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Abstract: Decisions concerning crucial and complicated problems are seldom made by a single
person. Instead, they require the cooperation of a group of experts in which each participant has their
own individual opinions, motivations, background, and interests regarding the existing alternatives.
In the last 30 years, much research has been undertaken to provide automated assistance to reach
a consensual solution supported by most of the group members. Artificial intelligence techniques
are commonly applied to tackle critical group decision-making difficulties. For instance, experts’
preferences are often vague and imprecise; hence, their opinions are combined using fuzzy linguistic
approaches. This paper reports a bibliometric analysis of the ample literature published in this
regard. In particular, our analysis: (i) shows the impact and upswing publication trend on this topic;
(ii) identifies the most productive authors, institutions, and countries; (iii) discusses authors’ and
journals’ productivity patterns; and (iv) recognizes the most relevant research topics and how the
interest on them has evolved over the years.

Keywords: group decision-making; consensus decision-making; artificial intelligence; bibliometrics;
science mapping

1. Introduction

Making decisions under complex and uncertain situations frequently requires the cooperation
of a team of experts, each one with their own background, opinions, motivations, etc. As Huber [1]
already noticed in 1984, in these circumstances, experts usually need to spend considerable time in
meetings to reach a collective agreement. For more than 30 years, research on Group Decision-Making
(GDM) systems have pursued saving much of this time by providing automated support to accomplish
consensual decisions [2,3].

Figure 1 sketches the general GDM framework, where a group of experts desire to make a
collective decision among a set of alternatives. First, they express their individual preferences on the
alternatives. Then, those preferences are combined using an aggregation function. As typically the
resulting collective preference does not achieve experts’ consensus, a feedback mechanism assists
experts in changing their preferences for augmenting the consensus level.
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Figure 1. GDM general schema.

Experts’ preferences are often vague and imprecise [4,5]. In these situations, Artificial Intelligence
(AI) techniques are applied. For example, experts’ opinions are sometimes expressed as fuzzy
preference relations that for each pair of alternatives Ai and Aj, indicate the expert’s preference
degree of Ai over Aj. In these cases, individual preferences are aggregated using Ordered Weighted
Averaging (OWA) operators [6], and fuzzy consensus models look for a solution supported by all or,
at least, the majority of the experts [7]. Other times, experts’ preferences are conveyed linguistically,
combined with Linguistic Ordered Weighted Average (LOWA) operators [8], and linguistic consensus
models are used [9]. There are many other real-world GDM problems that use AI techniques as well,
such as dealing with heterogeneous preference representation structures [10], detecting and managing
non-cooperative experts’ behaviors [11], etc.

For instance, Ertugrul [12] reports the AI-GDM application for achieving a consensual decision
concerning the facility location of a Turkish textile company, which has experienced a demand growth
and thus needs to decide among three new alternative locations. The decision committee is composed
of three experts that evaluate the locations according to five criteria: (i) favorable labor climate,
(ii) proximity to markets, (iii) community considerations, (iv) quality of life, and (v) proximity to
suppliers and resources. Experts express their preferences and criterion importance using linguistic
variables (e.g., “I consider that the importance of proximity to markets is Very High, and that the
second location Poorly satisfies this criterion”). Then, experts’ agreement is accomplished using
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [13].

Given the great applicability of AI-GDM to a variety of domains (e.g., energy policies [14],
green economy [15], web 2.0 communities [16], construction industry [17], animal behavior [18],
water allocation management [19], supply chain coordination [20], library quality evaluation [21],
construction project management [22], offshore wind farm siting [23], airport ground access [24], etc.),
much research has been published on this topic.

