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Abstract

Worldwide, agriculture is considered one of the main activities that influence water

quality. The objective of this work was to evaluate the influence of soil use and man-

agement on water quality at the small watershed scale, in Southern Brazil. One

watershed is characterized by production of annual crop seeds under no-tillage (zero

tillage), with crop rotation and with terraces (Sarandi watershed—SW), while the

other is characterized by production of grains in the summer and pasture with grazing

in the winter, under no-tillage, without crop rotation and without terraces (Coxilha

watershed—CW). Flow and climatic data were measured during 2 years. Water sam-

ples were manually taken at precipitation events and base flow over 1 year for labo-

ratory analysis. During events of high volume, most of the rainfall was converted to

base flow in SW, while in CW, most of the rainfall was transformed into overland

flow. Overall, higher concentrations and losses of sediments and nutrients occurred

in the CW, mainly during precipitation events in the winter crops season. Of the total

nitrogen concentration in water, approximately 3% was ammonium-N and 58% was

nitrate-N, on average, in both watersheds. For total phosphorus concentration in

water, more than 75% was particulate in both watersheds, however, the bioavailable

phosphorus accounted for 70% of the total phosphorus in the SW and for 35% in the

CW. The higher concentration of bioavailable phosphorus in the SW indicates a

short-term pollution potential, but in both watersheds, the water quality was

impaired by the high concentrations of total phosphorus. In general, even with no-till-

age, the results highlight the importance of best management practices as terracing,

riparian vegetation, crop rotation, better crop systems and fertilizer management to

avoid degradation of water resources.

K E YWORD S

best management practices, catchment, crop production, no-tillage, water conservation

1 | INTRODUCTION

The benefits of no-tillage systems regarding water, soil and nutrient

losses have already been listed by several authors (Gassman

et al., 2006; Niu et al., 2015; Shi, Ai, Fang, & Zhu, 2012; Silva & De

Maria, 2011). Thirty-three million hectares is the total Brazilian no-

tillage area and the Southern region, representing the subtropical cli-

mate, accounts for 36% (12 million ha) (IBGE, 2017). However, it is

known that the no-tillage systems widely used by farmers in Brazil do

not apply all the practices recommended by conservation agriculture,

such as no-tillage with crop rotation, high soil cover with plant residue

and surface runoff control structures (Merten, Araújo, Biscaia,
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Barbosa, & Conte, 2015). Deuschle, Minella, Hörbe, Londero, and

Schneider (2019), studied the erosion and hydrological response of

crop rotation intensification in no-tillage on a Nitisol with a high clay

content (>50%) on agricultural hillslopes (length of 90 m and slope of

9%) in Southern Brazil. They observed that no-tillage without crop

rotation and without terraces was not enough to control runoff and

soil erosion, even during low-intensity events. In that study, crop rota-

tion intensification with winter cover crops (Avena strigosa, Vicia sativa

and Raphanus sativus) providing high soil cover with plant residue

reduced 84% of soil loss but only 18% of runoff, indicating that com-

plementary practices such as terraces are necessary to control runoff

even in no-tillage under crop rotation intensification. Londero

et al. (2018) found that the adoption of the broad-based retention ter-

races in a zero-order watershed (2.4 ha) with no-tillage in Southern

Brazil reduced runoff and sediment yield by almost 78 and 65%,

respectively.

The surface runoff generated in agricultural fields transports

water, soil and associated pollutants, compromising the quality of

water resources (Albuquerque et al., 2016; Ding et al., 2016; Kay,

Edwards, & Foulger, 2009). The risk of transporting pollutants to

water courses is related to rainfall characteristics such as intensity,

volume, duration and interval between events, soil attributes such as

texture and structure, and topographic features such as length and

degree of slope; however it is potentiated by inadequate use and

management of soil, crops and agrochemicals and by the high connec-

tivity to agricultural fields with absence of riparian vegetation

(Bortolozo et al., 2015; Deuschle et al., 2019; Londero et al., 2018;

Lourençato et al., 2015; Minella, Walling, & Merten, 2014; Ramos

et al., 2014; Ribeiro et al., 2014; Shi et al., 2012).

Most studies of water, sediment and nutrient losses in Brazil with

soil tillage and management systems have been done in small plots

with simulated or natural rainfall (Bertol et al., 2011; Bertol, Rizzi, Ber-

tol, & Roloff, 2007; Denardin, Kochhann, Faganello, Sattler, &

Manhago, 2008; Gebler, Bertol, Ramos, Louzada, & Miquelluti, 2012;

Guadagnin, Bertol, Cassol, & Amaral, 2005; Silva & De Maria, 2011).

Studies at greater scale are needed and field experiments with large

plots in Brazil have been increased recently (Coblinski et al., 2019;

Deuschle et al., 2019; Londero et al., 2018; Merten et al., 2015;

Ramos et al., 2014). Losses of soil, water and agrochemicals in a

watershed cannot be estimated by the sum of results from individual

fields, even from large plots (Ding et al., 2016; Raclot et al., 2009; van

de Giesen, Stomph, & de Ridder, 2005) so studies at watershed scale

following the real field condition are essential to assess water quality

(Capoane, Tiecher, Schaefer, Ciotti, & dos Santos, 2015; Gafur,

Jensen, Borggaard, & Petersen, 2003; Martínez-Casasnovas, Ramos, &

Benites, 2016; Niu et al., 2015; Nu-Fang, Zhi-Hua, Lu, & Cheng, 2011;

Shi et al., 2012; Shore et al., 2014; Shore et al., 2017) as well as to cal-

ibrate empirical mathematical models (Dur~aes, de Mello, &

Naghettini, 2011; Raclot et al., 2009; Shi et al., 2012; Tong &

Chen, 2002; van de Giesen et al., 2005). The hydrology dynamics on

watershed scale is different from small or even large plots mainly due

to the variability in soil characteristics, topography and rainfall (van de

Giesen et al., 2005). So, to better understand the non-point source

pollution and to recommend best management practices, more studies

need to be carried out at agricultural small watersheds following the

system conducted by farmers.

Considering that farmers adopt different practices in their agricul-

tural fields, this study aimed to evaluate the water quality of two small

agricultural watersheds with different systems of soil use and manage-

ment. One watershed is characterized by continuous cropping system in

no-tillage with crop rotation and with terrace and the other an integrated

crop-livestock system in no-tillage without crop rotation and without ter-

race. The hypothesis of our study was that even with no-tillage, best

management practices, such as crop rotation, high soil cover by plant res-

idue, terraces and riparian vegetation reduces the losses of water, sedi-

ments and nutrients and, consequently, contribute to better water

quality. Studies at watershed scale with the real field condition, following

the whole system conducted by the farmers, are needed for practical

recommendation in order to preserve the environmental quality.

2 | MATERIAL AND METHODS

2.1 | Experimental sites

The study was carried out in two small watersheds located in the

Medium Plateau Region of Rio Grande do Sul, Sarandi and Coxilha,

with the coordinates 27�55033.9900S and 52�47026.3900W, and

28�11047.8600S and 52�20031.4700W, respectively (Figure 1). These

watersheds are located in Southern Brazil, under a subtropical Cfa cli-

mate which has warm summers and cold winters with frost, and rain-

fall well distributed throughout the year (Alvares, Stape, Sentelhas, De

Moraes Gonçalves, & Sparovek, 2013). The historic average annual

rainfall is 1,958 mm for Sarandi watershed (SW) and 1,923 mm for

Coxilha watershed (CW) (IRGA, 2020). The average annual rainfall

erosivity estimated by multivariate models, according to Mello, Viola,

Beskow, and Norton (2013) reaches 9,213 MJ mm ha−1 yr−1 for SW

and 8,696 MJ mm ha−1 yr−1 for CW.

