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Preface 

The 57th Seminar organized by ESReDA took place in the very beautiful city of 
Valencia, Spain. We were very kindly received by the Polytechnic University of 
Valencia/Universitat Politècnica de Valencia.

The Seminar was jointly organized by ESReDA and CMT Motores Termicos, a research 
unit at the Polytechnic University of Valencia. A sincere thanks is due to Professor 
Bernardo Tormos for the way he received us and allowed the Seminar to precede 
according to our best expectations.

In accordance with the theme proposed for the Seminar, communications were presented 
that made it possible to discuss and better understand the role of the latest big data, 
machine learning and artificial intelligence technologies in the development of 
reliability, risk and safety analyses for industrial systems.

The world is moving fast towards wide applications of big data techniques and artificial 
intelligence is considered to be the future of our societies. Rapid development of 5G 
telecommunications infrastructure would only speed up deployment of big data analytic 
tools. However, despite the recent advances in the these fields, there is still a long way 
to go for integrated applications of big data, machine learning and artificial intelligence 
tools in business practice. 

We would like to express our gratitude to the authors and key note speakers in particular 
and to all those who shared with us these moments of discussion on subjects of great 
importance and topicality for the members of ESReDA.

The editorial work for this volume was supported by the Joint Research Centre of the 
European Commission in the frame of JRC support to ESReDA activities. A special 
thanks is due to Ariane Liessens (JRC) for the editorial work.

Dr. Vytis Kopustinskas, Dr. Kaisa Simola Prof. Luís Andrade Ferreira  
University of Porto, Portugal EC Joint Research Centre 
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System health monitoring with deep learning: 
Is big data all we need? 

Olga Fink 
ETH Zürich 

Abstract 

Deep learning and artificial intelligence have achieved some impressive 
successes in many different domains. These technologies applied in computer 
vision, natural language processing and speech recognition are gradually 
becoming an integral part of people’s everyday lives. Concurrently, 
increasing amounts of condition monitoring data have been captured by 
complex industrial assets in many different industries, including energy and 
transportation. But what is the potential of these emerging technologies and 
“big data” for system health monitoring? Where could the development go 
and how could potential transformation look like? How could deep learning 
and artificial intelligence be integrated in decision making of asset managers 
supporting them to make optimal decisions?   

While large amounts are captured on the condition of complex systems, faults 
in safety critical systems are rare. The diversity of the fault types and 
operating conditions makes it often impossible to extract and learn the fault 
patterns of all the possible fault types affecting a system. Consequently, faulty 
conditions cannot be used to learn patterns from. Supervised learning that has 
made most of the current success of AI possible is, therefore, often not 
applicable in the context of system health monitoring.  

Even collecting a representative dataset with all possible operating conditions 
can be a challenging task since the operating conditions of complex industrial 
systems are highly varying. Therefore, training samples captured over short 
time periods may not be representative for the entire operating profile. 
Collecting datasets over longer time periods could capture more operating 
profiles and, thereby, improve the representativeness. However, that would 
also delay the point in time when the data-driven health monitoring systems 
could be taken into operation. Such delays are often not acceptable in real 
applications. We need, therefore, to rely on datasets that are not fully 
representative and have either none or very few faults and integrate the 
missing information either from other units of a fleet or from physical 
performance models.  

The talk will give some insights into current challenges and highlight potential 
solutions for fault detection, isolation and the prediction of the remaining 
useful lifetime in the context of rare faults and a high variability of operating 
conditions. The talk will particularly present solutions in the field of domain 
adaption, transferring models between different units of a fleet and between 
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different operating conditions, and hybrid approaches fusing physical 
performance models and deep neural networks. 

References: 

Fink, Olga, Qin Wang, Markus Svensén, Pierre Dersin, Wan Jui Lee, and 
Melanie Ducoffe. 2020. “Potential, Challenges and Future Directions for 
Deep Learning in Prognostics and Health Management Applications.” 
Engineering Applications of Artificial Intelligence 92 (June): 103678. 
https://doi.org/10.1016/j.engappai.2020.103678. 
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Recommended Practice for Assurance of Data-driven 
algorithms and models 

Siegfried Eisinger, Jon Arne Glomsrud & Justin Fackrell 
DNV GL. Norway 

1. Introduction
Systems incorporating Machine Learning, and other data-driven techniques, have become 
increasingly widespread in recent years. Large organizations, such as Google, Alibaba and 
Amazon have capitalized on the capabilities of such techniques to do things better, do 
things faster, and/or do things previously impossible. 

In industrial contexts too, data-driven techniques are being used in a variety of 
applications including: 

• Early detection of failures (before they happen) and Condition-Based Maintenance
(CBM)

• Semi- and fully-automated technical verification

• Simplifications and effectiveness improvements in class services (currently carried
out manually by surveyors)

The goal of many data-driven applications is to facilitate decision support for an end user. 
End users are often people and/or organizations, but they can also be autonomous agents. 
The data from which data-driven models are derived is often very large and complex, and 
the models themselves are also complex. This complexity leads to challenges in 
establishing trust on the part of the user that a given data-driven system will perform as 
required. In a Recommended Practice (RP), DNV GL addresses these challenges by 
defining a framework for establishing trust in data driven models. The RP is currently in a 
draft stage and will be published end of 2019. 

The goal of the RP is to help readers answer the following question: How can the user of 
an application which is based on a data-driven model be sure that the model is suitable for 
the intended use, and that the risk of failure and/or bad output is kept within tolerable 
limits? 

To date no widely-recognized standard exists for assessment of a data-driven model. The 
current RP provides a structured approach for performing such an assessment. It makes 
use of CRISP-DM (The Cross-Industry Standard Process for Data Mining), a de-facto 
standard process for data-driven modelling. CRISP-DM was developed by an industry 
consortium in the ESPRIT European project. 

Note that throughout the paper, we often use the word ‘algorithms’ as an abbreviation for 
‘data- driven algorithms and models’. 
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2. Approach
Assurance of algorithms concerns the verification and validation that the algorithm is 
suitable for its intended use and in a wider context it also includes whether the intended 
use is according to rules, regulations and societal agreements. It should thus be possible to 
check any outcome of the algorithm with respect to whether it is acceptable or not. 
Moreover, it should be possible to predict all relevant algorithm outcomes, so that they can 
be checked. Obviously, full prediction and check of all possible outcomes is only possible 
for the simplest algorithms and for any real-world algorithm we are left with checking 
sub-sets. As algorithm complexity increases it gets more and more difficult to claim any 
sort of test completeness. Therefore, to base an assurance regime on the test of a finished 
algorithm becomes questionable. Even if it was possible to ensure a good test coverage, 
decisions during earlier stages in the lifecycle might have been flawed, leading to errors in 
the test specification and thus to faults which cannot be uncovered by the test. This leads 
to the statement 

Assurance of complex systems cannot be based on verification and validation testing alone 

Effective verification can only be performed if the scope is sufficiently limited. In 
addition, the stages of the lifecycle must be taken into account, ensuring that the output of 
one stage does not invalidate the results from previous phases, but supports the general 
goal. For example, even a perfect system which is put into operation might become flawed 
when maintenance is not performed in a correct way. Or, even a perfect design process 
will lead to a flawed product if the initial specification is flawed. This is the reason why 
many standards for assurance of complex systems adopt the strategy 

Quality Assurance of complex systems should be done through quality assurance of all 
relevant lifecycle stages 

This strategy has been implemented in for example IEC 61508 /1/ and other similar 
standards for reliability of critical systems. 

One might object that some systems can be checked with 100% coverage through so-
called Formal Proofs: Given that the basic specification is correct it can be checked that 
the system behaves completely according to that specification. It is true that such systems 
in principle can be approved through only testing, but systems which have a complete 
formal proof are seldom. Beyond that, performing a bad quality development process 
would most probably reveal a lot of errors through the formal proof, rendering the 
development process inefficient because of the error correction efforts they require. It 
would therefore most probably be most efficient to perform the suggested QA steps 
throughout the lifecycle and arrive at a work product with few errors, confirmed through 
formal proof. 

Lifecycle schemes are often linked to Risk Analysis. Through the initial risk analysis the 
integrity requirements of the system are determined. Low integrity requirements would 
lead to less stringency with respect to QA rules than high integrity requirements. This 
approach has merits, rendering the life-cycle process into a ‘risk-based’ quality approach, 
focusing on critical issues and systems, while less critical issues and systems are treated in 
a more basic way. In IEC 61508 the first risk analysis is placed at the start of the lifecycle 
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process after the concept is specified and it is used to perform the so-called Safety 
Integrity Level (SIL) allocation. The SIL is a four-level system linking the safety functions 
to the expected reliability with which it shall be delivered. The SIL is in turn linked to QA 
requirements throughout the lifecycle, their rigor increasing with increasing SIL. Table 1 
quotes Table A.5 of /1/ for Software module testing and integration as one example, 
clearly demonstrating the basic requirement and the rigor increasing with the SIL. 

Table 1 Copy of Table 4.5 of /1/. Software module testing and integration. R: ‘Recommended’, HR: ‘Highly 
Recommended’ 

 Technique/Measure SIL 1 SIL 2 SIL3 SIL 4 

1 Probabilistic testing - R R R 

2 Dynamic analysis and testing R HR HR HR 

3 Data recording and analysis HR HR HR HR 

4 Functional and black box testing HR HR HR HR 

5 Performance testing R R HR HR 

6 Model based testing R R HR HR 

7 Interface testing R R HR HR 

8 Test management and automation tools R HR HR HR 

9 Forward traceability between the software design 
specification and the module and integration test 
specification 

R R HR HR 

10 Formal verification - - R R 

Accepting the two above statements, that assurance cannot be based on testing alone and 
that quality must be taken into account throughout the lifecycle our suggestion for an 
assurance regime for data-driven algorithms and models is based on a strategy similar to 
IEC 61508. The lifecycle model for data-driven algorithms and modules’ is not identical 
to general software development, where often the V-model or a variant thereof is 
employed. For data mining projects the Cross-industry Standard Process for Data Mining 
(CRISP-DM) has been defined by an industry consortium in the ESPRIT European project 
(see /2/). This process has been accepted as a de-facto standard in the area, leading to the 
decision that it is also used in the present RP as basis. 

3. The RP
Our framework for assurance of Data-driven Algorithms and models is due to be 
presented in full detail in the Recommended Practice DNVGL-RP-0510/3/, but the key 
concepts are presented here. The framework is structured around the CRISP-DM reference 
model/2/, as motivated in the previous section. The lifecycle model is structured along 
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both a linear development process and explicit feedback stages both on a local level (e.g. 
between ‘data preparation’ and ‘modelling’) and on a more global level (e.g. between 
‘business understanding’ and ‘evaluation’). Compared to the software development V-
model, the CRISP-DM model includes more relations to the proper understanding of the 
basics and explicit evaluation stages. The main reason for that might be that CRISP-DM 
was originally designed for business supporting tools, as opposed to critical applications. 
On the other hand, also for critical applications it is important to establish a correct 
‘problem understanding’ and ‘data understanding’. Before deployment a proper 
verification and validation phase must be included (i.e. ‘evaluation’), demonstrating that 
the basic lifecycle steps seem to work for a wide area of applications. 

The CRISP-DM process can be used in any assurance project regardless of the explicit 
usage of CRISP- DM during product development. The CRISP-DM workflow was 
developed in the late 1990’s and has gained wide acceptance and popularity in the field of 
data science and machine learning, which was the main reason why we have decided to re-
use the related lifecycle process. 

Figure 1 Phases of the CRISP-DM reference model (ref. /2/, Figure 2) 

Trust in an algorithm is established through the construction of an assurance case: this is a 
structured document containing detailed claims. Associated with each claim is one or 
more items of evidence which together support that claim. For example, in the activity 
data preparation, the claim “the data 

is representative” may be supported by evidence showing that “the data is drawn from a 
group of 15 assets over 5 years, plus analysis confirming that this sample satisfactorily 
covers the feature space”. 

CRISP-DM offers more than the reference model of Figure 1. Each of the lifecycle stages 
is supported by sub-sections in two levels. In Figure 2 the sub-sections of Business 
Understanding are shown. 
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3.1.1 Determine Business Objectives 
1) The relevant background and business information are sufficiently documented.
2) Business Objectives are clearly defined and understood.
3) Business Success Criteria are sufficiently and objectively defined.
Guidance note: 
Sufficient understanding of the business case, and clear and concise objectives and success criteria are important for a successful 
project. It may be helpful to formulate a use case, user stories and/or a value proposition. This helps focus attention on the project 
goal, and facilitates communication between the stakeholders. 
In the first iterations, early in the development, it may not be possible to succinctly define what will be predicted, but 
completing a value proposition statement as early as possible in the project process will reduce misunderstanding and bring 
focus to the data preparation stage 
An example of a value proposition (using Geoffrey Moore's suggested template, see Sec.1 [1.5.3]) is shown in Figure 
2-1 A value proposition should address the following issues:
— who or what will benefit or make use of the result?
— what problem or need will be met?
— what should be developed to meet this need?
An alternative or supplement to a value proposition is a collection of one or more use cases which give concrete examples
of the use of the model in practice. These bring focus to discussions concerning the business understanding and are useful
aids in communication between the different participants and stakeholders in the development process.

---e-n-d---o-f---g-u-i-d-a-n-c-e---n-o-t-
e--- 

Figure 3-1 Value Proposition template suggested by Geofrey Moore 

Figure 2 CRISP-DM Section on Business understanding with sub-sections 

When constructing the claims, the sub-sections of CRISP-DM were re-used, giving our RP 
the same structure as CRISP-DM. In addition, Guidance notes were added helping the 
users to understand the meaning of the claim and giving clues on what evidence might be 
suitable. For the section on ‘Determine Business Objectives’, the emerging Claims and 
Guidance is shown in Figure 3. 

Figure 3 Claims and Guidance note for the sub-section 'Determine Business Objectives. Extract from /3/ 
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The evidence must obviously be provided on a per -project basis. To facilitate this process, 
the content of the RP has been translated into the Argumentation tool REASON/4/. This 
tool can be used in an interactive fashion between all stakeholders. The provider of the 
algorithm can perform an initial self-assessment, entering all evidence which seems 
relevant. An independent assessor can then check the provided evidence and enter scores 
on whether the evidence is sufficient, or what other evidence is needed. Relevant parts of 
the assessment can be re-run when anything in the algorithm, the basic data or the usage 
area changes. Figure 4 shows an extract of the RP as it is implemented in REASON. 

Figure 4 The RP implemented into the argumentation tool REASON 

The stringency of the requirements on the evidence depends on the criticality and the 
uncertainty the application represents: higher consequence applications have a higher level 
of rigour, and thus more strict requirements on evidence. For example, an ML algorithm 
whose job is to suggest classifications of documents to a human user has a low criticality 
(there is no substantial risk to safety or asset integrity if a suggestion is wrong, since the 
human user can ignore the suggestion) but an ML algorithm which pre-sorts asset 
condition data into “OK”/“needs attention” where the human operator only looks at the 
“needs attention” cases has higher criticality and so has more extensive requirements on 
evidence. Similarly, if techniques are employed where there is little experience, or where 
the results are hard to check, the uncertainty increases, giving rise to a higher risk rating 
and thus more stringent evidence requirements. In a future version of the RP this might be 
elaborated into requirements tables like Table 1, but more research and development is 
needed for that. 
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4. Case Studies
Parallel with the development of the RP, a number of Use Cases have been run. The cases 
concern practical applications like mooring prediction, wear detection and remaining 
useful life estimation. The anonymized findings from the use cases are shown in Table 2. 
The findings demonstrate that Assurance of digital assets is needed and that the areas 
which are in focus in the upcoming Recommended Practice are relevant. 

Table 2 Findings from the Use Cases run during the development of the Recommended Practice 

Finding Possible consequences Use cases 
affected 

No baseline model • Model overengineered (a much simpler
model would do)

A, B, D 

No quantitative evaluation • Unknown performance, impossible to use as
basis of business decisions

A, E 

Model only tested on 
simulation data not real data 

• Jump to real world may include surprises A, D 

Model’s computational 
feasibility is in question 

• Cannot be used in practice B 

Not enough training cases • Model is undertrained B 
Model does not generalize • Model won’t be able to deal with

situations it hasn’t seen before, i.e. it
doesn’t really learn anything

B 

Intended use not properly 
understood 

• Surprises at deployment time C 

Criticality not established • Can’t make business decision based on
quantitative performance

C, D, B, A 

Data available is out of date • Even if project succeeds, not clear path to a
future deployment

C 

Quality of human-labelled 
data unknown 

• Uncertainty in performance, and “how
good is perfect?”

C 

Evaluation metric is 
misleading 

• “You fool yourself, and you are the easiest
person to fool”

D 

No held-out evaluation data • Overfitting E 
Training data not 
representative 

• Surprises at deployment time E 

Retraining plan is adhoc • No systemetic quality E 
No continuous monitoring of 
performance 

• Performance can degrade E 

Susceptibility to security 
attack 

• Malicious attach, loss of data E 
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5. Future Work
With respect to the future of this RP the following is foreseen 

• Perform the formal review process for the RP (also including external reviews)
prior to finalizing the RP and then publishing within the framework of
rules.dnvgl.com

• Use results from the current research programme ‘Assurance of Digital Assets’
(ADA) to improve the RP with more recommendations on methods and techniques
which should be used – in dependence on risk if relevant.

• So far, the assurance regime is process-centric, as motivated in Section 2. It does
still make sense to add recommendations on how the model/algorithm itself should
be validated. A Recommended Practice on Data Quality already exists (see /6/) and
the two RPs are closely linked.

• CRISP-DM has been criticised for not including enough on the operational side, as
data-driven models are not necessarily stable in this respect and need review and
modification to stay useable. The RP should be improved in this respect.

References 
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Fleet-Based Remaining Useful Life Prediction of Safety-
critical Electronic Devices 

Mathias Verbeke, Alessandro Murgia, Tom Tourwé, Elena Tsiporkova 
Data and AI Competence Lab, Sirris Bd. A. Reyerslaan 80, B-
1030 Brussels BELGIUM 

Abstract 

Since ever more assets get connected to the Internet, an increasing amount of data is 
gathered on an asset’s operating environment and its respective usage conditions. 
This enables one to closely monitor the behaviour of an asset during its lifetime and 
extract useful insights in a data-driven way. For complex assets operating in safety- 
critical environments, knowledge on their remaining useful lifetime is often 
invaluable, for example to proactively schedule maintenance interventions and avoid 
unwanted downtime. When a new asset type is introduced, however, limited to no 
historical data on other assets of this new type that were observed towards their end 
of life and can be used to learn a RUL prediction model is available. Consequently, 
traditional techniques to perform RUL prediction often fall short in this case. In this 
paper, a methodology that leverages the data of the entire fleet of assets to predict the 
RUL of new assets is presented, allowing to generalize across the behaviour of assets 
in different operating conditions. The methodology was validated on an industrial 
dataset of a fleet of electronic devices operating in safety-critical environments. 

Keywords: fleet-based analytics, remaining useful life prediction, electronic devices, 
new asset types 

1. Introduction

An important concept in reliability engineering is the asset’s remaining useful 
lifetime (RUL), which is defined as the time the asset is likely to operate before it 
requires repair or replacement. Knowledge on the RUL allows avoiding unplanned 
downtime, proactively scheduling maintenance and optimizing the asset’s operational 
efficiency. This is especially relevant for assets that are operating in safety-critical 
settings. 

Due to the trend towards Internet-of-Things, an increasing amount of data is gathered 
on the asset’s operating environment and the respective usage conditions. This has 
given rise to an extensive body of research in predicting the RUL of industrial assets 
in a data-driven way, using statistical or machine learning techniques. The approach 
to tackle this problem typically depends on the data that is available, for example 
using a threshold-based approach based on a set of inferred health indicators, or by 
extrapolating the gathered sensor values and comparing those to run-to-failure data 
from in-the-lab test setups gathered during product development. 

Complex assets are characterized by a high amount of parameter settings and are used 
in a wide variety of operating conditions. This leads to a large number of degrees of 
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freedom, due to which it becomes hard to determine fixed health indicator thresholds 
or generate run-to-failure data for each of these conditions. Furthermore, typically a 
range of different asset types exists. When a new asset type is introduced, limited to 
no historical data on other assets of this new type that were observed towards their 
end of life and can be used to learn a RUL prediction model is available. 
Consequently, techniques to perform RUL prediction often fall short in this case. 

In order to meet this challenge, a methodology that leverages the data of the entire 
fleet of assets to predict the RUL is presented, allowing to generalize across the 
behaviour of assets in different operating conditions. The methodology was validated 
on an industrial dataset of a fleet of electronic devices operating in safety-critical 
environments. 

2. Related work

Remaining useful life prediction is one of the activities that is enabled by monitoring 
product usage. Usage monitoring is a fundamental element in systems that assess the 
on-going health of a product or system, provide advance warning of failure, and 
provide information to improve the design and qualification of fielded and future 
products [1]. It is often denoted to Prognostics and Health Management (PHM) that 
links studies of failure mechanisms to system lifecycle management. 

Usage monitoring has mainly been employed in the context of design and reliability 
tests, in which electronic devices such as desktops [2], notebooks [3], refrigerators 
[4], and game consoles [5] have been subjected to different types of loads (thermal, 
physical, electrical, etc.) to test their resilience. Most of these tests are performed by 
in-the-lab trials or small-scale field studies with actual users. More recently, Funk et 
al. [5] have proposed a methodology to build automatic observation modules into 
products, collect usage data, and analyze these data by means of process mining 
techniques in order to exploit in-the-field data by actual users and involve them in the 
development of such products earlier on. Next to (hardware) design and reliability, 
this also allows to more deeply study the interaction of the user with the product. 

The main focus of this paper is on remaining useful lifetime prediction of (safety- 
critical) electronic devices, due to which the attention will be focused on related work 
in this subdomain. Okoh et al. [6] provide an overview of RUL techniques that are 
used in Through-life Engineering Services, i.e., services that aim to improve support 
services by providing run-to-failure information for better decision making. The 
authors present a classification of techniques used in RUL prediction for optimisation 
of products’ future use based on current products in-service with regard to 
predictability, availability and reliability. 

An increasing amount of research is also looking into hybrid approaches to predict 
the RUL. For example, Cheng and Pecht [7] propose a fusion prognostics method for 
RUL prediction of electronic products. In their approach, the PoF method is used to 
identify the critical parameters, identify and prioritize the potential failure 
mechanisms, identify the failure models, and define the failure criteria in terms of the 
isolated parameters, whereas the data-driven method is used to extract the features 
from the monitored parameters, create a healthy baseline, and compare the monitored 
parameters with the baseline to conduct anomaly detection and trend the isolated 
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Asset 

parameters. The approach is validated using a case study to predict the RUL of 
multilayer ceramic capacitors. 

For a full overview of data-driven techniques for RUL prediction, we refer the 
interested reader to the recent book of Si, Zhang and Hu [8]. The book of Pecht and 
Kang [9] specifically focusses on prognostics and health management of electronics, 
including an overview of knowledge-based and data-driven techniques for remaining 
useful life prediction. To the best of our knowledge, however, no approaches exist to 
predict the remaining useful lifetime of new asset types on with limited information is 
available, based on the exploitation of the historic data of the fleet. 

3. Case study: safety-critical electronic devices

The resulting methodology was validated on a real-world industrial case study. It 
involves a fleet of commercially available electronic devices that are used in safety- 
critical environments. From this product around 50 models are available, with a total 
installed base of around 100k devices. For each of the assets in the fleet, the power 
output as well as a number of device settings such as energy intensity are available 
over the lifetime of the device. A number of these device settings are set by the 
maintenance technician during fixed calibration interventions, as well as during 
finetuning by the end user. For the case study, we will focus solely on the power 
output of the asset which increases over time until the asset fails and reaches its end 
of life. This is illustrated in Figure 1, showing the power output evolution of a single 
functional unit until it reaches its end of life (marked in red). 

