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The tumor microenvironment is highly heterogeneous. It is composed of a diverse array of

immune cells that are recruited continuously into lesions. They are guided into the tumor

through interactions between chemokines and their receptors. A variety of chemokine

receptors are expressed on the surface of both tumor and immune cells rendering them

sensitive to multiple stimuli that can subsequently influence their migration and function.

These features significantly impact tumor fate and are critical in melanoma control

and progression. Indeed, particular chemokine receptors expressed on tumor and

immune cells are strongly associated with patient prognosis. Thus, potential targeting of

chemokine receptors is highly attractive as ameans to quench or eliminate unconstrained

tumor cell growth.
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INTRODUCTION

Patient outcome is dictated by the capacity of immune cells to mount an effective anti-tumor
response. Migration to, and infiltration of, tumors by immune cells is critical for achieving this
goal. Elevated tumor immune infiltration is often associated with a favorable prognosis in many
malignancies (1–3) including melanoma (4–6). Although fundamental in the anti-tumor immune
response, tumor infiltration by immune cells is a challenging process. Immune cells are guided from
the circulation to the tumor microenvironment by an evolutionarily conserved and sophisticated
system in the form of the chemokine network. Chemokines are cytokines with chemotactic
properties. This superfamily consists of 48 proteins classified into 4 groups (XCL, CCL, CXCL,
and CX3CL) based on the position of two cysteine residues in their sequence. They bind to 19G
protein-coupled seven transmembrane receptors that form either homodimers or heterodimers
(7–11). Similar to their ligands, chemokine receptors are classified into 4 groups, namely XCR,
CCR, CXCR, and CX3CR. Each receptor can bind to several ligands of the same family and
vice versa (Figure 1). Beyond this, atypical chemokine receptors also exist and most act as decoy
receptors that compete for ligand binding but are unable to deliver normal chemokine receptor
signals. They serve as negative regulators during inflammatory responses (12). The expression of
these receptors and ligands is finely regulated, both spatially and temporally, revealing distinct
functions at steady-state and during inflammatory responses. Many chemokines are constantly
expressed and participate in the maintenance of tissue integrity, while some chemokines are
transiently overexpressed or specifically induced in certain conditions (i.e., during inflammatory
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FIGURE 1 | Chemokine receptors and their corresponding ligands. Chemokine receptors (red) influence melanoma tumor cell migration/invasion or immune cell

trafficking to the tumor lesions. The chemokine receptor associated color code is conserved between Figures 1, 2. Images were taken from Servier Medical Art

(https://smart.servier.com) and modified by the authors under the following terms: Creative Commons Attribution 3.0 Unported License.

processes) where they are involved in critical biological functions
(i.e., immune cell migration, tissue repair, cell proliferation
and angiogenesis) (10, 13, 14). Both immune and non-immune
cells express these receptors and ligands, and the impact of this
expression differs according to cell types. On one hand, selective
expression drives the recruitment of specific immune cells into

tumors, subsequently influencing patient prognosis. On the other
hand, overexpression of chemokine receptors on cancer cells
facilitates tumor dissemination. Collectively, dysregulation of
this tightly regulated system contributes to tumor escape, and
therefore, appears to be an attractive target in melanoma and
other cancers.
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Here, we review the expression of chemokines and chemokine
receptors critically involved in skin migration, their expression
on immune and tumor cells and consequences on dictating
patient prognosis and, finally, their potential of targeting in
melanoma and other cancers.

MIGRATION TO THE SKIN

The skin forms a physical barrier between an organism and
the environment. It is mainly composed of melanin-producing
cells, melanocytes, epithelial cells, keratinocytes, stromal cells,
and immune cells that play critical roles both in maintaining
homeostasis with commensals and in rapidly detecting and
limiting pathogen infection and dissemination. Several immune
cell types reside in the skin and act as essential sentinels (15).
These include memory T cells, Langerhans cells and other
types of dendritic cells (DC), macrophages, mast cells and
innate lymphoid cells that collectively form a dense network
that underlies the entire skin surface (15, 16). Localized
at the frontline, keratinocytes are fundamental in protecting
us against infections. They express different receptors, called
pattern recognition receptors, specialized in the identification of
conserved motifs across microorganisms (17). Upon detection
of an infection or even after injury, activated keratinocytes start
to secrete antimicrobial peptides, pro-inflammatory cytokines
and chemokines (14, 15, 18, 19). In response to this local
accumulation of chemokines and particularly to CXCL8, CXCL1,
CCL2, CCL3 and CCL5, CXCR2-expressing monocytes and
neutrophils are attracted to the inflammatory site and amplify
this initial response (10, 15). Moreover, neutrophils are also
attracted to the skin via binding of surface expressed formyl
peptide receptor 1, to formylated peptides released by pathogens
or dead or dying cells (20). In parallel, skin-resident DC
drive immune responses through their potential to take up
antigens. This process induces DC maturation and activation
leading to membrane expression of CCR7 and CXCR4. In
addition, this expression provokes their migration from the
skin to the closest skin-draining lymph node (10, 21). Antigen-
specific T cells are imprinted with skin-homing molecules
following their engagement with, and activation by, primed
DC. These homing molecules include CCR3, CCR4, CCR5,
CCR10, CXCR3, and Cutaneous Lymphocyte associated Antigen
(CLA), a ligand for E-selectin (22–25). The expression of these
receptors facilitates T cell migration to the skin through binding
of E-selectin that is expressed selectively on activated skin
endothelial cells (22, 26). Moreover, together with skin-resident
cells, these endothelial cells also secrete specific chemokines such
as CCL17, CCL20, CCL22 and CCL27, ligand of CCR4, CCR6,
and CCR10, respectively, that guide these antigen-specific T
cells specifically to the inflamed skin lesion (15, 27–31). This
migratory pathway is essential for wound healing after skin injury
and for efficient elimination of infections. In addition, these
chemokine—chemokine receptor interactions are also of extreme
importance in melanoma immunity. Primary tumors localized
in the skin are continuously evolving as a result of the constant
infiltration to, and egress of cells from, the microenvironment.

This is facilitated by the presence of blood and lymphatic vessels
that guide immune cells to the tumor bed but also enable cancer
cells to disseminate to various organs. Chemokines and their
receptors are critically involved in these migratory processes and
actively control the specific metastatic melanoma landscape.

SPECIFIC CHEMOKINE RECEPTOR
EXPRESSION ON MELANOMA CELLS IS
ASSOCIATED WITH DISTINCT
METASTATIC DISSEMINATION

The formation of secondary lesions involves two major steps.
First, tumor cells are guided from the circulation to their
final location in response to a chemokine gradient expressed
in different organs and then, these newly seeded tumor cells
must survive and proliferate in these specific environments
subsequently forming distant metastases (9, 32). In cutaneous
melanoma, as a result of a specific chemokine receptor expression
pattern, melanoma cells disseminate in an organ-specific manner
that forms secondary lesions preferentially in draining lymph
nodes, lung, liver, gut and brain (Figure 2) (33, 34). To determine
the role of key chemokine receptors in tumor cell migration
in melanoma, many of the mouse studies described here
have used the prototypic mouse melanoma model, B16, or its
highly metastatic subclone B16F10 (35, 36). The combination
of preclinical studies and retrospective assessment of human
melanoma samples for chemokine receptor expression have shed
light on a finely controlled process that notably involves CCR4,
CCR6, CCR7, CCR9, CCR10, CXCR3, CXCR4, and CXCR7
expression.

