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CENTER OF MASS AND KÄHLER STRUCTURES

SCOTT O. WILSON AND MAHMOUD ZEINALIAN

Abstract. There is a sequence of positive numbers δ2n, such that for
any connected 2n-dimensional Riemannian manifold M , there are two
mutually exclusive possibilities:

(1) There is a complex structure on M making it into a Kähler mani-
fold.

(2) For any almost complex structure J compatible with the metric,
at every point p ∈ M , there is a smooth loop γ at p such that

dist(Jp, hol
−1

γ Jpholγ) > δ2n.

1. Introduction

Kähler manifolds possess a tremendous amount of interesting structure,
and therefore have several equivalent characterizations. It has been a focus
of much research to determine conditions under which manifolds do (or do
not) admit a Kähler structure. This short note shows that the holonomy
action on the space of almost hermitian structures determines two mutually
exclusive cases, according to whether there is a structure that is nearly pre-

served at some point, by proving that any manifold with a nearly preserved
almost hermitian structure at some point in fact admits a Kähler structure.
The novel idea is to use a center of mass argument, averaging a given al-
most complex structure at a point over the holonomy action, and parallel
transporting the result to obtain a global Kähler structure.

Due to the plethora of topological implications for having a Kähler struc-
ture, one may deduce several interesting consequences that do not mention
the Kähler condition at all. For example, we deduce by [DGMS] that any
almost hermitian manifold which has a non-trivial Massey product (or more
generally is not formal) also has a holonomy action on the space almost
hermitian structures which is bounded away from the identity in a way that
is precisely quantifiable.

The authors would like to thank Dennis Sullivan for conversations about
this.
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2. Main result

For a 2n-dimensional real vector space V with an inner product g, let

J(V, g) = {J : V → V |J2 = −id, g (Ju, Jv) = g (u, v)}
denote the space of metric almost complex structures on V .

Lemma 1. J(V, g) is a compact smooth manifold. The tangent space at a

point J is

TJJ(V, g) = {φ : V → V | φJ = −Jφ and φ† = −φ}
and has a bilinear form g̃(φ,ψ) = tr(φψ†), for all φ,ψ ∈ TJJ(V, g), where ψ

†

denotes the adjoint of ψ. This makes J(V, g) into a Riemannian manifold

on which O(V ) acts transitively by isometries.

Proof. J(V, g) can be identified as the O(V )-homogenous space O(V )/U(V )
where U(V ) is defined using any fixed J on V , and the action of O(V ) on
J(V, g) is given by conjugation. Therefore J(V, g) is a smooth manifold. The
induced action of O(V ) on TJJ(V, g) is also given by conjugation, so that
trace is invariant. �

Lemma 2. For any two metric vector spaces (V, g) and (W,h) of the same

dimension, the Riemannian manifolds J(V, g) and J(W,h) are isometric. In

particular, for a vector space V and two metrics g and g′, the Riemannian

manifolds J(V, g) and J(V, g′) are isometric.

Proof. The Gramm-Schmidt process ensures that there is a linear isome-
try f : (V, g) → (W,h). Conjugation by this isometry gives the desired
Riemannian isometry. �

For an argument below, we will require convex balls in J(V, g) for which
is there is a well defined notion of center of mass. For any Riemannian
manifold M , balls of radius r are convex if

r = min
{ injM

2
,
π

2
√
ǫ

}

,

where inj M denotes the injectivity radius of M , and ǫ is a finite positive
upper bound on the sectional curvature (c.f. [Ch] Prop IX.6.1). Also, for
any such ǫ, we have the following theorem.

Theorem 3 (Karcher, [K]). Let f : X → M be a measurable map from a

probability space (X,m) to a Riemannian manifold M . If f(X) is contained
in a convex subset B of M , with diameter less than or equal to π/2

√
ǫ, then

there is a unique center of mass in B, defined by the minimum of

E(y) =
1

2

∫

X

d2 (f(x), y) m(x).

