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Overview

• Independent component analysis: recover the linear mixing
that combines independent sources

• Kernel independence testing: given a sample of m pairs
{(x1, y1), . . . , (xm, ym)}, are the random variables x and y

independent?

• The two sample problem: are samples {x1, . . . , xm} and
{y1, . . . , yn} generated from the same distribution?
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Some notation and conventions

• Random variables are written sans serif, eg x, x

• Vector spaces are written in caligraphic font, eg x ∈ X
• Probability distributions and densities are Px(A), expectations

are Ex(x)

• Covariance matrices are written

Cxy := Ex,y(xy�) − Ex(x)Ey(y�)
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ICA

...where to be careful when doing it
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ICA (Population version)

• Indepdendent component analysis: we assume

x = As,

– x vector of observations, A (unknown) mixing matrix,

– s a vector of l unknown, independent inputs:
Ps =

∏l
i=1 Psi

– B is our estimate of A−1

• We want to find

– An estimate y of s, using...

– ...an estimate B of A−1:

ŝ := y = Bx = BAs
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ICA (empirical version)

• Indepdendent component analysis: we assume

X = AS,

• Data matrices are l × m, where

X :=

⎡⎢⎢⎢⎣
x1

...

xl

⎤⎥⎥⎥⎦ and S :=

⎡⎢⎢⎢⎣
s1

...

sl

⎤⎥⎥⎥⎦
• Vectors xi and si contain m i.i.d. samples
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ICA examples

• Sounds mixed together (“cocktail party” problem)

• EEG recordings (brain, fetal heartbeat)

• Economics

• Image processing
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A toy example (1)

• We have two distributions: Px is uniform, Py is bimodal
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A toy example (2)

• Initial unmixed RVs in red, mixed RVs in black
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Things that are impossible for ICA (1)

• Assuming we know what the original signals look like, can we
determine how observations were mixed?

– Reminder: ICA doesn’t care about the sources: it only tries
to recover the mixing matrix

• First example:

– Both PDFs Gaussian

– Observe mixtures at different rotation angles

– Can we ever recover the mixing?
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Things that are impossible for ICA (2)

• Second example:

– Both PDFs uniform, symmetric about origin

– Observe mixtures at different rotation angles

– What happens when rotation angle is maximum (π/2)?
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Things that are impossible for ICA (3)

• Third example:

– RV on x-axis has asymmetric PDF, that on y-axis has
symmetric pdf

– What happens if the mixing matrix negates the Y variable?
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Things that are impossible for ICA (4)

• Separating RVs that are everywhere constant

• Separating multiple Gaussians

• Recovering signal order

• Recovering signal amplitude
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ICA Step 1

Decorrelation
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First step in ICA: decorrelate

• Idea: remove all dependencies of order 2 between observations x

• Call whitened signals t: we haven’t reached unmixed signals y

• Whiten the observations:

t = Bwx where Ctt := Et(tt�) − Et(t)Et(t�) = I

• We thus break up B as follows:

B = BrBw

– Bw is a whitening matrix

– Br is remaining demixing operation (more soon!)

• Reminder: this is done by using the SVD of Ctt = SΛS�:

Bw = Λ−1/2S�

16



Example: what does decorrelation achieve?

• A uniform distribution on the interval [−2, 2]

• A mixture of two Gaussians with equal probability, means +1
and −1
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Decorrelation: a drawback

A small warning: in theory, it is better not to break up the
unmixing matrix in this way, since there is a loss in accuracy
(statistically less efficient).

In practice, most ICA methods do decorrelation first, and the effect
is not really noticeable.
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ICA Step 2(a)

Rotation: maximum likelihood
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What is left: rotation

• To recover original signal, need to rotate (see figure)

• We assume from now on that only the rotation remains to be
done
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Rotation (continued)

• For two signals, the rotation is expressed

Br =

⎡⎣cos(θ) − sin(θ)

sin(θ) cos(θ)

⎤⎦
• This generalises to higher dimensions, eg for l = 3,

Br :=

⎡⎢⎢⎣
cos(θz) − sin(θz) 0

sin(θz) cos(θz) 0

0 0 1

⎤⎥⎥⎦×

⎡⎢⎢⎣
cos(θy) 0 − sin(θy)

0 1 0

sin(θy) 0 cos(θy)

