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ABSTRACT This paper aims to advance the field of data anonymization within the context of Internet of
Things (IoT), an environment where data collected may contain sensitive information about users. Specif-
ically, we propose a privacy-preserving data publishing alternative that extends the privacy requirement
to the data collection phase. Because our proposal offers privacy-preserving conditions in both the data
collecting and publishing, it is suitable for scenarios where a central node collects personal data supplied
by a set of devices, typically associated with individuals, without these having to assume trust in the
collector. In particular, to limit the risk of individuals’ re-identification, the probabilistic k-anonymity
property is satisfied during the data collection process and the k-anonymity property is satisfied by the
data set derived from the anonymization process. To carry out the anonymous sending of personal data
during the collection process, we introduce the delocalized-record chain, a new mechanism of anonymous
communication aimed at multi-user environments to collaboratively protect information, which by not
requiring third-party intermediaries makes it especially suitable for private IoT networks (besides public
IoT networks).

INDEX TERMS Anonymous communication, privacy, k-anonymity, Internet of Things, privacy-preserving
data collection.

I. INTRODUCTION
Mining personal data from diverse electronic sources, such
as wearable devices, electronic health records, online retail
services or social networks, is an activity of great interest
to public and private entities. Particularly, wearable tech-
nology is one of the promising and growing areas of the
IoT, allowing tracking and data collecting to enhance health,
eldercare, security or lifestyle patterns, with applications
in fields as diverse as fitness or monitoring early stage
Alzheimer’s patients. Personal data collecting and processing
allow obtaining statistical conclusions regarding to health,
education, employability or consumer habits among others,
making this activity crucial to enhance the business decision-
making [1], health care [2] or for offering a customized
on-line experience [1].

However, when personal data are made available for sec-
ondary use, the individuals’ privacy may be compromised.
In order to overcome ethical and legal issues arising from the
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processing and transfer of personal data, governments have
developed laws to protect the personally identifiable infor-
mation [3], being some of the most important the Privacy Act
(PA) [4] and the Health Insurance Portability and Account-
ability Act (HIPAA) [5] at the United States of America, and
the General Data Protection Regulation (GDPR) [6] at the
European Union.

Personally identifiable information includes not only direct
identifiers (e.g., social security number or IP address), but
also quasi-identifiers, that is, non-identifying personal data
that, with an adequate cross-referencing, may lead to find
out the individual identity [7], [8]. Nowadays, individuals’
re-identification constitutes a real threat against privacy that
is being employed by data brokers [1] to build user profiles
for commercial and business purposes, or even to carry out
discriminatory practices in fields such as health insurance
management or personnel selection.

Tominimize the likelihood of individuals’ re-identification,
collected personal data must be subjected to an anonymiza-
tion process before being shared. Since the main objec-
tive of data collection is to conduct statistical analyses, the
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anonymization process should preserve the data analytical
utility as much as possible. This implies that the conclusions
or inferences extracted from the anonymous data must be
similar to those obtained from the original data. With the
goal of balancing privacy and utility preservation, several
models and methodologies have been proposed in the scope
of Privacy-Preserving Data Publishing (PPDP) [9]–[11], such
as k-anonymity or probabilistic k-anonymity privacy models,
and microaggregation or generalization masking methods.
PPDP methodologies mainly focus on the problem of

anonymizing large volumes of data collected by a central
party. In these cases, the responsibility for the anonymiza-
tion of the data lies with the organism which collects them,
whereas data holders do not play any role in this process.
They have to trust the ability and integrity of the collect-
ing entities. This may be an acceptable approach in some
cases, such as the anonymization of the data set obtained
from the patients of a hospital to be employed in statistical
studies by the scientific community, but in other less reliable
scenarios would be advisable to preserve privacy throughout
the data collection process (i.e., before the data reach the
central collector). In this way, each individual generating data
could participate in the anonymizing tasks avoiding a possible
compromising use of his/her personal information, either by
a negligent or a dishonest action from the central collector.

The provision of mechanisms that preserve privacy during
the data collection process, would not only be beneficial
for the individuals who generate the data, but also for the
companies that collect and process them, since the former
would be more willing to share their personal information.
With these objectives, different protocols have been proposed
in the scope of Privacy-Preserving Data Collection (PPDC)
[12], [13]. However, these PPDC protocols either have the
disadvantage of being vulnerable to network traffic analysis
attacks or have the limitation of requiring that a significant
part of the communications between the data sources and the
data collector be carried out through anonymous channels of
third parties, such as Tor or VPN providers, which can be
a problem for data collection processes deployed in private
networks.

In this paper, we propose a new privacy-preserving method
to generate k-anonymous data sets that extends the privacy
requirement to the data collection phase, without the data
holders having to put their trust in the data collector. Ourmain
contributions are as follows:
1) We define the concept of anonymity in the context of

personal data collection in terms of delocalization and
unlinkability.

2) We introduce a novel mechanism of collaborative
anonymous communication aimed at multi-user envi-
ronments, named delocalized-record chain. Our pro-
posal is characterized by being an autonomous solution
adapted to the distributed nature of an IoT environ-
ment, in which the users interested in getting anonymity
work in synergy to anonymize their data transmissions.
Because our solution lacks third-party intermediaries,

it is particularly appropriate for private networks, such
as private IoT networks.

