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ABSTRACT

Aim: The Mediterranean basin is threatened by climate change, and there is an urgent need for studies 

to determine the risk of plant-range shift and potential extinction. In this paper, we simulate potential 

range shifts of 176 plant species to perform a detailed prognosis of critical range decline and extinction 

in a transformed Mediterranean landscape. Particularly, we seek to answer two pivotal questions:  1) 

What are the general plant-extinction patterns we should expect in Mediterranean landscapes during the

21th century? 2) Does dispersal ability prevent extinction under climate change?

Location: Andalusia: southern Iberian Peninsula; 87,597 km2; 300 by 520 km.

Methods: We gathered information on the dispersal traits of 176 plant species (dispersal vector, 

average and maximum dispersal distances, shape of the dispersal kernel). We used these data to feed a 

stochastic dynamic species distribution model (a combination of a cellular automaton with a ensemble 

of species distribution models) to simulate plant range-shift under climate change with realistic 

dispersal under two different warming scenarios. We compared dispersal and no-dispersal simulations 

to assess the influence that climate change and species-distribution characteristics exert on 

plant-extinction patterns. 

Results: The dispersal simulation showed a lower percentage of extinct (-1%) and quasi-extinct species

(-19%) than did the non-dispersal simulation. Summer temperatures of 37 and 33ºC, respectively, 

accelerated the critical range decline and extinction rates. The average elevation of the plant 

populations was the variable with the highest influence on extinction probability.

Main conclusions: stochastic dynamic species distribution models proved to be useful when there was 

lack of data on dispersal distances and population dynamics. Dispersal ability showed minor 

effectiveness in preventing extinction, but greatly reduced the likelihood of critical range decline for a 
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significant percentage of species.

KEYWORDS: cellular automaton, dispersal kernel, dynamic species distribution models, global 

warming, range shift 
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INTRODUCTION

The predicted global warming will probably exceed the migration rate of a great number of plant 

species (Parmesan 2006), becoming an important driver of species range shift, habitat contraction, and 

potential extinction. Climate change effects have already been detected in plants inhabiting 

Mediterranean habitats. For example, Pauli et al. (2012) detected changes in community composition of

high mountains during a large-scale monitoring program in Europe, with the Mediterranean mountain 

ranges being among the most affected habitats. Upward treeline shift and species replacement in 

mid-mountain ranges have also been reported by Peñuelas and Boada (2003). Such effects are expected

to intensify in a future warmer climate, as predicted for the Mediterranean basin in the 21st century 

(Giorgi and Lionello 2008), and therefore Mediterranean habitats are considered to be among the most 

threatened by climate change (Giorgi 2006).

In the context of rapid climate change, research to improve species range-shift forecasts and thereby 

assist decision making is crucial in biodiversity conservation worldwide (Engler et al. 2009, Franklin 

2010). Species Distribution Models (SDMs hereafter; Guisan & Zimmermann 2000; Guisan & Thuiller

2005) have been the tool of choice for range-shift modelling, but their limitations (see Pearson & 

Dawson 2003) have led to the development of dynamic species distribution models (DSDM hereafter; 

Franklin 2010; Thuiller et al. 2008; Morin & Lechowicz 2008), which are a mixture of SDMs with 

other spatially explicit simulation methods such as cellular automaton (e.g. Iverson et al. 2004; Smolik 

et al. 2010). To simulate range shifts with DSDMs requires an empirical or theoretical description on 

how species disperse across the landscape. It is relatively common to assume fixed dispersal distances 

for each modelled species (as in Fitzpatrick et al., 2008, or Engler et al. 2009), despite that the 

uncertainty about dispersal distances for any plant species is often very high (Higgins et al. 2003; Clark
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et al. 2003). The most straightforward solution is the use of dispersal kernels, as suggested by Franklin 

(2010) and applied in Dullinger et al. (2012), but this approach is rarely used in range-shift simulation 

because it is time consuming, and there is a lack of empirical data for the majority of plant species. 