End of life 

Figure 1: Power output evolution until the end of life of a single asset 

4. Methodology

This section describes the methodology on a conceptual level. It consists of three 
main steps. First, assets operating in similar conditions are clustered together. 
Subsequently, for each of these groups, a so-called reference curve is calculated. This 
represents the prototypical behaviour of the assets in that particular group during their 
lifetime. To predict the RUL of a new asset, the top N most similar reference curves 
are identified and the average RUL of the assets in that cluster is determined. Finally, 
the RUL of the new asset is calculated as the weighted sum of these respective 
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       Asset runtime 

lifetimes. Each of these steps will now be discussed in more detail, taking the use 
case as illustrative example to demonstrate the approach. 

Step 1: Clustering assets operating in similar conditions 

Based on an extensive exploration of the data available on the entire fleet of assets, a 
clear difference in behaviour can be observed. Figure 2 depicts the energy intensity of 
the entire fleet of assets and clearly reveals a diverse behaviour across the fleet with 
several energy intensity modes. 

Figure 2: Energy intensity of the entire fleet of assets 

To extract distinguishing behaviour across the fleet, the energy intensity curves of the 
entire fleet of assets are clustered using k-means clustering 1  1 . This is an 
unsupervised machine learning algorithm which partitions n observations into k 
clusters. As the name indicates, each asset is assigned to the cluster with the nearest 
mean, serving as a prototype of the cluster. 

The most important hyperparameter of the k-means algorithm is k, denoting the 
number of clusters to be formed. In the proposed approach, a silhouette cluster 
validation analysis is used in order to determine the optimal number of clusters. It 
studies the separation distance between the resulting clusters. The silhouette score 
ranges from −1 to +1, where a higher score indicates a better cluster separation. 

For the case study, a silhouette analysis was performed in which cluster solutions 
with 4 up to 15 clusters were tested. The highest silhouette score was obtained  using 
5 clusters. The resulting clusters are depicted in Figure 3. Each of the clusters shows a 
different behaviour of the evolution of the energy intensity over the assets’ lifetime. 
The slope of the curves is the main distinguishing characteristic, representing the 
speed at which the assets degrade over time. 

1 In the experimental validation, the implementation from tslearn [10] was used. 
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Figure 3: Clustering of the energy intensity curves with 5 clusters 

Step 2: Extraction of a reference curve per cluster 

In a second step, a reference curve per cluster is extracted. To calculate these 
reference curves, the median per timestamp across all energy intensity curves of the 
assets in the respective clusters are calculated. 

The reference curves for the extracted clusters in the case study dataset (Figure 3) are 
shown in Figure 4. The region within one standard deviation (std) around the 
reference curves is also marked, showing that this limited boundary already captures 
quite some behavioural variation in the energy intensity, as these regions largely 
overlap with the point clouds from the clusters in Figure 3. 

Figure 4: Median reference curves per energy intensity cluster 

Step 3: Calculation of the RUL of the new asset 

In the third and last step of the proposed approach, the remaining useful lifetime of an 
asset of a new type is calculated. This entails the following 4-step workflow, which 
will be illustrated by means of the prediction result on a prototypical asset as shown 
in Figure 5: 

a. First, the available data on the new asset is compared to each of the reference
curves. To this end, the coefficient of determination, denoted as R2 is
calculated. This coefficient measures the goodness-of-fit between the
available new asset data and the corresponding part of each of the reference
curves. More specifically, it provides a measure of how well the new asset
data points are replicated by the respective reference curve, based on the
proportion of total variation of new asset data points explained by the
reference curve.
For the example shown in Figure 5, the first part of the new asset data (thick
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black line at the start) is compared with the respective fragments of each of 
the reference curves. Note that the thin black line indicates the subsequent 
evolution of the power output until the asset reaches its end of life. This latter 
part is however treated as unseen data and is consequently not taken into 
account in the comparison with the reference curves. 

b. Subsequently, the top m most similar reference curves are determined, which
have an R2 correlation metric above a fixed threshold. In the example, the top
3 reference curves with an R2 score of above 50% are retained. These curves
are shown in green on Figure 5, in which the color intensity indicates the
degree of correlation (according to the color scale on the right).

c. In the third step, the end of lifetime of the retained top m reference curves is
calculated.

d. Finally, the end of lifetime and the corresponding remaining useful life of the
new asset is calculated as the weighted sum of the end of lifetime values of
the retained top m reference curves as determined in the previous step. The
weight factors are based on the normalized correlation strength. In the
example plot, the ground truth end of lifetime is indicated with a vertical
black dashed line, whereas the predicted end of lifetime is indicated with a
vertical red dashed line.

Ground truth EoL Prediction 

Top 3 most correlated reference 
curves 

Figure 5: Prediction of the remaining useful lifetime of an asset of a new type 

5. Validation

In order to validate the proposed approach, it was tested on two different subsets that 
differ in the amount of time within which the assets will reach their end of life. The 
first subset contains assets on which data is available for three quarters of their 
lifetime, and thus will reach their end of life in the remaining quarter. In the second 
subset, only data on half of the lifetime of the assets under investigation is available. 
The training set which was used to extract the reference curves consists of around 
8.500 assets. Each of the test sets contains data of 50 new devices. For both the 
training and test sets, only assets of which the data was sufficiently qualitative (e.g., 
small percentage of missing data, no user interventions) were considered. 
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For each of the test sets, the end of lifetime and remaining useful life of each of the 
assets is calculated. For both datasets, an average accuracy of around 3-5% of the 
average lifetime over all assets in the fleet is obtained. The results for 4 example 
assets from the test set are depicted in Figure 6. While the current validation results 
look promising, a more extensive experimental validation will be performed in future 
work, considering a larger amount of assets from the full range of asset lifetimes. 

Furthermore, also a comparison to an overall model that predicts the RUL without 
distinguishing between the different operating conditions of the assets in the fleet is 
planned. 

Figure 6: RUL prediction results on four example assets from the test set 

6. Conclusions and Future Work

In this paper, a methodology was proposed to predict the remaining useful lifetime of 
new types of safety-critical assets on which little information is known at the start of 
the lifetime. This is done by leveraging the available historical data on the fleet of 
assets of former product types, which allows one to generalize across the behaviour 
of assets in different operating conditions. The preliminary validation experiments 
show that using the proposed approach, it becomes possible to predict the RUL with a 
reasonable accuracy. 

In future work, it will be investigated if the accuracy can be further improved by 
exploring alternative (machine learning-based) RUL prediction models to 
complement or replace the current approach based on median reference curves per 
cluster. Also, the current methodology only takes the energy intensity into account to 
characterize the behaviour of assets in the fleet. In future work, the aim is to extend 
this with additional variables, e.g., to better take the variation in parameter settings 
into account throughout the lifetime of an asset. Finally, a more extensive error 
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analysis will be performed to gain deeper insight into how to improve the weighted 
sum when calculating the remaining useful lifetime of new assets based on the end of 
lifetimes of the reference curves. 
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Abstract 

On the Great Britain (GB) railway, an event involving a signal passed at 
danger (SPAD) is one of the predominate hazards. It is important to have a 
better understanding of the circumstance under which this can happen and the 
red aspect approaches to signals (RAATS) project has been undertaken to do 
this. The result of this work is the development of a tool that can estimate the 
number of times a signal is approached at red by trains on the GB rail network 
by using a big data approach. This piece of extra information is crucial for 
understanding the likelihood of a SPAD at individual signals and also for 
normalisation of SPAD data at different levels, locally and nationally, for 
trending and benchmarking. The tool has been developed by mining different 
sources of data from Network Rail, recording and analysing millions of pieces of 
data from live operational feeds to update and summarise statistics from 
thousands of signal locations in GB on a daily basis. The tool has amassed 
several years of data and is now being used to better understand how SPAD 
risk arises on the GB network. There are also many other potential applications 
of the tool in understanding rail punctuality performance, timetable design, 
human reliability along with the refinement of other existing safety analysis 
tools. 

Keywords: big data, human error, rail, red aspect approaches to signals 
(RAATS), risk, signal passed at danger (SPAD), train accident 

1. Introduction

Monitoring is an essential part of any management system. In a railway safety 
context, such management systems are designed to keep all safety risks under 
control. In the EU the Common Safety Management (CSM) for Monitoring [1] 
requires the operators to monitor all the processes of the Management System 
and the Management System as a whole, which typically involves: 

• Strategies and plans for monitoring
• Systems to collect data
• Processes to analyse data, turning it into information
• Use of the information to improve the processes and the management

system
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In Great Britain (GB), RSSB is one of the key players in terms of rail industry 
data collection and analytics. The primary aim of RSSB is to enable a better, 
safer railway and one of the ways we achieve this is by providing the GB rail 
industry information about safety performance and risk. Good health and safety 
management relies on good data and analysis. RSSB hold the central position 
within the industry where the data that underpins good health and safety 
management is defined, recorded, analysed and reported on. To do this 
effectively we are constantly evolving and developing new techniques and 
analysis tools to aid in monitoring and modelling railway safety. The Red 
Aspect Approaches to Signal (RAATS) tool is one of RSSB’s (in collaboration 
with the University of Huddersfield) latest developments. 

This paper starts by giving some background and context for the RAATS tool, 
briefly outlining the demand for it and why it is important. It then goes on to 
describe the development of it to date and presents some examples of the 
outputs and how they can be used in a risk and safety analysis context in the 
GB rail industry. The benefits of this approach are then evaluated explaining 
how doing this provides a more complete picture of the risk along with 
additional insights above and beyond just analysing incidents that have 
occurred. Finally the paper will outline the potential further developments and 
applications of the tool (and how it might interface with other data/tools) and 
how we see it and the underlying big data approach making further substantial 
improvements to the understanding, analysis and assessment of train accident 
risk on the GB railway. 

2. Background

An event where a train passes a signal showing a stop aspect without 
authorisation is known as a ‘signal passed at danger’ (SPAD). SPADs can 
range from minor incidents where a signal is passed by only a few metres to 
serious incidents where longer overruns give rise to the chance of collision 
with other trains. The causes of SPADs can vary widely from driver error to 
degraded braking performance as a result of low adhesion [2]. Driver error is 
frequently cited as a primary cause, often described in terms of the failure to 
take sufficient action at preceding warning signals (‘misread’) or failure to 
control the train on the approach to the red signal (‘misjudgement’) [3]. 
However, it is recognised that there are many underlying technical, 
organisational and human factors related causes which can contribute to the 
eventual failure of a driver to stop at a red signal [4, 5]. An example of this is 
the accident at Ladbroke Grove, UK, in 1999 in which there were 31 fatalities. 
The accident report [6] identified key failings in the design of the signalling 
system, signal sighting and driver training as causes of the accident. 

For a SPAD to occur, a train must approach the signal at red in the first place. 
It follows that knowing the number of trains that approach signals displaying a 
red aspect (the ‘red approach rate’) is fundamental to the understanding of 
SPAD risk at individual signals and the normalisation of SPAD data, both 
locally and nationally, for trending and benchmarking. SPAD risk has been 
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rigorously studied previously using several techniques including fault and 
event tree analysis (e.g. the RSSB Safety Risk Model [7]) and Bayesian Belief 
Networks (e.g. by Marsh and Bearfield [8]). These techniques require a 
knowledge of the red approach rate to provide an accurate quantification of the 
resulting SPAD risk, but historically they haven’t been able to utilise such 
information due to the difficulties in obtaining it. 

Figure 1: Risk as measured by the RSSB Precursor Indicator Model (PIM) 

The chart in Figure 1 shows the current and historic risk from SPADs based on 
the RSSB Precursor Indicator Model (PIM) [9]. Since 1999 it can be seen that 
the GB rail industry has reduced SPAD risk from around 7 FWI1/year to the 
current (2019) value of less than 1 FWI/year. There are many good reasons for 
this, both from a technological and an operational management viewpoint. New 
safety intervention systems and engineering controls have been implemented 
on the network, along with improvements in the operating procedures and 
principles and better management of the workforce. However, there is still 
more that can be done and the GB rail industry continues to work to improve 
safety and reduce risk further. From the chart in Figure 1 it is also apparent that 
the risk level has plateaued, and the question is now what else can we do, what 
other tools and techniques can we develop to reduce the residual risk further? 
The RAATS tool has been developed to help answer this question. 

1 Fatalities and weighted injuries (FWI) is a measure of harm that allows different injuries to be 
aggregated together into a single composite metric. This is done by applying different weights to the 
different injury outcomes being considered. Further details can be found in reference [9]. 
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3. Development of the RAATS tool

Network Rail (the GB mainline railway infrastructure manager) provides publicly 
available live data feeds which give various information on the movement of trains 
[10]. At the most fundamental level, the source of the information used by the 
RAATS tool is train describer (TD) data. A TD is an electronic device connected 
to each signalling panel which provides a description of each train (its ‘headcode’) 
and which section of track (or ‘berth’) it currently occupies. The TD is responsible 
for correctly displaying the train movements from berth-to-berth to the signaller 
and for ensuring that the train’s identity is correctly passed to the next 
signaller’s panel when it leaves the current signalling area. 

RAATS uses two separate TD data feeds, termed C-class and S-class messages. C- 
class messages record train movements between individual track berths, whilst S- 
class messages record the times at which signal aspects change. Note that the S-  
class data only shows whether a signal is ‘off’, showing a red aspect or ‘on’, 
showing a proceed aspect (single or double yellow, or green). Both C-class and S-
class messages are transmitted through the live feed with a combined total of 
approximately million messages being sent per day. As such, it has many of the 
characteristics normally associated with big data such as high volume, high 
velocity and significant value as specified by Attoh-Okine in [11]. 

Big data is the new frontier for collecting and analysing data and for transforming 
it into usable information. Although it is difficult to have a clear definition of big 
data applications, in the literature there are several tentative ways to define this 
new technology, and all of them rely on the capability of the big data 
implementations to handle, at high speed, a big volume of data, coming from 
various sources. Those three elements are summarised using the three V’s 
approach, namely: Volume, Variety and Velocity: 

• Volume is the size of the data sets: the magnitude order can be from
Terabytes to Petabytes.

• Variety means that big data is capable of dealing with data coming from
different sources and having different or no structure.

• Velocity can be understood as the capability to quickly handle input data
(the speed at which data arrives) or to provide real-time information as the
output (the speed at which some meaning can be extracted and
disseminated).

The first iteration of the RAATS analysis model used the time at which a train 
enters and leaves each berth and the times at which the corresponding signals 
change state to classify every train approach to every signal into different 
categories. The model is designed as a decision tree and further details can be 
found in reference [12]. 

In the second iteration the methodology was refined by developing a speed profile 
algorithm to identify if a train stopped at a red aspect based on the timings of trains 
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entering and leaving each signalling berth, the timings of signal changes, berth 
lengths and berth-platform association. For train approaches at berths with known 
lengths and calculable entrance speed values, the red aspect approaches can be 
measured using this speed profile method. For train approaches where the berth 
length was unknown an alternative approach was developed using a classification 
tree based on the methodology developed in the first iteration mentioned 
previously. Further details of the approach can be found in reference [13]. 

The tool is currently undergoing refinement and preparation for the third iteration. 
This will result in a tool that uses real time data, and which can process and make 
available the statistics of red aspect approaches for a day within 24 hours. The 
algorithms have undergone further refinement and optimisation to run in such an 
environment. 

4. Overview of the RAATS tool

The RAATS tool receives real, live data of the movements of every single train 
in the GB rail network along with information on the status of signals where 
possible2. There are thousands of records an hour that the tool has to capture, 
process, analyse and then collate with historic information in a format that can 
be interrogated. 

There are two layers in the kernel of the RAATS Tool: a modelling layer that 
models the scenario of a train approach towards a signal; and a classification 
layer that classifies the approaches into different classes (see Fig. 2).  

Figure 2: Architecture of the RAATS tool 

2 Not all signals are currently capable of providing this information. 
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At the model layer, millions of records are processed and those which are 
related are selected and used to describe the circumstances of a train travelling 
through three sequential berths. The results from the first layer provide a 
foundation for the process in the classification layer. In the classification layer, 
each case of a train approaching a signal is classified into one of several classes 
based on the timing information of the train’s movement and the status of the 
corresponding signal. 

By processing live data streams from Network Rail, we are able to know each 
train’s movement at the berth level in terms of entry and exit timings. Figure 3 is 
an illustration of a typical scenario. A train travels into a berth of interest (Berth1 
at LocA) at the time Ta. It is a red approach if the signal (Sig2) at the end of 
Berth1 is displaying a red aspect at time Ta. At time TS1, Signal Sig2 clears 
and the train moves towards the signal and leaves Berth 1 at LocB at time Tb. 
A short while later signal Sig2 changes back to red at time TS0. 

Figure 3: A typical model of a train moving towards a signal with a red aspect 

Based on the knowledge of typical approaches to red signals on the GB rail 
network and the timings Ta, Tb, TS1 and TS0, the model can estimate a train’s 
speed when entering the berth (Berth 1) and classify the train’s approach to a 
red signal (Sig2) into one of the following scenarios: 

• NRA (Non-Red Approach): When the train enters the berth, the
signal aspect at the end of the berth is showing a proceed (i.e., non-
red) aspect.

• CSS (Cleared after Stopping at Signal): Signal clears after the train
has come to a stand at the signal and the train departs immediately.

• CBD (Cleared Before Departure): Train enters the platform and
stops at the red signal. This is a subset of the CSS category and is
where a CSS approach occurs at a platform.

• CAS (Cleared on Approach to Signal): The signal is red when the
train enters the berth but it clears (i.e. changes to a non-red aspect)
before the train comes to a stand.
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• PSS (Possibly Stopped at Signal): The signal possibly clears after
the train has come to a stand and the train departs immediately. This
class is the 'grey area' between the CSS and CAS classes and covers
those train approaches which cannot be confidently classified as
CSS or CAS using the currently available data.

The tool currently exists as web-based application. Figure 4 shows an example 
of the current interface and some of the results that can be displayed on a signal 
basis. 

Figure 4: RAATS tool interface 

5. Current applications of RAATS

A. Using RAATS data to understand risk

The outputs from RAATS are vitally important in risk and safety analysis. They 
allow a better indication of the chance for a signal to be passed at red than any 
other normaliser (e.g., train miles, total number of trains passing a signal) that 
has been used to date. In addition, there are many risk models and tools 
currently in existence, not to mention the many assessments that have been 
undertaken that have  utilised, or attempted to incorporate within them, 
parameters related to the red aspect approach to a signal. For such a key 
parameter, it is important to note that until recently only crude estimates of the 
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rates or proxies for them have been used as understandably no tool (until 
RAATS) was available to obtain them. This situation has mainly driven the 
development of the tool, but note that knowledge of red aspects is not limited 
to just risk and safety analysis, they also play an integral part in understanding 
train performance (punctuality and delay). This section of the paper will look at 
some of these applications in more detail and illustrate how the RAATS data is 
envisaged to be used and developed in the future. 

B. Risk Modelling

Network Rail assesses the SPAD risk associated with every signal on the 
network using a process which examines the frequency and the potential 
consequences of passing that signal at danger. A tool has been developed, the 
Signal Overrun Risk Assessment Tool (SORAT), to undertake signal risk 
assessments. The risk assessment considers factors such as distance to a 
conflict point (such as a junction), train speed and passenger loading. This 
process does not currently incorporate any estimates for the number of red 
aspect approaches to a signal within the risk assessment; however, it aspires to 
do so if such information was readily available. Enabling this will improve the 
granularity of the modelling that the tool undertakes and allow better 
localisation and estimates of the relative level of SPAD risk at signals to be 
made. 

Another application that will benefit from RAATS data is the RSSB Safety Risk 
Model (SRM) [7]. The SRM is a mathematical model of the risk arising from 
the operation and maintenance of the GB railway. It provides the GB rail 
industry with national estimates of risk through a series of models, some of 
which consider SPADs and the consequences that can ensue from them. 
Research is currently underway by RSSB (R&D project T1136 [14]) to look at 
redeveloping the model and investigating new techniques and ideas that can 
help improve and refine the risk estimates the model makes. One of the ideas 
that has been looked at is developing a SPAD Bayesian Network model that 
will enable a framework of causes, factors, attributes and conditions to be 
modelled. A demo model has been produced and RAATS data has been used as 
one of the inputs. 

C. Human reliability quantification

A previous study [3] made an observation that signals with a high proportion of 
red aspect approaches actually have a relatively low chance of a SPAD 
occurring for each red aspect approach because drivers are accustomed to 
approaching the signal at   red. Conversely, signals with a low proportion of 
red aspect approaches have a relatively high chance of a SPAD occurring when 
the signal is approached at red because drivers are not expecting a red signal. 

There is also the question of SPAD potential based on the frequency of red 
aspect approaches. Are signals with more red aspect approaches 
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proportionately more likely to have a SPAD event? It is likely to be a 
combination of the two factors, the frequency of red aspect approaches and the 
proportion of approaches to the signal that are red aspect approaches that 
influence the chance of a SPAD at the signal. 

Initial analysis of the RAATS data has also highlighted that the type of train 
(e.g., express, stopping, empty coaching stock, freight etc) is also a factor that 
needs to be considered when calculating SPAD probability. The work raises 
the question of what is meant by SPAD probability, as it really depends on the 
context in which this is answered. On the one hand we can look at SPAD 
probabilities associated with different types of train approaches to a single 
signal, which could be further broken down by operator. Alternatively, looking 
at it another way, SPAD probability could be calculated from an operator’s 
perspective along a route, taking into consideration all of the train approaches 
to signals on a journey across all of the operator’s services. 

6. Further applications of RAATS

There are a number of other potential uses of the underlying train TD data that 
RAATS is based on. The analysis has the potential to assist with understanding 
performance and capacity constraints on the network. This could be achieved 
by comparing the theoretical timetable against what actually occurs and 
assessing if there are areas where it could be optimised or designed better. TD 
data could also be used to identify changes, locally and nationally, in red aspect 
demands as a result of timetable changes or as a result of incidents causing 
disruption. This is particularly important when large scale changes are being 
made and an example of what happens when it goes wrong was widely 
reported in the British press over 2018 and led to an inquiry by the Office of 
Rail and Road [15]. 

Another use could be in understanding the routing of trains, the positions of 
points at junctions along with the frequency of their use. This is particularly 
useful in the context of a signal risk assessment where there are multiple 
conflict paths that a train could take in the event of passing it at danger. The 
RAATS data provides a way of calculating the probability that each route could 
be taken. It also provides a way of counting trains as they pass through the rail 
network and these statistics have a wide use in understanding usage and 
normalisation when making comparisons. 

Further applications of the data might involve further algorithm development, 
particularly with regards the braking and acceleration profile of a train as it 
passes through the berth. The model is relatively simple at the moment, 
however it could be developed further, possibly by linking to other data on the 
train or external to understand where and for how long traction is taken or 
braking is made and then infer from this other metrics like track degradation, 
energy usage or emissions. 
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7. Future Development

D. Using RAATS in further big data analyses

RAATS data in itself provides useful information to understand the number of 
times a signal is approached at red. The main benefit of this data though will be 
in combination with other data sets, some of which are potentially very large 
(e.g. train recorder information, weather conditions, delay statistics etc). To 
make the sort of gains in safety improvement outlined at the start of the paper 
is likely to require ever more sophisticated and granular modelling techniques. 
The reason for this lies in the fact that economically viable and justifiable 
safety improvements tend to need to be identified at quite specific locations 
(e.g. a particular signal) rather than as a national policy (e.g. all signals). There 
are of course exceptions, and large-scale fitment of say a new train protection 
system or equivalent on the GB railway could potentially make a substantial 
difference, but it would be at cost and perhaps justified in terms of both safety 
improvement and other wider economic benefits. In terms of identifying 
improvements solely on a safety basis (and for which there is a legal 
requirement to do so), there is a need and an emphasis now to model at very 
specific locations, which in turn increases the amount of data that needs to be 
collected and the demands on the modelling framework to make sense of it. 
Utilising the principles of big data analysis and creating a model that has the 
capability of combining diverse and large data sets is at the forefront of the GB 
rail industry’s efforts to better understand SPAD risk. 