3) We propose a new data collection protocol to generate
k-anonymous data sets, named Cooperative Privacy-
Preserving Data Collection protocol (cPPDC), that
offers privacy-preserving conditions in both data collec-
tion and publication, without limiting PPDPmethod that
can be used to k-anonymize the data set. Our protocol is
resistant to network traffic analysis attacks by using the
delocalized-record chain as a data transmission medium
in the collection phase.

4) We present an anonymity analysis of the proposed proto-
col against network traffic analysis attacks and collusion
attacks, and give a comparison with related protocols.

The rest of the paper is organized as follows. Section II
provides a background on PPDP, PPDC, and anonymous
communication channels. Section III defines the assumptions
of our work, and the anonymity requirements that must be
fulfilled in the data collecting process. Section IV presents
our method of collaborative anonymous communication and
Section V describes the cPPDC protocol. Section VI presents
an anonymity analysis of the proposed protocol and a com-
parisonwith related protocols. Finally, conclusions and future
research are summarized in Section VII.

II. BACKGROUND
A. PRIVACY-PRESERVING DATA PUBLISHING (PPDP)
PPDP provides a set of non-cryptographic methods intended
to anonymize personal data while preserving the statistical
usefulness of the information. Personal information is classi-
fied as:
–Direct identifiers: Data that uniquely identify an indi-

vidual, e.g., passport number, social security number or IP
address.
–Quasi-identifiers: Data that, on their own, do not identify

an individual, but in combination (e.g., age + ZIP code
+ occupation) may be used to re-identify individuals by
cross-referencing them with additional sources of identifying
information via data linking attacks [7]. Any data is poten-
tially a quasi-identifier, depending on the external informa-
tion available to the attacker [14].
–Confidential attributes: Data that contain sensitive infor-

mation whose disclosure could result in harm, embarrass-
ment, inconvenience, or unfairness to individuals, e.g., health
condition.
To minimize the identity disclosure and, consequently,

the possibility of gaining confidential information about a
specific individual, the data must be subjected to a de-
identification process before being shared. As a result, data
collectors publish a modified version of the original data
set, where the direct identifiers have been removed and the
quasi-identifiers have been altered (or masked) to satisfy cer-
tain privacy guarantees. Unlike identifiers, quasi-identifiers
must not be removed because they provide valuable informa-
tion for data analysis.
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Different privacy models have been proposed within PPDP
to protect quasi-identifiers with provable privacy guarantees
while maintaining (part of) their statistical utility. One of the
most common privacy models is k-anonymity [8], which is
based on homogenizing information to reduce its identifia-
bility. The individuals’ records in the data set are homog-
enized by creating groups of at least k records sharing the
same values in their quasi-identifiers. Since each combination
of quasi-identifiers in the k-anonymous data set is indistin-
guishable from at least k-1 other records, the probability
of re-identifying an individual from the data set is limited
to 1/k . The k parameter allows for adjusting the balance
between data privacy and integrity. The larger the k value,
the more anonymous the data set will be. Instead, lower k
values result in less alteration of data, thus yielding more
useful k-anonymous data sets for analysis. An alternative
approach that relaxes the indistinguishability requirement of
k-anonymity is probabilistic k-anonymity [14], which only
requires that the probability of re-identification be the same
as in k-anonymity, i.e., at most 1/k .

Mainly, two PPDP methods can be used to k-anonymize
the quasi-identifiers in a data set:

–Generalization and suppression [15]: The quasi-identifier
values are replaced by a range, if they are numerical
(e.g., the individual’s age is replaced by an age range), or by
a class, if they are nominal (e.g., the individual’s occupa-
tion is replaced by an occupational category). Suppression
contributes to reduce the amount of generalization required
to generate the k-anonymous data set by removing outlier
values. This approach has the disadvantage of requiring a
high computational cost to find an optimal generalization that
minimizes the information loss while satisfies k-anonymity.
–Microaggregation [16], [17]: This method, more practical

than the previous, partitions the data set into groups of at
least k records following a criterion of maximum similar-
ity on the quasi-identifiers. Then, the quasi-identifier val-
ues in each group are replaced by the group representative
value, typically the average value. This method is usually
applied to numerical data, although variants for nominal data
exist [18], [19].

To maximize statistical utility of the anonymized data set,
the quasi-identifiers of all individuals must be previously
known to properly define the ranges and classes needed to
generalize the quasi-identifier values, or the groups of k
records used by microaggregation, always with the target
of minimizing the information loss. This fact implies that
the k-anonymization process has to be centralized in the
collector.

B. PRIVACY-PRESERVING DATA COLLECTION (PPDC)
In an attempt to protect data at source, different strategies
have been proposed in the scope of Privacy-Preserving Data
Collection (PPDC) [12], [13]. These strategies have in com-
mon the segregation of data in the collection process. In a
first phase, only the quasi-identifiers are sent to the data col-
lector. With this information, the collector k-anonymizes the

set of received quasi-identifiers and distributes the resulting
k-anonymous partition to the individuals. In the following
phase, the confidential data are sent to the collector along
with the k-anonymous group to which the individual belongs.
This segregated collection contributes to anonymize data
because it allows confidential attributes to be disassociated
from original quasi-identifiers. However, all the effort of
anonymization at source would be useless if IP addresses of
the users’ devices are not properly anonymized during the
collection process, since this datum is inherently associated
to any communication between the individuals and the data
collector, and it univocally identifies the data holders.