CCR4–CCL17/CCL22 Axis
Several lines of evidence evoked by Klein et al. (37) tend
to associate CCR4 expression with increased brain melanoma
metastases (37). Endothelial cells, astrocytes and microglia cells
were shown to express high levels of CCR4 ligands, CCL17 and
CCL22 (37) that likely attract CCR4+ cells. In vitro incubation of
microglia cells with conditioned media from brain metastasizing
melanoma cells increased CCR4 ligand secretion. Furthermore,
CCR4 is more highly expressed on melanoma brain metastases
than on paired-primary melanoma tumors (37) (Figure 2). Klein
et al. (37) have further studied whether CCR4 overexpression
in melanoma cells favor brain metastasis formation. In vitro,
CCR4 overexpression enhanced cell viability and migration in
response to astrocyte-conditioned media and to recombinant
CCL17. This migration is partially abrogated by the concomitant
use of an anti-CCL17 antibody. In vivo, CCR4 overexpression
promoted primary tumor growth and enhanced brain metastases
formation in immunocompromised nude mice. Importantly,
mice inoculated with CCR4high expressing tumor cells and
treated with a CCR4 antagonist had a significant reduction of
primary tumor growth associated with a decrease of the presence
of brain micrometastases (37). Collectively these results suggest
that CCR4 overexpression on melanoma tumors might enhance
their potential to metastasize to the brain (Table 1, Figure 2).
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FIGURE 2 | Organ-specific melanoma metastases according to tissue/melanoma specific chemokine/chemokine receptor expression. Images were taken from

Servier Medical Art (https://smart.servier.com) and modified by the authors under the following terms: Creative Commons Attribution 3.0 Unported License.

CCR6–CCL20 Axis
CCR6 is expressed on melanoma cell lines and enhances their
migration and proliferation in response to stimulation by its
ligand, CCL20 (38). Importantly, CCR6 expression is detected on
tumor cells from primary melanomas, lymph node, skin, colon,
and brain metastases. Despite high expression on tumor cells,
CCR6 positivity is not associated with patient outcome. However,
CCL20 administration in CCR6+ tumor bearing mice increased
tumor weight and numbers of spontaneous lung metastases

(38) (Table 1, Figure 2) suggesting the potential involvement of
CCR6 in lung metastasis formation. Interestingly, Fusi et al. (53)
have evaluated the presence of CCR6 expression on circulating
tumor cells collected from metastatic carcinoma (N = 28)
and melanoma (N = 21) patients. Positive CCR6 expression on
circulating tumor cells, evaluated on the whole cohort, was not
found to be associated with the presence of lung metastases (53).
However, this chemokine receptor might be regulated differently
according to tumor type. Thus, further studies are required to
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TABLE 1 | Expression of chemokine receptors at the surface of melanoma cells involved in tumor progression.

Chemokine

Receptor

Roles in tumor

development/progression

Clinical association Cohort details Statistical analyses References

CCR4 Favor tumor cell viability, migration,

primary tumor growth, and brain

metastases formation

Not known In vitro and preclinical

models

(37)

CCR6 Enhanced tumor cell migration,

proliferation, tumor growth, and lung

metastasis formation

Not associated with

patient outcome*

40 primary melanomas Log-rank and Cox regression (38)

CCR7 Associated with regional lymph node

metastases

Poor prognosis Preclinical model and 38

primary human samples

Log rank test—P = 0.009 (39, 40)

CCR9 Expressed on tumor cells localized in the

small intestine–Sensitive to CCL25

stimulation

Not associated with

patient outcome* or not

assessed

38 primary samples Log rank test (40–42)

CCR10 Associated with an increase of regional

lymph node metastases, metastatic

sentinel lymph node, thickening of primary

lesions and poor T cell density

Shorter progression

free survival

40 primary lesions and 38

primary melanoma samples

Spearman correlation and

Log rank test–P = 0.002

(40, 43, 44)

CXCR3 Associated with thick primary lesions, the

absence of lymphocytic infiltration and the

presence of distant metastases—Increase

in cell adhesion, migration, and invasion of

CXCR3 expressing melanoma cells lines

upon stimulation.

Not associated with

patient outcome*

Primary melanomas and 9

Lymph node metastases

χ2, Mann-Whitney U and

Kruskal Wallis tests—Log-rank

test and Cox regression

(45–48)

CXCR4 Associated with the presence of

ulceration, thicker lesions—Induce tumor

cell proliferation, migration, and

invasion—Associated with liver and lung

metastases

Reduced disease-free

and overall survival

Primary melanomas and

metastatic samples

χ2 2-sided test—Log-rank test

and Cox regression

(47, 49–52)

*Complementary analyses on larger cohorts are warranted.

understand the impact of tumoral CCR6 expression in metastatic
dissemination and how this chemokine receptor might influence
melanoma outcome.

CCR7–CCL19/CCL21 Axis
Kuhnelt-Leddihn et al. have shown that 6 out of 38 primary
melanoma tumors evaluated presented with high CCR7
expression (40), a chemokine receptor involved in leukocyte
trafficking to secondary lymphoid organs in response to the local
production of CCL19 and CCL21 (Table 1, Figure 2). CCR7 has
also been found on circulating tumor cells and human metastatic
melanoma cell lines (51, 53). Treatment of metastatic melanoma-
derived cell lines with histone deacetylase inhibitor and
demethylating agents demonstrated that this increase in CCR7
expression is associated with the enhanced migratory responses
to CCL21 stimulation (54). Interestingly, CCL21 expression is
decreased in invaded lymph node compared to non-invaded
lymph node (55) that may suggest an escape mechanism
to avoid tumor immune infiltration, specifically by CCR7
expressing T cells and DC (10, 56). In mice, overexpression
of CCR7 in B16 melanoma cells increased metastasis to the
lymph node and neutralizing its ligand, CCL21, using a specific
antibody blocked this metastatic process (39), highlighting
the importance of this CCR7/CCL21 axis in the metastasis to
the regional lymph node. Overexpression of CCL21 in tumor
cells induce a tolerogenic microenvironment associated with
a production of Transforming Growth Factor-β (TGF-β) that

favors the recruitment of regulatory T cells (Tregs) and myeloid
deriving suppressor cells (MDSC) (57). More importantly, high
expression of CCR7 by melanoma cells is associated with a worse
patient outcome (40) (Table 1).