In [16] a first attempt was made at such an approach, bringing together SPAD 
and RAATS data with signal asset data to assess the characteristics of the GB 
rail network potentially give rise to SPADs. This method offers some huge 
opportunity, as it facilitates an analysis framework to be set up where 
information at signals that have experienced a SPAD can be used to infer 
information about signals that have yet to experience a SPAD. On the GB rail 
network there are approximately 30,000 signals and each year around 300 
SPADs occur [9]. A lot of these are at signals that have never seen a SPAD 
before and in some cases upon investigation some additional controls and risk 
mitigation can be identified to help prevent further occurrences. In the future 
the aim is to be able to do this pre-incident and use a big data approach to help 
prevent incidents before they occur by identifying classes of signal based on 
their characteristics that warrant some sort of intervention. 

Some progress has been made in attempting to do exactly that. In the Tavison 
project 
[17] the aim was to try and combine several related data sources (one of which
was RAATS) to better understand SPAD risk. Other sources of data included
the on-train data recorder (OTDR) and close call incident data within a graph
database to assess where the network was vulnerable to SPADs manifesting.
The work showed that it was indeed possible and developed a working
framework, however it also highlighted that there are several obstacles to
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overcome in doing this longer term.  Notably that such frameworks are very 
data intensive, particularly with obtaining and processing the OTDR data in 
real time to be able to undertake the necessary analysis. 

E. Algorithm and tool development

RAATS is an ongoing project. As discussed in previous sections, there are 
several potential usages of RAATS data and some of these require further 
algorithm development. One of the most promising ideas is being researched 
under a project called Red Approaches to Signals by Train Journeys 
(RABYTS). Analysing the situations of red approaches along a train journey 
will give us a richer picture and information to analyse the circumstances and 
factors of a SPAD event. It will also help the industry to evaluate and monitor 
the performance and safety management of individual train operating company 
(TOC) by establishing a more accurate national benchmark of red approach 
rate. By linking the red approach rate data with train service data there is also 
the potential to help the improvement of rail service performance. The RAATS 
data by train services can be visualised as an actual “running” map which can 
then be compared with the service timetable. Achieving this will likely be done 
through further application of big data principles, in particular the linking 
together of large datasets and the creation of a framework to extract useful 
safety intelligence. 

One of the key limitations at the moment of the RAATS data is the coverage. 
This is due to the fact that not every signal on the GB network is currently 
capable of providing the information necessary for the RAATS algorithm. 
There is a research project underway at the University of Huddersfield to look 
at overcoming this drawback by developing a statistical algorithm that can be 
applied to those  locations  where  the signal status is not provided. This will be 
based on the train movement  data alone  and if successful will enable RAATS 
information to be available for the whole of the GB rail network. 

8. Summary & Conclusion

This paper has provided an overview of the RAATS tool and its development 
to date. The outputs and applications of the tool have been presented along 
with some ideas for future development. The purpose of the tool is to enable 
better understanding of the factors and influences that lead to SPADs which 
can be used to help identify vulnerable signals and where the red aspect 
approach profile is changing that may indicate where action needs to be taken. 
There are potentially many other applications and big data approaches that cab 
be explored. 

So why would doing all of this be different to what the GB rail industry 
currently does in this area and what benefit is it likely to bring? The main 
difference and perhaps where the most benefit is likely to be gained is in 
shifting the industry focus from a less reactive to a more predictive and 
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proactive risk management regime. What this means is trying to use the SPAD 
data and the RAATS data (in combination with other data sources through big 
data principles) to try and identify high risk signals and intervene before 
SPADs occur at them rather than reactively address issues emerging as SPADs 
occur. 

The RAATS project and the tool are the first attempt to apply a big data 
approach to improve the safety analysis and monitoring of the GB rail 
operation. The lessons and experience of the RAATS project, and in more 
general terms the experience of safety monitoring by big data approaches, can 
be shared among other nations in Europe. 
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Abstract 

Big data are currently considered in many places as solutions to many problems. 
Indeed, big data offers many exciting opportunities for analysis but it may miss 
sufficient quality. Data quality is an essential aspect in big data analysis. For power 
plants e.g. unavailability data, a low quality may lead to either over- or 
underinvesting in the grid reserve margin as well as to incorrect judgement of a plant 
when compared to its peers in benchmarking. A too large reserve margin is a waste 
of money, too little increases the risk on blackouts. Incorrect judging in 
benchmarking is detrimental to plant personnel motivation, which motivation is 
necessary for improvement. 

In the paper quality of forced unavailability data is discussed from a historical 
perspective starting with Dutch data originating from a German data system, the 
successor of this German system being the international VGB KISSY database and 
the so called Transparency data from EMFIP, EEX and other platforms. Wind data 
are touched upon. 

All data mentioned can be used to measure and analyze forced unavailability of 
power plants using typical non-expert analysis software such as Excel with varying 
effort doing so. However the amount of detail in the data seems to be inversely 
proportional to the amount of data. Too much detail without using it has its dangers: 
too little detail bears the risk of big data being a total black box without any technical 
explanation on variations in forced unavailability. 

Keywords: Reliability Power Data Quality 

1. Introduction

In the paper data quality aspects are reported in a Dutch system no longer present to 
gather reliability data to improve power plants, in an existing German system 
(KISSY) to gather such data for various reasons and applications and in the new so- 
called ENTSO-E Transparency data which are meant to bring power to places under 
commercial trading boundary conditions. All data sets can be considered big data 
when they were started. As the author recently retired, it is good to look back on  
items already realized using the data as well as looking forward to new and exciting 
analyses using high quality data. 
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In the Dutch centrally gathered data system, we did not think much on data quality 
but it came almost automatically as power plants were visited to discuss the centrally 
gathered failures. A yearly feedback took care of definition questions and showed 
what the data could be and were used for. Regrettably this system was stopped due to 
liberalization and corresponding reduction of personnel costs. 

In the VGB KISSY database data quality is the result of strict definitions and user 
involvement. The number of data is typically higher compared to the Dutch system. 
Nevertheless, there are differences in data quality between power plants of different 
operators. This is logical as the people that fill in the data are not flawless machines. 
Feedback to people filling in the data is organized ad-hoc when it is felt necessary 
and there is continuous feedback from working groups. The KISSY data are available 
on-line to data contributors and have been used for example to derive subsystem 
RAM data from. They further have been used in life extension studies and are now 
being used for analysis of cycling of power plants. 

The Transparency data also contains unavailability of power plants, however its use 
for operational purposes appears to be limited up to now. This is modern big data. 
However, it is easy to show that data quality can be improved when some 
transparency data with data from Dutch plants are compared. Nevertheless, this 
cannot be generalized as due to the legal requirements the transparency data should 
be flawless and data quality is dependent on the personnel filling in the data. The 
limits for Transparency data use as well as some new options for usage are discussed. 
Wind data are touched upon. 

2. Visiting power plants to improve planned and
unplanned unavailability

Dr. J. van Liere, division head of KEMA (now merged into DNV-GL), in 1987 held a 
presentation for the Commission on Steam Technical Questions (Commissie 
Stoomtechnische Vraagstukken, CSV) on causes of forced unavailability of power 
plants. Based on SEP (Joint Electricity Producers, Samenwerkende 
Electriciteitsproducenten) and KEMA damage investigations it was shown that, in 
accordance with the Pareto principle, about 80 % of the forced unavailability (FOR) 
was caused by only 20 % of the components whereas half of the FOR was contributed 
to only 12 “components”, see table I. 

It was concluded in this presentation that a thorough analysis of failures for these 12 
components followed by feedback to the utilities involved and measures with regard 
to these components, would lower the FOR substantially. 
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Table I.  Early (1987) Pareto analysis showing components contributing to 50 % of forced 
unavailability. 

Component code 
(BES) 

Description 

009 general (no details) 
100 boiler (no details) 
112 evaporator 
113 superheater 
121 drum 
122 headers 
300 steam turbine (no details) 
311 HP turbine house and inlet section 
315 HP turbine rotor 
344 LP rotating blades 
371 turbine bearings 
500 generator (no details) 

BES = Bau Element Schlüssel 

KEMA as supported by the CSV and the Group of Directors of Dutch Utilities 
(VDEN = Vereniging van Directeuren van Energiebedrijven Nederland, with KEMA 
director Mr. van Erpers Royaards as a secretary) decided to regularly visit power 
plants by a KEMA investigator that would discuss in detail failures and damages, 
especially for the 12 components mentioned before. This was to be a 3 year project, 
with a yearly feedback to CSV, after which a decision for continuation would be 
made. 

The project was duly set up with 6 investigators (so called Storingsbezoekers) that 
mid 1988 started to visit the Dutch plants, in total about 50 production units. The 
background of the Storingsbezoekers varied from damage investigators, a reliability 
analyst (the writer of this paper) and some chemists. From meeting notes at the end of 
1989: 
• Redundant systems: It was agreed at the meeting that the Storingsbezoekers

would ask if the failures of some redundant systems such as coal mills,
feedwater pumps, etc. could be reported to KEMA

• Coding of gasturbines: No coding existed yet while the sector was moving to
hot wind box reporting of plants. A German code (BES for gasturbines) was in
progress of development and could be used.

• Details of failures: An extension of the DBASE3 database was constructed and
slowly being filled

• Memo on procedures: As two of the Storingsbezoekers were not present, this
was shifted to the next meeting

• Coding for causes: To be discussed further, a coding would certainly not
replace free text and explanation of the failure
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• Calculation spare HP turbine: After a memo on the subject for one of the
plants, this was converted into an advice (later followed by a similar advice on
a spare transformer for that plant)

• Model for the costs of FOR: A memo was discussed with SEP, found to be
mainly correct, but it was further detailed for the bonus-malus system as
cycling and reserve plants had a day-night tariff in this system. It was found
that reserve plants were paid per calendar hour rather than per operating hour.

• The number of failures over 1989 was somewhat lower than expected, possibly
due to holidays and Storingsbezoekers were asked to activate their plant
contacts.

The general status of contacts was a discussion point at each monthly meeting. It 
appeared from the contact at one of the plants that the company involved was 
thinking about a new-to-build plant with 5 – 6 large gasturbines (Eems 95-96 CCGT). 
Mr. van Otterloo, head of the Risk & Reliability section of KEMA, was to visit the 
newbuilding organization. At another plant, discussion of failures was lagging behind 
as the contacts had insufficient time, there was disagreement about information 
exchange, etc. It was agreed that higher management would send a formal note to this 
plant. At another plant, discussing failures had just started and the Storingsbezoeker 
was confident that details would be available. Another Storingsbezoeker noted that 
his contact would leave the plant and he therefore had to start contacting again. The 
contribution to the database was “voluntary” and sometimes actively discouraged by 
management however being too late to keep the ghost in the bottle. 

It was agreed to organize for the people at the plants filling in the forms to have a 
feedback day again, similar to the one early in 1989 (presentations, feedback on 
failures, etc.)1. 

As the project leader had a family reunion at the USA, this was also used to visit 
EPRI and it was found that EPRI had the same problems, being how to motivate 
personnel at plants, feedback and quality of information in the database. In order to 
have specific problems at components solved, EPRI made the Boiler Tube Handbook. 

Does this sound familiar? The components involved for conventional power plants 
such as evaporators and superheaters are still causing problems, motivation can only 
be improved by showing interest in helping the plant solving failures, knowledge of 
the plant characteristics from an initial plant walk down (not to be repeated, only 
when necessary) and feedback on what is being done with the data. Gathering 
maintenance information as well as detailed component information for every 
component failed threatens to enlarge the amount of information causing too much 
effort by all involved. 

Is this big data? At that time it was, as the database soon could no longer be handled 
on floppies or other digital information bearers at that time. In the end, 27.000 failures 
were documented over the period 1976 – 1993 which is still accessible today using 
Excel. 

1 This was continued every year, resulting in the need to actually produce results. Evidently this day 
was used for information exchange between utility experts as well, ranging from maintenance people 
to former operators filling in the forms and newbuilding experts 
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Was the “new” database replacing other databases? No, the VDEN database and 
failure notes to SEP and internal in the company were still to be filled in, therefore 
soon KEMA started to use the VDEN coding forms except for the cause & effect 
coding for reasons explained next. As the VDEN data had already started in 1976 
based on the VGB coding and data gathering whereas KEMA started in 1988, why 
not use the “old” data also? A secretary was hired to type in the forms before 1988 up 
to 1976 as the free text on the forms was NOT gathered as there was insufficient 
space on the mainframe for this text. When asked for the main direct cause of failures 
at power plants, the secretary answered “leakage” immediately, having typed that in a 
multiple of times. Human errors as a direct cause for failures were only scantly filled 
in, for evident reasons. As the resources for analysis of the VDEN data at SEP’s main 
frame (Univac) were dwindling, KEMA was asked to yearly report to VDEN also. 

Internal electricity producer forms were not discontinued as is the case at present, 
with several power plants reporting in Excel to the main office. The main reason? 
Excel is simple to fill in. A thorough analysis apart from a Pareto type of analysis is 
somewhat more difficult! 

Were the earlier databases sufficient? By no means as SEP was not particularly 
interested in improving the plants by adding detailed information as this was and is 
the task of the utilities. Therefore in fact it was registered only if the generator would 
provide power when needed. Therefore no action was taken for instance on a large 
number of forms with the text “VUK tijdens VIK”, translated as “Fire out of Boiler 
when Fired applied to Boiler”, the result of a multiple of failures at a plant where the 
operators & administrators did not see any follow up on their messages and their 
burden in filling in the data. 

Were the earlier databases specifically made for 1 task only? No, the SEP database on 
registration of failures also was used for the Bonus Malus system based on colleague 
averages. At one plant this led to not to report on fan failures, this could be repaired 
during the night as the plant would not be asked by the system. However, one smart 
manager decided for his plant already scoring good in the Bonus Malus system to 
report EVERY failure as the plant would be punished the next year as the average 
would go down. Plants that did not score well had, as numerous information had to be 
supplied, problems with the amount of hours needed for Storingsbezoekers. 

An example of a VDEN form is given in figure 2.1. It is a typical description with 
sufficient quality for a discussion at the plant (“Hoofdregelaar voedingwater zit vast, 
klep vernieuwen” meaning “Main controller feedwater is stuck, valve replacement”). 
Yet it is insufficient to find out how this failure could be been prevented. At this very 
moment we still don’t know how much on how critical components are maintained, 
the effectiveness of such maintenance and the decisions for design reviews to lower 
the amount of failures. Including detailed maintenance for a large number of 
components would cause TOO MUCH big data and TOO MUCH effort on 
maintenance people / engineers whereas design reviews would need interaction with 
the designers on details. This strikes the typical gap between OEMs not disclosing 
details for commercial reasons and the operators not having sufficient details and 
being reluctant to share information and not receiving much back. The author had 
only seldom the opportunity to improve this with boiler companies Schelde and Stork 

37

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



on the so-called Kolendag (Coal plant day) and during a Design Review at the new 
Eems 95-96 CCGT and the Magnum plants, in which RAM Guarantees were 
incorporated. This also involved a FMECA by the OEM together with the 
maintenance experts / operators. A research project called Black Book, with 
constructions and operation not-to-be-repeated was unsuccessful as resources were 
lacking and students were unable to realize the Book due to insufficient expert 
knowledge. An example of such a construction is given in figures 2.2 and 2.3. 

Figure 2.1  Example of a VDEN unavailability registration form.2

2 Regrettably the gentleman who filled in the form is no longer with us. When the Storingsbezoeker saw 
an OEM Maintenance Manual Handbook and asked for permission to study this, he was OK-ed 
however it was mentioned that the plant no longer carried out maintenance in such a way. 
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Figure 2.2  Example of recommendations to lower stresses at damage investigation 1986. 

Proposed solution 3 

Proposed solution 2 

Proposed solution 1 

39

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



Figure 2.3  Cracking of evaporator wall in a new plant (1993). 

From a project perspective, the Storingsbezoekers were successful. Many reliability 
analysis results were applied at Dutch power plants, carrying out a FMECA as well as 
a Pareto analysis is now standard, new power plants were better than their 
predecessors, etc. RAM models were generated for most Dutch plants much 
appreciated by newbuilding departments (optimum number of coal mills, feedwater 
pumps, estimates for new constructions, ageing investigations) and questioned by 
some experts at the utilities (“we already know the problems in our power plants, 
what does this model bring”). 

Sometimes the author wonders if the FOR of the plants was bettered due to 
investigators as well as management being interested in FOR itself causing more 
motivation at the plants. Such motivation and corresponding efforts were surely 
present at Maasvlakte MV-1 and MV-2 causing 2 years at 0 % FOR. This could not 
be held as external and internal boundary conditions changed. One cannot help noting 
the reduction in total FOR after 1988 (start of the project) and increases in 1994-1995 
(start of liberalization) in figure 2.4. 

Proposed solution 

Cracking 
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Figure 2.4  Development of MW unplanned unavailable. 
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Another success was that KEMA was ordered to aid in a new SEP database that was 
realized in 1993, targeted to newbuilding, operation and maintenance departments. 
Each SEP plant could fill in the data as well as analyze and generate reports using 
separate communication computers and a statistics computer, for digital safety 
reasons physically separated from SEP’s mainframes. The database was realized by 
an external software company at substantial costs. Users had access to detailed 
information at the plants within the company as well as aggregated information 
within all SEP plants. This system was in operation for about 2 years until SEP was 
disbanded due to liberalization. It worked properly however the effect of a failure on 
the plant being a time series was separated from a record for full description of the 
failure to be consistent with the overall MWhrs etc. not delivered. Therefore filling in 
the database was somewhat cumbersome. Such issues are still valid today. At that 
time an automatic coupling with SCADA could not yet be implemented. 

3 VGB KISSY database 

Data for assessing the Reliability Availability Maintainability (RAM) of power plants 
have already been gathered for a long time at VGB. Due to precise definitions at 
VGB, availability assessed from plants around 1975 can still be compared with 
availabilities of power plants now. For a full description of KISSY3, reference is 
given to [1] and [2]. 

In the Sixties as a result of the favorable economy, power plants could hardly be built 
in time to supply the load and the question was how with an existing set of plants, 
maximum power could be drawn from these plants. This both lead to early 
benchmarking efforts for the “best” power plant as well as investigations what was 
causing forced unavailability. In terms of VGB statistics this still has as a result a 
double line for analysis and reporting: data for the availability of plants as a whole as 
well as for the unavailability of components within the plant. Especially for the 
analysis of unavailability of components, it is necessary to pinpoint the causes of 
unavailability. This resulted about 1980 in a coding system (Schadens-Merkmal- 
Schlüssel (SMS)) defining the amount of hindrance from events resulting in 
unavailability (trip, power curtailment, etc.), the causes of the problem, etc. However, 
due to the extensive codes as well as the large amount of work involved at that time, 
an improved coding system (Ereignis-Merkmal-Schlüsselsystems (EMS)) was 
defined and became operational in 2000. At about the same time, as a next step, in 
definitions the point of view of the grid operator was incorporated with respect to 
dependable power from a plant with external influences acting on that plant. This 
point of view was incorporated in the 1995 definitions. For definitions on the coding 
systems, reference is given to [3]. 

The KISSY database of VGB was realized in the MESAP software from the firm 
Seven2one Informationssysteme für Energie- und Unweltplanung GmbH and is now 
one-and-a-half decade in operation. A working group at VGB and some major 
utilities are continuously working to keep KISSY up to standards using a new 
database background, introducing new parameters for analysis, using commercial 
indicators, on-line reports rather than spreadsheets send over mail, etc. 

3 KISSY = Kraftwerks-InformationS-SYstem 
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New data are easy to input both from the Internet as well as by sending Excel blocks 
of data to VGB Essen. All input formats are available in the German, English, French 
and 4 other languages. Part of the input sheets, which are available at the Web 
(www.vgb.org, search for KISSY), is shown in figure 3.1. 

Figure 3.1  Web input form for availability data. 

Targets that have been reached by KISSY are: 
□ Central, powerful database system
□ Relational database with input directly from Internet
□ Systematic check on input data to improve quality
□ Access security separately configured
□ Full history of own data-inputs available for companies that have inputted in

KISSY
□ Conversion without loss of information of the old data
□ Fast workflow from data input to reports

Examples for both parts (availability as a whole and unavailability due to subsystem 
failures) of the database are given in figure 3.2 and 3.3. 

Reports per plant can be generated on line and are sent to the requestor in spreadsheet 
format, however only for those users that contribute data to KISSY with a comparison 
to other plants (peer group). Each year, standardized reports on performance 
indicators and analysis of non-availability of power plant components over a specific 
year as well as during10 year periods are available from VGB. At this moment, some 
300 power plants (with international users also from outside Germany) are present. 
EURELECTRIC has decided to incorporate VGB for all technical information on 
power plants, with the result that the Therperf data on availability are also gathered 
and analyzed parallel to KISSY. 
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The operating aspects are coded in accordance to the VGB event characteristics key 
(EMS). 11,452 unavailability incidents were recorded in the year 2017, i.e. during the 
period under review, 2008 to 2017, a total of about 84,000 unavailability incidents 
was evaluated. The evaluation of unavailability of thermal power plants at hand is 
covering the operating period 2008 to 2017 with operating parameters of a total of 
303 power plant units, incorporating conventional hard-coal and lignite fired plants, 
CCGTs, open cycle GTs, nuclear plants and, recently, hydro storage plants. 

An example of the availability (on energy basis) is given in figure 3.2, showing a rise 
in energy unavailability from about 5 % in 2013 to over 10 % in 2018 to the main 
building blocks in several grids being hard coal fossil fired units with a capacity of 
500-1000 MW and Combined Cycle units with a capacity of 350 – 500 MW.

Some explanations of the rise are discussed in the paragraph on cycling. However the 
data in the database are in no way homogeneous as utilities enter or leave, plants are 
commissioned and decommissioned, economic circumstances in a country may 
change, etc. Therefore it is important to carry out a proper statistical analysis taking 
such factors into account. This is discussed later in the paper. 

Figure 3.2  Energy unavailability of hard-coal fired plants and combined cycle units. 
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The rising forced unavailability should be further explained, as not all plants 
contributing to the availability part are also contributing to the unavailability part. For 
instance not all plants are being KKS-coded and are using country dependent coding 
for subsystems. While conversions are possible with the majority of coding 
automatically, still some manual handiwork is needed. 

Another issue is with the components contributing to forced unavailability. Figure 3.3 
shows that still components such as HAD = evaporator and HAH = superheater cause 
much unavailability. The number of failures for coal fired plants is dominated by HF 
= coal milling equipment. Now, not every plant has the same number and size of 
mills, mills may be redundant, some plants fire biomass using the coal milling 
equipment and/or separate biomass mills. Similarly, for combined cycles the number 
of generators or gasturbines may vary per plant. In the yearly report this is not (yet) 
taken into account. 

Figure 3.3  Major subsystems causing unavailability. 
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Yet, progress is being made on this subject as well as the subject of adding other 
types of plant into the database. Successfully, storage hydro plants were incorporated 
recently. The KISSY group is for a long time discussing input of wind turbines. 
Evidently, as discussed later in this paper for wind turbines, the number of records 
will increase substantially, wind effects (fuel!) have to be taken into account, etc. 

Other databases in which power plant unavailability data are gathered are NERC and 
ORAP. NERC overall reports are accessible to the general public, however coding 
systems and definitions differ from VGB KISSY. Failure details are not accessible to 
third parties. The commercial ORAP database is financially supported by OEMs and 
can be very well used for benchmarking, however one has to contribute to the 
database in order to compare with monthly fleet reports. 