In order to prevent the disclosure of IP addresses, [13]
proposes to use anonymous channels, such as Tor. Besides
the vulnerabilities these channels present, they have the dis-
advantage that they may not be always available for all indi-
viduals and collectors.

As an alternative, [12] suggests selecting leaders among
the data holders (two leaders by k-anonymous group) to
act as intermediaries in the phase of collection of confiden-
tial data, thereby preventing direct communications between
the individuals and the collector. The individuals of each
k-anonymous group send to the first leader their confiden-
tial data along with k-1 fake data to prevent real sensitive
information disclosure. In parallel, these fake data are also
sent to the second leader. Finally, the data collected by the
leaders are provided to the collector so that it can obtain the
k-anonymized data set by joining records and subtracting fake
data. Although it is an interesting proposal, the information
could be re-associated by network traffic analysis, since the
scheme does not incorporate cryptographic mechanisms to
protect data during communication between the parties.

C. ANONYMOUS COMMUNICATION
Different techniques to anonymize the IP addresses of the
users’ devices in a communication have been proposed in
the literature, which we classify as: multi-point intermediary
systems and single-point intermediary systems.

The main multi-point intermediary system, known as The
Onion Router (Tor) [20], proposes to establish an anonymiz-
ing circuit of several forwarding nodes that acts as a multi-
point intermediary between the user’s device (source node)
and the destination node. The purpose of this circuit is to
dissociate the payload (i.e., the actual data to be conveyed
in the network message) and the destination IP address from
the source IP address. For that, both the payload and the
destination IP address are concealed by the source node in
a nested cryptographic structure named onion, with as many
cryptographic layers as forwarding nodes have the Tor circuit,
typically entry node, middle node and exit node. As the
network message containing the onion passes through the Tor
circuit, each forwarding node 1) removes a layer of the onion
to discover the IP address of the next hop, and 2) replaces the
source and destination IP addresses of the network message
by the addresses of the immediately preceding and following
nodes. In this circuit, the user’s IP address only will be known
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by the entry node, and the payload and the destination IP
address only are known by the exit node. When the message
leaves the Tor circuit to be introduced in other networks and
reach the destination, it will have as source IP address the
address of the exit node, instead of the real source address.

Despite efforts to dissociate the content of the messages
from the users’ IP addresses, anonymity guarantees of Tor
could be compromised in cases where the adversary can
statistically correlate network traffic on both ends of the Tor
circuit [21]–[26]. For example, if an autonomous system is
involved on both ends, it could statistically correlate traffic
and infers the destination with which the source node is
communicating and, thus, link the content of the message
with the identity of the source node [27]–[29].

In single-point intermediary systems, such as systems
based on VPN servers [30], [31], a single node (VPN server)
acts as an intermediary by accessing to the destination on
behalf of the user. A ciphered channel between the user’s
device (source node) and the VPN server is generated to hide
the message from third parties. When the message leaves
the VPN server to reach the destination node, it will have
as source IP address the address of the VPN server, instead
of the real source address. In addition to being more vulner-
able to correlation attacks than the multi-point intermediary
systems [32], the single-point systems present a second draw-
back: the VPN server can link the content of the message with
the user’s IP address, which means that users have to place
their trust in VPN providers.

Above techniques achieve anonymity of the source nodes
by dissociating the values of certain fields in the networkmes-
sage. In particular, the payload and the destination IP address
are dissociated from the source IP address. However, as dis-
cussed above, advanced traffic analysis may re-associate this
information. In IoT environments, where multiple users have
the need to protect their identifying data, it would be desirable
to provide a new model of anonymous communication that
was multiuser-oriented and autonomous, in which the users
interested in getting anonymity work in synergy to protect
their information. Thus, instead of introducing uncertainty
into the relationship between fields of a network message
(inter-field uncertainty), which may be vulnerable to certain
traffic analysis, the participating nodes could collaborate to
introduce uncertainty inside the payload (intra-field uncer-
tainty) generating an anonymous collective networkmessage.

III. PRELIMINARIES
A. ASSUMPTIONS
We assume that the personal data collection is carried out in
an IoT environment, either a private IoT network or a public
IoT network, with multiple data generating nodes, called
generators, each typically associated with an individual. The
generators send data to a data collecting node, called collec-
tor, typically associated with an organization.

Generators, represented by Gi, are devices that take part in
a data collection process generating and supplying personal

data from their owners. In particular, each generator sends a
set of quasi-identifiers,Qi, and a set of confidential attributes,
Ci. The generators could be wearable devices designed to
gather health and exercise data from individuals, such as
biometric data, consumption habits or sleep patterns.

Collector is the party that gathers the personal data sup-
plied by the generators to build a k-anonymous data set
that can be shared with third parties while ensuring a min-
imum level of anonymity to the data holders. The resulting
k-anonymous data set is a modified version of the origi-
nal data set, where the values of the quasi-identifiers have
been altered (or masked), Q∗i , to satisfy privacy guarantees
of k-anonymity. A data collector could be a company that
collects health and exercise data supplied by the wearable
devices from its customers.

We assume participants in the data collection process, i.e.,
the generators and the collector, are semi-honest. This means
that they follow the rules of the data collection protocol,
but they may behave maliciously and try to infer personal
information about other participants by analyzing the data
received during the execution of the protocol.