⎤⎥⎥⎦

×

⎡⎢⎢⎣
1 0 0

0 cos(θx) − sin(θx)

0 sin(θx) cos(θx)

⎤⎥⎥⎦
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ICA: maximum likelihood

• We have a model for the observations, parametrised by
(B−1, P̂s)

– Reminder: we use B−1 here since B the unmixing matrix

– Another reminder: model must have P̂s =
∏l

i=1 P̂si

• With this model, our estimated density of observations is

P̂x = | det(B−1)|−1P̂s(Bx) = | det(B)|P̂s(Bx)

• Maximise the expected log likelihood,

L := Ex

[
log P̂x

]
= Ex

[
log | det(B)| + log P̂s(Bx)

]
• Empirical expression:

L̂ := log | det(B)| + 1
m

m∑
j=1

log P̂s(Bxj)
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Maximum likelihood: example

• The probability distribution of both source densities is

1
2

(N (−2.5, 1) + N (2.5, 1)) ,

where N (μ, σ2) is a Gaussian with mean μ and variance σ2
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Maximum likelihood: where it fails

• Model as before, but true source densities are Laplace.

• Why is this so wrong?

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

10
Input sources

source 1

so
ur

ce
 2

Observed mixtures

mixture 1

m
ix

tu
re

 2

−5 0 5
−8

−6

−4

−2

0

2

4

6

8

24



ICA Step 2(b)

Rotation: contrast functions
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What is a copy?

• The random vector s is a copy of x if and only if x = Cs, where
C does only:

– Permutations, e.g. C =

⎡⎣0 1

1 0

⎤⎦
– Sign swaps, e.g. C =

⎡⎣−1 0

0 1

⎤⎦
– Rescalings, e.g. C =

⎡⎣2 0

0 3

⎤⎦
– Some combination of several of the above

• The most we can hope for in ICA is to recover a copy of the
signals
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Contrast functions

• Ideally: contrast φ(y) = 0 if and only if all components of y

mutually independent:

Py =
l∏

i=1

Pyi .

– Under our mixing assumptions: contrast φ(Cs) = 0 if and
only if Cs a copy of s

– How people really use it: contrast should be “smallest”
when random variables are “most independent”

• There exist contrast functions that have nothing to do with
max likelihood...

• ...but max likelihood induces the “best” contrast (when
correct!)
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Contrast functions and maximum likelihood

How does the maximum likelihood relate to contrast functions?

• The max likelihood solution induces a contrast function:

L := Ex

[
log P̂x

]
= −DKL(PBx||P̂s) + const

• What is KL divergence? Given two densities Px, Qx defined on
X ⊂ R

n, then

DKL(Px||Qx) =
∫
X

Px(x) log
(

Px(x)
Qx(x)

)
dx.

• DKL(Px||Qx) ≥ 0 with equality if and only if Px = Qx almost
everywhere.

• ...thus φML(y) = DKL(PBx||P̂s) is a contrast as long as P̂s = Ps
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Contrast functions and mutual information (1)

• The mutual information is just the KL divergence between the
joint distribution and the product of the marginals:

I(yi, yj) =
∫
Y

Pyi,yj (yi, yj) log
(

Pyi,yj (yi, yj)
Pyi(yi)Pyj (yj)

)
dyi dyj

• This is also a contrast function:

I(yi, yj) = 0 iff Pyi,yj = PyiPyj

• Little used in ICA:

– Hard to find good empirical estimates

– Hard to optimise
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Contrast functions and mutual information (2)

• Simplification: when rotation only is considered, need only 1-D
entropies (see [8] in references)

• Reason:

DKL

(
Py

∥∥∥∥∥
l∏

i=1

Pyi

)
=

l∑
i=1

h (yi) − h (x) − log |detB| .

where h(y) = −Ey log(Py(y))

• h (x) constant wrt B: only function of observations x

• log |detB| = 1 when B are rotations

• Entropies are also hard to compute: IDEA: use

φ(y) =
l∑

j=1

Eyj (f(yj))

for some other nonlinear f(y)
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Contrast functions (3): Some famous cases

This slide represents a gross simplification of what really goes on.
Read the papers!

• What kind of nonlinear f(y) can we use to make our contrasts?

• Infomax-type contrast:

f(y) = a − exp(−y2/2)sech2(y)

for some a ≥ 1

• Fast ICA-type contrast:

f(y) =
1
a

log cosh(ay),

where a ≥ 1.