By using both the availability data in the VGB database for plants as a whole and the 
data for its components, in the following fields of application benefits have been 
derived: 

□ Planning new power plants and deciding for plant concepts
□ Deriving reference values when buying power plants and /or placing contracts
□ Analyzing production for both an existing plant and a plant with limited

operational experience using a detailed reliability reference model for plant
unavailability, occurrence and length of full outages etc.

□ Targets setting, best to be set using values from a reliability model in
combination with statistical best-of-peer-group plants.

□ Analysis for betterment of weak points and analysis of specific constructions
that show a higher than average unavailability

□ Use in Reliability Block diagrams (RBD), fault trees or equivalent reliability
models to predict the failure characteristics of power plants. Components and
systems defined by a 3 digit KKS-code allow modelling the dominant items in a
power plant. When used for new plants, these RBDs allow optimizing for
example the amount of redundancy or provide comparison material for choosing single
components.

□ Use in modification and/or life extension of existing plants. A database like
VGB in combination with plant specific information shows both the dominant
failures to improve on as well as what can be reached by careful re-engineering
when carrying out life extension work.

□ Estimating the effect of operating regime on a power plant: base load, cycling,
reserve, seasonal load. Such analysis should be accompanied by life
calculations of for instance steam chest, turbine housings, etc.

□ Optimum spare parts policy by balancing the costs of unavailability and the
gain in repair time by strategic spares, either hold singly or in a pool.

□ Maintenance optimization, for instance judging the effect of overhaul frequency
and actions taken on the forced unavailability. Is the maintenance strategy
really effective in preventing plant failures?

□ Dispatch of present and future plant. Failure data for a single plant are
insufficient. When for instance a plant did not have a failure of its steam
turbine yet during its operational life, one should still assess the probability and
use this in dispatch portfolio optimization as well as for insurance purposes.
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Experience has shown that benefits are a multiple of the costs connected to gathering 
data, contributing to databases such as VGB KISSY and analyzing both one’s own 
plant and the peer plants from VGB. 

Yet, according to the author, there are some issues with KISSY from a user point of 
view that are slowly being solved. As discussed before, one issue is the averaging 
over all blocks as if 1 super-component would be present. This is evidently not the 
case for duo-blocks (2 boilers for 1 steam turbine), combined cycles (for instance the 
MD-1 block in the Netherlands, recently taken out of operation, had 3 GTs, 3 HRSGs,
1 ST and 4 generators). Yet, by setting standard configurations being checked by the
companies inputting the data, reliability parameters in VGB project 361 such as per
figure 3.4 could be calculated. In figure 3.5 based on the same data, ageing
parameters could be calculated. Now, it is a major effort in having the characteristics
of each of 300 power plants in the database. This can only be realized by direct
contact with the companies and/or the plant locations. We reached that in the
Netherlands, however in an international context this is a different problem.

Figure 3.4  Failure rate and average repair time for BAT = step-up transformer. 
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Figure 3.5  Coefficients Beta and Lambda describing ageing in a Crow model for BAT = step-up 
transformer. 

Another problem is that there is yet no accepted model to explain forced 
unavailability, let alone explain as a function of planned unavailability, maintenance 
efforts and operational regime. In the VGB 361 project, the author simply assumed all 
failures being a function of operating time per year. Evidently, reserve plants show 
less failures than plants in daily operation. However, for a thorough analysis, failures 
of subsystems should be related to starts, operating hours, hours without operation 
(corrosion!), age of the plant, specific troublesome constructions present at a plant, 
etc. Interestingly, so called Causal Models are also deemed necessary in combination 
with big data in The Book of Why [5] from Judea Pearl. 

Recently, in a VGB working group on cycling using the VGB KISSY data, the author 
showed that on average an increasing yearly unavailability could be explained by 
(more) starts, (less) operating hours per year and (less) planned availability for a 
specific group of coal fired plants. Yet, proper statistical methods such as factor 
analysis, variance analysis and regression should be applied to raw data rather than 
plotting averages. This can be done, although in a simplified way, in Excel. Together 
with such statistical methods, differences should be explained by technical reasoning 
checked with the personnel at the plants. For instance a backup plant in the 
Netherlands was found (for good reasons) to have typically other components being 
dominant compared to a base load plant. Aged power plants with a decommissioning 
date known some years in advance will not invest in maintenance, but will carry out 
minimal maintenance leading to overall forced unavailability of over 20 %. Examples 
of such maintenance were found when modelling evaporators and superheaters in the 
KISSY 361 project as minimal maintenance was indicated by the free text. Please 
note that manual analysis of free text is cumbersome, let alone having several 

48

Advances in Reliability, Risk and Safety Analysis with Big Data



European languages and different amount of detail in the free text. Hopefully, big 
data analysis methods will help in incorporating text results for explanatory purposes. 
Some efforts by utilities applying black-box deep-learning models have not been 
successful. Minimal maintenance was also known to be present in some plants in the 
Dutch system. 

Analysis of sister plants, having very similar maintenance schedules applied, might 
further help in analyze the effects of maintenance, at least in quantifying the 
uncertainty and variation in its effects. 

Some examples of data quality are given in figure 3.6. Time aspects are well 
recorded, however KKS component coding is always not to the maximum depth 
(record 831-833, LA is coded while LAC would be more appropriate) and the detail 
in comments naturally varies per person filling in the data. 

Figure 3.6  Example of data quality in VGB’s KISSY database. 

A special consideration must be given to the relation between maintenance and 
planned unavailability. When carrying out an analysis with KISSY data, it was asked 
by the plant maintenance department involved why some plants shows LESS 
unavailability rather than LARGE unavailability (which is the more easy to explain). 
This could only be established by direct contact with the plants abroad, which was not 
realized due to insufficient budget as well as insufficient contact with parties to 
provide such information. Yet forced unavailability data do show however that a 
surprisingly large number of failures is repeated in a week and some subsystems are 
being dominant over decades, indicating that maintenance should be improved (when 
cost effective). Maintenance is a large cost driver for many utilities and more effort 
should be taken to analyze maintenance for dominant subsystems. 

Given some preliminary inputs a Decision Analysis model was constructed to 
estimate the value of KISSY to utilities. Its spreadsheet showed a Base Case value of 
155 MEUR in total over a 10 year window with a total demand of 12 GW and with 
initially 21 * 600 MW plants. Evidently, the amount of additional work to supply data 
to KISSY instead of reporting the unavailability data within the company itself is 
minor when compared to this value. 
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It is interesting to see the main drivers of this value as per figure 3.7. This so-called 
Tornado diagram is derived from setting all inputs at their Base Case value and 
varying each input to Low and High respectively. By sorting those input values that 
have the largest effect, the typical Tornado form appears. 

Figure 3.7  Tornado diagram showing main drivers for benefit due to KISSY. 

The Tornado diagram shows that application to plants having low operation hours on 
a yearly basis evidently delivers less value than applying data to plants having high 
operation hours. Furthermore it shows that if the KISSY data indeed could be applied 
to reduce maintenance costs further, this is an important driver. If normal plant life is 
low, the value becomes higher as more new plants are necessary to replace older plant 
with good reasons for newbuilding departments to apply KISSY data. Interestingly, 
the amount of forced unavailability improvement by KISSY data etc. is NOT the 
main uncertainty. 

If we assign a 50 % probability to each Base Case input and a 10 % - 90 % interval 
probability (weighing factor 25 % each) to the Low and High input values AND 
calculate all possible combinations, a cumulative probability function for the benefit 
shows up. The 10%-90 % interval for value appears to be 121 MEUR – 545 MEUR 
with the average being 387 MEUR. This is the case if all KISSY data are applied in 
the fields mentioned to the fullest. Evidently, without application, no value at all 
occurs. 

As maintenance records in databases such as SAP are generally scarcely filled with 
detailed information, they do not help much in explaining the effects of maintenance 
on forced unavailability. They were not designed to do so, as one of the targets is to 
supply maintenance persons with maintenance tasks and record costs. Yet, they can 
be analyzed for exploratory purposes. In that way, a recent example of exploratory 
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analysis is given by a thesis from Mr. Lany Slobbe, his doctor title given postumely, 
as he suddenly passed away. Mr. Slobbe analyzed and combined large routine 
administrative databases on patients, generally not designed for such analysis [6]. 
Yet, he was able to show that patients with stroke problems had a higher chance on 
living longer when treated in a hospital having more routine (volume of patients). 
Apparently in 2002 the rise in life expectancy in the Netherlands suddenly 
accelerated. It was found that Health Care expenditure rose rapidly after 2001, and 
was accompanied by a sharp rise of specialist visits, drug prescriptions, hospital 
admissions and surgical procedures among the elderly. His findings are consistent 
with the idea that the sharp upturn of life expectancy in the Netherlands was at least 
partly due to a sharp increase in health care for the elderly, and has been facilitated by 
a relaxation of budgetary constraints in the health care system. The author finds it 
amusing that recent discussions on how to pay for pensions on elderly people living 
longer may have been caused by government decisions in the past! 

4 Transparency data 

Data to the European electricity market, enabling proper trading at a level playing 
field, are available to the general public as well as to traders and electricity 
production companies. For example the ENTSO-E Transparency Platform provides 
data from 2015 on with respect to unavailability of production units, high voltage 
lines, etc. , hourly production data for all plants > 100 MW and data for day ahead 
prices and imbalance costs (on a 15 minute basis), etc.. 

The analysis of unavailability data copied from the ENTSOE platform as per figure 
4.1 is straightforward. Also monthly outage spreadsheets can be coupled to monthly 
spreadsheets giving the reasons for outages. As usual, complementary information is 
sometimes given (in various languages which is typically European, see figure 4.2), 
sometimes missing. In the monthly unavailability spreadsheets some plants appeared 
not to be present, however the Helpdesk showed where to find them. 

Figure 4.1  Basic Transparency data for unavailability. 

51

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



Figure 4.2  Reasons for outages with varying amount of detail and different languages. 

The overall unavailability results for the Dutch plants are given in figure 4.3. While at 
first sight the information seems to be correct, specific plant knowledge shows this 
only partly to be the case. Some remarks for the various plants, coded anonymously, 
are given below: 
• Unavailability results for plant C are unrealistic, C being out of operation end

of 2015 and prematurely closed due to some incidents. At least the full month
of December 2015 would need to be marked as forced unavailable.

• Plant D is unrealistic as evidently a PWR has a yearly fuel stop.
• Plant E is unrealistic, being taken out of operation end of 2015.
• Plant F is unrealistic, having been stopped without extensive mothballing

measures. It is evident that it will not be started again, therefore why 100 %
planned unavailable in 2015, 100 % unplanned in 2016?

• While plant G has been extensively mothballed, why 100 %  planned
unavailable in 2015, 100 % unplanned in 2016? Surely as it is 100 % planned
unavailable for 2017 and 2018, the coding for 2016 must be considered a
mistake.

• The large forced unavailability for plant H is intriguing. However, by checking
newspapers, Tennet reports, etc. it was found that the plant had a (large)
transformer problem and otherwise was unable to produce (external failure) as
the nearby substation had a large unplanned outage.

• Plants K – N are sister plants. The records are inconsistent for operation in 2015
– 2018 with one or more of the plants missing. Yet these plants are interesting
given the large number of starts (283 for plant K, 341 for N in 2018). One of the
plants might have had a generator failure as public information from its owner
seems to confirm, however one needs further information to be certain.

• While plants U and V are present in the unavailability data, no operation hours
were found in the monthly spreadsheets.
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Figure 4.3  Dutch results for forced unavailability. 
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• Plants AC and AE have finished operation in 2018. They seem to have had a
very reasonable unavailability up to the last year operating, contrary to the usual
maintenance (neglect) savings in the last years.

• Plants AF and AG have illogical gaps in operation at about 6500 hrs into 2018.
• The large planned unavailability of 2018 for AH can simply be explained as AH

was taken out of operation early 2018.
• Plant AK was only found once (2018) and both a planned and unplanned

unavailability of 0 % seems questionable.
• Plant AO was present in the 2018 operation data but not in the unavailability

data
• As plants AQ and AR are well known to the author, their unavailability records

can be explained (as shown later) in the sense that AQ is backup for the AR
plant, both firing blast furnace gas.

A direct comparison can be made when plant unavailability records are present per 
event from projects etc. at the plant. Such a comparison is shown in figure 4.4 for 
plant A. The comparison clearly shows that all larger outages are duly reported. Some 
smaller outages are not present in the Transparency data. From the outage description, 
it appears that some these outages have to do with coal quality issues and some have 
to do with firing biomass. Such small outages do not have to be reported in the 
Transparency data but are important for plant improvement. In KISSY these records 
therefore are present. 

Figure 4.4  Comparison Transparency data with plant data. 

Other Transparency plant unavailability records confirm for example the operation of 
plant AQ as a backup for AR (figure 4.5). This type of operation may be important 
for the future as conventional plants may be backup for renewables. The backup was 
reasonably successful except for plant AR tripping during an overhaul of plant AQ or 
vice versa or cases where AQ, as it is older and less automated, cannot be started fast 
enough to prevent both AQ and AR out of operation. The latter shows the importance 
of handling degradation failures compared to failures due to tripping of the plant. 
Regrettably, for instance KISSY data seem to indicate that more modern plants 
(having more instrumentation) when having an outage seem to trip more often 
compared to older plants. One wonders if all such trips are necessary when weighing 
protection of equipment against the costs of having the plant fully out of operation. 
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Figure 4.5  Plant AQ operation as a backup for plant AR. 
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Analysis of plant operation is less straightforward. While simple daily overviews are 
present, they cannot be used to download a set of plants over a prolonged period. The 
amount of data is staggering and causes the need of special tools to handle these. 
While analysis started using manual downloads from the Platform, the ENTSO-E 
team kindly mentioned download of monthly production data for power plants. The 
author has used FileZilla and the free ad-in Power Query to handle large monthly 
.CSV files. The data could be downloaded fairly quickly. Yet the author wanted to 
combine 5 years of outage data with these monthly data which was found to be quite 
tedious. With some effort, the years 2015 - 2018 were constructed for all Dutch (> 
100 MW) plants. In the spreadsheet it is easy to access generation data for any other 
European plant also on the list of 1656 plants. Evidently the analysis spreadsheet 
coupled to 6*12 times 2015 - 2018 monthly operating data spreadsheets is somewhat 
slow, as it means handling about 60 million records... 

A very interesting exercise using this spreadsheet is to compare operation of a plant 
against day-ahead and imbalance prices. This was carried out by checking on an 
hourly basis if the price was higher than a target with the plant being actually in 
operation. Some figures on operation of plants and prices are shown below (figures 
4.6 and 4.7). 
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Figure 4.6  Basic Transparency prices 2018 in the Netherlands. 
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(plant A, no correlation with day ahead price, coal fired) 

(plant H, correlation 18 % with over 48 EUR/MWhr day ahead price, gas fired) 

(plant J, 4% correlation with over 24 EUR/MWhr day ahead price, gas fired with 2GTs, district 
heating, in summer fired with 1 GT) 

Figure 4.7  Some examples of plant operation from Transparency data. 

58

Advances in Reliability, Risk and Safety Analysis with Big Data



(plant W, 11% correlation with Pos Imbalance Price, GT) 

(plant AM, no correlation with day ahead price, gas fired district heating) 

Figure 4.7 (cont.)  Some examples of plant operation from Transparency data. 

Some remarks on the operation and prices, as derived from the Transparency data, are 
given below: 
• Average Day Ahead prices in 2018 are typically increasing from about 40

EUR/MWhr to 60 EUR/MWhr, resulting in more operation of CCGTs that were
not “in the money” otherwise.

• Imbalance prices for supplying additional load are typically in the 50 – 100
EUR/MWhr range with extremes of over 300 EUR/MWhr. Imbalance prices to
decrease load are about 20 EUR/MWhr, with a large number of negative  prices
at -150 EUR/MWhr and sometimes one is “given” 400 EUR/MWhr to take the
plant off the grid, possibly due to (over) production of renewables.

• Typical base load plants, mainly coal fired, show no correlation at all with Day
Ahead prices. Evidently similar for the NPP plant. They may have fixed
contracts.

• Gas fired CCGT operation such as plant H and I do show correlation with Day
Ahead prices. A correlation coefficient was maximized by increasing the price
stepwise. Yet, this correlation is far from perfect as sometimes during planned
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overhauls the price is high. Yet, when comparing the time series most CCGT 
operation seems to follow high prices, needing to be above 40 EUR/MWhr. 

• Differences in price behavior occur for plant J , which supplies district heating
and which has 2 GTs, 2 HRSGs and 1 ST. Apparently, in summer 1 GT is kept
operating with the plant at half load. The operation of J shows almost no
correlation at all with Day Ahead prices.

• Plants K – N are interesting sister plants which apparently are unable to operate
all (5) of them fully for economic reasons. Plant N, being the youngest, shows
the highest correlation at 50 EUR/MWhr, plant K being the oldest showing
maximum (but low) correlation at 30 EUR/MWhr. All plants have a large
number of starts (150 – 350) on a yearly basis however it is unclear why one of
the K-N units shows an operation pattern typically having less starts than its
sisters.

• Differences in pattern also occur at plant U, which may have a minimum load
strategy rather than starting and stopping the plant.

• Plant W operation, being an old OCGT as remnant from a hot-box conversion
of a conventional plant, shows no correlation with Day Ahead prices  but
indeed some correlation with Imbalance price. Yet, the OCGT seems to be a bit
slow to start for “sudden” price peaks.

• Plant AM operation has no correlation with Day Ahead prices which is logical
as the plant supplied district heating early 2018 (when the price was low) as
well as late 2018 (when the price was high).

To conclude: 
• One can learn much from the operation of individual plants from the

Transparency data. However, similar to any unavailability data set encountered
by the author, the data quality varies with the plant and company. It is unclear
whether there is quality control in the unavailability records. If there is not, it
should be improved to have a consistent set of information together with the
operation data, which are not always over the same time period.

• Apart from some plants providing complementary (technical) information, in
general the reasons for outages are a black box. Large duration planned outages
are likely to be overhauls, however one cannot be certain. Stops with the plant
out of operation can especially for CCGTs be the result of economic reasons or
plants can be stopped in summer when no district heating is required (seasonal
stop). In those cases, the operators are “at home”, the plant cannot be started
and is therefore planned unavailable. Access to other sources (the staff at the
plant or occasional newspaper and yearly reports) are necessary if one is
interested in the technical background, necessary for improvement.

• Unavailability records appear to be inconsistent with operating records, some
values for unavailability are unrealistic, definitions for planned versus
unplanned are unclear (ex-ante being the only difference is ambiguous as the
time interval to declare an outage ex-ante is not well defined).
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5 Wind energy 

Conventional generation is and will be further replaced by wind energy. Only wind 
parks in the 100-200 MW have similar capacity as conventional generation and as 
only large turbines have a MW size (>8 MW is reached), the number of data is 
enormous if one wants to follow individual turbines to derive failure data. 

A limited number wind park production data can be found on the ENTSO-E 
Transparency platform, for instance planned maintenance for the wind park or some 
larger grid connection problems. Yet, either no information on outages or a very 
limited number of outages was found (f.i. full production loss of a wind park). It is 
evident that to note outages of individual turbines is a lot of work which is also 
confirmed by the discussion on NERC wind generation, already taking place some 
years. While notifying wind turbine outages appear to be mandatory in the US, 
production companies found this difficult. Commercial firms aid meanwhile in having 
these data generated. 

Discussion in the KISSY Working Group also has been going on for some years to 
introduce wind. Evidently such outages have to be generated by turbine and wind 
park SCADA systems, wind turbines do not have KKS-codes (a new coding system 
RDS-PP was developed) and lack of wind and too much wind (cut-in and cut-out of a 
turbine) should be taken into account. Interaction between turbines, for instance due 
to wake, is an issue that should be thought about. 

The outage data are aggregated data for 2 wind parks (Baltic 1 consisting of 21 
turbines in total 48 MW, Baltic 2 consisting of 80 turbines in total 288 MW). As 
according to literature one may expect 1 – 2 failures per turbine per year, 
unavailability records showing 2 – 5 MW losses should be abundant. They are not. 
This is consistent with only reporting large (order of magnitude 100 MW) outage 
data. 

Advanced modelling (as wind data must be local) is probably used in the ENTSOE 
Transparency Platform wind data. Figure 5.1 shows the amount of variation in wind 
production (forecasted) for December 2018. It would be interesting to see if typical 
patterns would be present (storm season, low production, variation over the day with 
land warming up, etc.). Evidently, in order to keep the grid frequency constant, such 
variations must be balanced by conventional generation. Evidently, this will cause 
more wear and tear on such power plants and reserve (for the in Germany so called 
Dunkelflaute, meaning a period without renewable generation from sun and wind) 
must be kept ready and paid for. The reserve plants market is still being discussed by 
major players. 
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Figure 5.1  Example of Intraday wind production forecast. 

The author has helped to carry out a study for the production situation on a Caribbean 
Island, having diesels, electricity production from a refinery as well as small size 
wind turbine parks. It was found that hourly wind production records were held 
manually and publicly assessable wind information from an airfield nearby was 
available. While not part of the original study, results were derived such as shown in 
figure 5.2 below. The results are interesting as the island demand is 100 – 120 MW 
with during the months analyzed 0 – 40 % wind production. Some wind production 
data are shown in figure 5.3. The wind data of the wind parks were correlated to wind 
measured about 1 km further away at the airport. Evidently, wind production by a 
single array of turbines is dependent on wind direction. Part of the spread may be 
explained by the difference between measurement point of wind and having wind 
production by the hour while wind speed is averaged over the hour. At least 15 
Minute wind speeds, as local as possible, should help to reduce the spread further. 

Figure 5.2  Wind production at a Caribbean island. 
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Figure 5.3  Wind production as a function of wind park and direction. 
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The problem for the utility company is NOT a period with much wind, as diesel 
generation is relatively easy to stop, decrease and increase (by varying the amount of 
diesels in operation). The problem is to predict wind production to such an extent that 
the utility is able to plan and carry out maintenance during day hours at acceptable 
costs and to have sufficient reserve power for months without wind. Similarly, 
electricity production on this island is dependent on industry (a refinery) and 
therefore on economic conditions. 

The situation, probably less extreme, might be similar for the Netherlands in the 
future with a large amount of renewables in the grid and short term decision making 
on generation and reserves by politics. Please note the discussion in the Netherlands 
on coal production from relatively young large coal fired power plants, to be closed. 
Yet, technically this is an interesting situation as by using the characteristics of the 
wind turbines and local wind conditions (both on direction and wind speed) one 
should be able to predict wind generation and, given a sufficient window for decision 
making, solve the above questions for reserve power and plant maintenance. 

Similar types of analysis are also possible for North Sea windfarms. One should use: 
□ The production curve per turbine type as given by the manufacturer
□ Transparency data for total park production
□ A correction for wind at hub height versus metrological (10 m) reference height
□ Actual wind conditions including gustiness, if unavailable one can use for

example the KNMI North Sea wind data or computer generated GRIB files
□ As turbines influence another being in each other’s wake, some analysis of

array effects and/or wind direction

As an example see figure 5.4, which is comparable to 5.3 except for the amount of 
power. Also for North Sea windfarms, the amount of data necessary for analysis is 
substantial but doable. 

Figure 5.4  Example of production from a North sea windfarm. 
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To conclude: 
Renewables such as wind power require high quality big data for analysis purposes. 
Yet the physics of wind turbines are known, prediction of wind based on GRIB files 
is possible and it should be feasible to have a few days ahead power predictions in 
order to match generation resources. To derive failure characteristics of single wind 
turbines in large wind parks is a major amount of effort shown as per [7]. 
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Mechanical seal failure prediction in an oil 
refinery: a first attempt to solve the problem 

using a data-driven approach 

L. Pereira, L. Andrade Ferreira
University of Porto, Faculty of Engineering, FEUP/DEMec, R. Roberto Frias,
4200-465 Porto, Portugal

Abstract 

Despite the massive amount of data available in today’s plants, maintenance 
teams, in an attempt to understand and predict failures, are still using 
rudimentary tools that, typically, can only address the influence of each 
influencing variable separately. 