We assume the collector knows the IP addresses of the
generators, and the generators know the IP address of the
collector.

B. ANONYMITY IN THE CONTEXT OF DATA COLLECTION
We define the concept of anonymity in the context of personal
data collection in terms of delocalization and unlinkability.

1) Delocalization requirement: neither the generators
nor the collector can univocally associate the quasi-
identifiers or the confidential attributes of a specific
individual with the IP address from his/her generator,
a piece of information classified as a direct identifier
within personally identifiable information.

2) Unlinkability requirement: neither the generators nor
the collector can univocally associate the original
quasi-identifiers of a specific individual with his/her
confidential attributes. If this requirement is not met,
a malicious generator or collector could use the indi-
vidual’s quasi-identifiers to re-identify him/her through
data linking attacks and, consequently, gain confidential
information about him/her.

IV. COLLABORATIVE ANONYMOUS SENDING
In this section, we propose a new mechanism of multiuser-
oriented, autonomous anonymous communication aimed at
IoT environments, where multiple nodes (generators) inter-
ested in getting anonymity work in synergy to decouple the
data records they wish to send from their IP addresses.

A. DELOCALIZED-RECORD CHAIN
In order to prevent individuals’ data records from being asso-
ciated with the IP addresses of their generators, we propose
these be sent jointly to the collector in a collective network
message that we call delocalized-record chain. We say that a
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FIGURE 1. Elemental communication procedure.

data record ri is a delocalized record if it cannot be univocally
associated with the IP address of its generator Gi.
The procedure to build the delocalized-record chain is rep-

resented in Fig. 1. Initially, the collector prepares a list with
the IP addresses of all the generators willing to participate in
the data collection process, n being the total number of par-
ticipating generators. Then, the chain is collaboratively built
by the generators following the order established in the list.
When a generatorGi receives the record chain (r1|| . . . ||ri−1)
from its predecessor Gi−1, it adds its record ri to the chain,
(r1||. . . ||ri−1||ri), before sending it to the next generator in the
list,Gi+1. Only when the chain has been completed by the last
generator in the list, it is delivered to the collector. As shown
in Fig. 1, an additional field, Si, is transmitted along with
the record chain (r1|| . . . ||ri−1||ri). Si is a control information
field that allows defining aspects related to the transmission
and processing of records, such as the list of IP addresses of
the participating generators.

This elementary collaborative submission is the basis for
decoupling data records from their IP addresses, but it is far
from achieving this objective since the transmitted data are
not protected, and it would be easy for any attacker (either an
internal adversary, such as a malicious generator or collector,
or an external adversary) to associate a particular record with
the IP address of its generator simply by following the order
of the chain. To reinforce our purpose of delocalization of
records during the chain assembly process, we incorporate in
our model the protection mechanisms detailed below.

1) DELOCALIZING THE RECORDS IN THE CHAIN
To prevent a particular record from being relocated by its
position in the chain, we propose to randomize these posi-
tions. Thus, each time a generator has to add its record to
the chain, this is placed in a random position among the
other records. When the chain is completed, the records will
be intermixed, occupying positions different from the order
established in the list defined by the collector.

However, since the chain is collaboratively built, any gen-
erator can access the content of the chain and view the records
added by the previous generators. This causes a circumstance
of vulnerability at the beginning of the chain assembly pro-
cess, when the uncertainty introduced by mixing the records
is low (during the addition of the first records) or null (in the
case that the added record is the first). To guarantee that the
uncertainty introduced by mixing the records be enough to

FIGURE 2. Delocalized-record chain.

obfuscate their location, we propose that the records can only
be revealed when the chain has been completed, i.e., when
the chain is delivered to the collector. For that, the collector
generates the key pair (PKc, SKc), such that the private key
SKc is kept secret by the collector and the public key PKc
is revealed in a previous stage to all generators willing to
participate in the process. Then, each participant generator
ciphers its record ri with the public key of the collector before
adding it to the chain, the result being denoted by PKc(ri).
Because only the collector is able to decipher the records
with its private key SKc, we guarantee that the content of the
chain will only be revealed when the chain has finished being
assembled and delivered to the collector.

2) PROTECTING THE DELOCALIZED-RECORD CHAIN FROM
INCOMING AND OUTGOING TRAFFIC ANALYSIS
By comparing incoming and outgoing traffic from a genera-
tor, a malicious collector could identify the ciphered record
that the generator has added to the chain and consequently
link it with its IP address. To avoid the collector gains useful
information from network traffic analysis, the whole chain
must be ciphered through symmetric encryption when it is
transmitted between generators.

Thus, each time a generator Gi has to send the chain to
the next generator Gi+1, a session key Ki is shared between
them through the Diffie-Hellman method, which enables two
parties jointly establish a shared secret key over an insecure
channel. Once the session key Ki has been established, Gi
ciphers the whole chain with Ki before sending it to Gi+1.
When the generator Gi+1 receives the chain, it must decipher
it with the same key before adding its record. Fig. 2 represents
in detail the conceptual idea of delocalized-record chain.

Since the collector does not know the session keys used
during transmission, it will not be able to view the content the
chain going in and out of the generators, thus thwarting any
attempt to analyze incoming and outgoing traffic. In addition,
because each pair of consecutive generators in the chain gen-
erates a different session key, no generator will be able to view
both the incoming and outgoing chain of another generator,
which also prevents malicious generators from succeeding in
re-localizing records by analyzing network traffic.