The objective of this paper is to design, develop, and analyse the results of an stochastic DSDM used to

simulate range shift under climate change of 176 plant species in a Mediterranean hotspot. To do so, we

have gathered presence data and information on the dispersal traits of the target species. Our DSDM 

combines species-distribution models projected over future climatic scenarios and a cellular automaton 

to simulate the dispersal process. Our model relies on two stochastic components: 1) a pseudo-random 

generator of dispersal distances based on plant-specific dispersal syndromes and realistic dispersal 

kernels taken from the literature; 2) binomial trials, used to decide the success or failure of dispersal 

events. We used this approach in order to answer two questions: 1) What are the general 

plant-extinction patterns we should expect in Mediterranean landscapes? 2) Does dispersal ability 

prevent extinction under climate change?

METHODS

Study area

The study area is Andalusia, located in the southern Iberian Peninsula between 36º 00’ N and 38º 35’ N 

and 1º 35’ W and 7º 35’ W, comprising 87,597 km2 (300 x 520 km; see Fig. 1). The area harbours about

4000 species of vascular plants and thus being a hotspot within the Mediterranean hotspot (Médail and 

Diadema 2009). We selected this study area because in the Mediterranean basin, climate warming is 

expected to be more severe than the global average (Giorgi 2006). Consequently, there is a need for a 

prognosis concerning the potential effects of climate warming over the Mediterranean flora. Andalusia, 
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being the southernmost position in Europe and having a complete set of high-resolution data available 

for many plant species makes it a valuable case study. 

Presence data, dispersal kernels, and environmental variables

To establish a presence dataset representative of Andalusian flora (see Fig. 1), we combined data from- 

different sources provided by the environmental administration of Andalusian Regional Government. 

Forest-species data were compiled from a land-cover map (scale 1:25000, year 2003) and vegetation 

maps from protected natural areas (scale 1:10,000) whereas threatened-species data were gathered from

the Andalusian Programme for Endangered Flora (data taken with GPS precision).  The dataset was 

organized as GIS polygons delimiting the occupancy area of plant populations, and contained 

presence-only data for 554 species. The presence polygons were converted into 50x50 m raster cells 

using the v.to.rast module of the GRASS GIS software (GRASS Development Team, 2008). Species 

with fewer than 100 presence cells were excluded, leaving a total of 176 species. The final dataset 

consisted of 48 endemic species in Andalusia, 20 in the Iberian Peninsula, 31 in Ibero-Africa, 18 in the 

western Mediterranean, and 59 in the Mediterranean (see Appendix).

For each species, we searched the literature for the dispersal kernel that best matched its dispersal 

syndrome (see Table 1), and assigned a mean and a maximum dispersal distance according to the 

review of Vittoz and Engler (2007), specific papers on the biology of each species (see Appendix), and 

expert knowledge when we could not find reliable data. We were unable to gather long-distance 

dispersal (LDD) data for our target species, and therefore our simulation considers only short-distance 

dispersal (SDD) events.

To compile a set of topographic variables relevant to plant distribution (Williams et al. 2012), we 

resampled the ASTER GDEM (http://asterweb.jpl.nasa.gov) to a 50-m resolution in order to match the 
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spatial scale of the species-presence polygons. Observed climatic records (1971-2001) and downscaled 

future climate-change simulations —warming scenarios A2 and B2  generated with the model CGCM2 

for the period 2010-2100 (IPCC 2007; Flato & Boer 2001; Brunet et al. 2007)— were drawn from the 

National Meteorology Agency database (AEMET; URL: http://escenarios.inm.es). We selected these 

scenarios for comparison with other studies on Mediterranean plant extinction under climate change 

(Benito et al. 2011; Benito-Garzón et al. 2011; de Dios et al. 2009; Benito-Garzón et al. 2008). 

The climate data were aggregated yearly and seasonally by arithmetic average in 10-year time slices, 

and we applied the climatic-mapping method proposed by Ninyerola et al. (2000) to interpolate the 

future climatic maps. Finally, we used climatic (annual and summer rainfall, minimum and maximum 

winter temperatures, and maximum summer temperature) and topographic variables (terrain curvature, 

topographic wetness index, topographic position, slope, and mean winter solar radiation) to calibrate 

the models. The average correlation among the variables was 0.22 (Pearson’s correlation index), with a 

maximum of 0.86 between the minimum and maximum winter temperatures. We also represented land 

uses unsuitable for natural plant populations from a land-use map, which was applied as a mask to 

avoid migration over unsuitable land uses. 