These watersheds are constituted by one first-order stream

(headwater drainage) and have different use and management. The

SW, 13.3 ha, produces commercial maize (Zea mays) and soybean (Gly-

cine max) seeds in the summer, and cereals such as wheat (Triticum

aestivum) and oats (Avena sativa and A. strigosa) in the winter, under

continuous no-tillage and crop rotation with terracing (level type ter-

races). The CW, 19.1 ha, produces soybean grains in the summer and

oat pasture in the winter, with animals grazing under no-tillage (crop–

livestock integrated system) without crop rotation and without terrac-

ing. The management of fertilization is shown in Table 1.

Both watersheds have riparian vegetation; however, it is inade-

quate in area and/or type of vegetation according to Brazilian envi-

ronmental legislation (Brasil, 2012). In SW, 21% of the riparian

vegetation (30 m each side of the stream) defined by Brazilian Law

(Brasil, 2012) is constituted by spontaneous grass (forage grasses and

native grasses) and 79% is annual crops. In CW, 49% of the riparian

vegetation is constituted by native species (38% forest and 11%

grasses) and 51% by annual crops.
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The soil (Table 2) of both watersheds is classified as Oxisol

according to US Soil Taxonomy (Soil Survey Staff, 1999),

corresponding to Dystrophic Red Latosol (EMATER/RS—Ascar, 2007)

under Brazilian Soil Taxonomy (EMBRAPA, 2013).

Topographic indices (Table 3) were determined using SAGA 2.2.2

(System for Automated Geoscientific Analyses) according to Conrad

et al. (2015), with equidistant level curves of 2 m. The data used were

based on satellite images (Pleiades 1 m; Phased Array L-band Syn-

thetic Aperture Radar (PALSAR) on the ALOS satellite 12.5 m and

Shuttle Radar Topography Mission (SRTM) 30 m); aerial images

(Vexcel UltraCam D digital camera); and topographic surveys carried

out in the watersheds with Global Positioning System receivers (GPS

Garmin eTrex Vista with horizontal accuracy of better than 3 m). The

slope was similar, on average 9.7% in SW and 8.7% in CW (Table 3).

The length and slope represent the LS factor, which in turn deter-

mines the erosion potential (Minella, Merten, & Ruhoff, 2010).

According to the mean values obtained for LS (Table 3), the two

watersheds have low erosive potential. The MRVBF index

(Multiresolution Index of Valley Bottom Flatness), which defines areas

of deposition in a landscape (Gallant & Dowling, 2003), identifies

deposition areas in both watersheds (the mean value was higher than

0.5) (Table 3). The profile and plan curvature of the surface influence

the water flow (Minella & Merten, 2012), and both watersheds are

classified as divergent convex (Table 3) since the mean in both curva-

tures is positive (Valeriano, 2008; Valeriano & Carvalho, 2003).

2.2 | Flow monitoring and climate data collection

Downstream flow at each watershed was continuously monitored over

2 years (October 2015–October 2017) with hydrosedimentological sta-

tions (radar water level sensor [Campbell Scientific, model CS475] con-

nected to a measurement and control datalogger [Campbell Scientific,

model CR1000]), providing data of the water level every 5 min.

The flow was obtained by Equation (1) for SW (triangular-type

masonry spillway) and by Equation (2) for CW (rectangular-type

masonry spillway), according to Baptista, Coelho, Cerilo, and

Mascarenhas (2003):

F IGURE 1 Localization and topographic characterization of the watersheds. CW, Coxilha watershed (upper); SW, Sarandi watershed (lower)
[Colour figure can be viewed at wileyonlinelibrary.com]
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Where: Q = flow, m3 s−1; n = channel roughness coefficient, s m−1/3;

m = inclination of the slope, m; y = height of the water over the spill-

way crest, m; I = channel slope, m m−1; and B = base width, m.

For the channel roughness coefficient (n), a value of 0.013 was

considered, since it is a fitted stone masonry wall conduits (Baptista

et al., 2003). Channel slope values (I) were measured in the field:

0.005 m m−1 for SW and 0.009 m m−1 for CW. For the inclination of

the slope (m), specifically for SW with triangular spillway, a value of

0.6 m was calculated.

To estimate the groundwater recharge from the discharge

data sets, a method based on the recession-curve

displacement was applied, through the daily flows and daily

precipitation data sets. The discharge flow was classified as

overland flow and base flow according to Barnes' method

(Barnes, 1939); recession curves and coefficients were defined

following the fundamentals of the Maillet exponential function

(Equation (3)).

Qt =Q0e
−at, ð3Þ

Where: Qt = flow rate at time t, m3 s−1; Q0 = the initial flow at the time

of the hydrograph recession period, m3 s−1; e = base of the Napierian

logarithm (exponential); a = coefficient of recession, s−1; and

t = time, days.

Precipitation data were continuously collected by an automatic

rain gauge station (Hydrological Services America, model TB4) con-

nected to a datalogger (Campbell Scientific, model CR1000), placed

inside of the watersheds.

TABLE 1 Fertilization and days of seeding and harvesting of the crops in the watersheds

Sarandi watershed Coxilha watershed

Crop Seeding Fertilization (kg ha−1) Harvest Crop Seeding Fertilization (kg ha−1) Harvest

Summer 2015/16 Soybean 11/16/15 12 kg of N (S) 03/29/16 Soybean 10/15/15 58 kg of K2O (BS) 02/25/16

69 kg of P2O5 (S) 12.5 of de N (S)

69 kg of K2O (S) 75 kg of P2O5 (S)

25 kg of K2O (S)

Winter 2016 Oats 04/05/16 44 kg of N (S) 10/30/16 Oats 02/30/15 nd nd

120 kg of P2O5 (S)

80 kg of K2O (S)

45 kg of N (C)

Summer 2016/17 Maiz 11/06/16 85.3 kg of N (S) 05/03/17 Soybean 11/29/16 43.5 kg of K2O (BS) 04/10/17

174.6 kg of P2O5 (S) 6.6 kg of N (S)

128.5 kg of K2O (S) 59.4 kg of P2O5 (S)

157.5 kg of N (C) 59.4 kg of K2O (S)

Winter 2017 Wheat 05/10/17 100 kg of N (C) 11/17/17 Oats 04/12/17 nd nd

Abbreviations: BS, fertilization before seeding; C, fertilization in coverage; nd, without fertilization and without harvest with animal grazing; S, fertilization

during seeding.