CCR9–CCL25 Axis
CCR9 is a chemokine receptor involved in the migration of T
cells and other immune cells to its ligand, CCL25, which is highly
expressed in the small intestine (58). Melanoma tumor cells that
have metastasized to the small intestine have been shown to
express CCR9 (41, 42) (Table 1, Figure 2). Importantly, CCR9+

melanoma cell lines derived from small intestinal metastases
are responsive to CCL25 (41, 42). CCR9 expression has been
also reported on circulating tumor cells (53). Unfortunately, the
association between CCR9 expression on circulating tumor cells
and small intestine metastases has not been assessed. Moreover,
after screening a panel of 38 primary melanoma tumors, CCR9
expressionwas not found to be associated with patient’s prognosis
despite being highly expressed in one third of lesions (40).
Collectively, these results suggest that CCR9 expression at the
surface of melanoma cells may be essential for the migratory
process to the gut (Figure 2).

CCR10–CCL27 Axis
CCR10 is expressed on melanoma cells in primary tumor lesions
(40, 43). Using a preclinical model of melanoma, overexpression
of CCR10 in B16 tumor cells protected them from the host
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immune responses leading to an increase in tumor size and
increased regional lymph node metastases (43). Incubating
tumor cells with a neutralizing antibody for CCL27, one of the
ligands of CCR10, prevented tumor formation (43). These results
indicate that CCR10 may play an important role in sustaining
tumor viability, protecting cells from immune responses and
favoring metastases formation to the regional draining lymph
node in response to CCL27. In humans, high CCR10 expression
may be associated with a shorter progression free survival (40)
(Table 1). Strikingly, patients with metastatic sentinel lymph
nodes had higher levels of CCR10 expression on primary tumor
cells than patients with negative sentinel lymph node (44). This
observation further supports the probable role of this chemokine
receptor in regional lymph node dissemination (Figure 2).
Moreover, high CCR10 expression was associated with thick
primary lesions and negatively correlated with intratumoral T
cell density (44) (Table 1). Altogether, CCR10 overexpression
on melanoma cells is associated with the possible presence of
regional lymph node metastases (Figure 2) accompanied by an
immune negative climate.

CXCR3–CXCL9/CXCL10 Axis
CXCR3 expression on primary lesion tumor cells is positively
associated with deleterious clinical parameters including
thickening of primary lesions, absence of lymphocytic
infiltration, and presence of distant metastases (47, 48) but,
surprisingly, is not correlated with patient outcomes (48).
Nonetheless, high CXCR3 expression evaluated on 40 primary
melanoma tumors tended to be associated with poor disease-free
and overall survivals (48). CXCR3 positive tumor cells are also
found in invaded lymph nodes (Figure 2) and together with
other metastatic locations including the kidney, ovary and
pleura (45, 59). Interestingly, tumor endothelial cells facilitate
melanoma migration through their production of CXCL9 (and
CXCL10). This results in endothelial barrier disruption and
transendothelial migration (59) (Figure 2). In addition, in
vitro stimulation of melanoma cell lines with CXCL9 induced
cytoskeletal rearrangements, cell adhesion and migration (45),
that favor cell trafficking and metastasis. Similarly, in vitro
incubation of the mouse melanoma cell line B16F10 with
CXCR3 ligands significantly enhanced migration and invasion of
these cells (46). Conversely, specific downregulation of CXCR3
in subcutaneous injected B16F10 tumor cells reduced their
metastatic capabilities to invade the tumor draining lymph node
(46). Mouse melanoma tumor cells incubated with the CXCR3
ligand, CXCL9, exhibited greater viability than the control cells
(Table 1), thus demonstrating that CXCR3 imparts a selective
advantage to tumor cells most likely allowing them to compete
more effectively for oxygen and nutrient availability in the
competitive tumor microenvironment (60–62).

CXCR4/CXCR7–CXCL12 Axis
In primary skin tumors, cancer cells express CXCR4, a
chemokine receptor involved in bone marrow homing and cell
retention (10). Importantly, high CXCR4 expression is associated
with the presence of tumor ulceration and thicker lesions, as well
as shorter disease-free survival, time to metastasis and overall

survival (47, 63) (Table 1). Tumoral CXCR4 expression has also
been detected on circulating tumor cells (53) as well as in liver,
lung, and nodal metastases (49, 51). Using melanoma cell lines,
Scala et al. demonstrated that these cells express functional
CXCR4, as in vitro stimulation with CXCL12 in serum free
media increased their proliferation that was abrogated with the
concomitant use of a CXCR4 inhibitor, AMD3100 (51). The
B16 mouse melanoma cell line constitutively expresses CXCR4.
This increased the cell migration, invasion and proliferation in
response to the binding its ligand, CXCL12 (52). Importantly,
CXCL12 stimulation induced cell adhesion to liver sinusoidal
endothelial cells and in vivo, B16 liver metastases are often
localized to CXCL12 expressing liver sinusoidal endothelial
cells. Mendt and Cardier (52) have shown that stimulation
of B16 cells with CXCL12 prior in vivo injection increased
the number of liver metastases (52). Several lines of evidence
tend to also involve the CXCR4-CXCL12 pathway in lung
metastasis formation. Firstly, high CXCL12 concentrations are
found in lungs (64). Secondly, overexpression of CXCR4 in B16
cells enhanced lung nodules formation (49, 50, 65) (Table 1).
Thirdly, the use of specific CXCR4 inhibitors, T22 or a dimeric
form of CXCL12, reduced lung metastases formation and
inhibited the growth of primary melanoma tumors (49, 66,
67). However, CXCR4 expression on circulating tumor cells
was not found preferentially associated with liver metastases
or with lung metastases in metastatic carcinoma or melanoma
patients (53).

CXCL12 also binds to its high-affinity receptor CXCR7, an
atypical chemokine receptor also known as ACKR3. CXCR7
is expressed on normal human epidermal melanocytes (68)
and primary melanoma tumors (63, 69). The role and
functions of CXCR7 in cell migration/chemotaxis is still
controversial (70). In neuroblastoma cell lines, overexpression of
CXCR7 was shown to limit cell growth and CXCR4/CXCL12-
mediated chemotaxis (71). In contrast, some studies have
demonstrated that CXCR7 expression favors hepatocellular
carcinoma cell proliferation, migration and VEGF production
(72), transendothelial migration of cancer cells (73, 74), and
tumor cell migration by forming heterodimers with CXCR4 (75).
Using the M14 melanoma cell line that expresses functional
CXCR7, Li et al. have demonstrated that in vitro incubation
of M14 cells with CXCL12 induced cell migration, which was
specifically reduced following abrogation of CXCR7 expression
(69). Furthermore, downregulation of CXCR7 expression in the
melanoma cell line decreased the growth of the xenotransplanted
tumor. However, the expression of CXCR4 was not reported in
this study. The full deletion of CXCR4 in M14 cells together
with themodulation of CXCR7 expression are warranted in order
to definitively determine the impact of this atypical chemokine
receptor on M14 cell growth and migration. Furthermore, its
expression on melanoma metastases and its association with
patient prognosis remain to be determined. Altogether, CXCR4
is involved in the metastatic spreading of melanoma cells and
therefore may influence patient outcomes. Based on pre-clinical
results, it is also tempting to say that tumoral CXCR4 expression
is more preferentially associated with lung and liver metastases
(Table 1, Figure 2). However, additional studies are warranted
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to determine the involvement of the CXCR4/CXCR7 -CXCL12
axis in favoring organ-specific metastasis formation as reported
in breast or colorectal cancer (76–79).