Stochastic Dynamic Species Distribution Model

Ensemble model forecasting

The choice of a specific SDM method constitutes the main source of uncertainty in range-shift 

simulations (Nenzén and Araújo 2011), but ensemble modelling approaches have been proposed as a 

robust solution to minimize this problem (Araújo and New 2007). Thus, considering that we had no 

true absences to calibrate our models, we selected five presence-only-based modelling algorithms 

(MaxEnt, GARP, Artificial Neural Networks, Support Vector Machines, and four implementations of 
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ecological distances [similarity/dissimilarity metrics]:  Euclidean, Mahalanobis, Manhattan, and 

Chebyshev) to be ensembled by arithmetic average (Marmion et al. 2009). We assessed the ability of 

each ensemble to discriminate between presences and absences via AUC (Fielding and Bell 1997, but 

see Lobo et al. 2008) using k-fold cross-validation (5 groups). The SDMs were projected over the 

future climatic variables for both climate-change scenarios to represent future habitat-suitability 

change. 

Simulating dispersal, colonization, and local extinction

We designed a generator of dispersal distances that, for each target species, produced 10,000 dispersal 

values (in multiples of 50, the spatial resolution of the simulation) following a pseudo-random 

distribution based on the statistical distribution of the species’ dispersal kernel (see Table 1). To 

simulate colonization and local extinction, we applied the following rationale. Considering a given 

species, its presence cells, and the habitat-suitability values (scaled to [0, 1]) of its current SDM, we 

computed the cumulative density function which returns the probability of finding a presence record in 

a cell with a given habitat-suitability value. Such probability values were used as inputs in binomial 

trials to decide whether a target cell within the dispersal distance was colonized or not, and whether a 

present cell became locally extinct or not when the habitat suitability changed. In a binomial trial, the 

probability value of a given cell was compared with a random number, taken from a random map 

following a uniform distribution in the range [0, 1], which was held constant on each run of the 

simulation (see the next section for further details). If the probability value given by the density 

function is lower than the random number, the state of the target cell changes to “absent”. This “absent”

state has two different meanings depending on the context. In a cell within the dispersal range, it means

“no migration” while, in a cell with a “present” state before the dispersal event, it means “locally 

extinct”. This approach follows the hypothesis of species in equilibrium with climate (Araújo and 
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Pearson 2005), and allowed us to represent the persistence of the species in cells with low probability 

values but a lower random number (Hampe and Petit 2005).

The 10-year time step or our simulation implies a generation time of 10 years for each plant species in 

our dataset. We selected this interval length because we needed to maintain the computing requirements

within affordable limits, and because we lacked data on generation times for most species in our 

dataset. Ten years seems to be a reasonable average generation time, considering that annual or 

biannual species are rare in our dataset (see Appendix).

Cellular automaton and simulation steps

We implemented the rationale explained above in a cellular automaton (Sarkar 2000). To explore 

different dispersal scenarios, for each species, we performed up to 900 realizations, being each 

realization one simulation run for a given species over the whole time series of SDMs and both 

climatic-change scenarios. Each realization was characterized by a dispersal distance given by the 

generator of dispersal distances and a map of random values to perform the binomial trials to decide 

whether a cell within the dispersal range was colonized or not. Each realization required the following 

set of steps, being the steps 2 and 3 repeated once for each time-slice until the year 2100:

1. A dispersal distance is selected and a random map is created to be used throughout the 

realization.

2. A buffer with a radius equal to the given dispersal distance is drawn around the cells stated as 

“present”, and the state of all cells inside the buffer is immediately set to “present”. At this step,

we assumed that each species produced enough propagules to reach all the cells within the 

dispersal range.

3. A binomial trial is applied to all the “present” cells:  if the value of the cell given by the density 
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function is lower than the random number given by the random map in that cell; otherwise the 

state of the cell is changed to “absent” (which will mean “locally extinct” or “not colonized” 

depending on the context). 

The workflow to execute the simulation (see Fig. 2) was designed and executed in Kepler (Ludäscher 

et al. 2006; URL https://kepler-project.org/), integrating the software packages MaxEnt (Phillips et al. 