TABLE 2 Physical and chemical properties of the soils

Watershed

Depth
Clay

Silt
+ sand

pH water
P K

C
Al Ca

Mg
H + Al CEC

V

cm –––––%–––––– ––mg dm−3–– g dm−3 ––mmolc dm
−3–– ––mmolc dm

−3–– %

Sarandi 0–5 42.3 57.7 5.5 39.7 272.3 25.8 4.0 58.0 22.9 56.4 144.2 60.9

5–10 54.5 45.5 5.3 33.0 177.9 19.8 12.7 38.2 15.7 76.4 134.8 44.0

10–20 58.5 41.5 5.1 12.0 158.5 16.1 17.4 30.0 12.0 81.1 127.1 37.3

20–40 58.6 41.4 5.0 8.5 106.4 14.1 22.6 22.7 9.5 90.3 125.2 29.2

Coxilha 0–5 28.1 71.9 5.9 20.2 251.3 23.8 1.4 60.2 26.5 38.7 128.6 69.4

5–10 33.7 66.3 5.5 21.5 137.3 16.3 5.7 48.4 18.6 53.7 124.2 57.7

10–20 35.8 64.2 5.3 24.0 83.3 14.0 8.9 42.2 15.5 61.4 124.4 52.7

20–40 41.2 58.8 5.3 4.4 56.9 12.5 14.9 32.7 13.6 76.8 124.6 40.5

Abbreviations: CEC, cation exchange capacity; V, base saturation.
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2.3 | Water sampling

Water was manually sampled at two points (upstream—P1 and

downstream—P2) in 1-L plastic bottles, from October 2016 to October

2017, during precipitation events (rainfall) and on dry days (base flow).

The base flow samples are those for which there were no precipitation

events or there was very low precipitation, but no surface runoff gener-

ated on the day of collection and 2 days previous. Precipitation samples

are those for which rainfall occurred during collection or before collec-

tion, in a volume sufficient to produce surface runoff.

In total, 22 samples were collected in SW and 25 in CW (SW:

14 for base flow, 8 in precipitation events, 11 in the summer crop,

TABLE 4 Date of water sampling and precipitation volume in the sampling day and 1 and 2 days before sampling

Sarandi watershed Coxilha watershed

Precipitation (mm) Precipitation (mm)

Samples Date 0 day 1 day 2 days Samples Date 0 day 1 day 2 days

1 10/27/161-S 4.3 22.6 25.6 1 10/27/161-S 2.3 14.5 19.3

2 11/18/161-S 0.3 1.8 8.9 2 11/21/161-S 0.0 0.0 0.0

3 12/05/161-S 0.0 0.5 24.4 3 12/05/161-S 0.0 0.3 29.0

4 12/21/161-S 0.0 0.3 22.1 4 12/21/161-S 0.0 0.3 7.9

5 01/05/171-S 1.0 4.6 38.1 5 01/05/172-S 40.9 7.4 7.9

6 01/27/171-S 13.0 0.3 13.3 6 01/23/171-S 0.0 0.0 0.0

7 02/08/171-S 0.0 0.0 0.0 7 02/09/171-S 10.4 0.0 0.0

8 02/21/171-S 0.0 0.3 15.8 8 02/22/171-S 0.5 0.0 0.0

9 03/20/171-S 0.0 0.0 0.0 9 03/17/172-S 0.0 43.7 43.7

10 04/10/172-S 24.0 43.0 43.0 10 04/10/172-S 3.6 57.9 78.0

11 04/27/172-S 0.0 105.0 147.0 11 04/27/172-W 0.0 21.8 135.1

12 05/15/172-W 2.0 52.0 52.0 12 05/15/172-W 0.0 1.3 44.2

13 06/12/171-W 0.0 0.0 1.0 13 05/23/172-W 38.6 0.3 4.1

14 07/05/171-W 0.0 0.0 0.0 14 06/02/172-W 0.3 9.1 42.9

15 07/16/171-W 2.3 0.0 0.0 15 06/08/172-W 34.3 99.3 99.3

16 07/27/171-W 0.0 0.0 0.0 16 07/07/171-W 1.5 0.0 0.0

17 08/13/172-W 108.7 9.7 9.9 17 07/17/172-W 14.0 4.1 4.1

18 08/31/171-W 0.0 0.0 0.0 18 07/27/171-W 0.0 0.0 0.0

19 09/16/172-W 3.6 34.5 48.8 19 08/11/171-W 0.3 0.0 0.3

20 10/02/172-W 0.3 38.9 40.6 20 08/14/172-W 0.3 84.6 93.2

21 10/11/172-W 77.0 3.3 15.8 21 08/31/171-W 0.0 0.0 0.0

22 10/25/172-W 24.1 0.0 0.0 22 09/29/172-W 17.8 3.8 3.8

23 10/06/172-W 17.5 0.0 0.0

24 10/11/172-W 66.6 1.0 10.9

25 10/25/172-W 10.4 0.0 0.0

Notes: 1 base flow; 2 precipitation events; S summer crop; W winter crop.

TABLE 3 Topographic indices of the watersheds

Topographic indices

Sarandi watershed (13.3 ha) Coxilha watershed (19.1 ha)

Average Minimum Maximum Average Minimum Maximum

Slope (%) 9.71 0.02 26.71 8.68 0.01 27.31

MRVBF index 0.71 0.00 4.95 0.69 0.00 4.07

LS factor 1.07 0.00 4.12 0.92 0.00 3.79

Plan curvature 0.00430 −9.02866 8.00000 0.00266 −10.22720 17.21721

Profile curvature 0.00017 −0.03074 0.02947 0.00038 −0.025450 0.089295

Note: Plan curvature (negative: convergent; positive: divergent, null: rectilinear); profile curvature (negative: concave; positive: convex, null: rectilinear);

MRVBF (<0.5 erosion and >0.5 deposition); LS (0–4: low; 4–6: medium; 6–10: high erosion).
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11 in the winter crop; CW: 11 for base flow, 14 in precipitation

events, 10 in the summer crop, 15 in the winter crop) (Table 4). Crop

cycles (summer and winter) were separated according to the sowing

and harvest dates of the different crops for each watershed. Of the

collections made for the summer crop in SW, 9 were for base flow

and 2 for precipitation events, and in CW, 7 were for base flow and

3 for precipitation events. On the other hand, for the samples col-

lected in the winter crop, 5 were for base flow and 6 for precipitation

events in SW, and 4 for base flow and 11 for precipitation

events in CW.

2.4 | Water analysis

Each water sample was analyzed in triplicate for all parameters. For

total solids (sediments; TS), an aliquot (at least 50 ml) was dried in an

oven at 105�C (APHA, 1995). pH and electrical conductivity were

obtained through multiparameter apparatus (Hanna), and turbidity

was determined via turbidimeter (Quimis). Nitrogen (N) and phospho-

rus (P) were determined as: soluble nitrate (NO3-N), soluble ammo-

nium (NH4-N), particulate nitrogen (PN), total nitrogen (TN), soluble

phosphorus (SP), particulate phosphorus (PP), bioavailable phosphorus

(BP), bioavailable particulate phosphorus (BPP), non-bioavailable par-

ticulate phosphorus (NBPP) and total phosphorus (TP). For nutrients,

the separation of the soluble fraction was performed by filtration

using a 0.45 μm filter.

The methodology used to obtain NO3-N was ultraviolet

spectrometry with Zn reduction (Heinzmann, Miyazawa, &

Pavan, 1984; Norman & Stucki, 1981); that used for NH4-N was

phenate (APHA, 1995). They were determined by a spectropho-

tometer at 210 nm for NO3-N and 640 nm for NH4-N. To obtain

TN, Kjeldahl digestion (APHA, 1995) in an unfiltered sample was

performed; the detection methodology for Kjeldahl N was the

same as for soluble NH4-N. The Kjeldahl digestion method does

not include nitrate, so TN was obtained by the sum of Kjeldahl

N and soluble NO3-N (Sharpley & Menzel, 1987). The PN was

obtained by the difference between TN and soluble N (NH4-N

+ NO3-N).