This paper main contribution is to provide a systematic analysis of the vast literature published
for the last 30 years on AI-GDM. To do so, a sample of 2862 articles gathered from Clarivate’s Web of
Science (WoS) is examined. Analyzing manually such a large sample would be difficult and error-prone,
and thus automated procedures are preferable [25–28]. The science of science provides a collection
of techniques to analyze scientific documents to identify patterns and trends [29–32]. In particular,
this paper adopts two approaches: performance analysis [33] and science mapping [34]. Performance
analysis estimates the productivity and impact of the scientific actors (researchers, organizations, etc.)
measuring how frequently articles are cited. This paper uses the h-index [35], which is one of the most
widespread indicators for citation analysis. Science mapping uncovers the structural and dynamic
aspects of scientific research, quantifying and visualizing its thematic subfields. This paper uses the
co-word analysis method [36], which accounts for the association strengths of the papers’ keywords.
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Using both science mapping and performance analysis, this paper answers the following Research
Questions (RQs):

• RQ1: How is the number of publications on AI-GDM evolving over the years?
• RQ2: What is the impact of the research literature on AI-GDM?
• RQ3: Who are the most productive authors?
• RQ4: Is there any authors’ productivity pattern?
• RQ5: How do the most productive authors collaborate?
• RQ6: What countries and institutions are leading research?
• RQ7: What journals are publishing most articles?
• RQ8: Is there any journal productivity pattern?
• RQ9: What are the most relevant themes of research?
• RQ10: How has the interest in those themes evolved over time?
• RQ11: What are the main application domains?

The remaining of this paper is arranged as follows: Section 2 introduces the materials and methods
used to undertake our bibliometric analysis; Section 3 reports the analysis results and provides some
discussion regarding the research questions above; finally, Section 4 summarizes the conclusions of
our work.

2. Materials and Methods

This section describes the systematic procedure we have followed to analyze the literature
on AI-GDM.

2.1. Bibliometric Workflow

The workflow suggested by Cobo et al. [29] has been adopted to undertake our analysis systematically,
which is similar to others proposed in the literature, such as PRISMA [37] or Börner et al. [38].

Figure 2 shows the followed workflow, which is organized in three stages:

Data 
retrieval

Data 
analysis

Data
normalization

Scopus

Figure 2. Followed bibliometric workflow.

1. Data retrieval. As many experts have stated [39–41], obtaining all the articles relevant for a
literature review is unrealistic. The objective is then to achieve an unbiased publication sample
that represents the population satisfactorily.

A sample of 2,862 bibliometric records was gathered from the Clarivate WoS database using the
following query:

1 TOPIC: ‘‘Group Decision ’’ NEAR/0 (Making OR Support)
2 Refined by WEB OF SCIENCE CATEGORIES: COMPUTER SCIENCE ARTIFICIAL INTELLIGENCE
3 Timespan: 1900 -2019
4 Indexes: SCI -EXPANDED , SSCI , A&HCI , CPCI -S, CPCI -SSH , BKCI -S, BKCI -SSH , ESCI , CCR -EXPANDED , IC

The first line sets the topic of the analysis; the NEAR/0 operator forces that (Making OR Support)
follows immediately Group Decision, but tolerates spaces and the ‘-’ character (e.g., the query
catches articles with Group Decision-Making and Group Decision-Making). As this paper focuses
on the application of AI techniques to GDM, Line 2 limits the scope to the WoS category Computer
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Science Artificial Intelligence. Line 3 sets the time period of the records: every article published
until 2019. Finally, Line 4 specifies the WoS indexes against the query is thrown.
As a final remark, the criterion to select WoS instead of other databases, such as Google Scholar
or Dimensions, is its outstanding data quality prestige [42].

2. Data normalization. Bibliographic data are sometimes not normalized enough [29,30]: an author
may appear differently in several records, the same concept may correspond to distinct keywords,
etc. These problems can bias the subsequent analysis. For this reason, we preprocessed the data
to guaranty its normalization.

3. Data analysis. The normalized data were examined using two widespread bibliometric
procedures [43]: performance analysis and science mapping. Both techniques have been
successfully applied in recent studies (e.g., [25,26,28]) because they complement each other very
well: performance analysis determines the importance of the bibliometric elements, and science
mapping models how those elements are interrelated.

2.2. Performance Analysis

The primary method to assess research performance is citation analysis [44]. The Hirsch index [35],
typically known as h-index, is probably the most commonly accepted citation analysis indicator [45].
If the index is used to quantify the author’s productivity, then it is defined as follows:

An author has index h whenever h of her n papers have at least h citations each, and the
remaining n − h papers have less than or equal to h citations each.