2006), OpenModeller (Muñoz et al. 2009), R (R Development Core Team 2009) and GRASS GIS 

(GRASS Development Team 2010).  

Simulation results

The simulation results were organized following two approaches at the same time: 1) The 

“species-by-species” approach, which considered the whole set of realizations for each species at once. 

For each realization, we considered the species to be “extinct” when it reached a 0% of its initial 

presence, and to undergo a “critical range decline” when it reached the 10% of its initial presence area 

(Engler et al. 2009). We also computed the probability of critical range decline and extinction for each 

species by dividing the number of extinction or critical range decline by the total number of 

realizations. 2) The “trajectories approach”, which considered different “trajectories” of the system. A 

trajectory is a random combination of 176 realizations, one per species. Every trajectory is an 

alternative scenario in which the migration of each species has been simulated with a single dispersal 

distance and a unique random map. We shuffled the realizations to create 10,000 different potential 

trajectories, which allowed us to explore the uncertainties emerging from the combination of different 

parameters for each species.
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Sensitivity Analysis

We assessed the different sources of uncertainty by performing a sensitivity analysis. To evaluate the 

spread induced by the binomial trials in the simulation results, we performed a control simulation 

without dispersal, and running 30 realizations for every species. As a measure of sensitivity to the 

binomial trials, we computed the arithmetic mean of the standard deviation of the percentage of initial 

present cells occupied at 2100 across all species. We used the same measure of sensitivity to evaluate 

how much spread induced variations in dispersal distances. Finally, to assess the influence of the 

dispersal algorithm in the simulation results, we evaluated the overall differences in percentage of 

extinct and quasi-extinct species between the results of the 10,000 different potential trajectories 

produced by the dispersal and the no-dispersal simulations.

Potential extinction patterns

Firstly, we analysed the 10,000 trajectories of the dispersal simulation, to evaluate the percentage of 

species facing critical range decline and extinction in each scenario. Secondly, we applied 

beta-regression (R library “betareg”; Cribari-Neto and Zeileis 2010) to assess the influence of the 

climatic variables in the proportion of species facing critical range decline and extinction. To do so, we 

used the regional climatic averages for each time slice as independent variables, while the proportion of

species facing critical range decline and extinction were taken as dependent variables. Thirdly, we 

applied conditional inference trees (R library “party”;  Hothorn et al. 2006) to evaluate the influence of 

different species-distribution characteristics and the mode of the dispersal distances applied across the 

simulation over the species’ probabilities of critical range decline and extinction. The selected 

species-distribution characteristics were:  number of starting presence cells, number of presence 

patches (the actual number of polygons available in the presence dataset), mean patch size, mean and 
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range of elevation of the presence patches. To simplify the analysis we converted the probabilities of 

critical range decline and extinction into two categories: probabilities lower and higher than 0.5. We 

also tried to group the data by dispersal syndromes, but the number of cases was not high enough to 

build reliable conditional inference trees.

RESULTS

SDM evaluation and DSDM sensitivity analysis

The SDMs showed a moderate to high discrimination ability according to the AUC analysis (see 

Appendix), with an average AUC of 0.849, a minimum of 0.655 (Ulex eriocladus) and a maximum of 

0.973 (Festuca clementei). The binomial trials induced a mean standard deviation of 1.01% of the 

initial presence cells across all species, time slices, and scenarios. As a consequence of the reduction of 

suitable habitat through time, the standard deviation declined from 1.38% to 0.38% in the scenario B2, 

and from 1.48% to 0.75% in the scenario A2.  The mean standard deviation induced by the dispersal 

algorithm was 205.53% of the initial presence cells across all species, time slices, and scenarios. The 

temporal variation of the mean standard deviation ranged from 203.61% to 197.65% for the B2 

scenario (with a peak reaching 231.20 in the year 2060) and from 136.23 to 49.96 for the A2 scenario 

(with a peak reaching 373.19 in the year 2040). 

