levels in AD in 
response to DMTs, since this is likely to vary with the mech-
anism of action of the DMT and with the duration of treat-
ment. It seems logical to measure Aβ42 to help determine 
target engagement of drugs designed to reduce Aβ pathology 
[88, 208]; however, some trials have reported changes in 
CSF Aβ42 but no improvement in clinical endpoints [298]. 
Furthermore, truncated, post-translationally modified frag-
ments of Aβ (e.g. pyroglutamate Aβ42) may be more prone 
to pathogenic aggregation [25, 117], and consideration needs 
to be given to what forms of Aβ42 are being measured. In 

addition, CSF Aβ42 remains relatively stable over time in 
patients with AD dementia and may have limited utility for 
monitoring disease progression in this group [34, 41, 367, 
402]. Finally, CSF Aβ42 measures are influenced by pre-
analytical factors such as the type of collection tube and 
number of freeze/thaw cycles [198, 284, 368], so it is essen-
tial to develop harmonized standard operating procedures for 
sample collection and handling, as established for biomarker 
studies in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) [326, 327].

There has been great interest in developing new tech-
niques to measure Aβ42 in blood. Although most studies 
have failed to show an association between plasma Aβ42 
alone and risk of AD or association with PET Aβ [227, 271], 
recent studies using ultrasensitive analytical assays as well 
as fully automated immunoassays suggest that plasma Aβ 
could be a useful screening biomarker. Using an ultrasen-
sitive immunoassay technique (Simoa platform), levels of 
Aβ42 and the ratio of Aβ42/Aβ40 in plasma were shown 
to correlate with CSF levels and with Aβ deposition meas-
ured by PET [160, 377], and plasma Aβ42/Aβ40 associated 
with risk of progression to MCI or dementia in cognitively 
normal individuals with subjective cognitive decline [377]. 

Table 2  Potential uses for selected candidate AD fluid biomarkers

Aβ38 amyloid beta 38, Aβ40 amyloid beta 40, Aβ42 amyloid beta 42, AD Alzheimer’s disease, BACE1 β-site amyloid precursor protein cleaving 
enzyme 1, hFABP heart-type fatty acid-binding protein, IP-10 interferon-γ-induced protein 10, NF-L neurofilament light, P-tau phosphorylated 
tau, SNAP-25 synaptosome-associated protein 25, TDP-43 transactive response DNA-binding protein 43, TREM2 triggering receptor expressed 
on myeloid cells 2, T-tau total tau, VILIP-1 visinin-like protein 1
✓ Accepted (validated) use
○ Potential use, supportive data available
□ Speculative use for drug response monitoring, no supportive data available
△ Speculative use for toxicity/adverse reactions minimization, no supportive data available
*Alone or when measured as a ratio with tau
† When measured as a ratio with Aβ42
± Alone or when measured as a ratio with Aβ42
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Ovod et al. used mass spectrometry to demonstrate lower 
levels of plasma Aβ42 and Aβ42/Aβ40 in subjects with 
an Aβ-positive PET [273]. In addition to the use of novel 
technologies, plasma samples could be chemically treated 
to reduce degradation of Aβ and improve the accuracy of 
plasma Aβ measurements [278]. Recently, a fully automated 
immunoassay has been shown to detect plasma Aβ42 and 
Aβ40 and accurately predict Aβ-positivity (using the CSF 
Aβ42/40 ratio as reference standard) in cognitively normal, 
subjective cognitive decline, MCI and AD dementia patients 
[274].

In summary, CSF Aβ42 is widely accepted and used as an 
AD biomarker, and both CSF and plasma Aβ42 continue to 
be intensively studied (Tables 1 and 2). CSF Aβ42 is recog-
nized as a core biomarker for AD diagnosis and is currently 
being considered by the FDA for qualification for subject 
selection in clinical trials (Table 2). It shows great promise 
as a biomarker for prognosis and has the potential to be used 
during drug trials to help assess target engagement. Plasma 
Aβ42 may prove to be useful for subject/patient selection 
(screening) and research is ongoing. There are several com-
mercially available assays, and for CSF Aβ42, there are 
in vitro diagnostic (IVD) assays in Europe and fully auto-
mated assays.

Aβ40

Aβ40 is the predominant form of Aβ peptide in the brain 
[322, 348, 349], CSF [290, 322], and plasma [277], but it 
does not appear to be as pathogenic as Aβ42 [246]. Aβ40 
may have protective effects against Aβ plaque formation 
[180] but it is the relative amount of Aβ40 to Aβ42 that 
may be more important than the absolute amounts of either 
peptide [188].

Research on CSF Aβ40 and its correlation with AD 
dementia has shown inconsistent results [73, 248, 338], and 
a meta-analysis by Olsson et al. (data from 25 AD cohorts 
and 24 control cohorts) found only a minor association 
[271]. One study demonstrated an association between PET 
Aβ and CSF Aβ40 levels (as well as CSF Aβ38 and a com-
bination of Aβ40 and Aβ38), although the association was 
stronger in individuals who were not carriers of the apolipo-
protein-E (APOE) ε4 allele (a major genetic risk factor for 
AD) compared with APOE ε4-positive individuals [243]. 
CSF Aβ40 may be useful (together with other biomarkers) in 
assessing target engagement of drugs such as BACE1 inhibi-
tors, which selectively decrease Aβ40 and Aβ42 [173].

Although CSF Aβ40 shows no consistent change in 
AD across studies, the ratio of CSF Aβ42/Aβ40 has been 
shown to be a better predictor of Aβ-positive PET than CSF 
Aβ42 alone [161, 202, 205, 276], and comparable to the 
ratios of t-tau/Aβ42 and p-tau/Aβ42 [275, 294]. The Aβ42/
Aβ40 ratio also appears to be better than CSF Aβ42 alone 

at distinguishing AD from non-AD dementias [73, 161]. 
Assessment of the CSF Aβ42/Aβ40 ratio (together with CSF 
tau levels), instead of absolute levels of Aβ42, may reduce 
misdiagnosis of cognitively normal individuals who are low 
Aβ producers and AD patients who are high Aβ producers 
[388], and to correct for inter-individual differences in CSF 
dynamics. The use of the Aβ42/Aβ40 ratio can also help to 
reduce the impact of pre-analytical factors affecting Aβ42 
(and Aβ40) levels [104].

Studies on plasma Aβ40 have had mixed results [160, 
248], but the meta-analysis by Olsson et al. (data from 21 
AD cohorts and 19 control cohorts) found no difference 
between AD and controls [271]. In a separate study, plasma 
Aβ40 did not correlate with Aβ-positive PET in cognitively 
normal elderly individuals [83]. However, as with CSF, the 
ratio of Aβ42/Aβ40 in plasma may be more useful than 
Aβ40 alone; plasma Aβ42/Aβ40 appears to be associated 
with an increased risk of progression to AD dementia [373, 
377], and has shown promise in detecting Aβ-positivity [87, 
261, 273, 274, 371, 377] and supporting the diagnosis of AD 
[31, 179, 383].