• Jade-type contrast:
f(y) = y4
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Kurtosis: an important concept

• Kurtosis definition: when mean is zero,

κ4 = Ex

(
x4
)− 3

(
Ex

(
x2
))2

.

• Source densities can be super-Gaussian (positive kurtosis) or
sub-Gaussian (negative kurtosis)

• Zero kurtosis does not mean Gaussian!

• Certain popular contrast functions depend explicitly on
kurtosis of unmixed signals

• Other contrast functions only work when kurtosis is positive or
negative
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Contrast functions: Example (1)

• Samples drawn from Super- and Sub-Gaussian distributions
below:
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Contrast functions: Example (2)

• Results for Jade, Infomax, and Fast ICA contrasts
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Disclaimer!

• The implementations of Jade, Fast ICA, and Infomax on the
internet work for positive and negative kurtoses! I.e. real life
algorithms are more complicated.

• That said, the foregoing demonstrates the danger of blindly
using random ICA software on the internet without knowing
what it does.
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ICA for non-i.i.d. processes
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ICA for non-i.i.d. signals (1)

• We can get extra information from sources not being i.i.d.

• Assume zero mean.

• Assume that our observation vector x(t) now depends on time
shifted values x(t + τ), where τ ≥ 1, and that the process is
stationary

• Define the covariance

Cxx(τ) = E(x(t)x(t + τ)),

where the above is indpendent of τ due to stationarity

• Hint: the ideas we’re about to use were described for
decorrelation in i.i.d. case
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ICA for non-i.i.d. signals (2)

• Our assumption that the inputs are uncorrelated causes the
following to hold:

Λ = E
(
s(t)s�(t)

)
= E

((
A−1x(t)

) (
A−1x(t)

)�)
= A−1Cxx(0)

(
A−1

)�
where Λ is a diagonal matrix

• But the following can also be assumed: for any τ ≥ 1,

Λ̃ = E
(
s(t)s�(t + τ)

)
= A−1Cxx(τ)

(
A−1

)�
• Combining both criteria: get

Cxx(0)C−1
xx (τ)A = A

(
ΛΛ̃−1

)
• Methods exist to solve for a greater number of delays (see

references): procedure is called joint diagonalisation

38



Advanced (kernel!)
independence measures

39



Kernel dependence measures

• Kernel dependence measures

– Zero only at independence

– Take into account high order moments

– Make “sensible” assumptions about smoothness

• Applications

– Independent component analysis (ICA)

– Feature selection (Fukumizu et al.)

– Dependence detection between voxel activity in Macaque
visual cortex (V1)
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Outline

• Constrained covariance (COCO)

– Covariance in RKHSs

– Three useful properties of COCO

∗ Independence measure when kernels universal
∗ How to derive independence test from independence

measure
· Cases where dependence hard to detect
· How to choose kernel?

∗ Error prob. of test drops quickly as sample size increases

• Use of COCO (and other kernel dependence measures) in ICA
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Dependence detection

x
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x 2

y 2

y
1

X space Y space

• Get m pairs of points in different spaces

• Are the RVs x and y dependent?
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A second order method

X space Y space

• Choose directions, get dot product with all points.

• Directions chosen such that the vectors of projections have
biggest covariance. Is covariance 0?
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Take nonlinear features

• Points in each space mapped to vectors of nonlinear features:

– x → x :=
[√

λ1ϕ1(x)
√

λ2ϕ2(x) . . .
√

λnϕn(x) . . .
]

– y → y :=
[√

λ1ϕ1(y)
√

λ2ϕ2(y) . . .
√

λnϕn(y) . . .
]

– x ∈ HX and y ∈ HY , can be infinite dimensional

– As n increases, λn smaller and ϕn less smooth

• Define projection vectors in each space: f ∈ HX , g ∈ HY .

• Formal definition of COCO:

COCO(Px,y;HX ,HY) := sup
f∈HX , g∈HY

cov (f�x,g�y)
‖f‖HX ‖g‖HY
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The kernel trick (1)

• Must we really consider infinite dimensional vectors?