SP was determined in the filtrate in a 0.45 μm pore size by induc-

tively coupled plasma optical emission spectrometry (ICP-OES VAR-

IAN 720-ES). TP was obtained in the unfiltered sample by acidic

digestion in a microwave oven (model MARS 6; CEM®) according to

USEPA 3015a (USEPA, 2007), and subsequent determination by ICP-

OES. The particulate P was obtained by the difference between TP

and SP. BP was determined in an unfiltered sample by the iron oxide

impregnated filter membrane method, according to Sharpley (1993)

and adapted by Myers and Pierzynski (2000), and its concentration

was determined by ICP-OES. BPP was obtained by the difference

between BP and SP, and the NBPP through subtraction of BPP

from PP.

Total organic carbon (TOC) was determined using the unheated

dichromate oxidation method (Boyd & Tucker, 1992; Tedesco,

Gianello, Bissani, Bohnen, & Volkweiss, 1995).

2.5 | Determination of annual water yield and
sediment and nutrient losses

The annual water yield was determined by Equation (4).

PA=

P
Q

A
, ð4Þ

Where: PA = annual water yield, m3 ha−1 yr−1; Q = daily water flow,

m3 d−1; and A = area of the watershed, ha.

Annual loss of sediments and nutrients was determined by Equa-

tion (5), adapted from Yang, Zhang, and Zhao (2007).

TP=

Pn
i=1

kCiD

1,000A
, ð5Þ

Where: TP = annual loss, kg ha−1 yr−1; n = number of collections;

k = interval between one collection and another, days; Ci = concentra-

tion of sediments or nutrients of a given sample, mg L−1; D = mean

stream flow of the interval between one collection and another,

m3 d−1; 1,000 = conversion factor; and A = area of contribution of the

watershed, ha.

It is important to point out that the annual losses of sediment and

nutrients in our study according to Equation (5) were calculated con-

sidering the concentration data from samples collected at intervals of

approximately 15 days, in base flow and precipitation events, but not

in all events. Also, only one sample was collected in each precipitation

event, so annual loss of sediment and nutrients is a rough estimative

and not a truly loss.

Annual loss of sediments and nutrients also were estimated using

Load Estimator model (LOADEST); (Runkel, Crawford, & Cohn, 2004).

This program uses a time-series of stream flow and concentration data

and provides a regression model for the estimation of loss. For the

LOADEST, the inputs were the mean stream flow daily and the con-

centration from samples collected at intervals of approximately

15 days, in base flow and precipitation events, so a total of 22 data

points for SW and 25 for CW.

2.6 | Statistical analysis

The data were submitted to descriptive analysis, and multivariate

analysis with principal components analysis using CANOCO statistical

software (Ter Braak & Smilaue, 2012).

3 | RESULTS

3.1 | Flow and water yield

Precipitation during the study period (2 years), 4,944 mm in SW and

4,691 mm in CW, was similar and well distributed (Figure 2); however,

6 MARTÍNI ET AL.



there were events of high precipitation, with values greater than

100 mm, which resulted in higher flows, mainly in CW. The highest

rain volume was 119 mm at SW (Figure 2a) and 131 mm at CW

(Figure 2b). The highest event at SW produced 0.0106 m3 s−1 flow,

which corresponds to 6.87 mm of water yield, with 77% (5.32 mm) as

base flow (Figure 2a); CW produced 0.0216 m3 s−1 flow, which corre-

sponds to 9.77 mm of water yield, with 48% (4.75 mm) as base flow

(Figure 2b).

Flow (overland flow and base flow) was higher in CW. The mean

daily flow rate for CW was 0.0113 m3 s−1, with a maximum of

0.0216 m3 s−1 and a minimum of 0.0102 m3 s−1, while in SW, mean,

maximum and minimum flow rates were 0.0061, 0.0168 and

0.0031 m3 s−1, respectively.

SW presented a greater amplitude of base flow (0.0031–

0.0117 m3 s−1, which corresponds to 2.03–7.58 mm) (Figure 2a),

while CW had a greater amplitude of overland flow (0.0000–

0.0111 m3 s−1, which corresponds to 0.00–5.02 mm) (Figure 2b).

The mean daily value (period of 2 years) was 3.73 mm for base

flow and 0.23 mm for overland flow in SW, and 5.03 mm for base

flow and 0.09 mm for overland flow in CW. Of the total precipitation

recorded during the 2 years of study (4,944 mm in SW and 4,691 mm

in CW), 3.5% (174 mm) and 1.4% (67 mm) was overland flow, and

56% (2,769 mm) and 79.6% (3,732 mm) was base flow in SW and

CW, respectively.

This generates an accumulated water yield (overland flow and

base flow) of 29,428 m3 ha−1 from SW and 37,993 m3 ha−1 from CW

(b)

(a)

F IGURE 2 Precipitation, overland
flow, base flow and water sampling during
the study period in the Sarandi (a) and
Coxilha (b) watersheds
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(27,693 and 37,323 m3 ha−1 as base flow and 1,735 and 667 m3 ha−1

as overland flow, for SW and CW, respectively) during these 2 years.

3.2 | Water quality

Principal components analysis (Figure 3) of samples collected from

downstream areas identified a clear separation between watersheds

(SW and CW), collection dates (base flow and precipitation events)

and agricultural crops (summer and winter). Overall, the concentration

of all parameters was higher in downstream (Tables 5 and 6). Using

the mean concentration considering the base flow and the precipita-

tion events (Figure 3 left), component 1 (PC1), which explains approxi-

mately 69% of the data variation, is represented by TS, TN, NH4-N,

SP, PP, TP and NO3-N and shows separation of the watersheds in

such a way that SW has lower concentrations than CW. Component

2 (PC2), which explains approximately 23% of the data variation, is

represented by BP, PN and TOC and shows separation of the collec-

tion dates such that BP has higher concentrations in precipitation

events in SW, and TOC has higher concentrations in precipitation

events in CW, while PN has higher concentrations at base flow in

both watersheds. Using the mean concentration of the summer and of

the winter crop (Figure 3 right), component 1 (PC1), which accounts

for approximately 60% of the data variation, is represented by

NH4-N, TN, SP, PP, TP and TS and shows the watershed separation in

such a way that SW watershed presents concentrations lower than

those for CW. Component 2 (PC2), which accounts for approximately

27% of the data variation, is represented by BP, PN, TOC and NO3-N

and shows the separation of samples by agricultural crop, so BP and

PN have higher concentrations in the summer in both watersheds,

while TOC and NO3-N have higher concentrations in the winter agri-

cultural crop mainly in CW. In general, according to principal compo-

nents analysis, the highest concentrations these variables were

observed in CW (Figures 4–6).