V. COOPERATIVE PRIVACY-PRESERVING DATA
COLLECTION PROTOCOL
In this section, we introduce our Cooperative Privacy-
Preserving Data Collection protocol (cPPDC), which uses
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FIGURE 3. Flowchart of the first phase.

the anonymous collaborative sending method proposed in
Section IV as the basis of communication and the notion of
segregated collection that related works follow.

The cPPDC protocol is composed of four phases:
–In the first phase, the collector prepares the list of gener-

ators that will participate in the data collection process.
–In the second phase, the generators send their quasi-

identifiers to the collector through the anonymous collabo-
rative sending method proposed in Section IV.

–In the third phase, the collector generates a k-anonymous
partition with the collected quasi-identifiers.

–In the fourth phase, using again the method proposed in
Section IV, the generators send to the collector their confiden-
tial attributes together with the group of the k-anonymous par-
tition in which they have been classified. Finally, the collector
generates the k-anonymous data set by joining this informa-
tion with the masked quasi-identifiers of the k-anonymous
partition obtained in the third phase.

A. FIRST PHASE: SETUP
Fig. 3 represents the flowchart of the first phase. The collector
starts the setup phase sending an invitation to the generators
to participate in the data collection process, N being the
number of generators that are candidates to participate in the
cPPDC process. Both the value of the minimum number of
participants, m, and the minimum number of members of
each anonymous group, k , must be previously defined by the
collector and sent in the invitation, along with the public key
of the collector, PKc, specified in Subsection IV.A.

Then, the collector creates a list, L0, with the IP addresses
of those generators that accept to participate in the process.
Only if the number of generators that accept to participate,
n, is equal to or greater than m, the data collection process is
started.

FIGURE 4. Flowchart of the second phase.

B. SECOND PHASE: ANONYMOUS SENDING OF
QUASI-IDENTIFIERS
In the second phase, the generators collaborate to send anony-
mously their quasi-identifiers to the collector through the
delocalized-record chain defined in Subsection IV.A. The
flowchart of this phase is represented in Fig. 4.

The collector starts the process initializing the chain. The
initial chain consists only of the initial list of participants, L0,
which is entered into the control information field described
in Subsection IV.A., i.e., S0 = L0. Then, the collector sends
the chain to the first generator of the list and transfers control
of the process to the generators.

Following the method described in Subsection IV.A.,
each generator, Gi, adds its ciphered record, PKc(ri), to the
delocalized-record chain. In this phase, ri is formed by the
set of quasi-identifiers,Qi, and a nonce [33], nci, generated by
Gi. The nonces act as pseudonyms of the records and are used
by the collector in the next phase to indicate to which group
of the k-anonymous partition each record has been assigned.
Before sending the chain to the next generator in the list, Gi
updates the list of participants deleting its IP address to obtain
Li, such that Si = Li. When the address list is empty or none
of the remaining generators respond, the delocalized-record
chain is considered complete. If the number of generators that
have finally participated is equal to or greater than m, the
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chain is delivered to the collector. Otherwise the process is
cancelled.

C. THIRD PHASE: K-ANONYMIZATION OF
QUASI-IDENTIFIERS
In the third phase, the collector generates a k-anonymous
partition {P1, . . . ,Pp} with the set of records ri = (Qi, nci)
received in the previous phase. Any PPDP method that satis-
fies k-anonymity, as those depicted in Section II, can be used
to k-anonymize the quasi-identifiers of the set of received
records. The resulting partition will be formed by disjoint
groups, Pj, of at least k records. Each group Pj contains
the nonces of the records belonging to that group, along
with the masked quasi-identifiers for that group, i.e., Pj =
{(nc(1), . . . , nc(s)), Q∗j }, nc(1) being the first nonce of the
group which does not necessarily have to coincide with the
nonce nc1 of the first generator in the chain G1, nc(s) being
the last nonce of the group such that s ≥ k , and Q∗j being
the masked values of the quasi-identifiers for that group. The
masked value for a quasi-identifier is shared by all records of
the group and replaces the values that those had originally.

From this partition the collector creates a partition table,
T0, with p rows, one for each partition group. Each row
contains the index of the partition group l, the nonces of the
records belonging to that group and a counter initialized to 0.

D. FOURTH PHASE: ANONYMOUS SENDING OF
CONFIDENTIAL DATA
In the fourth phase, the generators again collaborate to send
anonymously their confidential attributes to the collector
through a new delocalized-record chain. The flowchart of this
phase is represented in Fig. 5.

The collector starts the process similarly to Phase 2, but
initializing the chain with S0 = (L0, T0). Again, following
the method described in Subsection IV.A, the generators take
control of the process to build the delocalized-record chain.
First, each generator, Gi, has to locate which group of the
k-anonymous partition it belongs to, looking for its nonce
in the partition table. Then, Gi creates its data record, ri,
composed by its confidential attributes, Ci, and the index,
l, of the group of the k-anonymous partition to which it
belongs. Once the record is ciphered with the public key of
the collector, PKc(Ci, l), this is added to the chain. Before
sending the chain to the next generator in the list, Gi updates
both the list of participants and the partition table. The list is
updated in the same way than the second phase, whereas the
partition table is updated by increasing in one unit the counter
of the corresponding row.