Furthermore, the h-index concept can be adapted to account for the performance of any
bibliographic element: articles [46], journals [45], research organizations, etc.

2.3. Science Mapping

Three complementary techniques [47] were applied to identify the key research topics,
the significance and role that those topics play, and how the interest in the topics has evolved over
time. The following sections introduce these techniques.

2.3.1. Thematic Network Identification

A method called co-word analysis [36] was used to recognize the most relevant topics in AI-GDM
research. Co-word analysis works by measuring the co-occurrence frequency of pairs of article’s
keywords. Co-occurrences are first normalized [48], using the equivalence index [34] typically. Then,
a clustering algorithm groups the keywords in function of the computed equivalence indexes [49],
corresponding each group to a thematic network, i.e., to a key topic. In particular, the clustering
algorithm we applied was simple centers [34].

2.3.2. Strategic Diagrams

The role that each thematic network plays in AI-GDM research was modeled using the density and
centrality measures. Density [34] accounts for the thematic network internal coherence by examining
the links between keywords inside the network. Centrality [50] estimates the interaction degree of the
network with others by analyzing the links between keywords inside and outside the network.

Strategic diagrams are then used to provide a global representation of all topics’ role. In these
diagrams, the x-axis and y-axis denote the network’s centrality and density, respectively. Thus networks
are classified according to the quadrants where they are placed [51,52]; see Figure 3.
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Figure 3. Strategic diagram’s quadrants.

2.3.3. Maps of Conceptual Evolution

As the years go passing by, the vocabulary authors employ evolves: whereas some new words
appear, others fall into disuse. Hence, the keyword set used in each period provides information
concerning if the number of researched topics increases (new terms are included in the set), decreases
(old words are erased from the set), or remains stable. Following the indications given in [47], we used
the Inclusion index to track the vocabulary evolution in AI-GDM.

3. Results and Discussion

The following sections summarize the results of our analysis and answer the research questions
this paper targets.

3.1. How Has the Number of Publications on AI-GDM Evolved over the Years? (RQ1)

Figure 4 shows the number of published papers per year. Colors blue and yellow denote periods
of stability and growth, respectively. In particular, four stages can be distinguished:

1. During the first ten years (from 1991 to 2000), the fundamental ideas were proposed and
developed in 82 articles.

2. The subsequent nine years (from 2001 to 2009) correspond to a growth period, where 540 articles
where published.

3. A short period of three years (from 2010 to 2012) with a stable publication rate (121.33 articles per
year on average, accumulating a total of 364 papers).

4. A rapid growth period that lasts up to present days (from 2013 to 2019), where 1856 articles have
been published.
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Figure 4. Number of published papers per year.
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3.2. RQ2: What Is the Impact of the Research Literature on AI-GDM? (RQ2)

Citations to the published literature on AI-GDM have also followed an upswing trend. Figure 5
represents the evolution over time of the total number of citations to all the articles in the sample.
The articles’ h-index is 113.
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Figure 5. Sum of times cited per Year.

3.3. Who Are the Most Productive Authors? (RQ3)

Table 1 summarizes the authors who have published the highest number of papers, including
also the total number of citations that those papers have received, and the authors’ h-index (limited to
the sample).

Table 1. Most prolific authors.

Author #Papers #Citations h-Index

HERRERA-VIEDMA E 135 7182 44
XU ZS 122 7778 40
CHICLANA F 72 4081 31
LIU PD 64 1773 22
MARTINEZ L 64 2337 19
CHEN HY 53 951 16
CABRERIZO FJ 51 1905 15
HERRERA F 48 3269 23
DONG YC 46 2438 24
ZHOU LG 46 871 15