In the past 20 years, numerous studies have demonstrated
the pivotal role of these chemokine receptors in melanoma
dissemination and how this coordinated chemokine receptor
expression on the surface of melanoma cells is preferentially
associated with specific organ metastases (9, 50, 80). CCR10,
CCR7, and CXCR3 are found mainly involved in regional
metastases formation while CCR9 is often associated with the
intestine, CCR6 or CXCR4 are preferentially implicated in the
formation of lung and liver lesions. CCR4 does however seem to
be associated with brain metastases, which considerably impacts
patient prognosis (81) (Table 1, Figure 2). Collectively, tumor
cells eventually use these chemokines and chemokine receptors
to their own advantage to be guided through the body to invade
distant organs and create secondary lesions.

CHEMOKINE RECEPTOR EXPRESSION
ON IMMUNE CELLS – DECISIVE ROLES IN
MELANOMA LESION INFILTRATION AND
TUMOR FATE

Tumor immune cell infiltration is critical in dictating
melanoma patient outcome (82–84). Specific expression of
chemokine/chemokine receptors and integrins is fundamental to
this process and is involved in the guidance and tissue retention
of immune cells. Transcriptomic analyses of 569 cutaneous
samples and 120 melanoma metastases have demonstrated the
positive association of 12 chemokines (CCL2, CCL3, CCL4,
CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9, CXCL10,
CXCL11, and CXCL13) with the presence of tertiary lymphoid
structures, ectopic lymph node-like structures containing
antigen presenting cells, B cells and T cells (85). This chemokine
signature was associated with a favorable prognosis irrespective
of tumor localization. This has been further validated in
patients harboring primary tumors that contain peritumoral
matured DC in combination with activated T lymphocytes (86).
Furthermore, Harlin et al. found that a restricted signature of six
chemokines, CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL10,
were preferentially expressed in melanoma metastases that
were highly infiltrated by T cells (87). Importantly, high gene
expression of Cxcl2, Cxcl9, Cxcl10, and Ccl5 together with Ifnγ ,
Stat1, and Irf1 expression have been associated with the efficacy
of MAGE-A3 vaccination (88) and with clinical responses to
CTLA-4 blockade (89). Collectively, chemokines profoundly
affect tumor immune cell composition and melanoma responses
irrespective of tumor location. To date, the evaluation of these
chemokines are not yet considered in daily clinical practice but
they are likely to be essential to more accurately evaluate the
prognosis of melanoma patients and/or therapeutic responses.
Immune cell trafficking occurs after specific interactions between
chemokines with their receptors that guide the immune cells to
their final location. Thus, this expression is extremely important
and dictates the tumormicroenvironment diversity, considerably
influencing melanoma evolution.

CCR4–CCL2 Axis
In human and mouse melanomas, the presence of Foxp3+ cells,
mainly Tregs, in primary and metastatic tumors was associated
with a poor prognosis (83, 90–93). Effector and regulatory T
cells both express CCR4 but Foxp3+ Tregs expressed higher
levels of CCR4 than their Foxp3− effector T cell counterparts.
Salerno et al. (94) have described the accumulation of CCR4+

effector CD4+ T cells, but not CD8+ T cells, in skin and
bowel melanoma metastases (94). Given the large proportion
of Tregs within the CD4+ population in tumor lesions, it is
tempting to associate the presence of CCR4+ effector cells
to Tregs. These cells migrated to the tumor bed in response
to CCL2 accumulation (95–97). The use of an anti-CCR4
antibody in vitro efficiently reduced Tregs numbers enabling
the induction of cancer/testis antigen-specific T cell responses
(97) (Table 2). In pre-clinical models, the use of an anti-
CD25 antibody, or Foxp3DTR (Diphtheria Toxin Receptor)
mice where Foxp3-expressing cells can be inducibly deleted
following diphtheria toxin injection, delayed tumor growth (100).
However, in transgenic mouse melanoma models, the removal
of Tregs was not sufficient to induce clinical improvements (96)
suggesting that other immunosuppressive pathways are acting
in concert to suppress anti-tumor immune functions. Moreover,
in a therapeutic setting, anti-CD25 antibody injection did not
reduce Treg proportions in tumors (96) potentially explaining the
absence of clinical activity from the treatment.

CCR5–CCL3/CCL4/CCL5 Axis
The relationship between CCR5 expression on immune cells
and tumor fate is not clear. In humans, little is known about
the impact of CCR5 expression on immune cells and its
association with patient outcomes. High CCR5 expression has
been found on the surface of tumor infiltrating T cells (94).
Interestingly, stage IV melanoma patients carrying a 32-bp –
deletion polymorphism in the Ccr5 gene, rendering this protein
non-functional, have decreased survival following interferon
treatment, interleukin-2 administration, or vaccination (101)
suggesting a potential benefit of CCR5 expression in these specific
settings. However, the use of CCR5-deficient mice, blockade
antibody or CCR5-Ig fusion protein that acts as a decoy receptor
neutralizing the CCR5 ligands, led to delayed tumor growth
and increased the survival of these animals compared with
control groups (102–104). Thus, CCR5 expression appears to
be deleterious in pre-clinical models. CCR5 is highly expressed
on tumor infiltrating CD8+ T cells, conventional and regulatory
CD4+ T cells (102), and on the surface of MDSC (104).
Importantly, CCR5+ MDSC displayed a more suppressive
phenotype than their CCR5− counterparts, expressing higher
levels of Arginase 1 and producing more reactive oxygen species.
The CCR5 ligands, CCL3, CCL4, and CCL5, are produced
by intratumoral and circulating MDSC (102), acting in an
autocrine manner on CCR5+ cells. Clinical improvements
observed in CCR5-deficient mice or using CCR5 blockade were
associated with a reduction of Tregs (102) and MDSC infiltration
(103) together with a decrease of their immunosuppressive
activities (104). In these models, conventional CD4+ and
CD8+ T cell infiltration were maintained suggesting that CCR5
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TABLE 2 | Expression of chemokine and chemokine receptors by immune cells associated with melanoma control or progression.

Chemokine

receptor

Immune cell expression Roles in melanoma

development/progression

Cohort details Statistical

analyses

References

CCR2 Tumor macrophages and

MDSC

Neutralization decreased tumor

macrophage accumulations associated

with a reduction of tumor angiogenesis

and tumor growth

Preclinical studies (98, 99)

CCR4 Blood and tumor Tregs Depletion enhanced anti tumor

immune responses. Controversial using

the spontaneous Ret melanoma model.