Regarding the different fractions, the greatest contribution of TN

came from NO3-N and PN in both watersheds (Figure 7 left). How-

ever, in SW, the NO3-N values were lower than those for CW (52%

compared to 64%, respectively), while PN values were higher (44%

compared to 33%, respectively). PP (BPP + NBPP) contributed more

than 75% of TP (Figure 7 right) in both watersheds. Most of the PP

was BPP (in SW, 44% of TP is BPP upstream and 55% downstream; in

CW, 49 and 24% of TP is BPP upstream and downstream, respec-

tively). The sum of SP and BPP corresponds to BP; approximately

70% of TP was bioavailable in SW, upstream and downstream, while

in CW, approximately 68% was bioavailable in P1 and 35% in P2.

3.3 | Annual losses of sediment and nutrients

The sediment and nutrient losses estimated by LOADEST were similar

the simplified methodology adapted from Yang et al. (2007) (Figure 8).

Figure S1 shows the plots from flow and concentration and Tables S1

F IGURE 3 Analysis of principal components of the mean concentrations of total solids (TS), total organic carbon (TOC), nitrogen as nitrate
(NO3-N), ammonium (NH4-N), particulate (PN), total nitrogen (TN), and phosphorus as soluble (SP), bioavailable (BP) particulate (PP) and total
(TP) at downstream collections, in precipitation events and base flow (left) and in summer and winter crops (right) [Colour figure can be viewed at
wileyonlinelibrary.com]
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and S2 show the equations e results, respectively from the LOADEST

model. However, considering that LOADEST can produce biased load

estimates when the model does not have a good adjustment

(Table S1) due to the small amount of data evaluated, it was decided

to present and discuss the results obtained by the simplified method-

ology, adapted from Yang et al. (2007).

The largest losses of sediments and nutrients were observed in

CW (Figure 8). Sediment loss was 96% higher in CW

(1,369 kg ha−1 yr−1) compared to SW (698 kg ha−1 yr−1). Phosphorus

losses (Figure 8a) were also greater in CW (1.6 kg ha−1 yr−1 TP) com-

pared to SW (0.8 kg ha−1 yr−1 TP), approximately 1% and 6% of the P

applied through mineral fertilization in SW (76.2 kg ha−1) and CW

(35.2 kg ha−1), respectively. For nitrogen, loss of NH4-N + NO3-N

(Figure 8b) in SW was 17.6 kg ha−1 yr−1, approximately 5% of the

amount applied via mineral fertilizer in SW (342.8 kg ha−1). In the

CW, the nitrogen loss (35.2 kg ha−1 yr−1) was much higher than that

applied (6.6 kg ha−1). Nitrogen inputs via animal waste and crop resi-

dues (straw and roots) were not accounted for. TOC also had highest

losses in CW, when compared to SW (54.0 and 18.9 kg ha−1 yr−1)

(Figure 8b).

4 | DISCUSSION

4.1 | Flow and water yield

During events of high volume, most of the rainfall was converted to

base flow in SW, while in CW, most of the rainfall was transformed

into overland flow. Regarding the rainfall event that produced the

highest peak discharge, the overland flow for CW was 51% of total

discharge flow and for SW it was 23%. The watersheds have different

agricultural systems under no-tillage but the differences in the flow

data (overland flow and base flow) during events of precipitation can

be explained by the presence and absence of terraces. In the SW with

continuous crop production there are terraces (more specifically the

level terraces), while in the CW with crop-livestock integration there

are no terraces implemented. Deuschle et al. (2019), in a study on

agricultural hillslopes in Southern Brazil concluded that even in no-

tillage under crop rotation intensification with high soil cover, comple-

mentary practices such as terraces are necessary to control runoff.

Terraces, independent of the type, decrease the length of the hillside,

but the level terrace type is built to retain all surface runoff (Denardin,

TABLE 5 Mean and standard deviation (±) of the concentrations of total solids (TS), nitrogen as ammonium (NH4-N), nitrogen as nitrate (NO3-
N), particulate nitrogen (PN), total nitrogen (TN) and total organic carbon (TOC), turbidity, pH e electrical conductivity (EC) of samples from
Sarandi (SW) and Coxilha (CW) watersheds

TS Turbidity

pH

EC
NH4-N NO3-N PN TN TOC

Mg L−1 NTU μS cm−1 ———————————————mg L−1—————————————————————

SWP1-T 48.5 ± 41.7 6.2 ± 6.98 5.7 ± 0.40 23.6 ± 3.91 0.07 ± 0.12 1.14 ± 0.46 0.94 ± 0.60 2.15 ± 0.69 1.84 ± 1.95

SWP1-S 56.9 ± 33.6 8.7 ± 9.10 5.6 ± 0.34 24.4 ± 4.43 0.09 ± 0.16 0.93 ± 0.55 1.31 ± 0.58 2.33 ± 0.88 1.44 ± 2.51

SWP1-W 40.1 ± 48.6 3.8 ± 2.46 5.9 ± 0.42 22.7 ± 3.29 0.04 ± 0.04 1.36 ± 0.20 0.58 ± 0.38 1.98 ± 0.39 2.24 ± 1.14

SWP1-B 55.6 ± 36.9 7.7 ± 8.32 5.8 ± 0.47 24.0 ± 4.55 0.09 ± 0.14 1.05 ± 0.52 1.09 ± 0.63 2.24 ± 0.80 1.31 ± 2.21

SWP1-P 36.0 ± 49.0 3.6 ± 2.28 5.7 ± 0.25 22.9 ± 2.52 0.02 ± 0.04 1.30 ± 0.30 0.67 ± 0.48 2.00 ± 0.44 2.76 ± 0.87

SWP2-T 50.9 ± 35.8 5.6 ± 6.06 5.8 ± 0.49 23.9 ± 3.88 0.06 ± 0.06 1.07 ± 0.53 0.93 ± 0.66 2.06 ± 0.58 1.37 ± 1.48

SWP2-S 55.6 ± 34.2 7.1 ± 8.21 5.7 ± 0.60 24.1 ± 3.52 0.08 ± 0.07 0.66 ± 0.35 1.34 ± 0.64 2.08 ± 0.70 1.31 ± 1.94

SWP2-W 46.3 ± 38.5 4.2 ± 2.24 5.9 ± 0.33 23.7 ± 4.37 0.04 ± 0.05 1.47 ± 0.32 0.52 ± 0.35 2.04 ± 0.45 1.44 ± 0.91

SWP2-B 58.1 ± 33.6 6.4 ± 7.31 5.8 ± 0.57 24.2 ± 4.26 0.09 ± 0.07 0.94 ± 0.59 1.09 ± 0.69 2.12 ± 0.57 1.20 ± 1.71

SWP2-P 38.5 ± 38.5 4.4 ± 2.78 5.9 ± 0.35 23.4 ± 3.30 0.02 ± 0.01 1.29 ± 0.32 0.65 ± 0.52 1.96 ± 0.61 1.67 ± 1.00

Mean SW 49.7 ± 38.4 5.9 ± 6.46 5.8 ± 0.44 23.7 ± 3.85 0.06 ± 0.09 1.11 ± 0.49 0.94 ± 0.62 2.11 ± 0.63 1.61 ± 1.73