• Differentiating COCO wrt f and g, want biggest eigenvalue⎡⎣ 0 Cxy

C�
xy 0

⎤⎦⎡⎣ fi

gi

⎤⎦ = γi

⎡⎣ fi

gi

⎤⎦
• When we rely on a finite sample,

Ĉxy =
[
x1 . . . xm

]
H

⎡⎢⎢⎢⎣
y�

1

...

y�
m

⎤⎥⎥⎥⎦
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The kernel trick (2)

• This means:

f =
m∑

l=1

clxl,

g =
m∑

l=1

dlyl.

• Inner product in reproducing kernel Hilbert spaces given by
kernel

x�
1 x2 = k (x1 − x2)

y�
1 y2 = k (y1 − y2)
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An empirical estimate

• Kernel covariance then largest eigenvalue γi of2
4 0 eK(x)

mm
eK(y)

mm

eK(y)
mm

eK(x)
mm 0

3
5

2
4 ci

di

3
5 = γi

2
4 eK(x)

mm 0

0 eK(y)
mm

3
5

2
4 ci

di

3
5 .

• K̃(x)
mm is matrix of inner products between centred

observations in feature space:

K̃(x)
mm = HK(x)

mmH

where

H = I− 1
m

11�
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COCO measures independence

• COCO(Px,y;HX ,HY) = 0 iff x, y independent, when HX and
HY are RKHSs induced by universal kernels (eg. Gaussian
kernels, Laplace kernels, ...)

• Also true of

– Kernel canonical correlation: as above, but normalising by
the variance in the RKHS [1]

– Kernel mutual information: an upper bound on the MI near
independence [6]

– Kernel generalised variance: a looser upper bound on the
MI near independence [1]
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Why universal?

• What happens when kernel is not universal?

• Example: spline kernel
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Background: statistical tests (1)

• Probability measure Pz in P0 or P0

• Two hypotheses:

– H0: null hypothesis (Pz ∈ P0)

– H1: alternative hypothesis

• Observe a sample z

• If sample is in

– Rejection/critical region R: reject H0

– Acceptance region: accept H0

• Region defined using test statistic Δ(z)

– Example: sample mean (is mean greater than some
threshold?)
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Background: statistical tests (2)

• How good is a test?

– Type I error: We reject H0 although it is true

– Type II error: We accept H0 although it is false

• Power of test:
β(Pz) := Pz(z ∈ R)

– Should be ∼ 0 for Pz ∈ P0, ∼ 1 for Pz ∈ P0

• Level of test: for 0 ≤ α ≤ 1

α ≥ supPz∈P0
β(Pz)

– Upper bound on worst possible type I error

– Note: size of test is true worst type I error
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When is dependence hard to detect?

• NO test can detect all dependence for finite samples.

• Example: Set P of prob. distrib. Px over n variables

– Pi generates independent random variables,

– Pd gives dependent RVs

• Test: Δ(x) takes m i.i.d. samples, returns

Δ(x) = 1 : x ∼ P
(d)
xm , Δ(x) = 0 : x ∼ P

(i)
xm

• Uncertainty due to empirical estimate: α-test

sup
P

(i)
x ∈Pi

E
x∼P

(i)
xm

(Δ(x) = 1) ≤ α

• There exists Px �∈ Pi such that for small ε,

Px∼Pxm
(Δ(x) = 0) ≥ 1 − α − ε
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Hard-to-detect dependence (2)

• COCO can be ≈ 0 for dependent RVs with highly non-smooth
densities:

Px,y = α + βϕl(x)ϕl(y),

– l large

– β non-trivial

• COCO “as small as you want” (depends on l)

• Reason: norms in the denominator

COCO(Px,y;HX ,HY) := sup
f∈HX , g∈HY

cov (f�x,g�y)
‖f‖HX ‖g‖HY

• RESULT: not detectable with finite sample size
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Hard-to-detect dependence (3)
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Hard-to-detect dependence (4)

• Example: sinusoids of increasing frequency
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A test of independence

• Empirical COCO converges to the population COCO at speed
1/
√

n.

• A dependence test: Δ(z) is the indicator that COCO larger
than C

√
log(1/α)/n

• Δ(z) is an α-test

– Reminder: α upper bounds prob. that test returns
dependence when random variables independent

• Type II approaches zero as 1/
√

n.

– Reminder: Type II error is prob. that test returns
independence when random variables dependent

• No slow learning rates for dependence tests!

• Finite sample results!
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Choosing kernel size (1)

• Reminder: the RKHS norm of a function is
‖f‖2

HX :=
∑∞

i=1 f̃2
i

(
k̃i

)−1

.