In vitro and preclinical

studies

(96, 97, 100)

CCR5 Blood and tumor Tregs and

MDSC

CCR5132 polymorphism in patients

receiving immunotherapy associated with

decreased survival

Immunosuppression -Neutralization

resulted in increased survival of tumor

bearing mice

139 stage IV patients

Preclinical studies

Log-rank test and

Cox regression–

P = 0.002

(101–104)

CCR6 Blood and tumor

pDC—Blood CD8+ T cells

Higher expression in melanoma

patients—circulating effector

CCR6+CD8+ T cells and CCL20

expressed by tumor-associated

macrophages conveyed a dismal

prognosis

40 primary

melanomas−57 stage

III-IV patients

Log rank test and

Cox regression

(38, 105, 106)

CCR9 Blood CD8+ TNaive Associated with increased overall survival 57 stage III-IV patients Log-rank test and

Cox regression–

P = 0.0036

(Stage-adjusted)

(106)

CCR10 Blood CD4+ TEM Associated with worse survival 57 stage III-IV patients Log-rank test and

Cox regression–

P = 0.0189

(Stage-adjusted)

(106)

CXCR2 Tumor MDSC and

neutrophils

Accumulation of tumor CXCR2+ MDSC

and neutrophils. CXCR2 neutralization

reduced tumor growth

Preclinical studies (107, 108)

CXCR3 Blood and tumor CD4+ and

CD8+ TEM

Critical in intratumoral T cell

trafficking—Associated with clinical benefit

Preclinical

studies–Stage III-IV

patients

Log-rank test, χ2

and Cox

regression

(87, 106, 109, 110)

CXCR4 Blood CD45RA+CD4+ T

cells

Associated with prolonged disease free

survival

195 stage I-III patients Log-rank test and

Cox regression–

P = 0.0091

(111)

TEM: Effector memory T cells.

expression on the surface of these cells is not required for
tumor infiltration (102). This observation has been confirmed
by Mikucki et al. (110). Indeed, they demonstrated that the
presence of CCR5 on CD8+ T cells was not essential for tumor
infiltration despite high CCR5 ligand levels found in the tumor
microenvironment (110). However, it remains unclear why
MDSCs needs CCR5 expression for tumor infiltration, whereas
T cells do not. In humans, both circulating monocytic (CD14+)
and polymorphonuclear MDSC (CD15+CD11b+HLA-DRlo/−)
express higher amounts of CCR5 on their membrane, compared
to levels observed in healthy volunteers (104). Interestingly,
CCR5 is more highly expressed on tumor infiltrating monocytic
MDSC than on peripheral cells and high concentrations of CCL3,
CCL4, and CCL5 are found in melanoma lesions, potentially
explaining the enrichment of CCR5+ MDSC in tumors (104).
Collectively, CCR5 expression sustains MDSC suppression
activities, intratumoral Treg infiltration, and melanoma tumor
growth (Table 2). Further studies in patients are needed to

investigate the impact of CCR5 expression on immune cells and
its association with prognosis in melanoma. Given the role of
CCR5 in T cell costimulation (112), it would be interesting to
understand the relationship between CCR5 expression on T cells
and patient outcomes.

CCR6–CCL20 Axis
In melanoma patients, CCR6 was found to be more highly
expressed on circulating plasmacytoid DC (pDC) than on pDC
found in healthy volunteer controls (105). CCR6-expressing
pDC migrated in response to CCL20 stimulation. The presence
of CCR6+ pDC have been detected in primary melanoma
tumors. This infiltration might be in part due to the presence
of high concentrations of CCL20, often detected within
these primary tumor lesions (105) and mainly produced by
tumor-associated macrophages (38). Interestingly, high CCL20
expression is associated with a shorter disease-free period and
overall survival of melanoma patients (38). Moreover, given the
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negative prognostic value conveyed by tumor-infiltrating pDC
in melanoma (113), CCR6 is likely to also be associated with
poor patient outcome. However, this needs to be explored further
and to validated the prognostic value of CCR6+pDC in the
melanoma tumor microenvironment. We have found that a low
proportion of circulating effector memory CD8+CCR6+ T cells
was associated with a better overall survival in stage IVmelanoma
(106). Collectively, it seems that both CCL20 and CCR6 immune
cell expression in multiple cell types are associated with a poor
patient outcome (Table 2).

CCR9–CCL25 Axis
CCR9 is expressed at the membrane of several immune cell
subsets and is mostly associated with gut homing with the
exception of immature T cells in transit from the bone marrow
to the thymus (114). Further CCR9+ cell populations include
intestinal infiltrating T cells (115), gut pDC (116), and small
intestinal IgA producing plasma cells (117). Unfortunately, to
date, the role of CCR9 expression on immune cells in melanoma
and other cancers is poorly understood. We have investigated the
impact of CCR9 expression on the membrane of circulating T
cells in stage IV melanoma patients. Interestingly, high CCR9
expression on naïve circulating CD8T cells is associated with
a favorable prognosis (106) (Table 2). In mice, we have found
tumor infiltrating T cells that express CCR9 and importantly,
blockade of its ligand, CCL25, in a sarcoma model, led to
increased tumor growth. This is associated with a reduction of
CD4+ T cell infiltration. Moreover, in this tumor model, high
levels of CCL25 were found in the tumor microenvironment
and these levels were much higher than the levels found in the
gut (106) providing a possible explanation for the recruitment
of these CCR9+ T cells to the tumor bed. Further studies are
warranted to validate this positive impact of CCR9 expression on
T cells in this pathology.

CCR10–CCL27 Axis
CCR10 is one of the chemokine receptors that specifically guide
the migration of immune cells to the skin in response to the local
production and accumulation of CCL27. In contrast to benign
lesions where CCL27 is expressed at low levels, many primary
melanoma lesions express substantial amounts of this chemokine
(44). CCL27 expression is correlated with T lymphocyte density,
but unexpectedly, higher chemokine expression is associated
with lower T cell infiltrate (44). This suggests that despite the
local accumulation of CCL27, CCR10-expressing T cells are
unable to infiltrate CCL27-expressing melanoma lesions and
these T cells are therefore restricted to circulate in the periphery.
Supporting this hypothesis, in our own work we have shown
that in stage IV patients, the accumulation of circulating effector
memory CCR10 expressing CD4+ T cells was associated with
shorter overall survival (106). With the exception of these two
studies, little is known about the impact of CCR10 expression
on immune cells and prognosis. However, it seems that CCL27
tumor concentration was not associated with T cell accumulation
and thus their peripheral increase was associated with a poor
prognosis (Table 2).