Finally, the last generator in the chain has to check that
every counter of the partition table has a value equal to or
greater than k . If this requirement is not met, the process must
be cancelled. If this phase ends successfully, the collector
receives a delocalized-record chain containing the confiden-
tial attributes from each generator, along with its partition
group index. By joining this information to the k-anonymous

FIGURE 5. Flowchart of the fourth phase.

partition obtained in the third phase, the collector obtains the
k-anonymous data set.

VI. EVALUATION
In this section, we analyze whether our cPPDC proto-
col has achieved the anonymity requirements defined in
Subsection III.B.We evaluate these requirements in the worst
scenario, that is, when the adversary is a participant in the
data collection process, since an internal adversary may have
more information than an external adversary. We assume that
any participant, be it a generator or the collector, is a poten-
tial adversary and may therefore be interested in gathering
personal data from other participants. In our analysis, we go
further and not only evaluate our protocol against isolated
adversaries, but also against a collusion of adversaries.

We assume a practical environment where both (incoming
and outgoing) network traffic analysis attacks and collusion
attacks are possible. By analyzing and correlating network
messages or colluding with other participants, the adver-
saries may gain knowledge about the personal information
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of their victims. In these terms, we evaluate whether our
cPPDC protocol is capable of, on the one hand, preventing
adversaries from associating the personal data transmitted
during the collection process with the IP addresses of the
data holders (delocalization requirement) and, on the other
hand, preventing adversaries from univocally associating the
confidential attributes of a specific individual with his/her
original quasi-identifiers (unlinkability requirement).
In addition, we analyze the privacy guarantees on the

collector side and compare our protocol with other related
works in terms of anonymity. Finally, we analyze impact of
the cryptographic processing overhead in the data collection
phases of our protocol.

A. ANONYMITY ANALYSIS OF THE PROPOSED cPPDC
PROTOCOL
Theorem 1: cPPDP satisfies the delocalization requirement
against (incoming and outgoing) network traffic analysis
attacks and collision attacks, unless the collusion were either
between the victim’s neighbouring generators and the col-
lector or between the second generator and the collector, the
victim in this case being the first generator.

Proof:
If the adversary is a generator:
1) Because the individuals’ records are encrypted with the

public key of the collector, no generator will be able
to know their content. Only the collector can know the
content by using its private key.

2) Because the individuals’ ciphered records are randomly
intermixed in the chain, occupying positions differ-
ent from the order followed in the assembly process,
no generator will be able to relocate them by analyzing
their position. Only the first ciphered record added to
the chain could be relocated by the second generator,
although, due to the point 1, the IP address of the relo-
cated record will not be able to be correlated with the
content of the record (i.e., with the record in clear text).

3) Because the chain is encrypted when it is transmitted
between generators and each pair of consecutive gener-
ators uses a session key which is different from those
of the other pairs, no generator will be able to examine
the incoming and outgoing chains of other generators.
A generator can only know the outgoing chain from its
direct predecessor. Consequently, no generator will be
able to use the comparison of incoming and outgoing
traffic to discover the ciphered records that other gener-
ators have added to the chain.

Based on points 1-3, it is concluded that a malicious
generator cannot univocally associate the quasi-identifiers or
the confidential data of a specific individual with his/her IP
address, even in cases where incoming and outgoing network
traffic analysis attacks were carried out or where the mali-
cious generator were second in the chain.

If the adversary is the collector:
4) Because the collector receives the chain from the last

generator, the collector will only be able to associate

the set of received records with the IP address of this
generator, without being able to determine the IP address
of each record.

5) Because the individuals’ records are randomly inter-
mixed in the chain (see the point 2), the collector will
not be able to relocate them by analyzing their position.

6) Because the chain is transmitted encrypted with session
keys unknown to the collector, the collector will not be
able to use the comparison of incoming and outgoing
network traffic to discover the record that each generator
has added to the chain.

Based on points 4-6, it is concluded that a malicious
collector cannot univocally associate the quasi-identifiers or
the confidential data of a specific individual with his/her IP
address, even if the collector carried out an incoming and
outgoing network traffic analysis attack.

If the adversary is a collusion of participants:
7) If one generator and the collector were in collusion, due

to the points 2 and 3, they could not discover the records
that other generators have added to the chain, unless
the malicious generator were second in the chain. In the
latter case, due to the point 1, the content of the first
record could be correlated with the IP address.

8) If the neighbouring generators of a given generator (i.e.,
the direct predecessor and successor in the chain) were
in collusion, due to the point 3, they could discover the
record that such generator has added to the chain, but,
due to the point 1, they could not know its content.

9) If the neighbouring generators of a given generator and
the collector were in collusion, due to the point 3, they
could discover the record that such generator has added
to the chain, and, due to the point 1, they could also
know its content. Consequently, they could correlate the
content of the record with the IP address.

Based on points 7-9, it is concluded that a collusion attack
cannot succeed in relocating the records, unless the collusion
were either between the victim’s neighboring generators and
the collector or between the second generator and the collec-
tor, the victim in this case being the first generator.
Theorem 2: cPPDP satisfies the unlinkability requirement

against (incoming and outgoing) network traffic analysis
attacks and collision attacks, unless the collusion were either
between the victim’s neighbouring generators and the col-
lector or between the second generator and the collector, the
victim in this case being the first generator.