Overall, the data suggest that CSF or plasma Aβ40 
alone has limited utility as a biomarker for AD diagnosis 
but could be used to confirm target engagement of certain 
drugs (Tables 1 and 2). The ratio of Aβ42/Aβ40 in CSF and 
plasma appears to be useful for subject/patient selection and 
may be superior to Aβ42 alone (Table 2). Additionally, fluid-
based Aβ42/Aβ40 may be useful for prognosis but the data 
are limited. Commercial assays are available for fluid-based 
Aβ40 (and Aβ42), and IVD assays are available for CSF 
Aβ40 (and Aβ42) in Europe. Ongoing research may lead 
to the availability of validated assays for blood-based Aβ 
peptides in the future.

Shorter Aβ peptides

Aβ peptides shorter than 40 residues have been evaluated for 
potential utility as AD biomarkers. CSF Aβ38 was included 
in the meta-analysis by Olsson et al. (eight studies were ana-
lyzed) but there was no difference between AD patients and 
control subjects [271]. However, CSF Aβ38 has been found 
to correlate with PET Aβ [243] and the ratio of CSF Aβ42/
Aβ38 is better at predicting Aβ-positive PET than CSF Aβ42 
alone (and comparable to CSF Aβ42/Aβ40) [161]. Further-
more, CSF Aβ42/Aβ38 may be useful for differentiating 
between AD and DLB [259] and other non-AD dementias 
[161].

Another possible use for shorter Aβ peptides is to dem-
onstrate target engagement of drugs designed to affect Aβ 
processing. For example, treatment with γ-secretase modu-
lators is associated with a selective decrease in CSF Aβ42 
and Aβ40 and an increase in Aβ38 and Aβ37 [272], so these 
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biomarkers can be used to monitor patients receiving these 
drugs [341].

In summary, the evidence is limited for fluid-based Aβ 
peptides < 40 residues (Table 1) but commercial assays are 
available for CSF Aβ38 and this biomarker has the poten-
tial to be used for subject/patient selection (in combination 
with Aβ42) and to help demonstrate target engagement of 
γ-secretase modulators (Table 2).

Aβ oligomers

Aβ oligomers may play a key role in AD pathogenesis so 
the accurate detection and quantification of these species 
in CSF or blood could prove useful. Different technologies 
have been investigated and some have shown promise; exam-
ples include ELISA-based methods in CSF [143, 312, 396] 
and in plasma [381], single-molecule fluorescence micros-
copy in CSF [144], and a protein misfolding cyclic ampli-
fication assay method in CSF [308]. However, the overall 
findings have been inconsistent or unsatisfactory (reviewed 
by Schuster and Funke [318]). A number of methodological 
issues complicate measurement of Aβ oligomers, including 
the fact that the oligomeric state of these proteins varies and 
is affected by numerous factors.

BACE1

BACE1 has been shown to have several physiological func-
tions in addition to APP processing [376, 394]. It is believed 
to be a major protease for cell surface proteolysis, contrib-
uting to ~ 19% of identified shed proteins [186], including 
neuregulin, which has important functions in myelination 
[94]. Therefore, monitoring of BACE1 activity may be help-
ful in subjects receiving investigational BACE1 inhibitors.

CSF BACE1 activity and/or protein levels have been 
reported to be higher in subjects with MCI compared with 
AD patients or controls [407], and higher in AD patients ver-
sus controls [79, 258, 401]. Furthermore, the APOE ε4 allele 
has been associated with increased CSF BACE1 activity in 
both AD and MCI subjects [81]. CSF BACE1 activity has 
also been shown to be higher in subjects with MCI who pro-
gressed to AD compared with those with stable MCI [401]. 
However, some studies have found no differences in BACE1 
activity among AD, MCI, and control groups [283, 311], and 
one study found a decline in age-adjusted CSF BACE1 activ-
ity in AD patients compared with controls [392]. A recent 
study of elderly healthy subjects, who received chronic treat-
ment with a BACE1 inhibitor, reported no change in CSF 
BACE1 levels after BACE1 inhibition, but did find strong 
correlations between levels of CSF BACE1 and its down-
stream markers including CSF Aβ42 [362].

Plasma BACE1 has also been studied and has been shown 
to differentiate AD patients from controls [330, 393]. In 

addition, plasma BACE1 activity was found to be higher in 
subjects with MCI who progressed to AD compared with those 
with stable MCI or AD [330].

Overall, studies of BACE1 have given mixed results, and 
the association between BACE1 and AD remains unclear 
(Table 1). Recent research on BACE1 activity in plasma 
shows potential for subject/patient selection and prognosis 
(Table 2) but further studies are needed to validate the initial 
findings. Commercial assays are available to measure both 
BACE1 protein levels and BACE1 activity.

Tau pathology

Tau is a microtubule-associated protein comprised of six 
human isoforms predominantly located in the axon of neu-
rons [177]. Neuronal and/or glial inclusions of tau can be 
detected in several neurodegenerative diseases, or “tauopa-
thies”, including AD [152], which may be characterized, to 
some extent, by their tau isoform profile [252]. The NFTs 
characteristic of AD are composed primarily of hyperphos-
phorylated tau [19, 196].

The abnormal phosphorylation of tau in AD has been 
hypothesized to be driven by Aβ pathology [19, 177], 
although transgenic mice genetically engineered to develop 
Aβ plaques do not develop tau tangles [197], except after 
intracerebral injections of AD brain-derived tau [136].

Hyperphosphorylation of tau has several pathogenic 
effects. It reduces tau’s affinity for microtubules, and 
increases its likelihood to aggregate and fibrillize [309]. This 
leads to destabilization of microtubules with subsequent 
axonal transport failure and neurodegeneration, which can 
be offset or corrected by microtubule-stabilizing drugs [24, 
40, 405]. Hyperphosphorylation of tau is thought to cause 
its mislocalization to somatodendritic compartments, where 
it interacts with Aβ to cause synaptotoxicity through the 
excessive activation of the N-methyl-D-aspartate (NMDA) 
receptors [177]. In addition, hyperphosphorylation of tau is 
implicated in Aβ-induced cell death [200], possibly via a 
toxic gain of function mechanism [89].

Studies have shown that the density of neocortical NFTs 
has a stronger correlation than Aβ plaques with ante-mortem 
cognitive status (reviewed by Nelson et al.) [263]. This find-
ing, together with the involvement of tau in neurodegen-
erative processes, has led to increasing interest in tau as a 
therapeutic target for AD, with several compounds now in 
the early stages of clinical development [19, 60].

Fluid biomarkers of tau pathology

T‑tau and p‑tau

CSF t-tau and p-tau (tau phosphorylated at threonine 181), 
together with CSF Aβ42, are considered core biomarkers to 



830 Acta Neuropathologica (2018) 136:821–853

1 3

support AD diagnosis [75, 247] (Table 2). Both CSF t-tau 
and p-tau differentiate AD from controls, and given that CSF 
p-tau levels are normal in most other dementias, this bio-
marker is also important for differential diagnosis [33]. In 
Creutzfeldt–Jakob disease (CJD), CSF t-tau levels are very 
high (around 20 times higher than in AD), whereas p-tau is 
close to normal [297, 336]. As with CSF Aβ42, CSF tau has 
the potential to predict disease progression in cognitively 
unimpaired individuals [301] and in those with MCI [91, 
285]. CSF t-tau has been shown to predict more aggressive 
disease progression in patients with MCI due to AD or in 
mild-to-moderate AD [65].