CXCR3–CXCL9/CXCL10 Axis
High expression of CXCR3, on melanoma infiltrating T cells
together with the recruitment of effector memory CD8+ T
cells has been associated with a better patient outcome (87,
89, 109, 118) (Table 2). Mullins et al. (109) reported that high
CXCR3 expression on antigen specific CD8+CD45RO+ T cells
is associated with a favorable prognosis in stage III patients
but fail to do so in patients with distant metastases (109). We
have found that high CXCR3 expression on circulating effector
memory CD4+ T cells is associated with an enhancement of stage
III-IV patient survival, irrespective of tumor lesion location and
patient stages (106). Mikucki et al. (110) have demonstrated the
critical requirement of CXCR3 expression on mouse CD8+ T
cells for cell adhesion to, and migration through, the endothelial
barrier to infiltrate tumor lesions (110). Furthermore, CXCR3 is
associated with Th1/Tc1 polarization and anti-tumor functions
(119, 120). Interestingly, therapy such as peptide vaccination
in Montanide Adjuvant led to the upregulation of CXCR3
expression on circulating tumor antigen-specific T cells (121)
but Hailemichael et al. have shown that most of these CXCR3+

T cells induced by the vaccination are retained to the site of
vaccine administration (122). Despite this potential induction
of CXCR3 expression, CXCR3+ T cells are unlikely to reach
melanoma lesions in this context. Furthermore, we have found
that in stage III/IV patients, CXCR3 is poorly expressed on T cells
compared with expression levels observed in healthy volunteers
(106). This last observation suggests that (i) CXCR3 is potentially
downregulated due to a negative feedback loop of cell regulation
following STAT3 activation or (ii) these CXCR3+ T cells, which
are underrepresented in the periphery, are actually localized to
melanoma lesions. Currently, there is little evidence to support
either of these two hypotheses. In favor of CXCR3-regulated
expression, Yue et al. (123) found that STAT3 expression and
signaling mediated CXCR3 downregulation on CD8+ T cells
thus inhibiting intratumoral CD8+ T cell accumulation and
impacting anti-tumor functions (123). At steady-state, CXCR3
is tightly regulated at the surface of T cells and downregulation
of its expression with or without ligand binding is finely
controlled by a regulatory feedback mechanism to preserve cells
from over activation (124) and this may even be exacerbated
in a pro-inflammatory context. Moreover, we have previously
found an enrichment of CXCR3-expressing CD4+ T cells in
metastatic lymph nodes compared with circulating T cells (106)
perhaps explaining the differences found in the blood between
melanoma patients and healthy volunteers. In tumor lesions,
CXCR3 expression might be sustained by the presence of pro-
inflammatory molecules such as IFNγ that has been shown to
sustain Tbx21 expression and subsequently TBET to positively
regulate CXCR3 expression at the surface of T cells (125, 126).
Together, these studies highlight that the expression of CXCR3
on the surface of T cells is finely regulated and is essential
to melanoma infiltration and tumor control. Furthermore,
high tumor expression of CXCR3 ligands together with high
expression of CXCR3 on T cells are both associated with a
favorable prognosis in melanoma (Table 2). Thus, strategies
enhancing CXCR3 ligand production or CXCR3 expression on
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effector and memory T cells, but not melanoma cells, is highly
desirable.

CXCR4–CXCL12 Axis
The CXCR4-CXCL12 axis is required for the development
and survival of mice as complete deletion of CXCR4 is
embryonically lethal (127, 128). This axis plays an essential role
in haematopoiesis and cerebellar development, bone marrow
immune cell retention and thymic homing (10, 127, 128). To
study the role of CXCR4 expression on non-tumor cells and
its association with melanoma progression, D’alterio et al. (64)
have used CXCR4 heterozygous mice where they intravenously
injected CXCR4 expressing B16 melanoma cells. The partial loss
of host-CXCR4 expression reduced lung metastases formation
that is accompanied by a decrease of CXCL12 concentration
together with Ly6G+ cell accumulation in lung tissues (64).
Similar results have been found in wild type mice treated with
a CXCR4 antagonist, Plerixafor (AMD3100) (64). In stage I-
III melanoma patients, high expression of CXCR4 in circulating
CD4+CD45RA+ was associated with prolonged disease free
survival (Table 2). Moreover, the presence of CXCR4 expressing
CD4+CD45RA+ T cells correlated with absence of primary
tumor ulceration (111).

DO CHEMOKINE RECEPTOR
EXPRESSION ON IMMUNE CELLS
REFLECT THE METASTATIC
DISSEMINATION OF MELANOMA?

This question was first raised by Salerno et al. (94). They
studied whether the expression of organ-specific chemokine
receptors and integrins on the surface of T cells differs according
to the metastatic site (94). This included the evaluation of
CCR4, CCR5, CCR7, CCR9, CXCR3, CLA, and tissue retention
integrins on the surface of CD4+ and CD8+ T cells by flow
cytometry. This group found limited evidence that tissue site-
specific chemokine receptor expression was associated with the
site of metastatic location with the exception of CCR9, which
was found to be preferentially expressed on T cells that infiltrate
small intestine metastases. Expectedly, the expression of tissue
retention integrins was higher on tumor infiltrating T cells than
on circulating T cells suggesting a specific maintenance of a pool
of intratumoral effector and memory T cells in melanoma lesions
(94). This lack of site-specific expression of chemokine receptors
on infiltrating T cells might be due in part by an absence of
infiltration of these site-specific chemokine receptor-expressing
cells. Thus, these cells may be maintained in the circulation.
Salerno et al. (94) found that CCR4, CCR5, and CLA are
highly expressed on circulating T cells (94). However, how this
expression differs from healthy volunteers and to what extent this
peripheral expression correlates with site-specific metastases and
dictates patient’s prognosis were, at this stage, unknown. With
this in mind, we retrospectively evaluated the surface expression
of nine chemokine receptors and integrins on circulating and
tumor infiltrating T cells collected from stage III-IV patients
(106). These included the expression of CCR6, CCR7, CCR9,

CCR10, CXCR3, CXCR4, CXCR5, CLA, and CD103. Moreover,
we studied the expression of the chemoattractant receptor-
homologous molecule expressed on Th2 cells, CRTH2, known
for its involvement in Th2 polarization and responses (129, 130).
When comparing these expression levels to those found on
circulating T cells from healthy volunteers, patients with a lower
expression of CXCR3 and CCR6 on effector/memory circulating
T cells had preferential metastases to the skin and lymph nodes
and a decrease of CCR9, together with CXCR4 and CXCR5
expression on both CD4+ and CD8+ T cells, which was an
indicator of the presence of pulmonary lesions (Table 3). In
addition, multi-metastatic patients with a broad dissemination
of disease displayed an increase of chemokine receptor/integrin
expression on naïve T lymphocytes, specifically CCR10, CD103,
and CRTH2 (Table 3). This disseminated localization was also
associated with a loss of CXCR3 on effector/memory T cells
and a decrease in CXCR4 and CCR9 expression on CD4
effector and terminal effector T cells (Table 3). Collectively,
these results indicated that the expression pattern of chemokine
receptors/integrins on the surface of circulating T cells potentially
mirror the metastatic spreading in melanoma patients (106).