Proof:
If the adversary is a generator:

10) Because all records in the chain are encrypted with the
public key of the collector (see the point 1), no generator
will be able to view the confidential data of other gen-
erators during the fourth phase of the cPPDC protocol
or the original values of the quasi-identifiers during the
second phase, even if the generator carried out a network
traffic analysis.

Based on point 10, it is concluded that a malicious gen-
erator cannot univocally associate the confidential data of
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a specific individual with his/her quasi-identifiers because
these data are unknown for it.

If the adversary is the collector, it is necessary to analyze
the information that the collector handles during the phases
of the cPPDC protocol:

11) During the second phase, the collector obtains ri = (Qi,
nci), i.e., the individuals’ original quasi-identifiers along
with their pseudonyms.

12) During the third phase, the collector generates a
k-anonymous partition with the set of received records.
Each k-anonymous group {(nc(1), . . . , nc(s)), Q∗j } con-
tains the pseudonyms of the records belonging to
that group, (nc(1),. . . , nc(s)), along with the masked
quasi-identifiers for that group, Q∗j . The number of
records in each k-anonymous group is greater than or
equal to k , i.e., s ≥ k .

13) During the fourth phase, the collector obtains the indi-
viduals’ confidential data to associate them with the
masked quasi-identifiers, (Q∗j , Ci).

Based on points 11-13, it is concluded that the collector
cannot associate the confidential data Ci of a specific indi-
vidual with his/her original quasi-identifiers Qi.
If the adversary is a collusion of participants:

14) If one generator and the collector were in collusion, due
to the points 2 and 3, they could not discover the records
that other generators have added to the chain, unless
the malicious generator were second in the chain. In the
latter case, due to the point 1, the content of the first
record could be correlated with the IP address, in both
phase 2 (during the collecting of quasi-identifiers) and
phase 4 (during the collecting of confidential data). Con-
sequently, this collusion could link the confidential data
of the first individual in the chain with his/her original
quasi-identifiers.

15) If the neighbouring generators of a given generator (vic-
tim) were in collusion, due to the point 3, they could
discover the record that such generator has added to
the chain, but, due to the point 1, they could not
know its content. Consequently, they could not link
the confidential data of the victim with his/her original
quasi-identifiers.

16) If the neighbouring generators of a given generator and
the collector were in collusion, due to the point 3, they
could discover the record that such generator has added
to the chain, and, due to the point 1, they could also
know its content. Consequently, they could correlate
the content of the record with the IP address, in both
phase 2 (during the collecting of quasi-identifiers) and
phase 4 (during the collecting of confidential data).
Consequently, they could link the confidential data of
the victim with his/her original quasi-identifiers.

Based on points 14-16, it is concluded that a collusion
attack cannot succeed in data linking, unless the collusion
were either between the victim’s neighbouring generators

and the collector or between the second generator and the
collector, the victim in this case being the first generator.
Theorem 3: cPPDP satisfies the probabilistic k-anonymity

privacy model on the collector side.
Proof:
Based on points 11-13, if the data collector behaved mali-

ciously and tried to infer confidential information about a
specific individual by correlating the data received during
the execution of the protocol, the collector could, at most,
associate the individual’s confidential data,Ci,, with the set of
original quasi-identifiers of the k-anonymous group to which
the individual belongs, (Q(1), . . . ,Q(s)), through the follow-
ing reverse mapping of the information: (Ci, Q∗j ) → {Q∗j ,
(nc(1), . . . , nc(s))}→ {(nc(1), . . . , nc(s)), (Q(1), . . . ,Q(s))}.
Therefore, given the confidential data Ci of a specific

individual, the collector will be able to determine, at most,
the set of k values among which the original quasi-identifiers
would be. That is, the probability that the collector correctly
correlates Ci and Qi is at most 1/k , thereby satisfying the
property of probabilistic k-anonymity. Logically, the larger
the k value, the greater the uncertainty of the collector will
be.

B. COMPARISON WITH OTHER PPDC PROTOCOLS
In this section, we compare our protocol with those PPDC
protocols that, like ours, neither limit the PPDP method
that can be used to k-anonymize the data set nor require
third-party intermediaries to anonymize communications
in the data collection process. In particular, our protocol
is compared with the PPDC protocol [12] discussed in
Subsection II.B, since, as far as we know, it is the only related
protocol that meets the above characteristics.

Unlike our protocol, [12] is vulnerable to network traffic
analysis attacks because the network messages are trans-
mitted unencrypted. Thus, by capturing and analysing the
network messages that the individuals send to the collector in
the first phase of the protocol, any adversary could associate
the individuals’ original quasi-identifiers (conveyed in the
payloads of the network messages) with their IP addresses
(conveyed in the headers of the network messages), i.e.,
the adversary could get the trace (IP address, Qi). In the
second phase, the adversary could associate the individuals’
confidential data with their IP addresses by capturing and
correlate themessages transmitted to the leaders. Specifically,
the adversary could get the traces (IP address, Q∗j , Ci, C

fake
i )

and (IP address, C fake
i ) of the messages addressed to the first

leader and the second leader, respectively. By subtracting
the second trace from the first one, the adversary would
achieve the relation (IP address, Ci). In view of the above,
it is concluded that the PPDC protocol [12] does not satisfy
the delocalization requirement. Consequently, [12] also does
not satisfy the unlinkability requirement, since any adversary
could associate the original quasi-identifiers of the individu-
als with their confidential attributes by correlating the traces
(IP address, Qi) and (IP address, Ci) by the IP address. Note
that both requirements may be infringed by any participant in
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the protocol through a simple traffic analysis, without even
requiring a collusion attack.