Although CSF t-tau and p-tau are well-established AD 
biomarkers, their utility for diagnosis of AD is markedly 
improved when measured in combination with Aβ42 [75]. 
Hulstaert et al. found that the combination of CSF tau and 
Aβ42 was better than the individual biomarkers at discrimi-
nating AD patients from controls or subjects with other 
neurological disorders [148]. In the initial CSF study of the 
ADNI cohort, a logistic regression model combining Aβ42, 
t-tau, and the APOE ε4 allele count showed a stronger asso-
ciation with mild AD than Aβ42, t-tau, p-tau, or tau/Aβ42 
alone [326]. Both CSF t-tau/Aβ42 and p-tau/Aβ42 ratios 
have been shown to outperform any of the individual bio-
markers for distinguishing individuals with an Aβ-positive 
PET [85]. In a study of the Oxford Project to Investigate 
Memory and Ageing (OPTIMA) cohort, CSF t-tau/Aβ40 
and p-tau/Aβ42 were the best discriminators of autopsy-con-
firmed AD from controls [319]. The combination of CSF tau 
and Aβ42, in particular, p-tau/Aβ42, has also shown promise 
for differentiating AD from other dementias [299, 319].

The combination of tau and Aβ markers has also demon-
strated their utility for predicting disease progression. CSF 
t-tau/Aβ42 and p-tau/Aβ42 have been shown to predict cog-
nitive decline in cognitively normal individuals [84], and 
the combination or ratios of tau (t-tau or p-tau) and Aβ42 
have been shown to be better at predicting progression from 
MCI to AD than the individual biomarkers [91, 374]. Fur-
thermore, the EMA approved CSF Aβ42/t-tau for use as an 
enrichment biomarker in a study of a γ-secretase inhibitor 
[77]. More recently, the synergistic interaction between CSF 
p-tau and Aβ imaging was found to be associated with the 
progression from MCI to AD dementia [280].

CSF t-tau and p-tau are frequently measured in clinical 
trials but, as with CSF Aβ42, the relationship between clini-
cal endpoints or therapeutic drug (interventional) response 
and these biomarkers is unclear [298], owing to their small 
longitudinal variation [34, 41] and the lack of DMTs that 
precludes testing their performance. Other challenges 
include variability in measured values due to pre-analytical 
and analytical factors, and the lack of consensus on cut-off 
values [98]. However, it is feasible that CSF tau could be 

used to assess target engagement of tau-targeted drugs [174, 
363].

In addition to the CSF tau biomarkers, plasma tau has 
also been evaluated and has shown potential for clinical 
utility. The meta-analysis by Olsson et al. (data from six 
AD cohorts and five control cohorts) found an association 
between plasma t-tau and AD [271]; however, no significant 
difference in plasma t-tau has been reported between MCI 
subjects and controls [61, 245, 404]. Elevated plasma t-tau 
is associated with lower grey matter density but the brain 
atrophy pattern associated with plasma t-tau is different 
from that of CSF t-tau [68]. Longitudinally, higher levels 
of plasma t-tau have been associated with greater cognitive 
decline and risk of MCI [245, 251]. Notably, the relation-
ship between plasma t-tau and cognition was independent of 
elevated brain Aβ [251]. These findings suggest that plasma 
t-tau could be useful as a screening tool or a prognostic 
marker for non-specific cognitive decline in cases where 
acute central nervous system (CNS) injury has been ruled 
out. Blood-based p-tau has also been measured in a few 
recent studies and found to be elevated in AD patients [329, 
358, 395] and MCI subjects [329, 395] compared with con-
trols. In addition, platelet-derived tau has been explored, and 
preliminary studies suggest that the ratio of high molecular 
weight to low molecular weight tau is higher in AD than in 
controls [264, 337]. However, the role of platelet-derived tau 
is not clear; it could either be a confounder or help to clarify 
the relationship between central and peripheral compartment 
tau measurements.

Although most tau biomarker research has focused on 
t-tau and p-tau, studies suggest that a variety of other tau 
peptides and fragments can be detected in CSF [250] and in 
serum [150], and some may have potential as AD biomark-
ers. For example, one study found that 11 (of 47) differ-
ent tau phosphopeptides were upregulated in AD patients 
relative to controls [306], while another study found that 
non-phosphorylated tau also has potential as a diagnostic 
biomarker [204]. These initial studies may lead to further 
research into novel tau biomarkers, which may be especially 
helpful in the development of tau-directed therapies.

In summary, CSF t-tau and p-tau are widely accepted 
and used in AD research (Tables 1 and 2). They are recog-
nized as core biomarkers to support the diagnosis of AD 
and are currently being considered for qualification by the 
FDA for subject selection in clinical trials (Table 2). CSF tau 
also shows promise as a biomarker for prognosis and target 
engagement. Commercial assays are available for both CSF 
t-tau and p-tau, including IVD assays in Europe and fully 
automated assays. There has been recent renewed interest 
in plasma t-tau, which shows potential for subject/patient 
selection (screening) and for prognosis (Table 2). In addi-
tion, research into other tau biomarkers (blood-based p-tau, 
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platelet-derived tau, tau peptides/fragments) is ongoing but 
is still in its early stages.

Vascular dysregulation

Concurrent cerebrovascular disease is more common in AD 
than in most other neurodegenerative disorders [365] and 
vascular dysregulation as a contributing factor to AD has 
been a long-standing hypothesis for AD pathogenesis [296, 
340]. The time sequence of the impact of vascular dysregu-
lation has been debated, but recent work supports the pos-
sibility that these changes may be an early pathological event 
that precedes Aβ pathology. The spatiotemporal changes in 
various neuroimaging, plasma, and CSF biomarkers from 
the ADNI cohort, suggest that vascular dysregulation is the 
earliest and strongest pathological factor associated with 
late-onset AD, followed by Aβ deposition, glucose metabo-
lism dysregulation, functional impairment, and grey matter 
atrophy [154].

Vascular dysregulation reduces oxygen and nutrient sup-
ply to the brain, causing cell damage and dysfunction of the 
blood–brain barrier, which lead in turn to neurotoxic effects 
such as oxidative stress and inflammation [69]. The hypoxic 
conditions are thought to increase the accumulation of Aβ 
peptides through the activation of BACE1 and γ-secretase 
[307]. Additionally, disruption of the blood–brain barrier 
has been suggested to impair clearance of Aβ peptides from 
the brain [48].

Fluid biomarkers associated with the vascular 
system

hFABP

Heart-type fatty acid-binding protein (hFABP), which has 
been proposed as a biomarker of myocardial infarction 
[1], was the CSF analyte with the highest degree of abnor-
malities in the spatiotemporal analysis of the ADNI cohort 
[154]. It was also identified as a potential AD biomarker 
in an independent cohort [146]. FABP showed associations 
with CSF Aβ42 levels but not with cognitive impairment 
[201]. In the meta-analysis by Olsson et al., CSF hFABP 
had a moderate association with AD (data from five AD 
and control cohorts), with a lower degree of change in AD 
versus controls than seen for t-tau [271]. CSF hFABP has 
also been shown to predict progression from MCI to AD 
[119], correlate with brain atrophy among individuals with 
low CSF Aβ42 [67], differentiate AD and DLB from Parkin-
son’s disease (PD) and other neurological diseases [53], and 
correlate with cognitive impairment in a cohort of patients 
with different neurodegenerative diseases [53]. The source 
of hFABP in CSF is uncertain but it is highly expressed in 

the brain where hFABP levels are second only to levels in 
muscle tissues (https ://www.prote inatl as.org/ENSG0 00001 
21769 -FABP3 /tissu e).