The comparison between the 10,000 trajectories of the system for the dispersal and no-dispersal 

simulations showed minimal differences (1,01%) in the percentage of extinct species. The percentages 

of species facing a critical range decline differed noticeably between the dispersal and no-dispersal 

simulation: +19.31% for the A2 scenario and +11.93% for the B2 scenario (see Fig. 3 and Table 2).
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Critical range decline and extinction

The 10,000 potential trajectories of the system generated, expressed as percentages of extinct and 

quasi-extinct species, are summarized in the Fig. 3 and the Table 2. The beta regression analysis 

showed that the better predictor or critical range decline and extinction was the mean summer 

temperature. All models showed a good fit (see Fig. 4 and Table 3), except the one for extinction in 

scenario B2. The critical range decline percentages showed a threshold at 33ºC of mean summer 

temperature, after which the slope of the extinction curve rose appreciably. The threshold in the 

extinction percentage was at 37ºC, but the extinction rate increased more slowly than in the critical 

range decline models. 

The influence of the species-distribution characteristics on the probability of critical range decline and 

extinction performed with conditional inference trees showed that the mean elevation of the 

populations was directly related to higher extinction probabilities. In the A2 scenario, the group of 

species most prone to extinction occupied an elevation mean above 1866 m and elevation range of less 

than 1307 m (Fig. 5, Extinction A2, node 6). Another group with high extinction probabilities was that 

below 1866 m of mean elevation and with an elevation range less than 829 m (Fig. 5, Extinction A2, 

node 3). Considering the B2 scenario, the mean elevation of the populations was also the most 

important variable to predict extinction, with a critical value at 2785 m (Fig. 5, Extinction B2, node 3). 

In both scenarios, dispersal distances were not important for predicting the extinction probability.

The analysis of critical range decline shows that dispersal distance was the most important variable in 

both scenarios. In the scenario A2, only some 20% of species with dispersal distances higher than 50 m

presented critical range decline probabilities higher than 0.5, with that percentage diminishing to 8% in 

scenario B2 (Fig. 6, critical range decline A2, node 7 and B2, node 3). In the B2 scenario, the 50% of 

the species without dispersal had a critical range decline probability higher than 0.5.
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DISCUSSION

In this paper, we describe an approach that combines an ensemble of SDMs to describe changes in 

habitat suitability, with a cellular automaton to simulate realistic dispersal and local extinction due to 

climate change. We used this approach to perform the first assessment of critical range decline and 

extinction for 176 Mediterranean plant species. Although the results of our simulation have some 

limitations, they may be a good starting point to select key species with higher extinction and critical 

range decline risk to be the focus of intensified research that would protect them from the risks 

associated with climate change.

Sensitivity Analysis

The variability in dispersal distances induced the highest amount of variability in the simulation 

outcomes, being around 200 times higher than that produced by the binomial trials, especially for 

species with larger dispersal distances and restricted known distributions but extensive suitable 

habitats. Such species showed the greatest spread potential during the simulation, being therefore 

extremely sensitive to variations in dispersal distances. However, the high sensitivity of such species to 

changes in dispersal distances was not enough to significantly change the percentage of extinct species 

between the dispersal and no-dispersal simulations. 

When comparing the dispersal and no-dispersal simulations, we found that both diverged by 1% extinct

species in the year 2100. This similarity between patterns appeared presumably because of the high 

proportion of species with short dispersal distances, which were not able to track their suitable habitat 

in the dispersal simulation. These species are expected to be the first to go extinct in the real world, 

because they are usually isolated in island-like habitats, lacking the potential to pursue their suitable 

habitat during a rapid climate change (Skov and Svenning 2004; Meier et al. 2012). 
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Potential extinction patterns

The percentages of locally extinct species that we found in both warming scenarios (see Table 2) 

according to the dispersal simulation lie within the ranges reported by other authors for European 

species, although there are some differences due to spatial and temporal resolution, study area, target 

species, and the approaches to account for dispersal. For example, Thuiller et al. (2005) working with 

1350 species of plants in Europe at a resolution of 50x50 km up to the year 2080 found lower 

extinction values (2% in the worst scenarios), while assuming no migration and total migration. 