CWP1-T 61.1 ± 35.8 11.8 ± 32.94 5.4 ± 0.36 32.4 ± 7.45 0.07 ± 0.06 2.29 ± 0.61 1.18 ± 0.94 3.54 ± 1.20 3.68 ± 4.10

CWP1-S 61.3 ± 35.6 6.4 ± 5.25 5.5 ± 0.23 34.4 ± 2.94 0.07 ± 0.05 2.50 ± 0.25 1.84 ± 1.08 4.42 ± 1.09 2.00 ± 2.40

CWP1-W 60.9 ± 37.2 15.4 ± 42.52 5.2 ± 0.39 31.1 ± 9.21 0.07 ± 0.07 2.15 ± 0.74 0.74 ± 0.49 2.96 ± 0.88 4.80 ± 4.67

CWP1-B 58.6 ± 38.2 5.2 ± 4.82 5.4 ± 0.36 33.4 ± 4.15 0.07 ± 0.05 2.46 ± 0.30 1.45 ± 1.24 3.99 ± 1.23 2.02 ± 2.09

CWP1-P 63.0 ± 35.1 16.9 ± 43.83 5.3 ± 0.37 31.7 ± 9.37 0.07 ± 0.07 2.16 ± 0.75 0.97 ± 0.58 3.20 ± 1.08 4.98 ± 4.86

CWP2-T 85.9 ± 90.9 16.0 ± 42.26 5.7 ± 0.26 27.1 ± 4.61 0.11 ± 0.15 1.84 ± 0.39 0.95 ± 0.56 2.91 ± 0.71 3.26 ± 4.98

CWP2-S 53.9 ± 20.4 1.8 ± 1.44 5.7 ± 0.20 26.8 ± 4.57 0.08 ± 0.06 1.82 ± 0.41 1.48 ± 0.37 3.39 ± 0.69 1.17 ± 2.17

CWP2-W 107.2 ± 112.6 25.4 ± 53.11 5.6 ± 0.30 27.3 ± 4.78 0.14 ± 0.19 1.86 ± 0.39 0.60 ± 0.32 2.59 ± 0.54 4.64 ± 5.85

CWP2-B 58.2 ± 30.0 1.3 ± 0.75 5.6 ± 0.27 25.4 ± 5.61 0.08 ± 0.06 1.76 ± 0.27 1.14 ± 0.47 2.99 ± 0.54 0.94 ± 1.40

CWP2-P 107.7 ± 115.8 27.5 ± 54.51 5.7 ± 0.26 28.4 ± 3.28 0.14 ± 0.20 1.91 ± 0.46 0.80 ± 0.59 2.85 ± 0.84 5.07 ± 6.01

Mean CW 73.5 ± 69.5 13.9 ± 37.56 5.5 ± 0.35 29.8 ± 6.69 0.09 ± 0.12 2.07 ± 0.55 1.07 ± 0.77 3.23 ± 1.03 3.47 ± 4.52

Notes: All collections (T), collections in summer crop (S) and winter crop (W), collections in base flow (B), and precipitation events (P), collections at different

points (upstream—P1 and downstream—P2).
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Kochhann, Faganello, Denardin, & Santi, 2012; Gassman et al., 2006;

Shi et al., 2012). This soil conservation practice improves the quality

and availability of water (Londero et al., 2018; Magalh~aes, 2013;

Merten et al., 2015). Systems where most of the rainfall is converted

to surface runoff indicate a decrease in water quality due to an

increase in the transport of sediments and runoff associated pollut-

ants (Bortolozo et al., 2015; Ding et al., 2016; Lourençato et al., 2015;

Ramos et al., 2014; Ribeiro et al., 2014) as well as a decrease in water

supply due to low recharge (Dur~aes & De Mello, 2013;

Magalh~aes, 2013).

Considering the percentage of rainfall transformed on groundwa-

ter recharge (base flow), both watersheds had a higher proportion

(greater than 50% from the 2-year period), highlighting the lower

atmospheric demand due to meteorological conditions of the Cfa cli-

mate. Higher proportion of base flow compared to overland flow

observed in the entire period of study for both watersheds are also

observed during specific events, however, in those events with high

precipitation, most of the rainfall was converted into base flow in the

SW, while in CW most of the rainfall was converted in overland flow

(Figure 2). So, if in the entire period the proportion of base flow in SW

is lower compared to CW (56 and 80%, respectively), in high discharge

events it was higher (77 and 49%, respectively).

4.2 | Water quality

The downstream represents all drainage from the watershed, so

higher values were expected compared to upstream, mainly during

rainfall events (Table 5). In general, it was identified differences

between watersheds (SW and CW), collection dates (base flow and

precipitation events) and agricultural crops (summer and winter),

highlighting better quality in the SW, in the base flow and in the win-

ter crops (Figure 1), however, different from SW, the water quality in

the CW was worst in the winter crops. During the winter, the CW

was cultivated with oats under grazing of beef cattle, which could

explain the higher concentration of water quality parameters

(Lanzanova et al., 2007). In addition to the low soil cover due to the

limited crop systems with soybean-oat and the possibility of compac-

tion of the soil by grazing, the sediment and nutrients transport in this

watershed is maximized by the absence of terraces (Gassman

TABLE 6 Mean and standard deviation (±) of the concentrations of soluble phosphorus (SP), bioavailable phosphorus (BP), particulate
phosphorus (PP), bioavailable particulate phosphorus (BPP), non-bioavailable particulate phosphorus (NBPP) and total phosphorus (TP), of
samples from Sarandi (SW) and Coxilha (CW) watersheds

SP BP PP BPP NBPP TP

——————————————————————————————mg L−1—————————————————————————————————————

SWP1-T 0.015 ± 0.03 0.041 ± 0.03 0.044 ± 0.04 0.026 ± 0.02 0.019 ± 0.04 0.059 ± 0.06

SWP1-S 0.022 ± 0.04 0.052 ± 0.04 0.058 ± 0.05 0.029 ± 0.02 0.029 ± 0.05 0.081 ± 0.08

SWP1-W 0.008 ± 0.01 0.030 ± 0.01 0.030 ± 0.02 0.022 ± 0.01 0.008 ± 0.02 0.038 ± 0.02

SWP1-B 0.020 ± 0.03 0.043 ± 0.04 0.047 ± 0.05 0.022 ± 0.02 0.025 ± 0.04 0.068 ± 0.07

SWP1-P 0.006 ± 0.00 0.037 ± 0.02 0.039 ± 0.02 0.031 ± 0.01 0.008 ± 0.02 0.045 ± 0.02

SWP2-T 0.008 ± 0.01 0.040 ± 0.03 0.050 ± 0.05 0.032 ± 0.03 0.018 ± 0.05 0.058 ± 0.06

SWP2-S 0.012 ± 0.01 0.048 ± 0.02 0.069 ± 0.07 0.036 ± 0.03 0.033 ± 0.08 0.081 ± 0.08

SWP2-W 0.004 ± 0.01 0.033 ± 0.02 0.031 ± 0.03 0.029 ± 0.03 0.002 ± 0.00 0.035 ± 0.03

SWP2-B 0.011 ± 0.01 0.039 ± 0.02 0.055 ± 0.07 0.028 ± 0.02 0.027 ± 0.07 0.065 ± 0.07

SWP2-P 0.004 ± 0.00 0.044 ± 0.03 0.041 ± 0.03 0.040 ± 0.03 0.002 ± 0.01 0.045 ± 0.03

Mean SW 0.012 ± 0.02 0.041 ± 0.03 0.047 ± 0.05 0.029 ± 0.02 0.018 ± 0.05 0.059 ± 0.06