Serum hFABP was included in the meta-analysis by Ols-
son et al. and showed no association with AD (data from two 
AD and control cohorts) [271]; one study suggested it may 
be useful for differentiating between AD and DLB when 
measured as a ratio with CSF tau [254].

In summary, recent data for hFABP suggest that it may 
play a more important role in AD than previously thought 
(Table 1). CSF hFABP could be useful for both subject/
patient selection and prognosis (Table 2) but further studies 
are needed to confirm these hypotheses. Commercial assays 
are available for CSF and serum hFABP.

Inflammation/glial activation

Inflammation has been proposed as a contributor to AD 
pathogenesis [37, 44]. Aβ plaques and NFTs induce an 
immune response in the brain, which is characterized by 
activated glial cells [37]. Microglia and astrocytes are the 
two main types of glial cells implicated in the pathogenesis 
of AD [37]. Microglia, the resident immune effector cells 
of the CNS, are important for brain homeostasis as well as 
immune responses [52]. Astrocytes are the most abundant 
type of glial cell in the CNS. They have important roles in 
homeostasis, synaptogenesis, signal transmission, and syn-
aptic plasticity, and provide trophic and metabolic support 
to neurons [342].

The activation of glial cells serves to protect the brain; 
however, uncontrolled and prolonged activation can lead to 
detrimental effects that override the beneficial effects [37]. 
In this condition, glial cells lose some of their homeostatic 
functions and acquire a pro-inflammatory phenotype. The 
release of pro-inflammatory molecules, reactive oxygen spe-
cies, and nitric oxide contribute to neuronal cell death. In 
addition, pro-inflammatory molecules increase Aβ synthesis 
as well as tau hyperphosphorylation [37].

Fluid biomarkers of inflammation/glial activation

TREM2

Triggering receptor expressed on myeloid cells 2 (TREM2) 
is expressed by many cells of the myeloid lineage, including 
microglial cells in the CNS, and has several physiological 
functions including the regulation of myeloid cell number, 
phagocytosis, and inflammation [162]. TREM2 expression 
is upregulated in AD brains, where it may have a protective 
effect in the early stages, through the phagocytic clearance 
of Aβ, but a pathogenic effect in the later stages, through 
activation of the inflammatory response [162]. Rare TREM2 

https://www.proteinatlas.org/ENSG00000121769-FABP3/tissue
https://www.proteinatlas.org/ENSG00000121769-FABP3/tissue
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gene variants have been associated with an increased risk of 
developing AD [59, 116, 304, 332]. TREM2 haplodeficiency 
in mice and humans has been associated with increased 
axonal dystrophy and p-tau accumulation around Aβ plaques 
[400].

A soluble variant, sTREM2, can be detected in CSF and 
has the potential to be used as a biomarker for AD. One 
study found that CSF sTREM2 levels were increased in 
autosomal dominant AD mutation carriers 5 years before 
expected symptom onset but after initial Aβ deposition (as 
measured by PET) and changes in CSF Aβ42 and t-tau [344]. 
Some studies have found slightly higher CSF sTREM2 levels 
in AD [38, 141, 287, 346] and MCI groups [38] compared 
with controls, and in subjects with MCI due to AD com-
pared with other AD groups (preclinical AD or AD demen-
tia) [346]. However, one study found no difference between 
patients with AD or MCI and cognitively normal controls 
[139]. In patients with MCI, elevated CSF sTREM2 levels 
correlated with increased grey matter volume and reduced 
diffusivity, suggesting a role for TREM2 in the regulation of 
the neuroinflammatory response in early AD [107].

Levels of TREM2 mRNA in peripheral blood mononu-
clear cells and TREM2 protein expression on monocytes 
have been reported to be higher in patients with AD than 
in controls, and inversely correlated with cognitive per-
formance [145]. In the same study, there was also a trend 
for upregulation of TREM2 protein on granulocytes and 
in plasma but this was not statistically significant [145]. 
Subsequent studies by other groups also found increased 
peripheral TREM2 mRNA expression in AD compared with 
controls [255, 352].

In summary, a few studies have observed increased levels 
of CSF sTREM2 and peripheral TREM2 expression in AD 
(Table 1), suggesting possible use in subject/patient selec-
tion (Table 2) but additional research is required to vali-
date these findings. Commercial assays are available for the 
measurement of TREM2 protein.

YKL‑40

YKL-40 (or chitinase-3-like protein 1) is upregulated in a 
variety of inflammatory conditions and cancers, and may 
have a role in promoting inflammation and angiogenesis 
[211]. In AD, YKL-40 is expressed in astrocytes near Aβ 
plaques [57] and correlates positively with tau pathology 
[293], suggesting a role for YKL-40 in the inflammatory 
response in AD and other tauopathies.

Several studies have shown that CSF YKL-40 levels are 
higher in AD patients compared with controls [4, 11, 23, 57, 
176, 303, 384], and in the late preclinical AD stages com-
pared with early preclinical stages [2]. The meta-analysis by 
Olsson et al. found that the degree of increase is modest (data 
from six AD cohorts and five control cohorts) compared 

with the change in neuronal proteins such as t-tau and neu-
rofilament light (NF-L) [271]. However, a recent study of 
the ADNI cohort found no significant difference between 
the AD and cognitively normal groups, although levels 
were higher in AD versus MCI Aβ-negative (based on CSF 
Aβ42) subjects [347]. Longitudinally, all groups showed 
an increase in CSF YKL-40 over time, but the change was 
statistically significant only in the MCI Aβ-positive group 
(mean follow-up was 4 years) [347]. CSF YKL-40 levels 
have been shown to correlate with neuroimaging parameters, 
including cortical thickness in AD-vulnerable areas in sub-
jects who were Aβ42-positive (by CSF) [3] and grey matter 
volume in APOE ε4 carriers [106].

Higher levels of CSF YKL-40 and YKL-40/Aβ42 ratio 
have been associated with increased risk of progression 
from normal cognition to MCI [57]. Levels of CSF YKL-
40 have been found to predict progression from MCI to AD 
and increase longitudinally in MCI and AD patients but not 
in cognitively normal individuals [176]. CSF YKL-40 has 
also been shown to differentiate AD from DLB, PD [384], 
FTLD [23], and non-AD MCI [138], although one early 
study found no differences among diagnostic groups [244].

Plasma YKL-40 has also been assessed as an AD bio-
marker, and elevated levels have been reported in patients 
with mild AD [57] and early AD [54] compared with con-
trols. However, plasma YKL-40 did not demonstrate utility 
for predicting cognitive decline [57].

In summary, the available evidence supports a role for 
CSF YKL-40 as a biomarker of neuroinflammation or 
astrogliosis in AD and other neurodegenerative diseases 
(reviewed by Baldacci et al. [20]), with the potential to 
aid subject/patient selection and prognosis (Tables 1 and 
2). Plasma YKL-40 could also be useful for subject/patient 
selection, but further studies are needed. Commercial assays 
are available.