Interestingly, CD103 expression on naïve T cells was strongly
associated with livermetastases (106) suggesting that this integrin
might play a role in binding T cells to this organ. CD103
expression is a feature of tissue resident memory T lymphocytes
(134) and many T lymphocytes that reside in the gut (115)
or the liver (135) express this integrin. Its ligand, E-cadherin,
is naturally expressed on hepatocytes (136), and notably in
the interlobular bile duct epithelia (137). Shimizu et al. have
demonstrated that CD103-expressing CD4+ and CD8+ T cells
accumulated in the liver and these cells harbored a particular
phenotype with a decrease of TCRαβ expression (135). As
observed in hepatocellular carcinoma (136, 138), a decrease of
E-cadherin expression during epithelial-mesenchymal transition
of liver metastasis on the surface of hepatocytes is associated
with an increase of its soluble form in the serum (139)
potentially favoring the circulation of CD103+ T cells and their
accumulation in the blood of melanoma patients harboring liver
metastases (Table 3).

Further retrospective and prospective investigations are
warranted to support the clinical relevance of differences
in expression of chemokines and chemokine receptors in
melanoma. Their evaluation would likely benefit patients in the
early detection of metastases and in targeting specific subsets of
T cells to favor their migration to desired organs and to target
these metastases. Strategies to modulate their expression and
functions are needed in order to ameliorate patient prognosis and
therapeutic outcomes.

POTENTIAL FOR TARGETING

Chemokines and their receptors have dual roles in melanoma
and other cancers. On one hand, they promote immune cell
recruitment necessary for tumor control (e.g., CXCL9/10/11
and CXCR3). On the other hand, they are involved in tumor
escape and metastases formation by (i) selectively guiding tumor
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TABLE 3 | Chemokine receptors expression at the surface of peripheral immune T cells mirrors the melanoma metastatic dissemination.

Melanoma Stage Tumor lesion localization Chemokine receptors and integrins involved

Stage III Regional cutaneous and lymph node metastases Decrease of CCR6 and CXCR3 expressions on effector/memory

peripheral T cells

Stage IV Regional cutaneous and lymph node metastases + lung

metastases

Reduction of CCR9, CXCR4, and CXCR5 expression on circulating T cells

Stage IV Multi-disseminated disease with or without lung

involvement

Increase expression of CCR10, CD103*, and CRTH2 on naïve

peripheral T cells—Loss of CXCR3 and CCR6 expression on effector and

memory circulating T cells—Decrease of CXCR4 and CCR9 expression

on effector and terminal effector blood T cells

Chemokine receptors expression was retrospectively evaluated on circulating blood T cells collected from 57 stage III–IV melanoma patients (131–133).

*Elevated expression of CD103 on naïve T cells is correlated with the presence of liver metastases.

cells toward specific organs, which subsequently form secondary
lesions (e.g., CCR7 or CXCR4), (ii) favoring the recruitment
of immunosuppressive cells (e.g., CCR5) and, (iii) influencing
tumor vasculature associated with tumor dissemination (e.g.,
CXCL10 and CXCR3) (140, 141). Thus, targeting these molecules
is of particular interest in melanoma and other cancers as an
approach to limit tumor development and to considerably reduce
its metastatic spreading. However, the design of selective drugs
will need to specifically target tumor cells, the immune system, or
both compartments.

Many small molecule antagonists and therapeutic antibodies
have been developed (142) but so far, this has led to only a
moderate improvement in various diseases. As a consequence,
only 3 targeting agents have been approved to treat patients,
or are in phase III clinical trials. These include a blocking
CCR4 antibody, Mogamulizumab, approved in Japan to treat
refractory adult T-cell leukemia, peripheral T cell lymphoma and
cutaneous T cell lymphoma (142), an anti-CCR5 antibody tested
in graft-vs.-host disease and human immunodeficiency virus-1
(143) and an anti-CXCR4 antibody evaluated in lymphoma and
multiple myeloma (144). Thirty-seven additional compounds are
currently being tested targeting CCR1, CCR2, CCR3, CCR4,
CCR5, CCR9, CXCR1, CXCR2, CXCR4, and CX3C1 (142, 145,
146). In a small study (147), metastatic colorectal cancer patients
with CCR5+ liver metastases were treated with a small molecule
that antagonizes CCR5, Maraviroc, with encouraging results.
Therefore, further evaluation in a larger cohort is warranted to
determine the benefits and toxicity of this approach.

In melanoma, CXCR4 inhibition with AMD11070 abrogated
tumor cell migration in response to CXCL12 stimulation (148).
Similarly, the CXCR4 antagonist, AMD3100, prevents the
development of squamous cell carcinomas under chronic UV
exposure. Mechanistically, UV radiation induced CXCL12
expression in the skin and this was responsible for attracting
CXCR4+ mast cells. Thus, blocking the CXCR4-CXCL12
pathway using this antagonist reduced mast cell infiltration
into the skin, tumors and draining lymph nodes, and
this subsequently prevents immune suppression and tumor
development (149). Given the involvement of CXCR4 in tumor
cell migration to many different organs, oral administration
of CXCR4 inhibitors could be particularly efficient. Moreover,
CXCR4 is also involved in the recruitment of suppressive
immune cells, such as mast cells in the tumor microenvironment.

CCR9 blockade using an antibody significantly reduced the
tumor cell migration in response to CCL25 stimulation (42).
Interestingly, a new mouse anti-human CCR9 antibody was
developed by Somovilla-Crespo et al. showing promising results
in blocking the growth of human CCR9+ leukemia cells in
NSG mice (150). Similarly, the use of the CCR9 antagonist
CCX8037 could also specifically interfere with small intestinal
dissemination. However, we have shown that the blockade of
CCL25 in a sarcoma model inoculated in immunocompetent
mice was detrimental and notably, resulted in increasing the
tumor growth (106). Further investigations are required to
determine the impact of such drugs on both leukocyte trafficking
and tumor cell spreading (151) to avoid unexpected off-target
effects.

Neonatal skin exposed to UVB induced an IFNγ gene
signature response frommelanocytes including CCL8 expression
(99). Thus accumulation of CCL8 drives the recruitment
of CCR2+ macrophages that were shown to promote
melanomagenesis. The blockade of IFNγ using a specific
antibody or the use of CCR2 deficient mice, which were
subjected to UVB exposure, have decreased of macrophages
infiltration in the skin and reduced tumor volume (99). Similarly,
the overexpression of a dominant negative version of CCL2, a
non-functional protein that competes with the native form for
binding to CCR2, in melanoma tumor bearing mice specifically
reduced tumor associated macrophage infiltration that is
associated with a decrease of tumor angiogenesis and tumor
growth (98). Interestingly, mice inoculated with B16F10 tumors
engineered to express GM-CSF harbored an accumulation of
monocytic CCR2+ MDSC compared to non-GM-CSF expressing
tumors. This accumulation of MDSC in melanoma lesions was
associated with a reduction of CD8+ T cell infiltration and an
increase in tumor burden (152). Although vaccination with
irradiated B16 cells producing GM-CSF was shown to favor
immune responses to immunotherapies in preclinical melanoma
models (153, 154), in this setting, this cytokine seemed to
play a negative role in antitumor immune surveillance. CCR2
appears to be an attractive target in melanoma and potentially
in other tumor types and a CCR2 antibody, plozalizumab, is
currently being tested in phase I clinical trial (NCT02723006) in
combination with an immune checkpoint blocker, nivolumab.