CWP1-T 0.016 ± 0.04 0.056 ± 0.05 0.066 ± 0.06 0.040 ± 0.04 0.026 ± 0.05 0.082 ± 0.09

CWP1-S 0.012 ± 0.01 0.056 ± 0.05 0.067 ± 0.06 0.044 ± 0.05 0.023 ± 0.03 0.079 ± 0.06

CWP1-W 0.019 ± 0.06 0.056 ± 0.05 0.065 ± 0.07 0.037 ± 0.03 0.028 ± 0.07 0.084 ± 0.11

CWP1-B 0.010 ± 0.01 0.040 ± 0.02 0.047 ± 0.02 0.030 ± 0.02 0.017 ± 0.03 0.057 ± 0.03

CWP1-P 0.021 ± 0.06 0.069 ± 0.06 0.080 ± 0.08 0.048 ± 0.05 0.033 ± 0.07 0.102 ± 0.12

CWP2-T 0.012 ± 0.02 0.040 ± 0.01 0.102 ± 0.18 0.027 ± 0.02 0.074 ± 0.19 0.114 ± 0.19

CWP2-S 0.011 ± 0.01 0.041 ± 0.01 0.094 ± 0.10 0.030 ± 0.02 0.064 ± 0.11 0.105 ± 0.11

CWP2-W 0.013 ± 0.02 0.039 ± 0.02 0.107 ± 0.22 0.026 ± 0.01 0.081 ± 0.23 0.120 ± 0.24

CWP2-B 0.011 ± 0.01 0.040 ± 0.01 0.056 ± 0.05 0.029 ± 0.02 0.027 ± 0.05 0.067 ± 0.05

CWP2-P 0.014 ± 0.02 0.040 ± 0.02 0.138 ± 0.23 0.026 ± 0.02 0.112 ± 0.24 0.151 ± 0.25

Mean CW 0.014 ± 0.03 0.048 ± 0.04 0.084 ± 0.13 0.034 ± 0.03 0.050 ± 0.14 0.098 ± 0.15

Notes: All collections (T), collections in summer crop (S) and winter crop (W), collections in base flow (B), and precipitation events (P), collections at different

points (upstream—P1 and downstream—P2).
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et al., 2006; Londero et al., 2018; Shi et al., 2012) and by insufficient

riparian vegetation (Bortolozo et al., 2015). In the SW, the agricultural

system is based on seed production, and the higher concentration of

water quality parameters during the summer crop was possibly due to

lower soil cover by maize; maize for seed production is cultivated with

a larger spacing than the other crops (0.6 m maize; 0.45 m soybean;

0.17 m wheat and oats). Larger spacings leave the soil unprotected

and susceptible to water erosion, especially in the initial phase of crop

development. This effect is worst if there is low soil cover by straw.

Although the concentrations of water quality parameters in SW

were better (Table 5), they could be even lower if the drainage chan-

nel had adequate riparian vegetation. In a study with native grass veg-

etation, Bortolozo et al. (2015) found 66, 84 and >80% water,

sediment and nutrient retention, respectively, with a 30-m vegetation

buffer.

Turbidity is usually highly related to sediment concentration

(Merten, Minella, Horowitz, & Moro, 2014); however, in both water-

sheds, the correlation was very low, which was possibly due to the

database containing mostly low values for TS (Minella, Merten,

Rollof, & Abreu, 2009). TS reproduces the amount of sediment that is

transported through surface runoff, and studies have shown that

approximately 60% of suspended sediments in water bodies come

from cultivated land (Tiecher, Caner, Minella, Bender, & dos

Santos, 2016; Tiecher, Caner, Minella, & dos Santos, 2015). Bertol

et al. (2007) comparing losses by water erosion in different manage-

ment systems demonstrate that no-tillage systems are the most effi-

cient, reducing sediment and water loss by 84 and 59%, respectively.

Therefore, management practices to avoid the removal, transport and

deposition of sediments, even in no-tillage, such as high soil cover by

straw, terraces and riparian vegetation, are necessary to avoid water

(b)

(a)F IGURE 4 Precipitation (sampling
day and 2 days before) and total solids
concentration (TS) at upstream (P1) and
downstream (P2) in the Sarandi (a) and
Coxilha (b) watersheds
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degradation by agricultural activity. The values for electrical conduc-

tivity (Table 5) were low when compared to those considered as

potential pollution problems, values higher than 100 μS cm−1

according to CETESB (2009). On-the-other-hand, they are high com-

pared with those from other studies in agricultural watersheds

(Ribeiro et al., 2014). High values of electrical conductivity were

expected since these watersheds were cultivated under no-tillage sys-

tems with a high input of fertilizers.

Soil nitrogen can reach water bodies as soluble and particulate

nitrogen and it can cause environmental and human health problems.

TN is associated with eutrophication problems, NO3-N with human

health problems (methaemoglobinaemia and cancer), and NH4-N

(unionized NH3) with aquatic life problems (Haygarth & Jarvis, 2002;

Lal & Stewart, 1994). In soil conditions, most of the NH4-N rapidly

turns into NO3-N due to nitrification (Silva & Vale, 2000),

potentializing this loss. So, this explains the higher concentrations of

NO3-N when compared to NH4-N in both watersheds (Figure 5,

Table 5). NH4-N, due to its positive electric charge binds to colloids in

the soil. However, NO3-N has a negative charge and, therefore, a

greater potential for losses mainly via subsurface flow (Haygarth &

Jarvis, 2002; Lal & Stewart, 1994). PN represents the organic fraction

plus the mineral fraction adsorbed to the sediments being transported

mainly via surface runoff.

NO3-N concentrations were higher in CW (Figure 5, Table 5), and

this can be a consequence of the crop–livestock system. The higher

NO3-N concentrations can be associated with manure addition with

direct effect by the amount of N added and by increasing the microbi-

ological activity. On the other hand, when no-tillage is well conducted,

the tendency for water to be lost by subsurface flow carrying NO3-N

is much higher (Sangoi, Ernani, Lech, & Rampazzo, 2003). Even in the

(b)

(a) F IGURE 5 Precipitation (sampling day
and 2 days before) and concentration of
soluble nitrogen (nitrate [NO3-N] and
ammonium [NH4-N]) at upstream (P1) and
downstream (P2) in the Sarandi (a) and
Coxilha (b) watersheds
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(b)

(a)F IGURE 6 Precipitation (sampling day
and 2 days before) and concentration of
particulate nitrogen (PN), and total organic
carbon (TOC) at upstream (P1) and
downstream (P2) in the Sarandi (a) and
Coxilha (b) watersheds

F IGURE 7 Percentage of mean concentration of total nitrogen (TN) as ammonium (NH4-N), nitrate (NO3-N) and particulate nitrogen
(PN) (left) and of total phosphorus (TP) as soluble (SP), bioavailable particulate (BPP) and non-bioavailable particulate (NBPP) (right) in water of the
Sarandi (SW) and Coxilha (CW) watersheds, at upstream (P1) and downstream (P2)
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absence of terracing, which means no retention of surface runoff, the

data show a greater contribution of subsurface flow on NO3-N trans-

port, since the highest concentrations were observed upstream in CW

(Figure 5, Table 5). Moreover, studies show that differences in NO3-N

loss may occur due to crop type, being higher in soybean than in

maize (Guadagnin et al., 2005), which also explains the difference

between watersheds during the summer (Table 5) as maize was grown

in SW and soybean in CW.