Other inflammatory markers

Interferon-γ-induced protein 10 (IP-10), which has roles in 
angiogenesis as well as inflammation and is secreted by a 
variety of cells [10, 223], has been reported to be increased 
in the CSF of patients with MCI and mild AD but not in 
severe AD [101]. However, in another study, IP-10 levels 
were not increased in the AD group [384]. In a recent study 
in asymptomatic older adults, increased levels of CSF IP-10 
were associated with increased levels of CSF t-tau and p-tau 
[29].

IP-10 was the plasma analyte with the highest degree of 
abnormalities in a spatiotemporal analysis of biomarkers 
from the ADNI cohort [154]. However, a previous study 
found no association between serum IP-10 and AD [102].

Overall, very few studies have investigated IP-10 in AD 
and the results have been mixed (Table 1). Potentially, CSF 
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or blood-based IP-10 could support subject/patient selection 
(Table 2), but further research is warranted to clarify the role 
of IP-10 in AD. Commercial assays are available.

Many other inflammatory markers have been investigated 
for their potential use as biomarkers for AD, but results have 
been inconsistent [142, 350]. In a meta-analysis of 40 studies 
on blood and 14 on CSF, AD patients had higher levels of 
interleukin (IL)-6, tumour necrosis factor (TNF)-α, IL-1β, 
transforming growth factor-β (TGF-β), IL-12, and IL-18 in 
blood, and higher levels of TGF-β in CSF, compared with 
controls [350]. In a more recent meta-analysis of 175 studies 
on blood, increased IL-1β, IL-2, IL-6, IL-18, interferon-γ, 
homocysteine, high-sensitivity C reactive protein, C-X-C 
motif chemokine-10, epidermal growth factor, vascular cell 
adhesion molecule-1, TNF-α converting enzyme, soluble 
TNF receptors 1 and 2, α1-antichymotrypsin and decreased 
IL-1 receptor antagonist and leptin were found in patients 
with AD compared with controls [191]. These findings 
strengthen the evidence that AD is accompanied by inflam-
matory responses, although the effects of age and sex and 
the precise roles of different inflammatory mediators are still 
to be established. A more systematic, within- and between-
subject, rigorous longitudinal evaluation may improve the 
utility of inflammatory markers in AD and other neurode-
generative diseases.

Synaptic dysfunction

Synaptic dysfunction and synapse loss are early events in 
AD pathogenesis [167, 218, 359]. Notably, hippocampal 
synapse loss and impaired synaptic function were detected 
in 3-month-old tau transgenic mice, when pathological tau 
was detectable biochemically but before microscopically 
visible neurofibrillary tau tangles emerged [397]. The level 
of synaptic loss in post-mortem brains has been found to 
correlate with pre-mortem cognitive function in individuals 
with MCI or early AD [62, 313]. The synaptic pathology 
in AD is found throughout the neuropil, without any clear 
accentuation in relation to plaques [30, 235]. Importantly, 
the synaptic loss in AD is more severe than the neuronal 
loss in the same cortical region [137, 237]. A PET tracer has 
recently been developed that binds to synaptic vesicle gly-
coprotein 2A (SV2A) and can be used to quantify synaptic 
density in vivo; this could be used to complement existing 
AD imaging tools in the future [93].

Evidence suggests that NMDA receptors are central to 
the synaptic dysfunction observed in AD. Overstimulation 
of NMDA receptors triggers an excessive influx of calcium, 
which in turn can lead to a series of downstream events that 
culminate in synaptic dysfunction and apoptosis [167, 369]. 
Aβ oligomers are thought to contribute to NMDA activation, 

possibly by causing an aberrant rise in extrasynaptic gluta-
mate levels [369].

Fluid biomarkers of synaptic dysfunction

Neurogranin

Neurogranin is predominantly expressed in dendritic spines 
and is involved in post-synaptic signalling pathways through 
the regulation of the calcium-binding protein calmodulin 
[70]. Animal models and genetic studies have linked neu-
rogranin to cognitive function and synaptic plasticity [70]. 
Notably, CSF neurogranin has been proposed as a marker 
of synaptic degeneration [361] and, together with other syn-
aptic proteins, holds promise to serve as a novel candidate 
marker for AD [218].

CSF neurogranin levels are higher in AD [63, 175, 190, 
221, 242, 291, 310, 347, 354, 361] or MCI patients [291, 
347] compared with controls or non-AD dementia patients 
[354]. Higher levels of CSF neurogranin have been reported 
in AD compared with MCI [138, 291], although there was 
no significant difference between AD and MCI Aβ-positive 
(based on CSF Aβ42) groups in a recent study of the ADNI 
cohort [347]. Also in the ADNI study, CSF neurogranin lev-
els decreased longitudinally in the AD group (mean follow-
up was 4 years) but there was no significant longitudinal 
change in any other group [347]. Neurogranin is processed 
to a series of C-terminal peptides before release into the 
CSF [190], but the relevance of the individual peptides is 
unknown. However, one study that used an assay specific 
for C-terminally truncated neurogranin observed increased 
levels in MCI patients but no significant difference between 
AD patients and controls [64]. CSF neurogranin has been 
shown to predict disease progression in several studies [175, 
189, 291, 354] including future cognitive impairment in cog-
nitively normal controls [354]. In addition, CSF neurogranin 
levels have been found to correlate with brain atrophy but 
only in individuals with Aβ pathology [282].

To date, no significant differences have been reported in 
plasma levels of neurogranin between patients with AD and 
controls [63, 190]. However, levels of neurogranin in neu-
ronally derived exosomes in plasma have been found to be 
lower in AD patients compared with controls [110, 389], as 
well as in MCI subjects who progressed to AD compared 
with stable MCI subjects [389].

Overall, the available data indicate that CSF neurogranin 
(and potentially, plasma neuronally derived exosomes) could 
be useful as an AD biomarker for subject/patient selection 
and prognosis (Tables 1 and 2), although results may vary 
depending on the neurogranin fragment being measured 
(full-length vs C-terminal peptides and C-terminus intact 
vs truncated). Commercial assays are available.
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SNAP‑25 and synaptotagmin

The exocytosis of synaptic vesicles for neurotransmitter 
release is a complex process, mediated by several proteins 
including the SNARE (soluble N-ethylmaleimide-sensitive 
factor attachment protein receptor) complex and the calcium 
sensor protein synaptotagmin [131]. Post-mortem studies 
on AD brains have shown altered levels of several synap-
tic proteins, including synaptosome-associated protein 25 
(SNAP-25), a component of the SNARE complex [74], and 
synaptotagmin [236, 351].

CSF levels of SNAP-25 [36, 347] and synaptotagmin 
[270] have been assessed and found to be elevated in patients 
with AD or MCI compared with controls. In a study of the 
ADNI cohort, baseline CSF SNAP-25 levels were higher in 
AD and MCI Aβ-positive (based on CSF Aβ42) groups than 
the cognitively normal (Aβ-positive or -negative) and MCI 
Aβ-negative groups [347]. CSF SNAP-25 levels decreased 
longitudinally in the AD group (mean follow-up was 4 years) 
but there was no significant longitudinal change in any other 
group [347]. No studies have been published to date on 
blood-based SNAP-25, but synaptotagmin levels in plasma 
neuronally derived exosomes have been reported to be lower 
in AD patients than in controls [110]. The data are limited 
but suggest there could be a role for the synaptic proteins, 
SNAP-25 and synaptotagmin, as AD biomarkers for subject/
patient selection (Tables 1 and 2). Commercial assays are 
available for both SNAP-25 and synaptotagmin.