The growing gathering data capability asks for more sophisticated tools. These 
tools are currently available and have been highly exploited by the major 
technology companies in recent years [T. Żabińskia et al.]. In academia and, in 
particular, engineering and physics fields, the use of data-hungry tools is in 
high-demand and several examples can be found, from the prediction of 
superconductivity temperatures [V. Stanev et al.] to material discovery and 
design [Y. Liua et al.]. Nevertheless, the successful application of machine 
learning in maintenance is hindered by the messy, noisy and incomplete data 
commonly found in industrial environments. In this work, a first attempt to 
predict the failure of mechanical seals using a data-driven approach and real 
data collected in an oil refinery is presented. 

A mechanical seal is a device used to control the fluid leakage between a 
rotating shaft and the housing of a dynamic turbomachine, e.g. centrifugal 
pump. Due to its improved performance in comparison with traditional sealing 
systems, such as packing (regarding safety, power losses, shaft wearing, water 
consumption, leakage and maintenance time), ANSI/API 682 mechanical seals 
are commonly used in oil refinery’s centrifugal pumps that work with dangerous 
fluids, e.g. vacuum residue at 350ºC. Despite its advantages, this sealing 
solution is prone to fail due the contact between the very smooth and flat 
rotating and stationary rings face (two contacts of this kind by device), causing 
the reduction of centrifugal pump’s reliability and making the system highly-
sensitive to maintenance operations. Therefore, intervention decisions must be 
based on robust information and the device must be intervened only when it is 
strictly required. 

For this devices, two types of data can be collected: real-time data and 
maintenance operations information. The first is highly-reliable (assuming 
proper functioning of the sensory systems) and its analyses can be easily 
automated. Nevertheless, autoregressive models or other strategy to reconstruct 
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missing data is required due the expected malfunctioning of the sensoring 
systems during short periods of time. Maintenance operation information is 
harder to analyse due its dependency on human intervention. In order to 
homogenize internal maintenance databases (and making it easier to perform 
automated analyses), effort has to be put in the developing of internal standards 
and formation of human resources. The combination of both data types can lead 
to more robust analyses and ensures that all available data is completely 
exploited. 

In this work, a complete analysis, from data gathering to the application of 
machine learning algorithms to predict mechanical seal failures in an oil 
refinery, is performed. The main goal is clearly defined and a quantitative 
definition of mechanical seal failure, taking into account the current 
maintenance strategy, is established. Data gathering, combination and cleaning 
is performed and new information is created, in order to ensure the proper 
feeding of machine learning algorithms. Different machine learning algorithms, 
e.g. decision trees and naïve Bayes, are trained and evaluated. At this stage,
only classification is considered due its simplicity (though the problem is
inherently continuous). Feature selection and hyperparameter tuning is
executed and physical interpretation of the results, whenever possible, is made.
The results, although not good enough for right-way implementation of the
developed system in the plant (which may be attributed to the randomness of
mechanical seal failure and lack of relevant information, e.g. vibration
measures), show the potential of these type of techniques.
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Trust in AI: The role of hybrid and private governance 

Asun Lera St.Clair 
DNV, GTR- Digital Assurance 

Executive summary 

The fast advancement of AI and its deployment in many different social contexts and 
industries calls for a meaningful governance system that can prevent harmful 
applications, ensure robustness, prevent bias and violations of privacy, and provide 
trust without stalling the growth potential of these technologies and their capabilities 
to support the common good. The paper outlines some emergent perspectives on AI 
governance and discusses how hybrid and private governance should be a key 
element. Business transactions of any type are layered and mediated by both hybrid 
and private accountability mechanisms that self-regulate the behavior of companies, 
align business practices with widely held ethical principles, and enable societal trust. 
Assurance providers (accountant firms, auditors, verifiers, or certifiers) are 
guarantors that these systems and technologies work as intended. These types of 
governance systems are commonly referred to as private or hybrid governance, and 
they are very common ways to regulate industries. 

This paper contributes to the literature on ethics, AI and governance, by unpacking 
the role of private governance could play in regulating the process of building and 
deploying safe and responsible AI. We argue that traditional private governance 
mechanisms are a key component of the needed regulatory and accountability 
landscape for AI, and that the role of private governance is not yet adequately 
addressed in the current debate on AI ethics and AI governance. Business 
transactions of any type are layered and mediated by both hybrid and private 
accountability mechanisms that self-regulate the behaviour of companies, align 
business practices with widely held ethical principles, and enable societal trust. 
Assurance providers (accountant firms, auditors, verifiers, certifiers etc..) are 
guarantors that these systems and technologies work as intended. These types of 
governance systems are commonly referred to as private or hybrid governance, and 
they are very common ways to regulate many industries. We focus on the role of 
assurance mechanisms such as standards, recommended practices and certification, 
which are well-established mechanisms for providing trust in technologies. These 
create layers of trust (e.g., environmental standards and assurance methods to assess 
industry compliance with such standards). They also ensure products (e.g., a ship, a 
food product, or a management system) are safe, do not cause unacceptable harm to 
society and the environment, and respect established ethical principles such as 
human rights. At the same time, they generate trust and enable the well-functioning of 
business-to-business partnerships and transactions while providing trust to society. 

Understanding how private governance works to reduce risk, cope with uncertainties 
and enhance trust is an important component of the debate on AI and ethics. In 
addition, understanding and addressing the disruptions created by AI applications to 
these governance mechanisms and their capacity to help coping with new ethical and 
societal challenges is of utmost importance. This is critical not only because AI 
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applications are seemingly driven by efficiency gains and cost savings rather than 
safety or the common good, or because public governance and social norms lag 
behind AI research. It is also crucial because AI systems change well-established risk 
profiles of industries and create new ethical challenges. This may change the nature 
and the boundaries of assurance while at the same time making the role of assurance 
as a provider of trust even more important. We argue that enabling trust in AI is a 
matter of generating appropriate processes that facilitate deployment of AI 
applications in a safe and responsible manner. 

1. Introduction

When the information age’s most enthusiastic apostles celebrate the breakdown of
hierarchy and authority, they neglect one critical factor: trust and the shared ethical

norms that underlie it (Francis Fukuyama 1996) 

We may not have evidence for a crisis of trust; but we have massive evidence for a 
culture of suspicion (Onora O’Neill 2002) 

We need to cultivate in ourselves, collectively, a special kind of moral virtue, one that 
expresses what I will call the technomoral virtues (Shannon Vallor 2016) 

The exponential advance of AI technologies and their application across various 
social arenas, from driving to medical diagnosis and finance, is reshaping our 
personal and professional lives, yet it is seen by many with suspicion. The 
transformational potential of these digital technologies is immense; they may in fact 
be the determining factor for the solution of many existing global challenges, such as 
food and water security, sustainable value chains, less road accidents, or the 
decarbonization of the global economy. Yet, the power of AI can also be misused for 
less worthy goals, such as war, discrimination, the perpetuation of inequality or to 
enhance nationalism and unfair competition. There are many historical cases showing 
that technological advances have not been matched by societal acceptance, and that 
governance mechanisms lag behind the rapidly increasing digital capabilities. 
Moreover, there are fears that AI technologies may acquire consciousness and 
become our ultimate invention, perhaps substituting the primacy of human beings, 
although that is very far from current technological capabilities. Perhaps more 
importantly, there is a well-founded mistrust that a hurried push to develop and 
deploy AI technologies is driven by efficiency and cost savings by a handful of 
companies, bypassing concerns for safety, ethics or the common good. Considering 
that AI technologies are still in their infancy, yet deployed at a rapid pace, a key 
question is: What is the best way forward to ensure that AI technologies serve human 
goals, abide by widely shared ethical principles, and consider impacts on society? 
The discussion on trust in AI is a discussion about generating appropriate and 
meaningful governance and accountability processes, to ensure that we enable the 
benefits of AI technologies while preventing misuse and harmful applications. 

Digital technology industry giants, consumer and interest groups, governments and 
academics all agree on the urgent need to create suitable governance mechanisms 
built on shared values for the further maturing and deployment of AI technologies 
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(Dafoe 2018; Microsoft 2018; AI Now 2018, EU AI HLEG 2019). Some argue for 
the need to imbue ethical reasoning into the construction of algorithms and to develop 
computational ethics as a new engineering discipline (Kaplan 2016). Others call for 
the actual auditing of algorithm performance (O’Neill 2017, 2018). Some authors 
tackle the issues from the perspective that it is us, human beings, that need to mature 
our moral computation. Shannon Vallor (2016) wishes a future ruled by human 
beings with mature technomoral virtues to protect the good life in an age of disruptive 
technological advance. Some ongoing discussions follow this perspective arguing for 
the use of AI to augment our capabilities but morality as an arena for human beings 
(Spohrer 2019). 

Rachel Botsman (2017) provides an insightful analysis on the contradiction that, 
while digital  technologies enable trust among strangers, they may also have negative 
consequences, such as the breakdown of societal cohesion and the further 
individualization of people. Clearly, there is a central role for different forms of 
governance to regulate the further development and deployment of AI technologies, 
even though one of the key characteristics of the digital age is an increase in 
transparency and, in many instances the removal of intermediaries in many socio-
economic transactions. 

This paper contributes to the literature on ethics, AI and governance, by unpacking 
the role of private governance could play in regulating the process of building and 
deploying safe and responsible AI. We argue that traditional private governance 
mechanisms are a key component of the needed regulatory and accountability 
landscape for AI, and that the role of private governance is not yet adequately 
addressed in the current debate on AI ethics and AI governance. Business 
transactions of any type are layered and mediated by both hybrid and private 
accountability mechanisms that self-regulate the behaviour of companies, align 
business practices with widely held ethical principles, and enable societal trust. 
Assurance providers (accountant firms, auditors, verifiers, certifiers etc..) are 
guarantors that these systems and technologies work as intended. These types of 
governance systems are commonly referred to as private or hybrid governance, and 
they are very common ways to regulate many industries. We focus on the role of 
assurance mechanisms such as standards, recommended practices and certification, 
which are well-established mechanisms for providing trust in technologies. These 
create layers of trust (e.g., environmental standards and assurance methods to assess 
industry compliance with such standards). They also ensure products (e.g., a ship, a 
food product, or a management system) are safe, do not cause unacceptable harm to 
society and the environment, and respect established ethical principles such as human 
rights. At the same time, they generate trust and enable the well-functioning of 
business-to-business partnerships and transactions while providing trust to society. 

Understanding how private governance works to reduce risk, cope with uncertainties 
and enhance trust is an important component of the debate on AI and ethics. In 
addition, understanding and addressing the disruptions created by AI applications to 
these governance mechanisms and their capacity to help coping with new ethical and 
societal challenges is of utmost importance. This is critical not only because AI 
applications are seemingly driven by efficiency gains and cost savings rather than 
safety or the common good, or because public governance and social norms lag 
behind AI research. It is also crucial because AI systems change well-established risk 
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profiles of industries and create new ethical challenges. This may change the nature 
and the boundaries of assurance while at the same time making the role of assurance 
as a provider of trust even more important. We argue that enabling trust in AI is a 
matter of generating appropriate processes that facilitate deployment of AI 
applications in a safe and responsible manner. 

2. On trust

Trust underlies all social and economic relations. Trust is the firm belief in the 
reliability, truth, or ability of someone or something11. We participate in public life, 
drive our cars, enter into contracts and engage in economic transactions, relate to 
government organisations or with customers because there is trust underlying all 
these actions. Behind this trust, there is a set of shared ethical norms, tacit or explicit 
principles as to what is, and what is not, appropriate behaviour by all parties 
involved, how things should work, or how things should be. Trust is a fundamental 
characteristic underlying all human relations. Francis Fukuyama (1995) studied in 
depth the role of trust in economic life and unpacked how different industrial 
structures and societies are glued together through diverse forms of trust mechanisms, 
some cultural, some institutional, others simply the result of centuries-long social 
practices. Even in an age of a truly globalized economy, there exist different trust 
cultures, each evolving and generating different types of mechanisms to ensure there 
is a minimum amount of social trust involved in any kind of transaction. Thus, trust is 
one of the most pervasive characteristics of social life. Whether in the form of 
personal relations embedded in social institutions like the family in many 
Mediterranean and Asian cultures, or in the form of formal governance structures in 
more rule-oriented cultures, trust enables the fluidity of social and economic 
transactions and creates the basis for prosperity and market transactions (Fukuyama 
1995). It is so pervasive, that “a complete absence of trust would prevent [one] even 
getting up in the morning (Luhmann 1979)”. 

Trust facilitates interactions among people but also interactions between people and 
technologies, including relations “among the members of a system, whether these be 
human agents, artificial agents or a combination of both (a hybrid system) (Taddeo 
2017:565). This ability to facilitate interactions is what makes trust a valuable asset. 
AI adds new dimensions to the interactions between humans and technology because 
they perform intellectual tasks and, in many applications, have decision making 
power. As we delegate to digital technologies cognitive tasks that were earlier 
performed by humans, AI technologies become more than a mere facilitator, given 
our decisions become dependent on the technology. This may require new forms of 
trust. Trust and the dependence of users becomes entangled. Taddeo (2010) argues 
for three dimensions in the interface between digital technologies and trust: the 
occurrence of trust in digital environments, the nature of trust in technology, and the 
relation between trust, technology and design (Taddeo 2010: 284). The implication of 
this analysis is that we are facing a new kind of technological mediation altogether, 
one that raises substantive societal and ethical issues. 

1 Definition given in Oxford dictionary https://www.oxforddictionaries.com/ 
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Another author, Botsman (2017), explores the many ways in which digital 
technologies affect us and re- organize us and our work. We have created trust-
building mechanisms that enable us to share our homes with strangers through 
platforms such as Airbnb, and we trust our personal lives and opinions to be 
showcased in public domains in ways that would have been unthinkable just a few 
years back. Yet, this same system “makes it easy for almost a third of the world’s 
population to gossip and gripe, share and like, even if the content is false, and without 
proper checks and balances or any real redress (Botsman 2017: 106).” Some may say 
these concerns with trust apply only for issues related to digitally mediated 
interactions in the public arena or relations between companies and customers. 
However, the absence of proper checks and balances and institutional mechanisms 
enabling trust prevents the formation of judgments of trustworthiness for any kind of 
interaction. In short, ubiquitous digital systems and the speed of their implementation 
leads very often to a fragile trust, trust that is not underpinned by shared values and is 
not supported by an established regulatory regime; it is a trust simply based on the 
dependency we have on those technologies, nothing more. In other instances, the 
speed of technology adoption simply leads to blind trust, that is, we accept their use 
in our daily life and deployment in industries without the necessary assurance that the 
technologies are fit for purpose, safe and reliable. It is a misplaced trust, often lacking 
sufficient knowledge and sufficient reflection on the possible consequences of 
technology on society. In short, trust is a complex issue, including but not limited to 
trust that a particular technology is sound. Like the dwindling trust in science, trust in 
technology is not only about rational and robust quantitative, mathematical or 
technical representations of the world. Trust in technology encompasses many other 
dimensions, including political, ideological, ethical, social and psychological (refs). 

2.1 Specific trust issues raised by AI 

There are many different perspectives as to what the key pillars for trusted AI are, but 
there seems to be wide agreement on the need for certain key technical specifications. 
The head of Ai at the World Economic Forum states the following as the key issues 
to demonstrate the trustworthiness of AI (Firth- Butterfield 2018): 
• Bias
• Transparency
• Accountability, and
• Privacy

IBM researchers define the pillars to trusted AI as meeting the following criteria 
(Hind et al 2018): 
• Fairness
• Robustness (safety and reliability)
• Explainability, and
• Lineage

In a similar manner, Microsoft articulates the characteristics of trustworthy AI as 
meeting the following characteristics (Microsoft 2018): 
• Fairness
• Reliability and safety
• Privacy and security, and
• Inclusiveness
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All these criteria are fundamentally presented as technical issues, that is, issues that 
can be solved in the process of design by AI experts. The expected end result is an AI 
application that is transparent, able to be understood by humans, and able to explain 
how it has made a decision or prediction. This is the goal of what is often referred to 
as explainable AI. However, meeting the criteria outlined above requires 
acknowledgment of another set of trust issues which are often underplayed. We will 
need to have trust in the data, trust in the models that generate predictions, and trust 
not only on algorithmic agency but on the contexts in which this algorithmic agency 
operates. In addition, we need trust in domain knowledge required by a particular AI 
application, as well as a clear understanding of the impact that the AI in question may 
have on the autonomy of human users. 

Trust in data Trust in models Understanding the 
context as well as 
algorithmic agency 

Roles of AI & Levels 
of autonomy 

The origin of many AI 
applications is data. 
Thus, trusting data 
and ensuring its 
quality is a point of 
departure for any 
attempts to regulate 
AI. The EU AI HLEG 
considers that 
trustworthy data 
should address bias, 
fairness, transparency 
and discrimination (EU 
HLEG 2019). But one 
also needs to trust 
that the data used is 
relevant to the 
problem to be solved. 

Models are a set of 
structured 
assumptions 
(Ghahramani 2015). 
We tend to believe 
human assumptions 
as correct, while AI 
techniques generate 
their own 
assumptions, and this 
leads to a lack of trust 
given that the AI may 
use unknown or 
unfamiliar forms of 
rationality. But one 
cannot assess the 
assumptions 
contained in a model 
without unpacking the 
assumptions made by 
the humans that 
created the model 
(Miller 2018). 

Many ethical and 
societal questions are 
raised by the agency 
aspect of AI (Taddeo 
and Floridi 2018). 
Given the agency of 
an algorithm still 
interacts both with 
physical systems and 
with humans, it is a 
pre- requisite to 
understand cyber-
human interactions. 
In this regard, it is 
important to know 
which types of human 
expertise participate 
in these complex 
interactions. in their 
entirety. 

AI agents can act as 
independent agents 
and play different 
roles in decision 
processes. 
They can act as 
consultants, decision 
aids, managers, or 
delegates. Each role 
can have different 
levels of autonomy, 
with different levels of 
responsibility ascribed 
to the AI and to 
humans. 

Also, AI affects the 
autonomy of the 
human user 

To build explainable AI, these four issues are [important/necessary/critical/essential] 
to address. A perspective that looks only at the technologies themselves (no matter 
how explainable those technologies are) is insufficient. Two of the four issues listed 
above are critically important. First, recognition that the context or wider system in 
which the AI is deployed matters as much as the AI itself. This wider system may 
include other technologies, or become a cyber-physical system, introducing further 
complexity to the search for AI explainability. Second, with ever higher levels of 
autonomy, it is difficult to abstract the AI from its interactions with humans. Not only 
are humans (so far) those who design AIs, and thus bring their own cognitive biases 
into the process; humans also play a role in defining the context in which AIs are 
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deployed and how they are used, which may reflect the human biases and 
understanding of the context and algorithms rather than the capabilities of the AI. 

How much responsibility we delegate and how much freedom or autonomy we grant 
to an employee, a child, a pet, an institution, or a contractor depends on our level of 
trust. The same goes for AI. For instance, a Consultant AI gives advice to humans, 
but it does not independently make decisions, as the humans involved in the process 
also make independent judgements. An example would be medical expert systems. 
Consultant AI is typically used in cases where bad predictions may have serious 
consequences, and the trust in the system is not deemed sufficiently high to let it 
make decisions autonomously (Xiang 2002). Assistant AIs are used to help humans to 
collect and analyse relevant information to reach decisions, e.g. by analysing large 
amounts of data that humans would not be able to process themselves and propose 
recommended actions. In such cases, the analysis of the AI agent is trusted to a large 
degree, but humans take responsibility for concluding on appropriate actions. An AI 
Delegate is trusted to act on behalf of humans, e.g. an AI agent controlling an 
autonomous robot or vehicle. This, however, does not mean human agency is 
completely removed when we include the context in which an AI is deployed. 

This means trust in AI is not a binary yes/no question, but rather a continuous scale of 
capability levels, and types of interactions. Each type of interaction or role has 
associated levels of trust. The Society of Automotive Engineers (SAE 2018) applies 
this principle to define a scale of six autonomy levels for cars: 0) No automation; 1) 
Driver assistance; 2) Partial automation; 3) Conditional automation; 4) High 
automation, and; 5) Full automation. Such taxonomies not only facilitate a common 
understanding among actors creating autonomous systems, but can also form the 
basis of governance frameworks by stipulating the level of trust required from a 
system depending on how it is operated or used. 

A large amount of literature has tackled the issue of trust in AI by attempting to 
imbue ethics into code. Computational ethics seeks the integration of ethical thinking 
into the coding and design of machines. But the ethical challenges raised by AI are 
more numerous and complex. While it is important to ensure that biases are not 
automated, or that an AI application does not violate people’s right to privacy, it is a 
simply inappropriate to claim we can design moral machines or that this should be 
our goal in order to generate trust in AI. Firstly, there is not one single global and 
general moral code in this world. Secondly, many people would argue that morality is 
a trait of human beings, a trait so complex that it is impossible to capture by binary 
code (Hao 2018). A lot of the experiments we see emerging in embedding ethics into 
machines are no more than the integration of the values and worldviews of a 
particular group of people into the design of AI applications (Hao 2018). This is a 
misrepresentation and simplification of ethics. We tend to make moral calculations 
after an event has occurred. We ask ourselves, was this the right thing to do? Moral 
reasoning is driven by moral intuitions and interpretations of the facts, rather than by 
applying a particular ethical code or metaethical system. Our ethical intuitions are the 
result of embedded ethics in the social, cultural and normative fabric where we are 
situated. But we do not hold values in theory; we hold values as people and express 
them with our actions. Ethical examples, such as the trolley problem serve to 
illustrate different ways to reason ethically, but the examples are not the source of 
ethical behaviour just a mere meta-analysis illustrating how one could provide an 
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ethical rationale to action after the action has been taken. This is one of the 
fundamental reasons why the morality of a technology is not a characteristic of the 
technology, but an attribute of the humans that create, interact, and are impacted by 
that technology, as argued by Shannon Vallor (Vallor 2017). If we want a world of 
moral machines, we need a world where human virtues regulate the design and 
deployment of these technologies. 

In summary, trust in AI depends on more than explainability. We must analyse and 
understand the context and goals of the application, the role of algorithmic agents, 
and the roles of human beings, with their own assumptions of how the world works. 
At the core lies the need to have a very clear view on where humans are involved in 
the overall processes of designing and deploying a particular AI solution, and what 
level of responsibility is delegated to an application. 

An additional critical aspect of trustworthy AI is the need to know the expectations of 
those who are supposed to trust the AI application. So far we are still quite in the 
dark, with little research offering empirical evidence as to what those expectations 
are. An exception is a well-documented empirical analysis of public perception of AI 
conducted recently in the UK. The results showed a high level of mistrust in AI. A 
key source of mistrust in AI, the authors claim, are dominant narratives the both over 
represent the powers of AI technologies or that only highlight their potential negative 
consequences. “Both excessively hopeful and excessively frightening narratives can 
have significant negative societal impacts. Exaggerated expectations for what AI can 
achieve, and when, risk undermining further research and investment” (Cave, 
Coughlan & Dihal 2018). 

These “excessively hopeful and excessively frightening” narratives are exacerbated 
by a lack of AI governance. To enable appropriate public debates on AI capabilities 
and raise awareness of their risks and benefits we need an infrastructure of 
governance mechanisms that debate and regulate the design, deployment, and 
operation of AI technologies. After outlining the relations between trust and 
governance we unpack the concept of governance, argue for a specific role of hybrid 
and private governance mechanisms in enabling the trustworthiness of AI 
development and deployment, and elaborate on what type of private governance AI 
requires. 