Phosphorus is the limiting element for eutrophication and

because it is poorly mobile in soil, the main way to reach water bodies

is by surface runoff, which demonstrates the importance of adopting

soil management practices that mitigate runoff and, consequently, the

loss of this nutrient (Haygarth & Jarvis, 2002). Phosphorus can be

transported from soil to water as soluble and particulate. SP, BP and

BPP are readily available to aquatic plants and organisms, and there-

fore their potential for contamination is short-term; since PP, NBPP

and TP are not readily available, they represent a potential source of

long-term contamination (Haygarth & Jarvis, 2002; Lal &

Stewart, 1994; Sharpley, McDowell, & Kleinman, 2001).

During the summer crops, phosphate fertilizers were applied

(198 kg ha−1 of P2O5 in SW and 59 kg ha−1 of P2O5 in CW). The soil

in these areas already contains phosphorus at very high and extremely

high levels (SBCS, 2016), respectively, therefore the soil acts as a

source of phosphorus, since the adsorption sites may be saturated

and then phosphorus is readily available to be transported as SP by

surface and subsurface runoff (Guardini et al., 2012; Shore

et al., 2017). The higher concentrations of bioavailable P in SW

(Table 6) indicate a short-term pollution problem, while the higher

concentration of NBPP downstream in CW show the potential for

long-term pollution (Sharpley et al., 2001).

The data, when compared with CONAMA Resolution

No. 357/2005 (Brasil, 2005), more specifically with freshwater class

2, show in general that the concentration of P in the stream (Table 6)

is above the maximum limits allowed by legislation (0.030 mg L−1 of

TP in a lentic and 0.050 mg L−1 of TP in no lentic water). Worldwide,

these concentrations of TP are also associated with eutrophication

(Correll, 1998; Haygarth & Jarvis, 2002). Therefore, farmers and pro-

fessionals are required to be aware to correct not only soil use and

management, but also fertilizer management. Worldwide, high rates

of fertilizers are being unreasonably applied and represent a risk of

water pollution.

Transport of nutrients from soil to water, especially in the particu-

late form, can be lower, even in terraced areas, if the presence of

riparian vegetation is adequate. Bortolozo et al. (2015) obtained high

retention of nutrients in runoff with 30 m of riparian vegetation.

Ribeiro et al. (2014), studying the Campestre watershed, Colombo,

(a) (b)

(c) (d)

F IGURE 8 Annual loss of phosphorus as soluble (SP), bioavailable (BP), particulate (PP), bioavailable particulate (BPP), non-bioavailable

particulate (NBPP), and total (TP) (a and c); nitrogen as ammonium (NH4-N); nitrate (NO3-N) particulate (PN) and total (TN) and total organic
carbon (TOC) (b and d) in Sarandi and Coxilha watersheds, obtained by the adapted Yang et al.(2007) methodology (a and b) and by LOADEST
model (c and d)
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PR, showed that riparian vegetation reduces the potential for water

pollution, since lower concentrations of pollutants, mainly nutrients,

are found in areas with adequate riparian vegetation. The relationship

among agricultural systems and water quality is part of a complex web

involving natural resources and adoption of best management prac-

tices by farmers. For Dalo�glu, Nassauer, Riolo, and Scavia (2014) the

decision to adopt conservation practices by farmers is a slow process

that requires trial and evaluation, so studies exploring whether or not

substantial changes in water quality can be expected as a result of

specific interventions can incentive farmers on adopting sustainable

food production with environmental protection.

4.3 | Annual losses of sediment and nutrients

The values of sediment losses (rough estimate) in both watersheds

(698 kg ha−1 yr−1 in SW and 1,369 kg ha−1 yr−1 in CW) are lower than

those obtained by other researchers. Dechen, Telles, Guimar~aes, and

De Maria (2015) (study with soil and waters loss in a no-tillage system

with different soil cover rates) obtained a loss of 12,570 kg ha−1 yr−1

with 90% soil cover. Raclot et al. (2009) (study with soil and water loss

in different tillage systems and scale effect) obtained a loss of

2,500 kg ha−1 yr−1 in a field with a no-tillage system. On the other

hand, the values are higher than those from the study of Merten

et al. (2015) with a no-tillage system in Paraná (14 years of data col-

lection); they found soil loss of 400 kg ha−1 yr−1 in small plots (up to

77 m2) and 50 kg ha−1 yr−1 in large plots (up to 10,000 m2). It is

known that, in general, soil losses at large plots are lower than in small

plots, so soil loss in a watershed should not be calculated considering

the sum of individual fields (Raclot et al., 2009).

Agronomically, the phosphorus losses (maximum loss of TP was

1.6 kg ha−1 yr−1, and 6% of applied P) (Figure 8) would not be a con-

cern, but environmentally they indicate a problem, considering that

the TP concentrations in these watersheds are above the critical limit

to cause eutrophication (Correll, 1998; Haygarth & Jarvis, 2002).

Regarding nitrogen and carbon losses, the values were higher com-

pared with phosphorus losses (maximum loss of NH4-N + NO3-N,

35 kg ha−1 yr−1 and TOC, 54 kg ha−1 yr−1). The presence of cattle and

their manure, in CW, in the winter crop can explain the greater losses

in CW. Manure on the soil surface is extremely vulnerable to losses

by surface runoff (Cherobim, Huang, & Favaretto, 2017).

4.4 | Final considerations

Overall, the water quality was worst in the watershed characterized

by production of soybean in the summer and oat with grazing in the

winter, under no-tillage, without crop rotation and no terracing.

Unfortunately, in most of the no-tillage systems in the southern

region of Brazil, terraces have been removed from agricultural fields,

and crop succession or even monoculture has been used which causes

soil and water conservation problem. However, even with crop rota-

tion and terraces in the watershed characterized by production of

annual crop seeds under no-tillage factors such as soil compaction,

low soil cover residue, saturated soil and insufficient riparian vegeta-

tion affect water, sediment and nutrients losses.

To reduce the potential risks of water pollution in agricultural

areas, even in no-tillage, it is important to highlight the implementa-

tion of terraces and riparian vegetation as well as the maintenance of

crop systems with high carbon production and soil cover throughout

the entire year with appropriate fertilization management. These best

management practices benefit the environmental quality and the eco-

nomically rentability of the farmers once water is stored in the soil,

minimizing problems of scarcity, improving the productive capacity of

the soil and consequently increasing profitability.

The study with water quality was conducted for only 1 year, and

the samples were manually grabbed in precipitation events and flow

base, however, during the precipitation, only one sample was col-

lected. We understand that a better result could be found if water

samples were taken during the rising and falling of the hydrograph

and for a longer period in several significant events, but unfortunately

this was no possible in our monitoring, and can be a suggestion for

future studies. In spite of the limited dataset collected during 1 year,

monitoring of water quality under intensively cultivated subtropical

agricultural watersheds are pioneering researches, and in our case rev-

ealed important results related to soil management practices and

water fluxes and quality. Besides the changes in the sampling proce-

dure and the long term monitoring, we also suggest for future studies

paired small watersheds or paired large plots with specific contrasting

conditions of land use and management to better understand the

effect of the treatments.
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