3.4. Is There Any Authors’ Productivity Pattern? (RQ4)

Figure 6 represents the number of authors per year. As the number of articles increases over time,
the number of authors rises as well. There is a total of 3514 authors. Although most of them have
published a pretty reduced number of papers (67.92% of the authors have written only one paper
in 29 years), a small group of authors have contributed with a much bigger number of articles (8.22% of
the authors have published at least five articles). This fact is not surprising, as it is consistent with one
of the fundamental laws in bibliometrics: Lotka’s law [53] (also known as the inverse square law).
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Figure 6. Number of authors per year.
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In 1926, after analyzing authors’ productivity in different domains, Lotka found that the number
of authors with n papers is usually inversely proportional to n2. In our case, 2,387 authors have written
one article; hence, Lotka’s law predicts that the number of authors that have published n papers
should be 2387

n2 . Figure 7 compares the empirical distribution found in the sample with the distribution
predicted by Lotka’s law, showing that both distributions fit much.
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Figure 7. Comparison of the number of authors that have published n papers with the theoretical
values predicted by Lotka’s law.

3.5. How Do the Most Productive Authors Collaborate? (RQ5)

Pretty much as industrial production relies on teamwork, academic literature is increasingly the
result of the collective work of several researchers [54]. Figure 8 shows that research on AI-GDM
follows this trend too.
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Figure 8. Evolution of the number of co-authors per paper on average.

Accordingly, studying the collaboration between authors has a remarkable interest [45]. The graph
in Figure 9 represents how the most productive authors collaborate. Each node accounts for one of
the top 1% most prolific authors. The size of each node is proportional to its Eigenvector centrality
in the collaboration network. This centrality models the importance of a node considering not only
the number and weights of its connections to other nodes but also the influence of those nodes in
the network [55]. There is an edge between two nodes whenever the corresponding authors have
published some paper together. Edge thickness is proportional to its weight, i.e., to the number of
papers that both researchers have coauthored.
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3.6. What Countries and Institutions Are Leading Research? (RQ6)

Figure 10 shows the number of papers that each country’s researchers have published. The most
prolific countries are China (39.25% of the papers), Spain (9.64%), United States of America (5.15%),
United Kingdom (4.29%), Taiwan (4.10%), Turkey (4.07%), and India (3.25%).

250
500
750
1000
1250

#Papers

Figure 10. Most prolific countries.

Table 2 summarizes the most prolific organizations, showing the number of papers that their
researchers have published, how many times those articles have been cited, and the organizations’
h-index (limited to the sample).



Mathematics 2020, 8, 1566 9 of 20

Table 2. Most prolific organizations.

Organization #Papers #Citations h-Index

University of Granada 182 8383 49
Sichuan University 154 4216 37
Central South University 107 2291 28
Southeast University China 81 5530 35
De Montfort University 77 4189 32
Universidad de Jaen 76 2872 24
King Abdulaziz University 72 2750 27
Nanjing University of Information Science Technology 71 732 14
Shandong University of Finance Economics 69 1788 22
Hohai University 60 1445 21

3.7. What Journals Are Publishing Most Articles? (RQ7)

Table 3 shows the journals that have published most articles. Again, the table includes the total
number of papers, the citations per journal, and the journal’s h-index. The last column will be described
in Section 3.8.

Table 3. Most prolific journals.

Journal #Papers #Citations h-Index Bradford’s
Zone (n = 3)

Journal of Intelligent Fuzzy Systems 302 2520 24 1
Expert Systems with Applications 210 13,137 67 1
Applied Soft Computing 176 6268 42 2
Knowledge Based Systems 150 4891 36 2
International Journal of Intelligent 145 4891 36 2
Systems
Soft Computing 112 1700 23 2
International Journal of Fuzzy Systems 94 1106 17 2
Decision Support Systems 77 4174 29 3
IEEE Transactions on Fuzzy Systems 77 6762 36 3
International Journal of Uncertainty 69 1677 20 3
Fuzziness and Knowledge Based Systems

3.8. Is There Any Journal Productivity Pattern? (RQ8)

Analogous to Lotka’s law for authors’ productivity (see Section 3.4), there is another bibliometric
law for journal productivity called Bradford’s law [56]. It predicts an inverse relationship between the
number of papers published in an area and the number of journals where the articles appear. In other
words, a few journals usually account for a high portion of the total publications, while a high number
of journals publish fewer articles in the area.