Alkemade et al. (2011), simulating potential plant-diversity changes in Europe until 2100, found that 

25% of the species in Southern Europe will disappear by 2100. In the work of Engler et al. (2009) the 

extinction percentages when considering realistic dispersion (SDD) ranged between 4.52% in scenario 

B2 and 13% in scenario A2. These authors also analysed the critical range decline process, finding 

values of between 60% in A2 and 40% in B2. This inter-comparison is intended to point out that, 

despite differences in study areas, target species, climatic data or spatial resolutions, several studies are 

converging to similar results that are in line with observed range shifts of plant populations and 

community change, especially in mountain habitats (Peñuelas and Boada 2003; Pauli et al. 2012). 

The comparison of the dispersal and no-dispersal simulation did not show remarkable differences in the

percentage of extinct species, but when considering the critical range decline process (species 

occupancy shrinking to 10% of its initial area), an important difference emerged. This result suggests 

that the study area contains a pool of species which will go extinct, irrespective of the dispersal 

assumptions made during the simulation. Such species have either poor dispersal ability or inhabit 

isolated spots without suitable habitats within the species’ dispersal range. On the other hand, another 

pool of species escaped critical range decline due to their good dispersal abilities, added to the 

availability of suitable habitats within their dispersal distances. 
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The beta-regression analysis shows that the mean of the percentages for extinction and critical range 

decline are strongly correlated with the maximum summer temperature. We hypothesise that this robust

fit resulted from the inability of the migration process to compensate for the strong effect of the 

suitability loss caused by the rise in summer temperature beyond a specific threshold. The secondary 

drivers were probably the patchy distribution of the landscape, the presence of species with 

distributions restricted to island-like habitats in the species dataset, and the scarcity of species able to 

disperse over long distances. In these circumstances, and without consideration of other processes in 

the simulation, such as adaptation or persistence in micro-refuges, the changes in critical climatic 

drivers will be the most important variables controlling range decline and extinction rate.

Conditional inference trees offered an intuitive way of summarizing the simulation results, pointing out

the most important species-distribution characteristics and their relevant values to predict extinction 

and critical range decline risk. Using this analysis, we found some species-distribution characteristics 

that are plausible as indicators of critical range decline and potential extinction. The 

species-distribution characteristic most important in our study area was the mean elevation of the target

species’ populations. The importance of this indicator in our simulation is consistent with the recent 

findings of Pauli et al. (2012), who reported that 31% of endemic mountain plant species in Southern 

Europe were not redetected from 2001 to 2008 during the GLORIA-Europe monitoring program. 

Ecological interpretation

Under the scenario B2, 12 plant species (ten of these being endemic to Andalusia) showed an 

extinction probability higher than 0.5. Of these species, three showed an extinction probability equal to 

1: Boreava aptera (continental semi-arid habitats), Anthyllis plumosa (calcareous mountain habitats), 

and Viola crassiuscula (high-mountain habitats of Sierra Nevada). The majority of species with 
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extinction probabilities between 1 and 0.5 were endemic of the high-mountain habitats of Sierra 

Nevada (Trisetum glaciale, Festuca pseudoeskia, Cytisus galianoi, and Thymus serpylloides), but there 

were also representatives of temperate semi-arid annual grasslands (Astragalus edulis) and species 

inhabiting dolomitic outcrops within calcareous mountains (Arenaria racemosa and Rothmaleria 

granatensis). These species were characterized by having a small number of habitat patches within a 

restricted area (30 by 30 km maximum), and a limited area of suitable habitat around their current 

populations. Under the A2 scenario, 27 species showed an extinction probability higher than 0.5. Four 

of these species were endemic to Sierra Nevada (Arenaria pungens, Draba hispanica laderoi, 

Moehringia fontqueri, and Holcus caespitosus), and three inhabit calcareous mountain habitats 

(Halimium atriplicifolium, Helictotrichon filifolium cazorlense, and Juniperus sabina). Considering 

these data, and the results of the conditional inference trees, it is clear that the endemic species of the 

high-mountain habitats of Sierra Nevada are among the most threatened taxa of the Andalusian flora, 

because such species cannot migrate, due to the lack of suitable habitat in the vicinity of their current 

distribution (Benito et al. 2011).