2.2 Trust and governance 

Trust is intrinsically linked to governance. Trust is never a matter of blind deference, 
but rather a question of placing - or refusing - trust with good judgment (O’Neill 
2002). Thus, the critical question about trust relates to the institutions and processes 
that enable us to actually make judgements about the trustworthiness of people, 
processes, services, products, or organisations. And as O’Neill argues, we always 
need social and political institutions that allow us to judge where to put trust (O’Neill 
2002). These are the institutions of governance, institutions that execute 
accountability in the public and in the private arenas. This means there is an 
entanglement between the need for assessing trustworthiness and the power delegated 
to social and political institutions that enable trust. Delegating power to those 
institutions is a necessary condition for generating structured ways to enable good 
judgment. These are institutions that form the architecture of a social contract, 
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enabling societies to function, enabling the deployment of technologies, and acting as 
sources of guidelines and accountability. It is important, however, not to confuse the 
term ‘governance’ with ‘government’. Governance refers to a certain degree of self-
regulation by societal actors and to private-public cooperation in solving societal 
problems (Biemann and Pattberg 2008). 

Based on a review of various broad definitions of governance, Andonova et al (2009) 
identify three common features of governance: first, governance is concerned with 
realising public goals; second, it steers a particular constituency of actors; and third, it 
is regarded as authoritative. The latter element – authoritativeness – is of critical 
importance as it distinguishes governance from other types of informal cooperation 
between actors. This cooperation factor is important for the establishment of 
credibility and authoritativeness. As Falkner (2003) argues in the context of 
international relations, governance emerges as the result of interaction and 
negotiation, a type of negotiation that is de facto institutionalized and of a more 
permanent nature. Within a governance system, participants do not decide to be 
bound by institutional norms because of mere self-interest, but rather adjust their 
behaviour in negotiation with other participants’ views, all in recognition of the 
legitimacy of the system of governance (Falkner 2003). 

Negotiation and cooperation are important for the eventual construction of an AI 
governance system. Negotiation and cooperation will help legitimacy to emerge 
through the complex set of processes that build guidelines and standards (as well as 
ways to verify those guidelines and standards). Those processes will also build an 
understanding of what technologies are, what they can and can’t do. Building 
governance mechanisms for new technologies is often, in fact, a performative 
process, as it must be built on consultation and negotiation. Those consultations and 
negotiations help build societal awareness about specific technologies, and - in so 
doing – they contribute to determining the perception of such technologies. 

Governance is also an iterative, ongoing process of negotiating perspectives and 
priorities. As new governance systems are built, diverse stakeholders in society must 
consult and strive to reach consensus. These negotiations and perception-building are 
important reminders that governing is an ongoing process; it is not necessary or 
desirable to wait until a perfect system is in place to start governing a field. This is 
most certainly the case for AI, which is in dire need of governance mechanisms. 
Lastly, governance is often multi-layered. It is the aggregate of a set of interacting 
mechanisms that enable the processes of cooperation and negotiations that are 
described in the preceding paragraphs. A governance system is never established by a 
single organisation, but rather is often the results of partnerships of many 
organisations, both public and private, and very often a hybrid of both. 

3. Governing AI

Discussion of AI governance is exploding, driven by an increasing global debate on 
the ethical and societal dilemmas posed by advances in AI techniques and their 
deployment in society. Another driver of the AI governance discussion is the 
increased recognition of the strategic value of AI as a driver of national and regional 
power and as a driver of economic growth. Five distinct emerging perspectives on AI 

76

Advances in Reliability, Risk and Safety Analysis with Big Data



governance are explored in the following sub-sections: 

1. Technical and political aspects
2. Sector-specific governance
3. Dynamic and iterative governance
4. Ethics and technical design
5. Machine-human interactions and regulatory forces

3.1 AI is both technical and political 

An in-depth analysis of the research agenda needed for devising global norms, 
policies, and institutions to best ensure the beneficial development and use of 
advanced AI was produced in 2018 by the Future of Life Institute (Dafoe 2018). The 
document, although a work in progress, structures research on AI governance along 
the following dimensions. 

Technical: 
• Mapping technical possibilities
• Assessing progress
• AI safety

Political: 
• Domestic and mass politics
• International political economy
• International security

Ideal governance: 
• Values and principles
• Institutions and mechanisms
• Positive visions

The proposed ‘Ideal Governance’ is based on values and principles, institutions and 
mechanisms, and on positive visions. The rationale behind giving an equal weight to 
politics and technical issues alongside a positive vision of AI impacts lies in the 
transformational capabilities AI already presents, and the fact that a race for AI 
capabilities could easily become a race for power. 

The document from the Future of Life Institute also gives special attention to the non-
linear nature of AI’s transformational capabilities. Although one can anticipate 
innovations in the field, we must be prepared for big jumps in capabilities that may 
render traditional governance mechanisms suddenly obsolete. The authors solve this 
problem of anticipating the actual technical capabilities of AI by providing an ideal 
vision of the ‘end goal’ of AI for humanity within the context of shared values and 
democratic principles. 

But in the real world of fast development and deployment of AI solutions, driven by 
efficiency, cost savings and potential economic growth, it is crucially important to 
regulate AI immediately. This regulation should be part of an ongoing process of 
building suitable governance mechanisms and the shared values underpinning an 
ideal governance vision. The tripartite structure offered by Dafoe (2018) is both 
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technical and political. It could be used to create an initial system of rules and 
regulations using existing private governance mechanisms. Before we address this 
point again we want to outline other AI governance perspectives. 

3.2 AI governance must be sector-specific 

A different take on AI governance is presented by the AI Now Institute latest report 
(AI Now Institute 2018). In a summary document offering ten key recommendations 
to ensure that AI serves humanity, governance is number one. According to this 
report, the key actors in AI governance are governments. Moreover, they argue for 
the “need to regulate AI by expanding the powers of sector-specific agencies to 
oversee, audit, and monitor these technologies by domain (AI Now Institute 2018:4).” 
The logic behind this sectoral focus is that it is difficult to establish the risks or 
benefits of a particular AI application independently of the context of its deployment. 
Devising the risks requires a systemic perspective. Since we must pay attention to the 
specific context in which an AI is deployed, domain knowledge of this context is 
critical to the evaluation of AI performance. Over the years, individual sectors have 
created relevant regulatory frameworks and accountability mechanisms that are also 
relevant for AI governance. “Sectors like health, education, criminal justice, and 
welfare all have their own histories, regulatory frameworks, and hazards. However, a 
national AI safety body or general AI standards and certification models will struggle 
to meet the sectoral expertise requirements needed for nuanced regulation (AI Now 
Institute 2018: 4)”. 

The report argues that the application of AI in specific domains and its consequences 
must be prioritized, rather than the regulation of the technologies themselves. This 
focus on leveraging existing regulatory frameworks of specific domains is a key 
message. It implies that existing private governance mechanisms of different sectors 
can be leveraged for helping regulate the development and implementation of AI. 

3.3 AI governance must be dynamic and iterative 

Private sector consultancies are also jumping on the bandwagon of AI governance. 
Deloitte published a research paper focusing on the limitations of traditional 
governance systems in regulation of emerging technologies, with a special focus on 
“intelligent technologies” (Egger and Turley 2018). Intelligent technologies disrupt 
existing business models, posing serious challenges to traditional governance making. 
The paper puts forward the concept of seeing governance as a space, a regulatory 
spectrum, encompassing different stages: from a pre-regulatory stage to a stage of 
testing and evaluation, leading to a more mature regulatory approach. It also 
considers an iterative process enabling ongoing improvement and more mature 
regulatory approaches. This stepwise conception of regulation is useful as it reminds 
us of the need to create the rules, to create a system to enforce them, and to create an 
iterative process that enables ongoing revisions. 

The authors also argue that we need to think about different types of regulation. 
These types are: 
1. Adaptive regulation (enabling iterative regulatory processes)
2. Regulatory sandboxes (enabling prototyping and the creation of regulatory

accelerators)
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3. Outcome-based regulation (focusing on results and performance)
4. Risk-weighted regulation (moving away from one-size-fits-all to a data-driven

approach)
5. Collaborative regulation (enabling international collaboration across countries

and ecosystems of actors)

These five regulatory forms are complementary. Each contributes to the debate on 
how to create the necessary conditions for good judgments, and thus for trust in AI 
and its specific applications. All these characteristics also apply to hybrid and private 
governance. 

3.4 AI governance must go beyond integrating ethics into technical design 

The European Union’s work to establish governance of AI provide a fourth example 
of how this task can be approached. In their efforts, the EU has mobilized the 
expertise of many scholars and societal actors. Of particular importance is the recent 
guidelines produced by the High-Level Expert Group on Artificial Intelligence, 
entitled “Ethics Guidelines for Trustworthy AI.” These guidelines, although 
voluntary, put forward a structure that directs attention to ensuring the ethical 
purposes of AI development and deployment, founded on fundamental rights, societal 
values, and the ethical principles of beneficence (do good), non-maleficence (do not 
harm), autonomy of humans, justice, and explicability. They also call for exercising 
vigilance in areas of critical concern. The guidelines continue with guidance for 
realizing trustworthy AI. The Expert Group converges around the idea that 
trustworthy AI emerges from the integration of ethical considerations expressed as 
human rights, technical robustness and the leveraging of relevant governance 
mechanisms to ensure compliance and operationalisation. 

The requirements for trustworthy AI according to the draft guideline are: 
Accountability 

• Data governance
Design for all 

• Governance of AI autonomy (human oversight)
Non-discrimination 

• Respect for human autonomy
Robustness 

• Respect for privacy
Safety 

• Transparency

These requirements are to be incorporated at the earliest design stage and it is 
important that teams building and deploying AI are interdisciplinary. They encourage 
the use of technical and non-technical methods to ensure the implementation of the 
requirements into all AI systems. Ensuring auditability and the integration of 
trustworthy AI into an organisation’s culture are also highlighted as key elements. 
Although the draft Guideline also indicates a key role for private governance, this is 
not clearly developed. 
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3.5 AI governance must encompass machine-human interactions and all 
regulatory forces 

Finally, we present the recent work on AI governance emerging from the 
Massachusetts Institute of Technology (MIT). Much of this work emphasizes a view 
of AI that includes interaction and role division with human beings. As such, AI 
governance cannot be about technical requirements only, but about the superminds 
that emerge in the combination of artificial and human intelligence (Malone 2018). 
Iyad Rahwan, professor of AI ethics at MIT, follows a similar thinking process. In his 
efforts to study AI from an interdisciplinary and business perspective, Rahwan (2018) 
argues for the need to think about the regulation of AI encompassing all the forces 
that regulate society, leading to what he calls the inclusion of society-in-the-loop or 
SITL. There are four key forces in society, Rahwan argues: Government regulations, 
norms, markets and architectures. AI governance needs to include elements of each. 

To implement society-in-the-loop, Rahwan argues, it is crucial to understand what 
types of behaviours people expect from AI and to enable policy-makers to articulate 
these expectations (Rahwan 2018: 9). We also need metrics to evaluate AI behaviour 
against widely shared values for algorithms that are already used in many arenas in 
public and private life such as in banking education or finance. This means that AI 
requires not only governmental regulation, but also industry standards that represent 
the expectations of the public and the corresponding oversight, that is, assurance, 
verification or certification. 

In short, all these perspectives on AI governance point to the need to look well 
beyond governmental regulation and policy instruments, and towards other forms of 
governance. In addition, they point to the integration of ethics with technical 
robustness, and close attention to the interactions between machines and humans. 
Although they all hint to a key role for industry standards, certification and 
verification, the types, roles and functions of hybrid and private governance are not 
yet appropriately developed. Although the five cases we have summarized are a small 
sample, they show a gap in the current literature on AI governance. That gap is a 
more in-depth analysis of the role of hybrid and private governance as a provider of 
trust and as an element of the governance architecture of AI. This is important 
because an in-depth exploration on how hybrid and private governance can contribute 
to regulating AI may promote open debate and consensus on expectations. Hybrid 
and private governance can provide tools, methods, existing accountability 
mechanisms, and institutions that have experience in setting and auditing standards. 
Hybrid and private governance can also enrich the debate and effectiveness of AI 
governance with lessons learned over long periods of time, collaboration and 
networking, sectoral approaches, and the fusion of technical and societal 
considerations in relation to AI technologies. 

4. Hybrid and private governance

‘Hybrid and private governance’ refers to the governance functions taken up by 
partnerships between public institutions and industry or other private actors. These 
private actors are non-state actors that are active in the market. They both produce 
and abide by private governance, creating order in economic and social life. Self-
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governance or self-regulation is common in many industries as a complement to 
public governance mechanisms. From the first stock markets in Amsterdam dating to 
the 1600s (Stringham 2015), to the first classification societies issuing certificates to 
ship owners certifying that ships were technically fit for purpose (Paulsen et al 2014), 
private governance has enabled trust in technological advances through setting and 
enforcing rules and standards. Private governance has spread to all industries and all 
areas of socio-economic transactions. In fact, we live in what Michael Power (1999) 
calls the audit society. We check and double-check that things and technologies are 
fit for purpose and meet societal requirements. Contemporary societies have 
developed a myriad of methods and actors to verify and certify this is indeed the case. 

In an in-depth study of the role of private regulation in society, Tim Büthe describes 
the processes of setting private regulation as follows: 

These rules are set by a range of non-governmental bodies: industry associations, 
NGOs, networks of firms, technical experts, or groups of activists. Many of their 
rules are widely observed by producers of goods and services, and other economic 
actors, including many who did not participate in writing the rules. Private rules thus 
govern—that is, they enable and constrain—a broad range of activities in the world 
economy. Some of the private regulators, such as technical standards-developing 
organizations, operate largely out of the public view. Others, such as credit rating 
agencies, have recently become the object of intense scrutiny (Büthe 2010). 

In a follow-up study, Büthe and Mattli explore the critical role that industry standards 
and those who create them play in regulating industries and their activities (Büthe and 
Mattli 2011). The resulting system of global rule-making by technical experts has a 
double-sided effect. On the one hand, it provides the structure for generating and 
verifying that risks (in particular technology risks) are unveiled and addressed. On the 
other hand, it creates ecosystems of very powerful actors that have global influence. 

In light of the current lack of accountability in the development and implementation 
of AI, we argue that a transparently built system of private and hybrid governance 
may enable people and institutions to make appropriate judgments regarding the safe 
and responsible use of AI. Trust in AI will emerge when we have managed to knit 
together that ‘fabric’ of private and hybrid governance. We also argue that assurance 
mechanisms are a way to improve the existing accountability processes that are 
common to industries and the functioning of markets. Assurance mechanisms can 
help to integrate the new ethical dilemmas posed by the application of AI 
technologies in the real world into those accountability processes. 

4.1 Standards: A key private governance mechanism 

A key mechanism of private and hybrid governance is the development and 
application of industry standards. Industry standards support many of the complex 
aspects of the maturing and deployment of new technologies. They steer many issues, 
from internal company work processes, to the design and performance of the products 
and services they deliver, to the labour conditions of employees, to the transport 
systems by which they commute. Industry standards are more than just technical 
documents; they steer behaviour, embed norms into organizations, and provide 
“recipes for reality” (Busch 2011). They have the potential to transform both the way 
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we think about different issues and the ways in which we act (Timmermans and Berg 
2003). 

The process of creating standards requires negotiation of the proper balance between 
technical capabilities and societal expectations. This process creates awareness of the 
technologies, and it gives those technologies a ‘social licence’ to operate along the 
way. Standardisation is the process of constructing uniformities across time and 
space, through the generation of agreed-upon rules. Standards promote coherence, 
and they facilitate interaction and the sharing of best practices (Timmermans and 
Epstein 2010). They also serve as one means for knowledge transfer, and act as 
translation mechanisms between technology providers and society. Furthermore, 
“standards are recipes not only for the best ways to ensure that a product or process is 
fit for purpose; they also shape the demand for certain products or services. Many of 
our everyday decisions are shaped by standards; we accept and adapt to them without 
even realizing that we do (St.Clair and Aalbu 2017).” Standards are an invisible 
infrastructure, both in technical and moral terms. 

There are many different ways to classify standards. In general, we can distinguish 
between the following three types. 

Design standards Performance standards Procedural standards 

Set technical specifications 
of a physical system 

(For example, the ship 
classification rules used 
by classification societies) 

Set outcome specifications 

(For example, energy 
efficiency standards) 

Set specifications for 
processes 

(For example, management 
systems standards such as 
ISO 9001 for quality 
management or ISO 14001 
for environmental 
management.) 

Most standards are a combination of these three types. They harmonize processes, 
procedures and designs, they enhance transparency and traceability, they inform and 
accelerate regulatory processes, and they provide the basis for third-party verification. 
Standardisation is thus the result of long-term processes, often initiated by industry, 
and often in close collaboration with governments. Standards also set the terms for 
responsible deployment of technical solutions into the real world by promoting safety 
and accountability while often also enhancing innovation and levelling the playing 
field. Standardisation processes are by no means always fair or transparent. Although 
they are often regulated by standards organisations such as the International 
Standards Organisations (ISO) or by similar national bodies, standardisation 
processes can also represent the alliances of big players in a particular industry. Thus, 
standards may not take into account important societal issues that are relevant for 
smaller players or less influential regions of the world. 

Standards are an essential ‘brick’ in the construction of a fair and representative 
governance system for AI technologies and their deployment into society. AI 
governance needs to start by examining existing standards, identifying which ones are 
relevant for regulating AI techniques and their deployment, and exploring ways to 
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revise them to accommodate AI aspects. A next step will be to create new standards 
to fill gaps and shortcomings in existing (or modified) standards, and to prepare for 
future developments of AI. At the same time, it is fundamental to create the basis for 
the other key element of private and hybrid governance: third-party verification and 
certification. 

4.2 Providing trust through assurance 

We often refer to third-party verification and certification as ‘assurance’. Assurance 
refers to the validation and provision of confidence that a product or process is fit for 
purpose, and that it complies with existing safety, environmental, or other technical 
requirements. The provision of assurance is always based on credible technical 
information or knowledge. Assurance methods and tools set the boundaries of 
acceptable (and, often, insurable) risks. At the core of assurance are standards, but 
other types of governmental regulations and societal expectations can be embedded 
as well. The key tools of private governance are combinations of industry rules, 
standards, certification, and verification systems, including independent third-party 
verification of compliance with accepted rules and regulations. 

The provision of trust through assurance is more than a century old. In the maritime 
industry, assurance has played a critical role since the mid-1880s. Ship-owners, some 
of the first true globalizers, were eager to take advantage of the liberalization of 
world trade, but their operations were very limited by providers of insurance (Paulsen 
et al 2014). The reluctance of insurance companies to accept liability for accidents 
was at the time very much related to a lack of control of the technical specifications 
and built quality of the ships. This reluctance by the insurance sector led ship owners 
to form alliances that jointly determined the conditions that would enable insurers to 
trust their ships and insure their cargo. This led to a long and iterative process of 
developing new standards, understanding uncertainties, and building a notion of 
acceptable and insurable risk that would satisfy insurers and governments while also 
meeting societal expectations. These processes of creating acceptable and insurable 
risks also led to the creation of a set of shared values across all societal actors that 
gave the ship owners a societal licence to operate. Soon, classification societies 
emerged to provide third-party assurance to the insurance companies and to 
governments and society. The primary source of legitimacy of these classification 
societies was the technical and scientific knowledge that enabled the actual assurance 
that technical designs were in fact fit for purpose. As technological advances led to 
increasingly sophisticated ships, these organisations added corresponding technical 
skills to their portfolios, advancing and often creating new technical and procedural 
requirements for safety in maritime operations. This concentration of expertise was 
also key in the increasing role of these classification societies. As governments found 
that they did not have staff sufficiently qualified to regulate technical requirements 
for ships in operation, they increasingly delegated government authority to these 
classification societies. This delegation reinforced the classification societies’ need to 
understand not only the technical requirements of a ship, but also the requirements for 
ships in operation, the job descriptions of the crew, and the interactions between ships 
and their flag states. This delegation of authority was underpinned by strict ethical 
rules guaranteeing neutrality and due process. 
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Providing third-party assurance was not possible without ensuring neutrality. 
Classification societies needed to demonstrate that they were neutral partners, 
representing neither the interests of a particular ship owner, nor of a particular 
government, nor of a particular vendor providing parts for the ship’s construction. 
Both technical expertise and neutrality led to the forging of long-standing reputations, 
and many of the 19th century classification societies remain in operation, providing 
third-party assurance in a competitive market with one another. 

The maturing of maritime standards and the provision of assurance against those 
standards was an iterative process, driven by the need to establish accountability and 
responsibility, often economic responsibility, for the resulting accidents and losses 
due to poor technical design. In the decades after these beginnings of the maritime 
assurance regime, we have seen the expansion of standardisation and third-party 
verification to all areas of life. Not only are we surrounded by all types of standards 
regulating food safety, education, health care, labour relations, financial reporting, or 
environmental impacts, we also have a myriad of organisations and systems that audit 
and verify that actors comply with these regulations. As mentioned earlier we live in 
an “audit society”, but this is due to the need for accountability in an increasingly 
technically and scientifically complex world (Power 1999). The more powerful 
technologies become, the more societies seem to have a need for accountability and 
control. 

With AI, science and technology are about to get smarter and more complex, and they 
will create more uncertainties. The lessons from private and hybrid governance 
regimes in other sectors show that we need similar processes to materialize the 
principles of AI governance that are currently emerging and to anchor them in the 
systems and in the language used by industry. It is perhaps even necessary to 
complement governmental regulation and leverage other forms of governance besides 
policy instruments. We must consider the integration of ethics with technical 
robustness, and we must take into account the relationships between machines and 
humans. 

5. Concluding remarks

Governing AI is going to require the coordinated effort of multiple societal actors. 
Emerging perspectives on AI governance argue that AI governance must be both 
technical and political, sector specific, dynamic and iterative, and go beyond a mere 
integration of ethics into coding. Perspectives also point out to the need to look well 
beyond governmental regulation and policy instruments, and towards other forms of 
governance. In addition, there seems to be agreement that a special issue that requires 
close attention is the interactions between machines and humans through the whole 
life cycle of AI systems. Although they all hint to a key role for industry standards, 
certification and verification, the types, roles and functions of hybrid and private 
governance are not yet appropriately developed. Public governance mechanisms will 
need to be complemented with the hybrid and private governance in order to ensure 
that AI development and deployment is fit for purpose, abides by a socially 
negotiated definition of acceptable risk, and is bound to standards and recommended 
practices that are recognised by the industries and the sectors in which solutions are 
implemented. Without romanticising the role of private governance and voluntary 
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mechanisms of accountability, we argue that lessons learned from the emergence of 
assurance, certification and verification have central importance in the debate on safe 
and responsible AI. For AI technologies to be scaled up in a way that does not 
conflict with widely accepted ethical values, and for those technologies to enjoy 
societal support, companies producing and deploying these technologies need to 
demonstrate compliance with safety and security requirements comparable to other 
technologies. We have seen how emerging work from many different actors points to 
the need for new forms of governance, and the integration of ethical considerations 
and AI explainability into existing systems of accountability. We have also seen how 
governments call for alignment with widely accepted societal values and existing 
standards, as well as established industry mechanisms for accountability and 
compliance, although some such standards and industry mechanisms would need to 
be adapted (and new ones created) to tackle the decision-making power of intelligent 
algorithms. Assurance of AI is not only about third-party professional opinions 
regarding how transparent an AI system is. Rather, assurance of AI would require a 
systems perspective, encompassing both the digital and physical components of an 
application as well as the roles and tasks of human agents and the consequences of 
these applications to society. In short, hybrid and private governance are elements of 
a meaningful governance system that could prevent harmful applications of AI, 
ensure robustness, prevent bias and violations of privacy, and provide trust without 
stalling the growth potential of these technologies and their potential to support the 
common good. 
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Abstract 

Equipment ageing and technical obsolescence is a major concern in the analysis of 
reliability and availability of systems, which affects reliability, maintainability and 
availability of maintained equipment. An increased level of detail of the reliability and 
risk (R&R) models is required in order to simulate the equipment behaviour in the long 
term under uncertain degradation and obsolescence conditions. The challenge is 
twofold. On one hand, there is a need of developing advanced and detailed R&R models 
that address such impact explicitly. On another hand, the development of such models 
must be compatible with the available data to estimate the model parameters. One can 
face two extreme situations, the available data is scarce, or the available data is huge 
but must be classified first. This paper introduces such advanced and detailed R&R 
models and provide some guidance on how both situations are and could be managed. 
The example of application provides interesting results not only of the usefulness of 
such advanced model but also on the importance of accurate estimation of parameters. 