• If kernel decays quickly, its spectrum decays slowly:

– then non-smooth functions have smaller RKHS norm

• Example: spectrum of two Gaussian kernels
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Choosing kernel size (2)

• Could we just decrease kernel size?

• Yes, but only up to a point
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Application to ICA

• ICA can be done by optimising over kernel dependence
measures (contrast function)

• State-of the art performance for small to medium scale
problems

• Still too slow for large-scale (� 16 sources) problems

• Better outlier resistance than alternatives

• Source kurtosis does not affect performance
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Positive, Negative, and Zero kurtosis

• Amari divergence mesaures distance between estimated and
true mixing matrix

• Invariant to source order swapping and source scaling

• Bigger → worse performance
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Outlier resistance

• Outlier noise added to the mixed sources
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The Two-Sample Problem
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The two-sample problem

• Test if same distribution generated two samples

• Our criterion: the maximum mean discrepancy

– Given a type I error, type II error converges fast (1/
√

n)

– No assumptions about generating distributions

• Applications

– Neuroscience: test whether spikes on different days are from
the same neuron

– Speaker identification

– Comparison of paintings using hyperspectral photography

– Merging databases
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The MMD (1)

• F a universal RKHS, F := {f ∈ F : ‖f‖F ≤ 1} the unit ball
in F .

• The population MMD is defined as

MMD(Px,Py; F ) :=

(
sup
f∈F

[Exf(x) − Eyf(y)]

)2

.

• MMD(Px,Py; F ) = 0 if and only if Px = Py, for universal
kernels
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The MMD (2)

• How to get it wrt kernels

– Mean elements corresponding to φ(x) and φ(y):

〈μx, f〉F := Ex [〈φ(x), f〉F ] = Ex(f(x)),

〈μy, f〉F := Ey [〈φ(y), f〉F ] = Ey(f(y)).

– The norm is also written as

‖μ‖F := sup
f∈F

〈f, μ〉F
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• The MMD in terms of kernels:

MMD(Px,Py; F ) =

(
sup
f∈F

〈f, μx − μy〉F
)2

= ‖μx − μy‖2
F

= 〈μx − μy, μx − μy〉F
= Ex,x′k(x, x′) + Ey,y′k(y, y′) − 2Ex,yk(x, y),

• x′ is a R.V. independent of x with distribution Px

• y′ is a R.V. independent of y with distribution Py.
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Empirical estimate

• Given data x of size m drawn from Px and y of size n drawn
from Py

• An unbiased empirical estimate (quadratic cost):

KMD(x, y;F) :=
1

m(m − 1)

∑
i �=j

k(xi1 , xi2)︸ ︷︷ ︸
(a)

+
1

n(n − 1)

∑
i �=j

k(yj1 , yj2)︸ ︷︷ ︸
(b)

− 2
nm

m∑
i=1

n∑
j=1

k(xi, yj)︸ ︷︷ ︸
(c)

.
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How fast does empirical converge to population?

• For testing purposes, need only positive deviation

• Use 1- and 2-sample U-statistic bounds from Hoeffding

• Assume 0 ≤ k(x, y) ≤ R almost everywhere, m ≤ n.

• For all n > 2 and all 0 < δ < 1, with probability at least 1 − δ,
for all Px and Py,

KMD(x, y;F) − KMD(Px,Py;F) ≤ R

β

√
log(3/δ)

n
,

– Here β = 1+(1−√
2)r

1+r(2−r)

– r =
√

n/m.
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A 2-sample test based on MMD

• Test statistic is KMD(x, y; F )

• Null hypothesis H0 is Px = Py

• The test: accept H0 if

KMD(x, y; F ) ≤ R

β

√
log(3/α)

n

• gives a test of level α

• Type 2 error asymptotically drops as 1/
√

n

• What is p-value? We get an upper bound using

p ≤ 3 exp
(−KMD2(x, y; F )β2n

R2

)
.
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Further reading
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Some references on ICA and independence
measurement

• Start with Cardoso’s excellent introduction [3], and the tutorial
by Hyvärninen [7]

• For kernel methods, look at [6] (this talk), [1], and [5] (final
paper deals with conditional independence)

• Some alternative recent methods with “adaptive” contrast
functions: [10, 8]

• Classic algorithms for time series separation with second order
methods: [9, 2]

• An important paper for optimising over rotation matrices: [4]
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