In our case, there are 2862 papers in the sample; 1016 published in conferences and 1846 published
in journals. Although a total of 32 journals have published the 1856 articles, 9 of them have published
66% of the articles, i.e., journal productivity concentration is even higher than the one predicted
by Bradford’s law. Figure 11 compares the cumulative distributions of the empirical data and the
data predicted by Bradford’s law, according to the procedure proposed by Egghe and Rousseau [57].
Roughly speaking, suppose that the journals in the sample are sorted according to the number of
articles into 3 groups, each one including 1

3 of all articles approximately. Those groups are named
Bradford’s zones. They are registered in Table 3’s last column, and highlighted with different colors in
Figure 11 (Zone 1 in blue, Zone 2 in pink, and Zone 3 in yellow). Zone 1 comprises 2 core journals.
Zone 2 includes 5 journals, thus Bradford’s constant n is 5

2 = 2.5. Although Bradford’s law predicts
that the number of journals in Zone 3 should be 2 × 2.52 = 12.5, the empirical number of journals is
much bigger: 25. Trying with different numbers of zones produces even more distant results.
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Figure 11. Comparison of Bradford’s law 2:5:154.

3.9. What Are the Most Relevant Themes of Research? (RQ9)

The complete results of the science mapping analysis we performed to determine the most
prominent themes of the AI-GDM research field (RQ9) and their longitudinal evolution (RQ10) are
available in the following public repository: https://github.com/rheradio/AI-GDM-BibAnalysis.

A strategic diagram is shown for each of the periods 1991–2009, 2010–2014 and 2015–2019. In each
period, the volume of the spheres is proportional to the number of published documents associated
with each research theme.

In the first period, 1991–2009, according to the strategic diagram shown in Figure 12, the GDM research
field was focused on 17 themes. Nine of them stand out since they are motor, basic, and transversal:
fuzzy-sets, public-investment-decision, multi-attribute-group-decision-making, trapezoid-fuzzy-numbers,
consistency (i.e., approaches to measure the level of consistency of the information provided by the experts),
information-retrieval, OWA-operators, TOPSIS, and decision-making.

Taking into account the performance measures shown in Table 4, the themes OWA-operators,
decision-making, and consistency got more than 100 documents. Considering the citations achieved,
OWA-operators is the most cited theme, reaching more than 10,000 citations. Moreover, consistency
and TOPSIS, with more than 6000 citations, achieved a significant impact.

Table 4. Performance of the themes in the 1991–2009 period.

Name Number of
Documents

Number of
Citations h-Index

OWA-operators 176 10,260 46
Decision-making 109 3230 29
Consistency 100 6752 42
TOPSIS 83 6361 35
Fuzzy-sets 60 2824 25
Alternatives 40 945 16
Information-retrieval 35 2573 19
Majority 27 1628 13
Multi-attribute-group-decision-making 22 567 8
Computer-mediated-communication 17 336 12
Expert-system 17 148 6
Extent-analysis-method 12 823 9
Customer-requirements 7 369 7
Public-investment-decisions 6 8 2
Fuzzy-majority 4 57 2
Trapezoid-fuzzy-numbers 3 38 1
Group-consensus-opinion 2 0 0

https://github.com/rheradio/AI-GDM-BibAnalysis
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Figure 12. Strategic diagram for the 1991–2009 period.

In the next period, 2010–2014, as it is shown in Figure 13, the GDM research field delved
into the following ten themes (motor plus basic and transversal): OWA-operators, majority
(i.e., the soft-computing approach that relaxes the total consensus, seeking the alternative supported by
most experts), analytical-network-process, consistency, additive-consistency, vague-set-theory, TOPSIS,
linguistic-variables, fuzzy-sets, and decision-making.