Keywords: Ageing, technical obsolescence, maintenance optimization, advanced 
RAMS modelling, parameter estimation 

1. Introduction

Equipment ageing is a major concern in the analysis of reliability and availability of 
systems no matter their function is devoted to perform a safety related-mission or a 
production process.  

At the beginning, ageing was mainly linked to chronological time elapsed sin the 
installation of the equipment and the accumulated degradation as a consequence of both 
environmental and working conditions, which is normally named physical ageing. 
Thus, ageing impact on both reparable and no reparable components. 

On the other hand, obsolescence is inherent to the evolution of whatever technological 
system. It has been an issue since the very beginning of industrial revolution. However, 
technical obsolescence is becoming day after day a more important concern due to 
several facts, such as technological innovation and development, etc. Technical 
obsolescence affects reliability and availability of maintained equipment and is 
considered a type of non-physical ageing. 
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Maintenance activities are directed to manage ageing of repairable equipment with at 
aim at keeping equipment reliability and availability and system risk under control. 
One can find in the literature many approaches proposed to establish, and even 
optimize, maintenance plans based on reliability and risk, e.g. reliability cantered 
maintenance. They make use of diverse equipment reliability and system risk models 
with different level of detail depending on the particular application. 

Nowadays, the impact of both physical and non-physical ageing on system equipment 
impose new challenge, because of an increased level of detail of the reliability and risk 
(R&R) models is required in order to simulate the equipment behaviour in the long 
term under uncertain degradation and obsolescence conditions.  

The challenge is twofold. On one hand, there is a need of developing advanced R&R 
models that take into account the reality of the physical impact of both ageing and 
maintenance effectiveness. Such an impact must be introduced in the R&R formulation 
explicitly so that appropriate tuning of parameters would make possible to simulate and 
forecast the real performance of the system equipment in the long term.  

On another hand, the development of such models must be compatible not only with 
the physical phenomena but also with the available data. For example, data on 
equipment degradation and failures, and maintenance scheduling and effectiveness 
must be used to estimate the relevant parameters within the advanced and detailed R&R 
models. Here, one can face two extreme situations, the available data is scarce, or the 
available data is huge. Equipment belonging to safety or production systems are two 
examples of extreme situations. 

This paper introduces such advanced and detailed R&R models and provide some 
guidance on how both situations are and could be managed. 

2. Ageing and technical obsolescence management

Technical obsolescence of an item can be defined as its becoming out of date in 
comparison with current knowledge, standards and technology. For example, ageing 
and technical obsolescence management of the nuclear equipment are an important 
factor to achieve the safe operation of the nuclear plants (NPP), maintaining and 
reducing the failure probability of the components and the downtime for testing and 
maintenance. Equipment inherent reliability and maintainability can be affected by the 
technical obsolescence and ageing. On one hand, it may increase ageing rate and reduce 
maintenance effectiveness, which, in turn, increases equipment ageing and reduces its 
reliability. On another hand, it may increase maintenance downtime mainly because of 
provisioning logistics of spare parts. 

Nowadays, NPP are in the process of implementing ageing and technical obsolescence 
management programs, with the objective of keeping such adverse effects under 
control adopting in each case the most appropriate type of strategy, i.e. whether the 
obsolete item will be replaced in its entirety or repaired, etc.  
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Consequently, the establishment of an effective testing and maintenance policy at the 
NPP must consider all relevant issues in an integrated manner including equipment 
ageing, technical obsolescence, human resources, maintenance planning and 
scheduling, etc. 

3. Advanced R&R models

Normally, it is assumed that R&R models for an equipment may consist of three major 
contributions depending on the equipment function. For example, a safety-related 
equipment has usually up to three main types of failure modes that contribute to the 
equipment unreliability: (1) by demand-caused, (2) standby-related failures and (3) 
running failures. The first is often associated with a demand failure probability (), and 
the second and third with a standby failure rate (s) and a mission failure rate (m) 
respectively. They are generally associated with constant values in a standard 
Probabilistic Risk Assessment, i.e. , s and m respectively, which do not take into 
account the component degradation nor the maintenance effectiveness, the latter 
connected with technological obsolescence. 

Early studies reported in [1, 2] have provided a well-organized foundation for the 
effects of degradation, e.g. due to equipment testing, and ageing, due to chronological 
time under given environmental and working conditions. For example, Kim et al. 
(1994) [2] proposed a simplified but well organized unreliability model for a safety-
related equipment, which can be formulated as follows: 

𝑢 (𝑛, 𝑡′) = 𝜌(𝑛) + ∫ 𝜆(𝑛, 𝑢)𝑑𝑢 for      t’[0,T] (1) 

being the demand-caused unreliability contribution 

𝜌(𝑛) = 𝜌 + 𝜌 𝑝 𝑛  (2) 

and the standby-related unreliability contribution: 

𝜆(𝑛, 𝑢) = 𝜆 + 𝜆 𝑝 𝑛 + 𝛼𝜈 for      v[0,nT+t’] (3) 

where, 

n = number of test performed on the equipment at chronological time t 
T = test interval 
t’ = time elapsed since the last test 
v= time elapsed since the last overhaul point 
 = residual demand failure probability 
p1 = test degradation factor associated with demand failures 
p2 = test degradation factor associated with standby failures 
 = residual standby time-related failure rate
 = aging factor associated with ageing alone
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However, this model does not take into account the important positive effects on the 
component unreliability of the maintenance activities as a function of their 
effectiveness in managing component degradation. So that, later on, several models 
were proposed to introduce this and other positive effects [2-4].  

Results of recent research have concluded that it is possible to formulate the most 
relevant unreliability parameters depending explicitly on the most relevant physical 
parameters linked to equipment degradation and maintenance effectiveness, the latter 
accounts also for technical obsolescence, which can be represented in a simplified way 
as follows [5]: 

𝜆 = 𝑓(𝜆 , 𝛼, 𝐼𝑀𝑀, 𝜀 , 𝑀, 𝑇, 𝑇𝑅)    𝑛 = 1,2, . . . , 𝑁    (4) 

𝜌 = 𝑔(𝜌 ,  𝑝 , 𝐼𝑀𝑀, 𝜀 , 𝑀, 𝑇, 𝑇𝑅)    𝑛 = 1,2, . . . , 𝑁  (5) 

Eq. (4) provides a single result for . This shows that this result depends on the ageing 
rate, represented by 𝛼, the maintenance plan, represented by ε , 𝑀 and the Imperfect 
Maintenance model (IMM) ,PAS or PAR, the test interval T and the time of reference 
TR in which is evaluated. 

Eq. (5) provides a single result for . This shows that this result depends on the test 
degradation factor, represented by 𝑝 , the maintenance plan, represented by 
ε , 𝑀 and the 𝐼𝑀𝑀, PAS or PAR, the test interval T and the time of reference TR in 
which is evaluated. 

Ageing PSA model has been proposed in Ref. [3], in which the previous reliability 
models can be integrated to provide a risk model that includes explicitly the effect of 
the ageing, obsolescence, testing and maintenance on the plant components. There, for 
example, the risk model is formulated in terms of the Core Damage Frequency (CDF) 
and the unreliability of a given component as follows:  

𝑅 = 𝐶𝐷𝐹 + 𝑢 · 𝐵 (6) 

Where, CDF0 [year-1] represents the reduced risk when the component is known not to be 
down and B corresponds to the traditional Birnbaum importance measure of the 
component. As established in Ref. [3], using a level 1 PSA, the required risk metrics 
for the evaluation of risk impact of ageing and obsolescence is the assessment of the 
annual increase of the baseline CDF (R), which can be formulated as follows: 

∆𝑅 = ∆𝑢 · 𝐵 (7) 

Where ∆𝑢  is the change on the component unreliability for  a given period considering 
the degradation, obsolescence, testing and maintenance effects. Eq (7) refers to the risk 
impact of a single component, however extension of the risk impact for several 
components is straightforward. 
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4. Parameter estimation

In R&R modelling it is critical the estimation of the unreliability and maintainability 
parameters since an accurate estimation of them is essential in applying these models, 
for example, to optimize maintenance strategies. 

In practice, for safety related equipment, it is very difficult to collect large amounts of 
reliability and maintainability data to make an estimation precisely. Usually, when the 
available data is scarce, a Bayesian approach can be used [6]. This approach evaluates 
the joint probability distributions of the parameters assuming their joint probability 
distribution. Also, there are studies in which Maximum Entropy is used to solve 
estimation problems with data uncertainty [7].  

With enough amount of data, parameter estimation can be performed using the previous 
approach. In addition, in this scenario Maximum Likelihood Estimation (MLE) method 
can be used. For example, by means of this approach it has been possible to estimate 
the parameters associated to the standby-related unreliability (0, , IMM and S) and 
demand-caused unreliability (0, p1, IMM, S) of the eq. (4) and eq. (5), as follows [5]: 

𝐿(𝜉|𝑚𝑜𝑑𝑒𝑙, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎) = ∏ 𝜆(𝑡) ∏ [−Λ(𝑡)] (8) 

𝐿 (𝜉|𝑚𝑜𝑑𝑒𝑙, 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑑𝑎𝑡𝑎) = ∏
( )

( )
∏ [1 − Ρ(𝑡)] (9) 

being  and  the accumulated standby-related unreliability and accumulated demand-
caused unreliability, respectively. By maximizing the eq. (8) and eq. (9) the maximum 
likelihood estimators of the objective parameters are obtained. The maximum 
likelihood estimation method provides, in addition to the parameter estimates, 
information on its variability through the Fisher information matrix. To maximize the 
likelihood functions, for example, a genetic algorithm can be used. However, in the 
study reported in [5], equipment was not affected by technical obsolescence, so that, 
its impact on maintenance effectiveness was not considered. 

On another hand, it is quite common to have a big amount of reliability and 
maintainability data, even for safety related equipment, for which failures are scares, 
for example, when the whole NPP fleet of components is considered. Here, the analyst 
faces other sort of problems. 

Often, the plant has an equipment fleet of similar components but with different 
characteristics. For example, motor-operated valves with different sizes and functions, 
which undertake similar or different maintenance activities. In the specific case of 
having available the historical maintenance and test data of the plant, clustering 
algorithms can be used for grouping segmented equipment populations, which exhibits 
similar ageing and degradation patterns, based on their operational and physical 
characteristics [8]. 

However, technical obsolescence may affect such patterns. For example, imagine an 
equipment segment with components affect by obsolescence differently. In this specific 
case, maintainability parameters can be estimated considering only the group of 
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components within the segment affected be same type of technical obsolescence. Thus, 
both reliability and maintainability parameters can be estimated together by 
reorganizing the segmented groups or, alternatively, once the reliability parameters 
have been found proceed to perform the estimation of the maintainability ones 
individually taking into account the different factors that influence maintenance 
effectiveness. Factors such as obsolescence, availability of stock or maintenance cost, 
type of repair and maintenance, etc. could be considered in estimating the effectiveness 
of maintenance. Classification models, such as Support Vector Machine (SVM), neural 
network or random forest, could be used to estimate the effectiveness of maintenance 
including as covariates the above factors. 

5. Case of application

A sensitivity analysis of the R&R models parameters is presented, which are affected 
by ageing and obsolescence. A motor-operated valve (MOV) of the Auxiliary Feed 
Water System (AFWS) of a NPP is considered, which is one of the most important 
components for plant safety. Based on the R&R models introduced in section 3 and for 
sake of simplicity in the presentation and discussion of the results found, it is assumed 
that technical obsolescence degrades only maintenance effectiveness {S, D} and no 
other compensatory measure are considered than re-adjusting testing and maintenance 
intervals. In this sensitivity study, optimal maintenance and testing intervals are sought 
for maintenance effectiveness {S, D} ranging within [0.1; 0.9].  

Figure 1 shows the optimal results found of test interval (T) and maintenance interval 
(M), and the corresponding unreliability (uR) for each couple {S, D}. As shown in the 
optimization results, small variations in the maintenance effectiveness produce 
considerable changes in the optimal T and M planning. 

Figure 1 shows also two type of results, acceptable (text in black) and unacceptable 
(text in red), according to the risk impact of ageing and obsolescence. Thus, no matter 
testing and maintenance intervals have been optimized in all cases, the annual risk 
increase of the baseline CDF, represented by R in Eqn. (7), goes beyond the safety 
limit acceptable for a NPP for the solutions highlighted in red. 

Therefore, other compensatory measures than just re-adjusting testing and maintenance 
intervals must be considered in order to manage technical obsolescence and ageing 
appropriately to keep the risk impact below the safety limit. Note, these situations 
correspond to low or very low maintenance effectiveness, which requires further 
research being conducted nowadays. This reinforce the fact that it is necessary to use 
statistical methods and tools that result in accurate estimations of the unreliability 
parameters to guarantee an optimal obsolescence and ageing management. 
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Figure 1. Optimal T versus M for different values of  ε  and ε . 
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Abstract 

Data rarely follow the simple models of mathematical statistics. Often, there 
will be distinct subsets of observations so that more than one model may be 
appropriate. Further, parameters may gradually change over time. In 
addition, there are often dispersed or grouped outliers which, in the context 
of international trade data, may correspond to fraudulent behavior. All these 
issues are present in the datasets that are analyzed on a daily basis by the 
Joint Research Centre of the European Commission and can only tackled by 
using methods which are robust to deviations to model assumptions (see for 
example Perrotta et al., 2020).  

This distance between mathematical theory and data reality has led, over the 
last sixty years, to the development of a large body of work on robust statistics. 
In the seventies of last century it was expected that in the near future “any 
author of an applied article who did not use the robust alterative would be 
asked by the referee for an explanation” (Stigler, 2010). Now, a further forty 
years on, there does not seem to have been the foreseen breakthrough into the 
wider scientific universe. In this talk, we initially sketch what we see as some 
of the reasons for this failure, suggest a system of interrogating robust 
analyses, which we call “monitoring” (Cerioli et al. 2018) and describe the 
robust and efficient methods which are currently used by the Joint Research 
Centre of the European Commission to detect model deviations, groups of 
homogeneous observations (Torti et al. 2018), multiple outliers and/or sudden 
level shifts in time series (Rousseeuw et al. 2019).  

Particular attention will be given to robust and efficient methods (kwown as 
forwad search) which enables to use a flexible level of trimming and 
understand the effect that each unit (outlier or not) exerts on the model (see 
for example Atkinson and Riani, 2000, Riani Atkinson and Cerioli, 2009). 

Finally we discuss the extension of the above methods to transformations 
(Atkinson et al. 2020) and to the big data context. With a large set of data, any 
model is liable to be approximate. Our first guesses at a model may even be 
seriously inadequate. But a suitable measure of lack of fit of themodel can 
provide low-dimensional plots that are informative about inadequacies. The 
inadequacy may be systematic, or it may be due to lack of homogeneity in the 
data as well as to the presence of, possibly large, numbers of outliers. For 
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these reasons, we need to fit the model in a robust manner. It is customary in 
robust analyses to assume that at least 50% of the observations come from the 
same uncontaminated distribution. However, this need not be the case when 
there are several clusters. For small samples, starting in different clusters can 
be informative about cluster structure. Random start forward searches 
(Atkinson et al. 2018) provide one way of starting in a variety of conditions. 
Theoretical results on such extreme trimming are given by Cerioli et al. 
(2019). All the methods described in the talk have been included in the FSDA 
Matlab toolbox freely donwloadable as a toolbox from Mathworks file 
exchange or from github at the web address https://uniprjrc.github.io/FSDA/  
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A proposal of an algorithm to simulation right 
censored data type I in reliability field 

D. Gaspar1, L. Andrade Ferreira2

1 Polytechnic Institute of Viseu, Viseu, Portugal
  danigaspar@estgv.ipv.pt 
2 University of Porto, Faculty of Engineering, FEUP/DEMec, R. Roberto Frias, 

 4200-465 Porto, Portugal, lferreir@fe.up.pt 

Abstract 

In this presentation a method to develop an algorithm to simulate the behavior 
of right censored data, type I is proposed and explained. In simulation (and in 
particular in reliability), a lot of studies and works use censored data. There 
are a large number of studies that use censored data with different statistical 
distributions and perform sensitivity analyzes by changing the distribution and 
simulation parameters. These studies can be compared to verify their validity, 
but for this to be possible, they need to have some common indicators in order 
to validate the object of study, the model or the best optimization, etc. 

In the case of censored data right type I simulation, the most common method 
that use different levels of percentage of censored data were studied. An 
analysis was made with the most common distributions in scientific research 
on reliability and maintenance: Weibull, normal, gamma, log-normal and 
exponential. 

In this work, simulation algorithms for reliability models for complex 
equipment / systems were developed, when data collection is confronted with 
censored data. 

The algorithms are innovative and their development was done in three 
different software: Python, Matlab and R. 

A methodology of analysis (hypothesis tests) and validation with an evaluation 
matrix is proposed to test the i.i.d. data of RNG of censored data. 

Keywords: Data censored, Reliability, Algorithm simulation, Statistical 

distribution 

See slide presentation in Appendix 1.
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IOT future in Energy Industries: an outlook 

M. Raza
GE Power, Switzerland
Mohammad.Raza@ge.com

Abstract 

As world evolves fast into a very different future and still 80% of the future 
jobs in 2030 are being defined, IOT is here to stay and influence everyday 
living. Businesses with a traditional way of doing things are seeing more and 
more incursion of IoT. It has already influenced the standard of living today 
from its impact on consumer-based products. The future will be the Industrial 
IoT (IIoT) infrastructure and platforms development along with influencing 
the way we operate and manage Industrial assets. 

Energy sector along with Oil and Gas sector have been second in line in 
adopting digital transformation after space, aviation and health care 
industries.  This brings in challenges specially on consolidation of data, 
advanced analytics, data sharing legislations and the most prominent being 
the cybersecurity both for device and network. Energy sector is most 
vulnerable to the attacks and so far, companies are using temporary security 
fixes and patches.  Many are predicting that the blockchain with the merger 
of IoT and Artificial Intelligence (AI) would be applied to prevent attacks on 
large and valuable setups. The predication is implementing advanced 
technology-based security enabled hardware and software will be the major 
area of allocation of funds throughout the next decade.  

This paper will provide an outlook on how IIoT is transforming the 
operational and financial benefits of Industrial set ups by combining machine 
to machine communication with industrial big data of predictive analytics and 
also the challenges it possesses from concept design till end of life. An 
independent view of the entire lifecycle perspective will be presented. 

See slide presentation in Appendix 1.
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► x: input parameters ► y: time to failure

• Variables with predictive

power
• e.g.:

1. running time

2. physical variables

• Easily converted in opera
tion/maintenance costs

► If the model is accurate enough: possible to simulate the cost impact

of changing a given parameter
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Final remarks 
00 

► Further simplification: independent datapoints, i.e. no information
regarding chronological order

• Special care must be taken during model selection and validation
• Valuable information not considered
• Alternative: recurrent neural networks, hidden Markov models, ...

► Although reality is simplified, valuable information can be extracted
from such a model

• Potential application: planning of maintenance operations in a timely
and thoughttul manner
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Data-driven approach in an oil refinery 

► application of the conceptual ideas requires:
• Very hard and meaningful problem to solve

► otherwise, choose a simple and more interpretable strategy

• Data availability

► Our case study:

• Possibility of accessing maintenance data of an oil refinery
• Plenty of mechanical equipments
• Multicelular centrifugal pumps specially "troubled":

Final remarks 
00 

► Sealing system (mechanical seal) identified as main failure mechanism
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► Real-time data
• Available variables:

► Temperature

► Pressure

► Electric current

• Highly-reliable data
• But, missing points

► Due malfunctioning of

measure devices, extrac

tion of protection devices
or communication failure

► Reconstructed

auto-regressive
(alternative:

Learning)

using 

models 

Machine 

Machine Learning 
0000000 

Final remarks 
00 

► Maintenance operations infor
mation (from SAP)

• Available information:

► Component identification

and failure mechanisms

► Maintenance dates
► Number of used mecha

nical seals

• Harder to analyze due its
dependency on human
intervention

• Need for development of

internal standards and
formation of human
resources
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► Different sources of data: combination leads to more robust analyses

and ensure complete exploitation of available information
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Final remarks 
00 

► motor: binary variable with status of the motor in each instant (from
temperature and electric current)

1. Number of starts

2. Time since last start/stop
3. Pump operation time and calendar time
4. Time of operation since mechanical seal's substitution and mechanical

seal's life time
5. Time since last pressurization
6. Time since last substitution of opposite mechanical seal

L. F. Pereira, L.A. Ferreira, FEUP 

□ oil 

Mechanical seal failure prediction in an oil refinery 10/ 20 

Appendix 1

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



Appendix 1

Advances in Reliability, Risk and Safety Analysis with Big Data



Appendix 1

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



Appendix 1

Advances in Reliability, Risk and Safety Analysis with Big Data



Appendix 1

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



Appendix 1

Advances in Reliability, Risk and Safety Analysis with Big Data



Robust statistics for big data 
analytics

Marco Riani

mriani@unipr.it http://www.riani.it

University of Parma Robust Statistics Academy

Joint work with Anthony Atkinson (LSE), Andrea Cerioli, 
Aldo Corbellini (Univ. of Parma), Domenico Perrotta, 

Francesca Torti, Andrea Cerasa, Emmanuele Sordini (JRC), 
Agustin Mayo Iscar, Luis Angel Garcia Escudero (Univ. of 

Valladolid) 1

Why robust statistics?

2
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Example from international trade 
data (X-axis quantity Y-axis value

of the transaction)
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Example of non robust fit
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Example of non robust fit
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History of Robust statistics

• Awareness of the importance of immunizing against 
outliers / gross errors is as old as the experimental 
approach to science 

• Thucydides (History of The Peloponnesian War): 
“in 428 B.C. the Plataeans, besieged by the 
Spartans, excluded extreme measurements when 
estimating the height of the walls and managed to 
break the siege”

Reference due to Dr. Spyros Arsenis (JRC) 7

Classical and robust theory

Classical
• The observations are 

distributed according to 
Fθ

• Example

• Fθ=N(µ, σ2)

• θ= (µ, σ2)

Robust
• Fθ is considered as a 

mathematical abstraction 
which is only an ideal 
approximation to reality. 
The goal is to produce 
statistical procedures 
which still behave fairly 
well:

• under deviations from the 
assumed model;

• under the null model.
8
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The grand plan
• Andrews et al. (1972) (the Princeton Robustness Study),

at which time it was expected that all statistical analyses
would, by default, be robust

• “any author of an applied article who did not use the
robust alternative would be asked by the referee for
an explanation”.

• “from the 1970s to 2000 we would see ... extensions to
linear models, time series, and multivariate models, 
and widespread adoption to the point where every 
statistical package would take the robust method as
the default ...”

Clearly, the Grand Plan is not what has occurred

9

Four possible explanations
• Awkward asymptotics: (little interest on empirical

performance)

• Awkward computation (efficient algorithms, but with
black-box style and the need to select some tuning
constants)

• Simplistic gaussian models for the “good” part of the
data: reality is usually more complex (clusters, skew
distributions, heavy tails ...)

• Empirical test size is much bigger than nominal
(outliers are found everywhere)

10
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Which Method and How to 
Tune It?

Three classes of estimators:

• Hard (0,1) trimming (LTS,  LMS, MCD, MVE) in which the amount
of trimming is determined by the choice of the trimming parameter.

• Adaptive Hard Trimming. In the Forward Search (FS), the
observations are again hard trimmed, but the amount of trimming is
determined by the data, being found adaptively by the search.