CRTH2 associated with Th2 responses would be an
attractive target in melanoma as this chemokine expression
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is increased in patients with a multi-metastatic disease (Table 3).
CRTH2 is also expressed on eosinophils, basophils, and some
monocytes/macrophages (155), immune subsets which all
convey a distinct prognosis in melanoma (84, 156). Initially
designed for targeting CRTH2+ T cells involved in respiratory
diseases (157, 158), CRTH2 antagonists could be indicated
in multi-metastatic melanoma patients with high CRTH2
expression.

SX-682 (Syntrix Biosystems, Inc) is a selective and potent
CXCR1/2 antagonist. CXCR1/2 is expressed on melanoma cells,
MDSC and neutrophils and sustains tumor immunosuppression,
tumor growth, angiogenesis and tumor dissemination in
response to CXCL1, CXCL2 or CXCL8 (107, 108, 159–164)
(Tables 1, 2). In melanoma, MDSC accumulated both in tumor
lesions and in periphery, correlating with tumor stage. This
feature has been associated with a negative prognostic value (84).
Furthermore, this compound has been evaluated in combination
to anti-CTLA-4 and anti-PD-1 co-blockade in an elegant mouse
model of prostate cancer (165). In this model, the authors
demonstrated the crucial role of MDSC in sustaining cancer
progression. The combination of immune checkpoint inhibitors
and SX-682 resulted in decreased prostate mass, lymph node
and lung metastases (165). This inhibitor is currently being
evaluated in stage III/IV melanoma patients in combination
with an anti-PD1 antibody, Pembrolizumab (NCT03161431).
This phase I study aims to evaluate the tolerability and safety
profile of SX-682 together with the response rate, tumor
response duration, progression free and overall survival of
the combination. Interestingly, another CXCR1/2 inhibitor,
Ladarixin, was shown to significantly reduce human melanoma
cell motility and to induce apoptosis in vitro. In vivo treatment
of melanoma xenografts with Ladarixin reduced tumor growth,
polarized intratumoral macrophages to M1 phenotype, and
inhibited angiogenesis (166). Inhibition of CXCR1/2 appears to
be very promising as it targets both melanoma and immune cells,
reducing tumor burden alone or in combination with immune
checkpoint blockers.

Modulation of chemokine receptor expression on the surface
of chimeric antigen receptor (CAR) T or NK cells prior
to infusion is promising as this would enhance their tumor
infiltration and potentially improve therapeutic results. CX3CR1
genetically modified T cells transferred into CX3CL1 producing
colorectal adenocarcinoma tumor bearing mice displayed
enhanced tumor infiltration and anti-tumor responses (167).
Moreover, significant reduction in tumor size and complete
remission have been observed with CCR2b-GD2-CAR T cells
and CXCR4-EGFRvIII-CAR NK cells infused in mice bearing
CCL2 producing GD2 neuroblastoma or CXCL12 secreting
EGFRvIII glioblastoma cells, respectively (168, 169). Similarly,
genetically engineered CCR2 expression on CAR T cells directed
to the tumor antigen mesothelin increased tumor cell infiltration
and anti-tumor responses against large and established tumors
inoculated in severe immunodeficient mice (170). To date,
CAR specific cells genetically engineered to express particular
chemokine receptor have only been tested in preclinical models.
Despite having shown impressive anti-tumor responses against
primary tumors, it will be challenging to find a chemokine that

is highly, specifically and commonly expressed across different
tumor microenvironments, found in multi metastatic patients in
order to efficiently eradicate all disseminated lesions.

CONCLUSION AND PERSPECTIVES

Chemokines and chemokine receptors are key molecules
involved in cell migration, proliferation and survival that are
critical in maintaining tissue homeostasis. Melanoma cells
overexpress many chemokine receptors that are likely involved
in cancer progression and metastasis. Thus, modulation of
chemokines and chemokine receptors appears to be an attractive
target in cancer therapy. However, targeting them is a double
edged sword, as treatments will not only affect immune cell
migration to tumor lesions or tumor dissemination but also in
the long term, impact immune cell development and polarization
(e.g., CXCR4). This may partly explain why there is low number
of approved drugs targeting chemokines and their receptors in
treating chronic diseases, such as cancer. How can we overcome
this? In the era of personalized medicine, designing bispecific
antibodies that can specifically target a chemokine receptor and a
tumor antigen, which are both expressed on the surface of cancer
cells is highly attractive. However, antigen escape due to the
emergence of tumor variants, which do not express the targeted
antigen, are likely to emerge, rendering the treatment ineffective.
Another promising area of research is to combine chemokine
receptor blockers with anti-PD-1 or anti-CTLA-4 antibodies to
further improve the clinical activity of these antibodies and thus
further increase patient survival (171). Together, this would lead
to reduced tumor infiltration by immunosuppressive cells as
Tregs or MDSCs and subsequently, induce anti-tumor immunity
by releasing the immunosuppressive brakes. Another approach
would be to use engineered antibodies to target privileged
metastatic sites. The therapeutic management of brainmetastases
in melanoma and other cancers is challenging, as the brain is
protected by a highly selective blood-brain barrier impermeable
to many cells, in particular, immune cells. In melanoma, a
bispecific antibody could be designed to target CCR4 and a
nanobody, that selectively binds to human cerebromicrovascular
endothelial cells. This attached nanobody is then internalized
and able to transmigrate across the endothelial barrier (146).
As a proof of principle, a bispecific antibody specific for the
metabotropic glutamate receptor 1, expressed in the brain, and
also carrying a specific nanobody was able to translocate across
the endothelial layer into the brain and regulate physiological
functions (172).

Given the association between the accumulation of certain
chemokines in tumor lesions and the presence of tertiary
lymphoid structures, it would be interesting to reinstate
chemokine expression in “cold” tumors to favor the emergence of
ectopic-like lymphoid organs that are positively associated with
immune cell activation and patient survival. Several strategies are
currently being tested, aiming to modulate anti-tumor responses
through the induction of tertiary lymphoid structures (173).

Collectively, chemokine and chemokine receptors are
essential for guiding immune cells to tumor lesions, however
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melanoma cells often harness these molecules to disseminate
to distant organs. Given their broad expression profile
and potential side effects, drugs targeting these molecules
must be carefully designed. Novel technologies have now
rendered this challenge possible with the development
of compounds that specifically affect a desired target
(145, 146). Many chemokine receptor antagonists are
currently being tested in melanoma and other malignancies,
if successful, these treatments will diversify the oncologic
armamentarium currently available therefore increasing possible
therapeutic combinations and ultimately improving patient
outcome.
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