Additionally, the center of mass is natural with respect to isometries ([K],
1.4.1). We refer the reader to [Ch] Prop IX.7.1 for an exposition of center
of mass.
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Definition 4. For n > 1 let

δ2n = min
{ inj J(V, g)

2
,
π

4
√
ǫ

}

where V is a real vector space of dimension 2n with any metric g. Here

we choose, once and for all, a finite positive upper bound ǫ on the sectional

curvature of J(V, g) at one point, which by homogeneity works for all points.

By Lemma 2, δ2n depends only on the dimension of V .

An interesting question (that we will not address here) is whether there
is a positive lower bound for the set of all least such δ2n, independent of n.

Definition 5. A complex structure J ∈ J(V, g) is said to be nearly preserved
by a subgroup H ⊂ O(V ) if the orbit HJ = {φ−1Jφ | φ ∈ H} lies inside the

ball B(J, δ2n) ⊂ J(V, g) with center J and radius δ2n.

Recall that any closed subgroupH of O(V ) is a compact Lie group, admit-
ting a bi-invariant Haar measure, which is unique up to a constant. There-
fore any such H has a unique probability measure (of total mass equal to
one).

Proposition 6. Let J ∈ J(V, g) be nearly preserved by a closed subgroup H
of O(V ). Then there is a J ′ ∈ J(V, g) such that HJ ′ = {J ′}.
Proof. Consider the orbitHJ ⊂ B(J, δ2n) ⊂ J(V, g). By assumption, B(J, δ2n)
is a convex ball about J . Consider the mapping H → HJ ⊂ J(V, g), from
the probability space H onto its orbit. By Definition 4 and Theorem 3, the
set HJ has a unique center of mass J ′ in S. Since the orbit of the action
of H on the set HJ is itself, and the center of mass is unique and natural
with respect to isometries given by the H-action, H fixes J ′. �

Given a point p ∈M , let Hp = Im(ρp) be the image subgroup of the ho-
lonomy homomorphism ρp : Ωp(M) → O(TpV ), which is known to be closed
by the Ambrose-Singer theorem. The following proposition is a standard
result which we include for completeness.

Proposition 7. Let (M,g) be a connected Riemannian manifold and as-

sume Jp ∈ J(TpM,g) is invariant under the action of Hp = Im(ρp). Then

M admits a unique almost complex structure J : TM → TM agreeing with

Jp and making (M,g, J) into a Kähler manifold.

Proof. For any q ∈ M define Jq : TqM → TqM by Pλ ◦ Jp ◦ P−1

λ , where
Pλ : TpM → TqM is the Riemannian parallel transport along any smooth
path λ in M from p to q. Since M is connected, such a path λ always exists
and Jq is independent of the choice of the path because HpJp = {Jp}. Thus,
we have defined a smooth complex structure J : TM → TM , and by way
of construction, J is compatible with all parallel transports, and therefore
∇J = 0. Since the Levi-Cevita connection ∇ is torsion free, and J is still
Hermitian, J is integrable; see Corollary 3.5 of [KN]. Therefore, (M,g, J) is
a Kähler manifold. �



4 S. WILSON AND M. ZEINALIAN

Corollary 8. With (M,g) as above, if there is a p ∈ M and a Jp ∈
J(TpM,g) that is nearly preserved by Hp = Im(ρp), then there is a J ′ :
TM → TM making (M,g, J ′) into a Kähler manifold.

Proof. This follows from Proposition 6 and Proposition 7. �

Theorem 9. There is a sequence of positive numbers δ2n ∈ R such that

for any connected 2n-dimensional Riemannian manifold M , one of the two

following mutually exclusive properties hold:

(1) There is a complex structure onM making it into a Kähler manifold.

(2) For any almost complex structure J compatible with the metric, at

every point p ∈M , there is a smooth loop γ at p such that

dist(Jp, hol
−1
γ Jpholγ) > δ2n.

Proof. If 1) is true then 2) is clearly false, and the converse follows from the
previous corollary. �
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