Bear in mind that according to the performance measures in Table 5, the themes consistency,
TOPSIS, fuzzy-sets, OWA-operators, vague-set-theory, and lingustic-variables got more than
100 documents. Furthermore, the theme consistency, with more than 15,000 citations, almost double the
impact of the second more cited theme. Moreover, the themes TOPSIS, fuzzy-sets, and vague-set-theory
stand out with more than 6000 citations.

As Figure 14 shows, the primary main research fields turned around 12 main themes in the last period,
2015–2019: terms-sets, AHP, Vikor-method, similarity-measures, consensus, consensus-reaching-process,
multi-attribute-group-decision-making, supplier-selection, multi-criteria-group-decision-making,
uncertainty, fuzzy-sets, and linguistic-term-sets.
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Figure 13. Strategic diagram for the 2010–2014 period.

Moreover, according to the performance measures shown in Table 6, except for linguistic-terms-sets,
the main themes pointed above got a great number of documents (more than 100). Taking into account the
achieved citations, Term-sets was the most cited theme, with more than 11,000 citations. In comparison
with the previous periods, themes have had high impact considering this period’s small citation window.
In addition, themes AHP, similarity-measures, multi-attribute-group-decision-making, and consensus
achieved more than 4000 citations.
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Figure 14. Strategic diagram for the 2015–2019 period.

Table 5. Performance of the themes in the 2010–2014 period.

Name Number of
Documents

Number of
Citations h-Index

Consistency 376 15,073 70
OWA 188 8671 50
Fuzzy-sets 173 7027 49
OWA-operators 168 6936 47
Vague-set-theory 157 7584 49
Linguistic-variables 100 4755 36
Decision-making 81 2841 30
Analytic-network-process 76 3980 32
Additive-consistency 74 2519 30
Majority 65 2531 27
Consistency-measures 28 1486 19
Choquet-integral 27 1136 15
Group-members 17 1463 15
Recommender-system 17 902 10
Personality 12 138 5
Neural-networks 11 390 7
Fuzzy-game-theory 8 223 8
Multidimensional-analysis 7 191 4
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Table 6. Performance of the themes in the 2015–2019 period.

Name Number of
Documents

Number of
Citations h-Index

Term-sets 757 11,079 54
AHP 499 7213 44
Similarity-measures 352 4968 40
Multi-attribute-group-decision-making 337 4871 35
Consensus 300 4944 39
Uncertainty 206 2274 25
Multi-criteria-group-decision-making 189 3169 31
Fuzzy-sets 187 2284 24
Vikor-method 167 2326 26
Consensus-reaching-process 153 2828 27
Supplier-selection 134 1735 22
Information-aggregation 80 941 15
Genetic-algorithm 76 564 13
Linguistic-term-sets 71 1413 21
Weighted-averaging-operators 58 1005 16
Linguistic-information 53 799 16
Recommender-system 51 720 14
Priority-weights 46 523 13
Membership-grades 46 1027 18
Ranking-method 37 420 10
Geometric-operators 36 489 11
Priority 35 361 13
Multi-agent-systems 27 109 6

3.10. How Has the Interest in Those Themes Evolved over Time? (RQ10)

This section discusses the thematic network evolution, describing how these themes evolved
through the years, and how the topics emerged and changed. For that reason, an evolution map [47]
is provided, in which each column represents a period. There is a link between the themes of two
consecutive periods if both themes have keywords in common. Indeed, the link strength is proportional
to the Inclusion index (the more words they have in common, the thicker the link).

Therefore, analyzing the themes across three consecutive periods, we can summarize the
conceptual evolution of AI-GDM in seven thematic areas (Figure 15): (i) multi-attribute/criteria
in GDM, (ii) analytical network process, (iii) decision-making and uncertainty, (iv) fuzzy sets,
(v) recommender systems, (vi) consensus and majority, and (vii) agent systems.

Furthermore, for each thematic area, a set of bibliometric indicators were calculated to show the
performance and impact score. In that way, Table 7 shows for each thematic area, the total number of
documents, the number of citations achieved, and the h-index. It is worth noting that the documents
were associated with each thematic area using the algebraic union of the documents belonging to
each theme, so it could be possible that the same documents count in different research areas. That is,
the sum of the documents could be different from the total number of documents analyzed in this study.