In our simulation, there were species representing the semi-arid habitats of eastern Andalusia. In this 

group the probabilities of extinction were low, except for Astragalus edulis (0.90 and 0.93 extinction 

probability in A2 and B2 scenarios, respectively) and Boreava aptera (extinction probability equal to 

1.0 in both scenarios). Regarding the probabilities of critical range decline, ten species showed high 

probabilities of critical range decline, especially for the A2 scenario (Anthyllis cytisoides, Artemisia 

barrelieri, Lygeum spartum, Stipa tenacissima, Salsola genistoides, Teucrium charidemi, Thymus 

hyemalis, Vella pseudocytisus pseudocytisus, and Linaria nigricans). The results for species of 

semi-arid habitats are far more conservative than those for the species of high-mountain habitats, and 

this is a result of the spatial configuration of the semi-arid habitats (i.e. ample sedimentary plains 
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without major dispersal barriers) combined with wind-dispersal modes (trichometeorochory and 

pterometeorochory for the majority of such species), that allows such species to avoid extinction, but 

not critical range decline.

Finally, considering Quercus and Pinus species, the tree taxa most representative of the Andalusian 

Mediterranean ecosystems, our simulation did not predict extinctions or critical range decline, except 

for the endemic Pinus sylvestris nevadensis (A2 probability of extinction = 1.0; B2 = 0.6). Matias et al. 

(2012) evaluated the specific drought resistance under different habitats for several species from 

different successional strategies and found that the seedlings of P. sylvestris nevadensis were extremely 

sensitive to drought, an ecological process that is expected to increase under climate warming 

(Houghton et al. 2001). In the same experiment the authors found that Quercus ilex (zero probability of 

extinction or critical range decline), the most important tree species in Andalusia in terms of its 

ecological role, abundance and area occupied, was the species least sensitive to drought, together with 

Cytisus scoparius, which, according our simulation, faces a risk of a critical range decline under the A2

scenario (probability = 0.83). 

The lack of ecological data for range-shift simulation

Certain progress has been made in the research on range-shift simulations, but there is still a long way 

to go in order to apply simulation results to decision making in the real world. We are far from 

predicting the actual responses of plant distributions to climate change, especially in fragmented, 

heterogeneous, and diverse landscapes. With the aim of contributing to the required improvements in 

range-shift simulation, in this study we propose a stochastic DSDM approach that is useful for 

range-shift simulation in situations where dispersal data are lacking. Nevertheless, our approach is only

a small step in the refinement of range-shift simulations, and further research is needed on the 

simulation of ecological processes occurring in the leading and receding edges of the populations. 
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Migration is methodologically easy to simulate, but extensive gaps persist on how the process occurs, 

its drivers, and relevant thresholds for each species. The receding edge deserves the same attention as, 

does the leading edge or even more, (Hampe and Petit 2005) because if current climate change 

continues as expected, extensive recession will result along the edges of our forested landscapes (Jump 

et al. 2009). Fortunately, there is an increasing body of work on ecological mechanisms and the 

climatic drivers acting there. For example, del Cacho et al. (2012) recently found a reduced seed-bank 

density and a decreased germination potential under drought and warming treatments for short-lived 

plant species in a Mediterranean shrubland, which could eventually lead to local extinctions. Jump et 

al. (2009) pointed out that the massive forest dieback observed around the world is related to climate 

change, and might lead to a regional collapse of tree populations along the receding edges, and Jump et 

al. (2006) found that population declines on the receding edge of Fagus sylvatica populations in 

Catalonia (north-eastern Spain) strongly correlated with climate warming. Unfortunately, such 

processes are not explicitly considered in the majority of the current range-shift simulations (including 

ours, but see Meier et al. 2012). To perform better simulations the research community needs more data

on the tolerance of species to changing climatic conditions, on the temperature thresholds that limit 

seed production and germination, and on the competition dynamics that emerge in the areas where 

receding and trailing edges of different species overlap. The progressive improvement of methods to 

simulate range shift under climate change must rely on this biological and ecological knowledge. In 

this context, stochastig DSDMs constitute a valid choice, but there is an urgent need for ecological data

to improve simulation reliability.
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TABLES

Table 1: Dispersal syndromes, distances, and dispersal kernels. In the first column the dispersal types 
according Vittoz and Engler (2007) as reference. References for dispersal kernels: 1 Higgins and 
Richardson (1999); 2 Clark et al. (2005); 3 Spiegel and Nathan (2007); 4 Vellend et al. (2003); 5 Bullock 
et al. (2011).