• Soft trimming (downweighting). M estimation and derived methods
(S, MM, tau). 𝜌 function ensures that increasingly remote observations
have a weight that decreases with distance from the centre.

11

Breakdown point and 
efficiency

• Breakdown point (bdp)= percentage of outliers the estimator
can cope with

• Efficiency (eff) = 

• One needs to use tuning constants (consistency factors)
which come from asymptotic theory

12
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Regression setting

• Data 𝑦 , 𝑥  i=1, 2, …, n

• 𝑦  ϵ 𝑅 Response
• 𝑥  ϵ 𝑅 Predictors

• Regression model 𝑦  𝑥 β 𝜎 𝑢

• Predict 𝑦 by 𝑥 β

• Residuals for given β: 𝑟 𝑟 β 𝑦 𝑥 β

13

Least median of Squares (LMS)

• In the univariate case  LMS becomes the Midpoint of the
SHORTest Half = SHORTH

• SHORTH = shortest interval that covers half of the
values

14
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LMS with one explanatory 
variable

• It is the centre-line of the shortest (narrowest) strip 
containing ½ of the data

15

Properties of LMS

• It does not require a scale estimate

• Regression, scale and affine equivariant

• bdp=0.5, Fisher consistent and asymptotically 
normal 

16
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Drawbacks of LMS

• It displays marked sensitivity to central data values
(not locally stable)

• It is very inefficient (converges at a rate 1/ 𝑛)

17

• The extention to regression of the trimmed mean

LTS (least trimmed squares)
Rousseeuw (1984)

18
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Regression S estimators
Rousseeuw and Yohai (1984)

• LTS minimizes a robust residual scale estimate

• Idea: minimize a more efficient robust scale estimator

• Regression S estimator minimizes an M estimate of scale

(biased)

Need to choose the consistency factor c of the 
associated ρ (ψ= ρ`)  function 19

Efficiency and breakdown point
Consistency factor c (top panel) and efficiency (bottom 
panel) as a function of the breakdown point (bdp) for 
Tukey's Biweight.

20
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More on the link between
robustness and efficiency is in

21

Regression MM estimators
Yohai (1987)

• Idea: fix bdp=0.5 and using 𝜌 .  find 𝛽 and 𝜎
using S estimators

• Fix eff=0.95, and using  𝜌 . using 𝛽 and 𝜎 as
starting values in the weighted least squares loop

• The estimate of the scale is kept fixed in the iterative
procedure

22
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Claim of MM estimators
• HIGHLY ROBUST AND EFFICIENT

• Tukey’s biweight rho (TB):

• blue line bdp=0.5  c=1.548 (eff=0.29)

• red line eff=0.95  c=4.685 (bdp=0.12)

23

More on this in

• Riani M., Atkinson A.C., Perrotta D. (2014). A Parametric
Framework for the Comparison of Methods of Very
Robust Regression Statistical Science, Vol. 29, No. 1, pp.
128–143.

24
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Robust regression in 
action

25

Hertzsprung Russell diagram. 

• Graph showing the
luminosity of a star
as a function of its
surface temperature

26
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The extracted data come from 
the yellow square

27

Log light intensity vs Log effective surface 
termperature (reverse order)

28
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A comparison of different fits

29

Another example: a regression dataset 
with masked outliers (AR data)

• 60 observations, 3 explanatory variables

30
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TRADITIONAL WAY OF DOING 
STATISTICS IN REGRESSION

31

Statistics toolbox: RobustOpts on 

32
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LS residuals against predicted values

33

QQplot of studentized residuals

34
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Analysis with robust S 
estimators:

bdp=0.25

bdp=0.5

35

Analysis with robust 
estimators: MM

90% nominal efficiency 95% nominal efficiency

Individual and simultaneous confidence
99% bands 36
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Traditional approach: compare 
robust and non robust fit

• Robust Inference as well as Classical Inference

• “... just which robust/resistant methods you use is
not important – what is important is that you use
some. It is perfectly proper to use both classical and
robust/resistant methods routinely, and only worry
when they differ enough to matter. But when they
differ, you should think hard.”

– J. W. Tukey

37

Consequences of the use of 
robust estimators

• Results obtained via a robust method are sometimes
completely different

• Both in the use of traditional robust and non-robust
statistical methods, researchers end up with a picture of the
data.

• WHY NOT TO WATCH A FILM OF THE DATA
ANALYSIS?

38
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Monitoring of scaled S 
residuals

39

How to summarize changes in fit?

We consider three standard measures of correlation:
Spearman. The correlations between the ranks of the two sets 
of observations.
Kendall. Concordance of the pairs of ranks.
Pearson. Product-moment correlation coefficient

40
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Monitoring of scaled S residuals

41

EMPIRICAL BDP AND EFFICIENCY

42
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More on this in 

43

Consequences of the use of 
robust estimators

• Even with monitoring the researcher loses the information
that each unit, outlier or not, has on the final proposed
estimate

• Purpose: to automatically order the data in terms of
agreement to a fitted model

• Purpose: to find the effect that each unit has on your model

• Purpose: a tool that preserves the interpretative and
computational simplicity of LS

44

Appendix 1

Advances in Reliability, Risk and Safety Analysis with Big Data



Forward Search (FS) in 
Linear Regression

• STEP1: Start with  very robust fit (LMS or LTS or
S), then successively fit to larger subsets, found as
those with the smallest residuals

• STEP2: Subset size increases until all the data are
fitted. From LMS (LTS or S) to LS

• STEP3: MONITORING (scaled residuals, beta
coefficients, …)

45

Step 2: Adding observations during 
the Forward Search

•This step  is repeated up to when all units are included into the subset

• Given S*(m), using b*(m), we compute the residuals for the n
observations and select those which have the smallest squared
m+1 residuals, m=p, p+1, …., n

m+1

Step 2
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Characteristics of 
the FS

What is inside at step m

What is outside at step m
m = p, p+1, p+2, …, n

47

More on the forward search

48
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49

All methods described in the current talk are 
implemented in the MATLAB toolbox FSDA 

downloadable as MATLAB Add-On

Or from GITHUB at the web address
https://github.com/UniprJRC/FSDA

50

Appendix 1

Proceedings of the 57th ESReDA Seminar, October 23-24, 2019 
Universitat Politècnica de Valencia, Spain



“New philosophy” of data analysis

• Our philosophy involves watching a film of data
analysis rather than a snapshot.

• The crucial idea is to monitor how the fitted model
changes as bdp decreases (S) or  eff increases (MM)
or, as in the “forward search”, whenever a new
statistical unit is added to the subset.

• The slides which follow show the analysis of the
AR data using the forward search

51

Monitoring of scaled residuals

52
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SIGNIFICANCE OF THE 
EXPLANATORY VARIABLES

Standard static approach

t0 16.55 17.64
t1 -1.26 -1.93
t2 9.64 9.75
t3 16.53 17.66

All units Without unit 43

53

Monitoring of scaled t-statistics

54
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Monitoring of scaled t-statistic for first 
variable

55

Robust regression estimators

• HARD TRIMMING
• Least median of squares (LMS)
• Least trimmed squares (LTS)

• SOFT TRIMMING
• M
• S
• MM
• Tau

• ADAPTIVE HARD TRIMMING
• Forward search (FS)
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Stars data again
Analysis with the monitoring approach

57

Monitoring of scaled S 
residuals

58
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Monitoring of MM residuals

59

• Empirical breakdown point (bdp) or efficiency (eff)
for S, MM and τ and four ρ functions. The values
are for the step before the switch to a non robust fit
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Monitoring of FS residuals

61

Stars data. automatic FS
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Stars data: envelope 
resuperimposition

63

More about this in

64
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Theoretical properties of the 
FS

• Cerioli Farcomeni, and Riani  (2014) show that the
estimates obtained at step m and are strongly
consistent under the null model and have
breakdown point 1 − m/n under contamination: the
FS yields consistent high-breakdown estimators,
but with adaptive breakdown point

65

Theoretical properties of the FS
The FS yields consistent high-breakdown estimators, but 

with adaptive breakdown point
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Succesful applications of 
robust statistics

• Dating of the
Turin Shroud

67

Fraud detection

68
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Clustering

69

Summary and extensions
• Using the flexible approach provided by the forward

search, together with monitoring, it is possible to
combine robustness and efficiency

• The focus of this talk was on regression, but the
approach described in these slides can be extended to

• Generalized linear models
• Transformations
• Multivariate analysis and robust classification
• Bayesian framework
• Non linear models
• Time Series

70
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CHALLENGES OF IIOT 

• Consolidation of data, making few very powerful against many deprived of it

• Advanced analytics, with machine to machine interfaces - wish vs real value

• Data sharing legislations - how will international laws being framed ?

• Cybersecurity (device and network)- vulnerability and impact.

• World order with socio-economic implications using IIOT - will the gap of equality

and justice among nations (rich and poor) increase ?

Ill 1� 

SUMMARY 

• Huge budgets and investments into IIOT.

• Rapid progress with disruptive methodology.

• IIOT is here to stay and influence all sections of life.

• Several use cases in IOT and relatively few in IIOT. Long way to go

• Challenges at every front.

• Time will tell if it is helping humanity vs disorienting and damaging humanity
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57th ESReDA Seminar on 

Advances in Reliability, Risk and Safety Analysis with Big 
Data 

23rd and 24th October 2019  

Universitat Politècnca de Valencia, Spain 

Program and Venue 

Scope of the Seminar 

Industrie 4.0 is an industrial action that corresponds to the increasing integration of industrial 
production and information and communication technologies. It includes different aspects, among 
them cyber-physical systems, big data, internet of things, augmented reality, cloud computing and 
cognitive computing. 

With recent improvements in sensor technologies, including miniaturization, performance, cost and 
energy consumption and in information systems resulting in increased functionality at lower costs, 
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obtaining very important quantities of data from running industrial equipment in a cost-effective 
manner is now a standard practice.  

To treat all the data gathered by the sensors and to transform it in useful information, industries seek 
to make a greater use of Artificial Intelligence (AI). There are several AI techniques, as are Machine 
Learning, Predictive Modelling and Deep Learning. 

Among the most promising applications of these concepts can be found in Reliability, Risk and Safety 
Analysis. In seeking, opportunistically, the benefits from these new technological capabilities, it is 
important to remain critical and to address potential side or adverse effects as well especially for 
high-risk industries where errors can become dramatic. It is the role of the ESReDA association to 
organise an expert debate and further collaborative work on this topic. 

For this 57th ESReDA Seminar we are concerned and invite to focus on Big Data challenges and 
applications. So the main topics will be the discussion of the following subjects: 

 Retention and quality of data
 Data analytics
 Feature selection and extraction
 Identifying potential biases
 Data ownership and security
 Databases

The main point is: what can be done to improve the management of reliability, risk and safety making 
good use of these new capabilities? 

This Seminar will be a forum to explore and discuss these topics. The Seminar is aimed at addressing 
issues met by different industries.  

The programme proposes technical papers which cover different topics concerned with the 
application of Artificial Intelligence to Reliability, Risk and Safety Analysis. Besides, a specific round 
table discussing the different topics is organised.  The technical programme includes plenary 
presentations by leading academics and scientists.  

Seminar Organisation and Venue 

Location 

The School of Engineering Design, building 7B 
http://www.upv.es/plano/plano-2d-en.html  
Technical University of Valencia / Universitat Politècnica de València (UPV) 
Camino de Vera, s/n 
46022 Valencia 
SPAIN 
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Organisation 

The Seminar is jointly organised by ESReDA and CMT Motores Térmicos (UPV). 

Chairman of the Seminar 

L. Ferreira (ESReDA President, Prof. Universiy of Porto, Portugal)

B. Tormos (CMT senior researcher, Prof. Universitat Politècnica de València, Spain)

Technical Programme Committee 

 Antonio Sola -  Consultant, Spain
 André Lannoy -  IMdR/ESReDA, France
 Bernardo Tormos - Universitat Politècnica de València, Spain
 Henk Wells – Consultant, The Netherlands
 Kaisa Simola - EC JRC Petten, The Netherlands
 Luís Ferreira – Universidade do Porto, Portugal
 Marco Riani – University of Parma, Italy
 Maria Grazia Gnoni – Università di Salento, Italy
 Micaela Demichela – Politecnico de Torino, Italy
 Mohamed Eid - CEA, France
 Mohammad Raza – GE Power, Switzerland
 Nicolas Dechy - Institut de radioprotection et de sûreté nucléaire, France
 Rasa Remenyte-Prescott - University of Nottingham, United Kingdom
 Siegfried Eisinger -  DNV GL, Norway
 Tuuli Tulonen – Tukes, Finland,
 Vytis Kopustinskas -  EC JRC Ispra, Italy
 Victor Borges - Thales, UK

Opening of the Seminar 

To be announced 

Closing of the Seminar 

The President of the Board of Directors of ESReDA 

Relevant dates: 
 22nd October 2019: Project Groups meetings, Board of Directors meeting.
 Seminar: 23rd and 24th October 2019
 ESReDA Gala Dinner: 23rd October 2019

Appendix 2



4 

Draft Program 

Note: All the meetings and Seminar Sessions will take place at The School of Engineering Design, 
building 7B 

Tuesday, October 22nd  2019 

10:15 Coffee Break 
10:30 Project Group meetings 
12:30 Lunch  

14:30 – 17:30 Board of Directors meeting 

Wednesday, October 23rd  2019 

Seminar Day 1 

09:00 - 09:10  Welcome address by President and Seminar chair, Luis Ferreira 
09:10 - 09:30 Welcome address by the Sub-Director for International Relations, University of 
Valencia. 

09:30 - 10:30 Key Note speech 1: 
Dr. Prof.  Olga Fink – “System health monitoring with deep learning: Is big data all we need?” 

10:30 - 11:00 Coffee Break 

11:00- 12:30 Session I - Safety and big data 

11:00 – 11:30 Siegfried Eisinger, Jon Arne 
Glomsrud, Justin Fackrell 

Recommended Practice for Assurance 
of Data-driven Algorithms and Models 

11:30 – 12:00 Mathias Verbeke, Alessandro 
Murgia, Tom Tourwé, Elena 
Tsiporkova 

Fleet-based Remaining Useful Life 
Prediction of Safety-critical Electronic 
Devices 

12:00 – 12:30 C. Harrison, X. Ge, J. Stow Assessing GB Train Accident Risk Using 
Red Aspect Approaches to Signal Data  

12:30 – 13:30 Lunch  

13:30 – 15:00 Session II - Data and prediction 

13:30 – 14:00 Henk Wels Quality in data for unavailability of 
power plants 
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14:00  – 14:30 Luís Pereira, Luís Ferreira Mechanical seal failure prediction in an 
oil refinery: a first attempt to solve the 
problem using a data-driven approach 

14:30 – 15:00  Asun Lera St.Clair Trust in AI 

15:00- 15:30 Coffee Break 

15:30- 17:00   Panel Discussion: Risk Based Inspections using big data analytics- do we have a clear 
path way? 

Panelists: Henk Wels, Mohammad Raza 
Moderator: Luís Ferreira 

17:00- 17:15 Presentation of next Seminar and other ESReDA and ESRA activities 

17:15 – 18:30 - Visit to the University of Valencia Research Centre: CMT-Motores Térmicos 

19:30  Dinner at Restaurant (Restaurant in downtown Valencia, to be announced) 

Thursday, October 24th 2019 

Seminar Day 2 

09:00- 10:00 Key Note Speech 2: 
Prof.  Sebastián Martorell - Advanced analysis of reliability and risk of equipment 
subjected to degradation and obsolescence 

10:00- 11:00 Key Note Speech 3: 
Prof. Marco Riani - Robust statics for big Data Analytics 

11:00- 11:30 Coffee Break 

11:30 – 12:30 Session III - Data Analytics and the IOT Future 

11:30-12:00  Daniel Gaspar, Luís Ferreira A proposal of an algorithm to simulation censored data 
right type I in reliability field 

12:00- 12:30 Mohammad Raza          IOT future in Energy Industries 

12:30- 12:45 - Thanks and End of the Seminar 

12:45- 14:00  Lunch 
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Bibliographic notes about Key Note Speakers 

Prof. Dr. Olga Fink, ETH Zurich 

She is at the SNSF (Swiss National Science Foundation) and it is Professor for intelligent maintenance 
systems at ETH Zürich.  Before, she was heading the research group “Smart Maintenance” at the 
Zurich University of Applied Sciences (ZHAW). Holds Ph.D. in civil engineering from ETH Zurich, and 
Diploma degree in industrial engineering from Hamburg University of Technology. Gained valuable 
industrial experience as reliability engineer for railway rolling stock and as reliability and maintenance 
expert for railway systems. Research focuses on Data-Driven Condition-Based and Predictive 
Maintenance, amongst others. 

Prof.  Sebastián Martorell, Universitat Politècnica de València 

He is Full Professor of Nuclear Engineering, Director of the Radiation Service and Ex-Director of the 
Chemical and Nuclear Department at the Universitat Politècnica de València, Spain. Prof. Martorell 
received his Ph.D. in Nuclear Engineering from Universitat Politècnica de València in 1991. Head of 
the MEDASEGI research group, his research areas are probabilistic and deterministic safety analysis, 
uncertainties, risk-informed decision making, and RAMS modelling and optimization. In the past 27 
years, he has served as consultant to governmental national and international agencies, nuclear 
facilities and private organizations in areas related to risk and safety analysis, especially applications 
to safety system design and testing and maintenance optimization of nuclear power plants. Prof. 
Martorell has taken part as Main Researcher in 64 national and international research projects and 
contracts. Prof. Martorell`s publications include 142 SCI and JCR papers in journals and proceedings 
of conferences in various areas of reliability, maintainability, availability, safety and risk engineering 
(h-index 21, about 1600 citations in WOS). He serves as a member of the Editorial Board of Reliability 
Engineering and System Safety International Journal. He is also an editorial board member of the 
Journal of Risk and Reliability, Proceedings of Institution of Mechanical Engineers, Part O. He has 
been Vice-Chairman of European Safety and Reliability Association (ESRA). 

Prof. Marco Riani – University of Parma 

He is a Full Professor of Statistics at the University of Parma, where he is teaching and research in 
Statistics and Informatics. Teaching has concerned courses at graduate, post graduate and PhD level. 
Supervisor of PhD students (two of them, namely Tiziano Bellini now at HSBC bank and Francesca 
Torti now at the Joint Research Centre of the European Commission won the prize for the best Italian 
PhD thesis in statistics). He is currently Director of the Interdepartmental center Ro.Sta.Bi.Da.C -– 
ROBUST STATISTICS FOR BIG DATA CENTRE of the University of Parma, Member of the Steering 
Committee of the SIS CLADAG (Classification and Data Analysis Group of the Italian Statistical 
Society), member of the board of the PhD programme in Statistics and Financial Mathematics, 
University of Milan Bicocca, Italy, Member of the Steering Committee of ICORS (International 
Conference of Robust Statistics), Scientific coordinator of the module “Advanced personal 
computing” of the “Marketing Management Master” organized by the University of Parma jointly 
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with financial Italian newspaper “Il Sole 24 Ore”, and scientific coordinator of the module 
“Informative systems and statistics tools for market management” of the master in Agribusiness and 
Food Management organized by the University of Parma. 

Registration and Seminar Fee 
Registration will be accepted until the 11th October 2019. 

A registration form and information package for the venue will be made available on the ESReDA 
website: 

https://www.esreda.org/event/57th-esreda-seminar 

The fees according to ESReDA’s rules are: 

 Speakers: one speaker per accepted paper may participate without paying seminar fees.
 ESReDA members: up to three participants of ESReDA members are taken in charge by

organization.
 Participant:  300€ per participant.
 Accompanied persons for Gala Dinner: 50€ per participant

Fees are to be paid by bank transfer to ESReDA account: 

Holder: ESReDA 

Bank: BNP Paribas Fortis Bank, Boulevard Jamar 1 D, 1060 Bruxelles, Belgium 

IBAN: BE69 0012 3728 1678 

BIC: GEBABEBB 

Subject: Registration to the 57th ESReDA Seminar 
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Organizers 

Universitat Politècnica de València 
The Universitat Politècnica de València is a public, dynamic and innovative institution, dedicated to 
research and teaching that, while maintaining strong links with the social environment in which it 
carries out its activities, opts for a strong presence abroad. It is a young university, which celebrates 
its 50th anniversary during the academic year 2018-2019. 

Its community is made up of about 34,000 students, 3,600 professors and researchers and 1,500 
administrative and service professionals distributed among its three campuses located in Alcoy, 
Gandia and València. 

At present, the UPV is constituted by 13 university centers, of which 9 are higher technical schools, 2 
are faculties and 2 are higher polytechnic schools. In addition, it has a Doctoral School and 3 affiliated 
centers (Florida University, Berklee College of Music and EDEM Business School). 

The Seminar will be supported by C-Motores Termicos at the Universitat Politècnica de València: 

CMT-Motores Térmicos is a research and educational center fully involved in the development of the future 
combustion engine, and incorporating more than 100 people. For more than 35 years have conducted basic 
research for better understanding the relevant physical processes involved, and applied studies for optimizing 
the engine behavior and assisting in its development. 

From the deep scientific knowledge to the real-life problems of the automotive industry, we combine 
experimental tests conducted in our state-of-the-art facilities, and theoretical studies providing relevant 
technical and scientific results. Our interdisciplinary approach covers different research areas, and aims at 
Excellence and Innovation. 

More information available in: https://www.cmt.upv.es/ 
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ESReDA 
ESReDA is a European Association which provides a forum for the exchange of information, data and current 
research in Safety and Reliability and a focus for specialist expertise. 

The Safety and Reliability of processes and products are topics which are the focus of increasing interest 
Europe wide. Safety and Reliability Engineering is viewed as being an important component in the design of a 
system. However the discipline and its tools and methods are still evolving and expertise and knowledge 
dispersed throughout Europe. There is a need to pool the resources and knowledge within Europe and ESReDA 
provides the means to achieve this. 

ESReDA was established in 1992 to promote research, application and training in Reliability, Availability, 
Maintainability and Safety (RAMS). The Association provides a forum for the exchange of information, data 
and current research in Safety and Reliability and a focus for specialist expertise. 

More information at: 

https://www.esreda.org/ 

Contact Point: 
Inga Šarūnienė 
Lithuanian Energy Institute 
Breslaujos str. 3, 44403, Kaunas 
Lithuania 
E-mail: inga.saruniene@lei.lt

ESReDA Project Group on Big Data, Reliability, Risk 
and Safety Analysis 

The project group (PG) “Big Data, Reliability, Risk and Safety Analysis” aims to write a working 
technical document, if possible a book, in which it will try to identify the evolutions, paradigm shift 
and challenges caused by the emergence of Big Data in the Reliability, Risk and Safety Analysis of 
industrial equipment. 

In doing so, the PG will attempt to identify the advantages and disadvantages of its use for equipment 
users by identifying the techniques to be applied, the standardization needs (if any) and the existing 
challenges to an application of new scientific knowledge in these areas. 

We expect that this technical document will be published with a EUR Tech-Doc reference number. 
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Venue 
Valencia 
The port city of Valencia lies on Spain’s southeastern coast, where the Turia River meets the 
Mediterranean Sea. It’s known for its City of Arts and Sciences, with futuristic structures including a 
planetarium, an oceanarium and an interactive museum. Valencia also has several beaches, including 
some within nearby Albufera Park, a wetlands reserve with a lake and walking trails. 

Valencia is a very touristic city with a great offer of hotels. 
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GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre 
nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa website at: 
https://europa.eu/european-union/index_en 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: https://publications.europa.eu/en/publications. 
Multiple copies of free publications may be obtained by contacting Europe Direct or your local information centre (see 
https://europa.eu/european-union/contact_en). 

https://europa.eu/european-union/contact_en
https://europa.eu/european-union/contact_en
https://europa.eu/european-union/index_en
https://publications.europa.eu/en/publications
https://europa.eu/european-union/contact_en
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