α‑Synuclein pathology

α-Synuclein is an abundant neuronal protein, predominantly 
localized in the presynaptic terminals, and involved in vesi-
cle fusion and neurotransmitter release [181]. Aggregates 
of α-synuclein are the main component of LBs, which are 
intracellular inclusions characteristic of certain neurodegen-
erative diseases termed α-synucleinopathies [181]. Primary 
α-synucleinopathies include PD, PDD, DLB, and multiple 
system atrophy [181]; however, α-synuclein aggregates are 
also found in approximately half of sporadic AD brains 
[121] and Down’s syndrome brains with concomitant AD 
pathology [213], and in almost all cases of familial AD with 
PSEN 1 mutations [203].

α-Synuclein oligomers have been shown to have multiple 
toxic effects including inflammation, synaptic dysfunction, 
compromised cell membrane integrity, and impaired intra-
cellular protein degradation [151, 406]. Furthermore, there 
is growing evidence that α-synuclein may act in a prion-like 
manner such that misfolded α-synuclein can be propagated 
from cell to cell [35, 118, 164, 370], even in wild-type non-
transgenic mice [229]. The relationship between AD pathol-
ogy and α-synuclein is unclear, although studies suggest that 

α-synuclein can act synergistically with both tau [105] and 
Aβ [234] to promote their aggregation and accumulation.

Fluid biomarkers of α‑synuclein pathology

α‑Synuclein

Although CSF α-synuclein was developed as a candidate 
biomarker for PD, levels of CSF α-synuclein have been 
found to be higher in patients with MCI [183] and AD [183, 
232, 339] compared with controls. However, in one study, no 
differences were reported between diagnostic groups except 
for higher levels in rapid progressors (MCI patients who 
developed AD during the 2-year study and had a short dura-
tion of symptoms before the study) [27]. CSF α-synuclein 
shows a strong correlation with CSF t-tau and a weaker cor-
relation with p-tau in AD, but a subset of patients in the 
ADNI cohort had a mismatch—high p-tau accompanied by 
low α-synuclein levels—it was hypothesized that this CSF 
signature could represent concomitant LB pathology in AD 
patients [366].

CSF α-synuclein has been assessed as a biomarker in PD 
and other neurodegenerative diseases [66, 171, 253] and is 
a major focus area (together with tau and Aβ) of the Par-
kinson’s Progression Marker Initiative (PPMI) [168, 169]. 
α-Synuclein in plasma [212], and even in salivary secretions 
[380], has been investigated in PD.

CSF α-synuclein levels have been reported to be slightly 
lower in PD compared with AD [253] or controls [66, 168, 
169, 253]. CSF α-synuclein levels were lower in DLB 
patients compared with AD patients in some studies [172, 
253, 339], most often with a large overlap between the diag-
nostic groups, but the opposite was observed in one study 
[170]. Importantly, CSF α-synuclein levels are many-fold 
higher in CJD than in PD [171, 253]. Commercial assays are 
available for total α-synuclein and one has been clinically 
validated for the diagnosis of sporadic CJD [225].

Most currently available assays for α-synuclein have been 
designed to measure total amounts of the protein and not 
LB-specific fragments, although phosphorylated α-synuclein 
has been detected in CSF of PD patients [382]. There are 
reports of increased CSF concentrations of α-synuclein oli-
gomers in CSF of PD patients [132, 233, 364], and recent 
publications on sensitive assays that appear to detect the 
minute amounts of putative seeds of α-synuclein oligomers 
in CSF [86, 325].

Plasma levels of α-synuclein have been reported to be 
elevated in patients with PD compared with controls [195] 
and correlate with cognitive decline [212]. No differences in 
plasma have been found between AD and controls [49, 331].

In summary, although fluid-based α-synuclein has prom-
ise as a diagnostic and prognostic biomarker for PD and 
CJD, studies in AD have been relatively limited and its 
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potential role as a biomarker is unknown (Table 1). Never-
theless, α-synuclein may prove to be useful for identifying 
LB pathology among AD patients, therefore, could support 
subject/patient selection (Table 2).

TDP‑43 pathology

TDP-43 binds both DNA and RNA and is involved in tran-
scription and splicing. Under pathophysiological conditions, 
TDP-43 accumulates in the cytoplasm and is hyperphos-
phorylated and/or ubiquitinated, and this is characteristic 
of the cytoplasmic inclusions observed in ALS and in many 
cases of FTLD [51, 265]. TDP-43 pathology is also detected 
in 20–50% of AD patients [7, 50, 159], and appears to be 
associated with greater brain atrophy, memory loss, and cog-
nitive impairment [50, 163]. Studies suggest that TDP-43 
pathology can be triggered by Aβ peptides, and that TDP-43 
contributes to neuroinflammation and may have a role in 
mitochondrial and neural dysfunction [50].

Fluid biomarkers of TDP‑43 pathology

TDP‑43

A few studies have reported on CSF and plasma TDP-43 in 
ALS and FTLD [165, 187, 345], but research has been ham-
pered by difficulties with detecting the protein (candidate 
antibodies have been reviewed by Goossens et al.) [111]. 
Furthermore, CSF TDP-43 appears to be mainly blood-
derived, although it may be possible to enrich for brain-
specific fractions of TDP-43 from exosomes in CSF [90].

One study reported elevated plasma TDP-43 in a greater 
proportion of AD patients compared with controls [97]. 
Another small study found that plasma levels of disease-
related TDP-43 variants were increased in the pre-MCI stage 
in subjects who subsequently progressed to AD dementia 
[387].

Overall, research to date suggests that blood-based TDP-
43 may have a role as an AD biomarker for subject/patient 
selection and prognosis and could be more useful than CSF 
TDP-43 (Tables 1 and 2). Commercial assays are available.

Iron toxicity

Iron is important for normal functioning of the brain, but when 
present in excess it is known to cause neurodegeneration, for 
example in the genetic disorders classified as neurodegenera-
tion with brain iron accumulation (NBIA) [135]. Studies have 
shown elevated iron in AD [55, 226] and MCI [372] brains, 
which is also replicated in animal models [210]. Iron is a 
redox-active biometal that has been shown to bind Aβ in vitro 

and cause its aggregation, while releasing hydrogen peroxide 
[147]. Intracellular iron can influence APP processing and 
bind to hyperphosphorylated tau and induce its aggregation 
[58]. In a recent magnetic resonance imaging study, brain iron 
measured by quantitative susceptibility mapping was shown 
to be moderately elevated in people with PET-confirmed Aβ, 
but highly predictive of cognitive decline over 6 years only in 
subjects with Aβ, suggesting that iron accelerates the clinical 
manifestation of the underlying pathology [16].