Vittoz 
2007

Group Dispersal syndrome D. 
average
(m.)

D. 
maximu
m (m.)

Distribution of the 
dispersal kernel

Numbe
r of 
species

1,2,3 a barochory
myrmecochory
pterometeorochory-herbs

1 5 not applicable 101

4 b pterometeorochory-trees 50 150 weibull 1 11

5 c trichometeorochory 100 500 Gaussian 2 19

6 d ornithochory 400 1500 inverse power 2

weibull 3
37

6 e endozoochory-mammals 400 1500 log-normal 4 3

6 f epizoochory-mammals 400 1500 power exponential 5 5
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Table 2: Simulated percentages of extinct and quasi-extinct species for the year 2100 for each climate 

change scenario and simulation. Abbreviations: ext. - extinction; crd. - critical range decline; disp. - 

dispersal simulation; no-disp. - no dispersal simulation (control).

A2 ext.
disp.

B2 ext.
disp.

A2 ext.
no-disp.

B2 ext.
no-disp.

A2 crd.
disp.

B2 crd.
disp.

A2 crd.
no-disp.

B2 crd.
no-disp.

max 19.32 9.66 20.45 10.23 58.52 39.77 75 50

3rd quart 15.91 7.39 17.05 7.52 52.27 34.66 71.59 46.59

median 15.34 6.82 16.48 7.39 51.14 33.52 70.45 45.45

1st quart 14.77 6.25 15.91 6.82 50 32.95 69.89 44.89

min 11.93 3.41 13.64 4.55 44.89 28.41 65.34 40.91
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Table 3: Beta-regression model parameters. The parameters correspond to the beta-regression 

equations formulated on fitting the percentage of extinct and quasi-extinct species against mean 

summer temperature for two climate-change scenarios (A2 and B2). Abbreviations: ext. - extinction; 

crd. - critical range decline.

ext A2 ext B2 crd A2 crd B2

Coefficient 0.22 0.24 0.31 0.48

R2 0.94 0.91 0.88 0.93

AIC -95.01 -86.57 -46.24 -54.23
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FIGURE LEGENDS

Fig. 1: Situation of the study area in Southern Europe and representation of the presence data for 176 

species in Andalusia (Spain) aggregated as number of species per cell. The projection employed is 

UTM with datum ED50.

Fig. 2: Flowchart representing the summary of the steps followed to perform the simulation and 

analyse its results. The grey boxes represent input data. The rectangular boxes represent methods:  

modelling, simulation, and analysis.

Fig. 3: Percentages of extinct species and species with critical range decline for the dispersal and 

no-dispersal simulations on each climate-warming scenario. Each line —there are 10,000 in each 

scenario— represents a random combination of 176 realizations, one per species. These plots 

distinguish between trajectories simulated with higher dispersal distances (lines with lower percentages

of extinct or quasi-extinct species) with trajectories based on shorter dispersal distances (lines with 

higher extinction percentages). The density plots represent the distribution of values for each 

climate-change scenario in the year 2100.

Fig. 4: Fit of the beta regression models applied to predict the proportion of species facing critical 

range decline and extinction as a function of the mean summer temperature. The dashed line represents 

a model with a poor fit.

Fig. 5: Conditional inference trees representing the species-distribution characteristics influencing 

critical range decline and extinction for each climate-change scenario according to the dispersal 

simulation. Node 6 in the left tree and node 3 in the right tree represent the combination of 

species-distribution characteristics leading to higher extinction probability. Abbreviations:  elev_mean 

                                                                               31

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596



and elev_range - mean and range of the elevation of the populations; d_mode - statistical model of the 

dispersal distances applied across the simulation for each species.

Fig. 6: Conditional inference trees representing the species-distribution characteristics influencing 

critical range decline for each climate-change scenario according to the dispersal simulation. Nodes 4 

and 6 in the left tree and node 2 in the right tree represent the combination of species-distribution 

characteristics with higher quasi-extinction probability. Abbreviations:  elev_mean and elev_range - 

mean and range of the elevation of the populations; d_mode - statistical model of the dispersal 

distances applied across the simulation for each species.
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