Like our protocol, [12] also satisfies the probabilistic
k-anonymity privacy model on the collector side. There-
fore, the probability that the collector correctly correlates the
confidential attributes of a specific individual with his/her
original quasi-identifiers is, at most, 1/k .

C. ANALYSIS OF THE CRYPTOGRAPHIC PROCESSING
OVERHEAD
The cryptographic operations carried out by each generator
Gi in the data collection are as follows:

1) Secret sharing with the previous generator Gi−1 in the
delocalized-record chain.

2) Symmetric decryption of the incoming chain by using
the shared secret as the key.

3) Asymmetric encryption of the record that the generator
Gi must add to the delocalized-record chain.

4) Secret sharing with the next generator Gi+1 in the
delocalized-record chain.

5) Symmetric encryption of the outgoing chain by using the
new shared secret as the key.

To evaluate the impact of the cryptographic processing
overhead in data collection, we considered a simulated net-
work scenario formed by 50 generators with 1800MHzARM
Cortex A-17 processors of 32 bits. In our simulation, we used
strong cryptosystems currently applied in network environ-
ments. Specifically, we used RSA-2048 (2048-bit modulus)
as the public key cryptosystem, Diffie-Hellman (2048-bit
modulus) to share a 256-bit secret, and AES-256 as the
symmetric cryptosystem.

Timings of each of the cryptographic operations carried out
by the generators in the Phase 2 of our simulation are shown in
Table 1, similar results were obtained for Phase 4. Timings are
based on the measurements on ARM Cortex A-17 processors
reported by the European Network of Excellence for Cryp-
tology [34]. The data records collected in Phase 2 contains
one nonce of 128 bits and one quasi-identifier of 344 bits
formed by four attributes: age, home city, education and
occupation. On the collector side, the nominal values of the
attributes education and occupation were associated with
concepts modeled in the WordNet ontology [35] to be able to
microaggregate nominal data through semantically-grounded
PPDP mechanisms [18], [19].

As we can see in Table 1, the processing time for opera-
tions 1, 3 and 4 is constant during the data collection, regard-
less of the position of the generator in the chain. Timings for
the encryption/decryption of the chain (operations 2 and 5)
depend on the chain size, which changes in each hop of the
data collection (each generator adds its encrypted record and
removes its IP address from the list). As an example, the
incoming chain forG1 is formed by the list, L0, with the 32-bit
IPv4 addresses of those generators that accept to participate
in the process (200 bytes), and the outgoing chain is formed
by the updated list, L1, (196 bytes) and the ciphered record

TABLE 1. Processing time of the cryptographic operations carried out by
a generator in the Phase 2 of the proposed protocol.

FIGURE 6. Execution time of the cryptographic operations performed by
each generator in the Phase 2 of the proposed protocol.

from G1 (331 bytes). As shown Table 1, secret sharing is the
operation with the hardest processing because it includes the
calculation of the shared secret key and the generation of the
key pair used in the calculation.

As overview, Fig. 6 shows the time in milliseconds of the
set of cryptographic operations performed by each generator
in the Phase 2 of the protocol. According to the position of
the generators in the chain, the timings range from 2.6 ms
to 3.0 ms, which evidences that cryptographic processing
overhead does not severely impact on data collection.

VII. CONCLUSION
In this paper, we have presented a new protocol for the
privacy-preserving data collection. The proposed protocol is
capable of generating k-anonymous data sets in IoT environ-
ments, protecting at source the personal data that a set of
devices sends to a central collector. To extend the privacy
requirement to the data collection phase, our protocol use a
new mechanism of collaborative anonymous communication
named delocalized-record chain. Since our protocol does
not require third-party anonymous communication channels,
its application is especially relevant in IoT environments
deployed on private networks.

As a result, our solution offers privacy-preserving
conditions in both the data collection and publication. In par-
ticular, our protocol is capable of: (1) preventing adver-
saries from associating the personal data transmitted during
the collection process with the IP addresses of the data
holders (delocalization requirement), (2) preventing adver-
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saries from univocally associating the confidential attributes
transmitted during the collection process with the original
quasi-identifiers of their holders (unlinkability requirement).
Anonymity analysis shows these conditions are fulfilled
even in the face of (incoming and outgoing) network traf-
fic analysis attacks and several cases of collusion attacks.
Moreover, the probabilistic k-anonymity property is satisfied
on the collector side, that is, if the collector tried to infer
personal information about the participants by analyzing data
received during the execution of the protocol, the probability
that the collector would correlate the confidential data of a
given individual with their quasi-identifiers is at most 1/k .
Finally, the k-anonymity property is satisfied by the resulting
anonymized data set to be published or shared with third
parties.

Future work will be devoted to test the benefits of our
approach in specific IoT applications, such as IoT ecosystems
deployed in private networks with Field-Programmable Gate
Arrays (FPGAs) acting as providers of health and exercise
data from a community of individuals to a central collector.
Finally, we plan to also protect confidential data by incorpo-
rating in our scheme other privacy models, such as l-diversity
[36] or t-closeness [37].
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