Fluid biomarkers associated with iron metabolism

Ferritin

Ferritin is the major intracellular iron storage protein in the 
body and has an important role in brain iron homeostasis 
[333]. Inherited ferritinopathies are associated with motor and 
cognitive dysfunction [333], and ferritin levels are increased in 
AD brain tissue [58]. CSF levels of ferritin have been shown to 
be higher in APOE ε4 carriers than in non-carriers, but there 
was no difference in levels among subjects with AD or MCI 
and controls [15]. Increased CSF ferritin levels were associated 
with cognitive decline and predicted progression from MCI 
to AD, regardless of APOE genotype [15]. In a subsequent 
analysis, CSF ferritin was associated with cognitive decline 
in cognitively normal subjects, but the association was strong-
est in APOE ε4 carriers [14]. In the same cohort, high CSF 
ferritin was associated with accelerated depreciation of CSF 
Aβ42 in subjects with a high tau/Aβ42 ratio [13]. Plasma fer-
ritin levels showed a modest correlation with CSF levels, but 
unlike CSF ferritin, there was no difference in plasma ferritin 
between APOE ε4 carriers and non-carriers [15]. In another 
study, plasma ferritin levels were elevated in cognitively 
normal subjects with Aβ pathology identified by PET when 
adjusted for covariates (age, sex, APOE ε4 status, and levels 
of C-reactive protein), although ferritin alone had a relatively 
minor effect compared with the base model (derived from 
logistic regression of the same covariates) [112].

In summary, the data are limited but a small number of 
studies suggest that both CSF and plasma ferritin may be use-
ful as AD biomarkers (Table 1). CSF ferritin may have a role 
as a prognostic biomarker, whereas plasma ferritin could be 
used for subject/patient selection (screening) to help identify 
preclinical AD (Table 2); however, further studies by inde-
pendent groups are needed to validate the initial findings. 
Commercial assays are available.
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Other neuronal proteins

VILIP‑1

Visinin-like protein 1 (VILIP-1, or VLP-1) is a neuronal 
calcium sensor protein involved in signalling pathways 
related to synaptic plasticity [115]. CSF VILIP-1 was iden-
tified through mouse gene array analyses as being abun-
dantly produced in the brain [192]. It was subsequently 
associated with AD and found to correlate with CSF t-tau 
and p-tau [194], supporting its use as a neurodegeneration 
marker.

CSF VILIP-1 levels have been shown to be higher in 
patients with AD compared with controls in several stud-
ies [194, 230, 257, 347, 355], although one study found 
no significant difference [176]. The meta-analysis by Ols-
son et al. found VILIP-1 to have a moderate association 
with AD (data from four AD and control cohorts) with 
around 50% higher levels in AD than in controls [271]. AD 
patients had higher levels than MCI subjects in one study 
[257] but no difference was noted in a later study [17]. In 
a recent study of the ADNI cohort, baseline CSF VILIP-1 
levels were higher in Aβ-positive (based on CSF Aβ42) 
MCI and AD subjects compared with both the Aβ-negative 
MCI and Aβ-negative cognitively normal groups [347]. 
No significant differences were found between any of the 
Aβ-positive subsets of the cognitively normal, MCI, and 
AD groups. CSF VILIP-1 levels decreased longitudinally 
in the AD group (mean follow-up was 4 years) but there 
were no significant longitudinal changes in any other 
group [347]. CSF VILIP-1 may be prognostic of future 
cognitive decline [355], rates of cognitive decline [357], 
rates of brain atrophy [356], and progression from MCI to 
AD [176]. In addition, studies suggest that CSF VILIP-1 
can diagnostically differentiate AD from other dementias 
[17, 230, 355].

Data on plasma VILIP-1 are limited; plasma levels were 
found to be higher in patients with mild AD compared 
with controls in one study, although the difference was 
more significant in CSF than in plasma [355].

Overall, the data for VILIP-1 suggest a possible role in 
subject/patient selection and prognosis (Tables 1 and 2) 
but study results have varied so further research is war-
ranted. Commercial assays are available.

NF‑L

Neurofilaments are intermediate filaments expressed in 
neurons and are particularly abundant in axons [398]. They 
are composed of four subunits—neurofilament light (NF-
L), neurofilament middle (NF-M), neurofilament heavy 

(NF-H), and α-internexin in the CNS, and NF-L, NF-M, 
NF-H, and peripherin in the peripheral nervous system 
[398]. Neurofilaments are essential for the radial growth 
of axons during development, structural support, and the 
transmission of electrical impulses [398]. Recent research 
suggests that they are also important for normal synaptic 
function [399]. Abnormal aggregation and other altera-
tions of neurofilaments are evident in several neurological 
diseases including AD [378, 398, 399] and in the LBs of 
PD [316].

CSF levels of the NF-L subunit are known to be increased 
in several neurodegenerative diseases, supporting its role 
as a marker of axonal injury [231, 286, 334]. CSF NF-L 
levels have been shown to be higher in AD [4, 220, 288, 
334, 403] and MCI patients [403] compared with controls, 
and correlate with cognitive impairment and short survival 
time in patients with dementia [335]. The meta-analysis by 
Olsson et al. found CSF NF-L to have a large effect size 
for differentiating between AD patients and controls (data 
from nine AD cohorts and eight control cohorts) [271]. CSF 
NF-L correlates with brain atrophy [282, 403], but appears 
not to be specific for AD since levels are elevated in other 
neurodegenerative diseases, likely reflecting non-specific 
axonal injury [28, 103, 282]. In multiple sclerosis (MS), 
CSF NF-L has been shown to correlate with clinical and 
radiological outcomes, making it potentially useful for moni-
toring response to therapy [182, 249, 266, 267].

Recently, there has been great interest in the potential 
utility of NF-L in blood as a biomarker for several neurode-
generative diseases including AD, MS, progressive supra-
nuclear palsy (PSP), ALS, and Huntington’s disease [43, 71, 
228, 240, 302, 385, 408], as well as a marker of traumatic 
brain injury [224, 324]. In AD, plasma or serum levels of 
NF-L have been shown to be elevated compared with con-
trols in presymptomatic individuals known to be carriers of 
AD-causing gene mutations [385] and subjects with MCI 
or AD [240, 408]. Furthermore, blood-based NF-L appears 
to correlate with poor cognition and brain atrophy [240, 
385]. In MS, serum NF-L has demonstrated potential as a 
biomarker for monitoring response to DMTs and predicting 
relapse [71], and in PSP, plasma NF-L has been shown to 
predict disease progression [302].

Taken together, these findings indicate that both CSF and 
plasma NF-L are promising biomarkers, although the spe-
cific COU has not been determined given that changes are 
observed in various neurodegenerative diseases, not just AD 
(Tables 1 and 2). Potentially, CSF NF-L could be useful as 
a non-specific marker of axonal injury and for prognosis, 
and recent research gives hope that plasma NF-L could be 
used as a non-invasive biomarker for subject/patient selec-
tion (screening) and prognosis (Table 2). Commercial assays 
are available and IVD assays are available for CSF NF-L in 
Europe.
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Discussion

In addition to the established core CSF biomarkers, Aβ42, 
t-tau, and p-tau, several candidate fluid biomarkers show 
potential for clinical use in AD, particularly to support 
diagnosis (and clinical trial subject selection) and prog-
nosis (or assessment of disease state) (Table 2). Of all the 
biomarkers reviewed, CSF Aβ42, t-tau, p-tau, and the ratio 
of tau/Aβ42 are already accepted for use as diagnostic 
biomarkers, while several other biomarkers hold prom-
ise for future use (Table 1). Further studies are needed 
for the validation and regulatory qualification of all these 
biomarkers. In addition, the relationship between the bio-
markers and clinical presentation (i.e. cognitive measures), 
as well as the effects of patient variables (e.g. sex, APOE 
ε4 status) on biomarker changes need to be investigated.