Table 7. Performance of thematic areas.

Name Number of
Documents

Number of
Citations h-Index

Multi-attribute/criteria in GDM 2066 54,048 110
Analytical network process 250 6660 43
Decision-making and uncertainty 458 8828 52
Fuzzy sets 724 15,740 64
Recommender systems 201 8673 51
Consensus and majority 355 9500 51
Agent systems 39 247 8
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Considering the thematic areas shown in Figure 15, and their performance measures, we should
point out that AI-GDM has been mainly focused on the research area of multi-attribute criteria, as it
is the largest one (it has the biggest number of documents). Also, it achieves the highest number
of citations count. The thematic network fuzzy-sets also has a significant number of documents,
which have been highly cited.
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Figure 15. Thematic areas’ conceptual evolution.
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3.11. What Are the Main Application Domains? (RQ11)

WoS provides a classification system called, research areas that organizes publications according
to their subjects into 252 areas. Research literature on AI-GDM spreads over a variety of application
domains: 19.67% of the papers fall into the Engineering area, 15.79% into Operations Research
Management Science, 7.97% into Automation Control Systems, etc. The word cloud in Figure 16 shows
the foremost application domains; words have been abbreviated, and their size is proportional to the
number of articles classified in the corresponding areas.

Engineering
OpResearch

ControlSystems
Mathematics Robotics

BusinessEconomics

Telecommunications

Neurosciences
ImagingScience

LibraryScience

ComputationalBiology
Psychology

RemoteSensing

EnergyFuels

MaterialsScience
MedicalInformatics

Communication

Instrumentation

MathematicalMethodsInSocialSciences

SocialIssues

Transportation
Education

NuclearTechonology
Optics

Physics

Sociology

Figure 16. Main application domains.

4. Conclusions and Future Challenges

In this paper, a systematic and highly automated bibliometric workflow has been followed to
analyze the literature on group decision-making based on artificial intelligence. Our longitudinal
analysis shows that:

• Research on AI-GDM is increasing as the number of papers and citations to those papers is
growing substantially.

• Most research has been carried out by Chinese universities. Nevertheless, a few Spanish
investigators lead research in terms of productivity and collaboration network centrality.

• Two basic bibliometric laws hold to a great extent, Lotka’s law and Bradford’s law, which model
authors’ and journal productivity concentrations, respectively.

• AI-GDM is being applied to a variety of domains, including engineering, operations research
management science, automation control systems, robotics, economic, telecommunications,
imaging science, etc.

• Currently, themes such as terms-sets, analytical-hierarchical-process, Vikor-method, similarity-measure,
consensus, consensus-reaching-process, and multi-attribute- group-decision-making are motor in
AI-GDM research.

• In summary, the conceptual evolution of the AI-GDM research fields delved into seven
thematic areas: multi-attribute/criteria in GDM, analytical network process, decision-making and
uncertainty, fuzzy sets, recommender systems, consensus and majority, and agent systems.

Finally, recent literature on AI-GDM reveals the following trends and challenges:

• There is an increased need to support the consensus of huge groups of decision-makers. This need
arises in several contexts, such as social networks, e-democracy platforms, crowd-funding systems,
group recommender systems, etc. Those large groups are typically decomposed into smaller ones
by applying different clustering algorithms, such as hierarchical clustering [58], discriminant
analysis [59], etc.
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• In classical GDM, a reduced group of experts needs to make a consensual decision. Presently,
the experts’ group is often replaced by internet users’ opinions. As a result, natural language
processing techniques have started to be applied for mining linguistic information that is
subsequently processed by GDM systems [60].

• As AI-GDM problems become more complex, advanced models and simulations are required
to support the experts’ group dynamics [61], e.g., for identifying the most influential experts,
detecting manipulative and non-cooperative behaviors, etc.

• Deep learning has started to be used [62] for (i) estimating the importance (or weight) of the
experts, their preferences, and their relationships, and (ii) learning the optimal settings of
parameterized aggregation operators.
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