It should be noted that only a selection of promising 
biomarkers has been included in this review, and many 
other candidates are being studied at present. As well 
as other protein/peptide markers and panels [206], non-
protein analytes such as lipids [8], amino acids [56], and 
microRNAs [120, 328] are being explored. Advances in 
technologies such as mass spectrometry enable the precise 
measurement of analytes, helping to identify new candi-
date biomarkers [26] as well as supporting harmonization 
efforts for the core biomarkers [292].

Of all the possible biomarker COUs, there appears 
to be an unmet need for validated fluid biomarkers for 
drug development, especially for monitoring response to 
therapy and adverse reactions (Table 2). This is not sur-
prising given the current absence of approved DMTs but 
highlights the need for fluid-based surrogate biomarkers of 
drug efficacy and safety. The important role of biomarkers 
in AD drug development has been highlighted in the FDA 
draft guidance for industry [96].

Further development of candidate biomarkers, as well 
as identification of new ones, would benefit greatly from 
a unified and coordinated approach [100, 124, 178, 269]. 
There is a need to reach a consensus on the areas that 
require the most focus and to implement effective strate-
gies to advance the field. This effort requires collaboration 
among academia, industry, laboratory managers, and clini-
cians, at an international level.

An ever-increasing number of biomarkers are being 
researched, and studies have a considerable degree of het-
erogeneity (biomarker collection/methodology, disease 
diagnosis/stage of disease, and characterization of comor-
bid CNS diseases, especially neurodegenerative diseases), 
making it difficult to interpret results and establish how 
the biomarkers fit within the stages of AD pathogenesis. 
Publication bias may be a barrier in this step, as “nega-
tive” studies may be under-published. To fast-track data 

dissemination, a centralized database would be useful to 
share individual patient-level biomarker data. The Coali-
tion Against Major Diseases (CAMD), one of 12 consortia 
of the Critical Path Institute (C-Path), aims to include CSF 
biomarker data in a central repository as part of their on-
going initiative to advance regulatory drug development 
tools [12].

Once the data gaps are identified, studies can be designed 
to address the specific unmet needs. Careful planning 
of study design, subjects, and methodology is critical, to 
ensure that data gaps are appropriately addressed and that 
outcomes are reliable and representative of a wider popu-
lation. The COU should be decided from the outset, and 
this will influence the subject inclusion criteria and study 
design. For example, studies on biomarkers for preclinical 
AD should enroll cognitively normal subjects with evidence 
of AD pathology and include longitudinal follow-ups and 
biomarker measurements over 5 years or more.

For studies to provide meaningful and comparable data, 
a concerted effort needs to be made to reduce heterogeneity 
in study methodologies. The development and/or update of 
consensus recommendations and guidelines should help in 
this regard, for example, by standardizing diagnostic crite-
ria for different stages of the AD continuum, pre-analytical 
variables, assays, threshold values, and study designs and 
populations used for any given COU. The National Insti-
tute on Aging–Alzheimer’s Association (NIA–AA) is cur-
rently updating a research framework for AD, which will 
help to harmonize subject selection and disease staging in 
future studies. There have been longstanding efforts to better 
understand and control for pre-analytical sources of vari-
ability in CSF AD biomarkers, and consensus conferences 
have defined these [375]. A CSF pre-analytics consortium, 
sponsored by the Alzheimer’s Association is working to 
develop a consensus regarding remaining pre-analytical fac-
tors such as tube plastic type and other collection parameters 
that can be implemented into routine clinical practice. Fac-
tors that had been recognized but incompletely understood, 
such as the effect of tube type and CSF volume involved 
in transfer steps, were recently described and will help to 
clarify the potential impact of such factors on CSF AD bio-
marker measurements [386]. The International Federation of 
Clinical Chemistry Working Group for CSF proteins (IFCC 
WG-CSF) is an international joint effort to develop refer-
ence measurement procedures (RMP) and certified refer-
ence materials (CRM) with the aim of standardizing CSF 
biomarkers and harmonizing read-outs between assay for-
mats [185]. To date, two Joint Committee for Traceability in 
Laboratory Medicine (JCTLM) -approved RMPs and three 
CRMs for CSF Aβ42 are available, and work on Aβ40 and 
tau proteins is ongoing. In parallel with the recent drive to 
standardize CSF pre-analytics, guidelines have also been 
proposed by the Biofluid Based Biomarkers Professional 
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Interest Area (of ISTAART) for the pre-analytical process-
ing of blood-based AD biomarkers [268]. Furthermore, 
“Appropriate use criteria for CSF in clinical practice” are 
also being developed by the Alzheimer’s Association, which 
will help define the use of AD CSF biomarkers by clinicians 
for assessment of cognitive decline and impairment.

Although biomarkers are routinely included in drug 
studies for understanding target engagement and for patient 
enrichment, the hurdles are high for biomarker adoption to 
inform standard of care in daily clinical practice. Health 
agencies have recognized the importance of biomarkers, 
and both the FDA and EMA have developed pathways to 
accelerate biomarker qualification for clinical trials [12]. 
To achieve biomarker qualification, evidence is needed that 
the biomarker can reliably support a specified manner of 
interpretation and application in drug development for a 
specifically stated COU [12]. Therefore, the aforementioned 
hurdles, such as data sharing and standardization of study 
methods, are important to address at the earliest stages of 
biomarker research. Once a biomarker has been shown to 
be useful for a specific COU in the clinical trial setting, 
measures can be taken to further develop it as a companion 
biomarker useful to practitioners.

The ultimate goal in AD is to follow the approach devel-
oped in the more advanced research field of oncology and 
deliver precision medicine to all patients, in such a way that 
diagnosis, treatment, and prevention are “tailored” to the 
characteristics of the individual according to the precision 
medicine paradigm [46, 92, 126, 127, 129, 130]. In this 
context, the precision medicine strategy enables a paradigm 
shift from the traditional “one treatment fits all” approach in 
drug discovery towards biomarker-guided “tailored” thera-
pies, i.e. targeted interventions adapted to the biological pro-
file of the individual patient. In this regard, the US Precision 
Medicine Initiative (PMI) (https ://obama white house .archi 
ves.gov/preci sion-medic ine) and the US All of Us Research 
Program (https ://allof us.nih.gov/)—formerly known as and 
evolved from the US PMI Cohort Program (PMI–CP)—have 
been inaugurated recently. As is the case in most fields of 
medicine, important progress in detecting, treating, and pre-
venting AD is anticipated from the implementation of a sys-
tematic precision medicine strategy. Therefore, after more 
than a decade of failed therapy trials and one of the lowest 
success rates in drug development in medicine, the time has 
come to launch an international Alzheimer PMI (APMI) and 
associate it with the US PMI and other related worldwide 
initiatives [92, 126, 127, 129, 130].
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