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Abstract: This paper presents a mathematical modeling for a series of experiments in which humic
acid (AH) and calcium chloride (CaCl2) were used, in order to visualize the amount of contaminant
before and after the nanofiltration (NF) process, using Excitation Emission Matrix Spectroscopy
(EEMS). It allows to a better understanding of membrane fouling. The membrane used for these
experiments was a NF ceramic membrane made of titanium dioxide (TiO2). For the experimental
determinations, a constant amount of 10 mg/L HA and different amounts of CaCly, respectively 1, 2, 3
and 4 mmol/L were used, considering the working methodology presented in this article. The presence
of the amount of contaminant in water was determined using the EEMS method using the FP-8300
Spectrophotometer, after which a spectral analysis was performed. TableCurve 3D software was used
to make the mathematical models in order to ensure that the equations obtained had the same shape.
The values of the correlation coefficients, corresponding to the generated equations, have values
ranging from 0.91 to 0.93. In order to verify the mathematical models thus obtained, graphs of the
difference between the surface obtained with the help of the mathematical models and the surface
obtained by means of real data were drawn. In conclusion, it turns out that, the largest difference was
obtained in the case of samples taken from the feed, with a maximum difference of 31 fluorescence
intensity arbitrary units (a.u.), and for the samples taken from the permeate the deference is 14
fluorescence intensity a.u.

Keywords: mathematical modeling, nanofiltration (NF), humic acid (HA), calcium chloride (CaCl,),
spectroscopy, emission excitation matrix (EEM).

1. Introduction

Drinking water from different sources, usually, do not correspond in terms of quality parameters
(according to the legislation in force) and so they must be subjected to treatments by applying
increasingly treatment methods and modern techniques. Water sources requirement imposes quality
indicators that can be influenced in principal by human activities as wastewater, agriculture,
hydrotechnical management etc. [1-15].

The study on the specialized references indicates that the filtration process is being increasingly
used in order to produce water for different requirements [16-22].

Nano filtration (NF) is one of the most used water filtration technologies. By applying this process,
the heterogeneous mixture of solution subjected to filtration, is separated into two phases/components,
respectively a concentrated (brine) residual flow and a permeate (filtered) flow, which passes through
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the membrane [1, 23, 24]. Therefore, NF has attracted increasing interest for many applications, such
as desalination, wastewater treatment and drinking water applications [24-26].

In order to study ceramic NF membrane fouling, several tests have been developed using humic
acid (HA) and calcium chloride (CaCl,) as foulant models typically found in natural waters. Humic
acid (HA) is a natural, completely organic product, chelating agent of dead organic matter, rich in
essential minerals, trace elements and amino acids. It is made from organic soil (humus) after
microbial decomposition of vegetation [1, 27-29]. Because humic substances (HS) are naturally
occurring compounds, with the highest chemical activity, they simulate organic matter from flowing
waters, lakes and ocean waters, which led to the choice of this contaminant for experiments as foulant
models [1, 30-32].

Calcium chloride (CaClz) is an inorganic, solid, crystalline compound, colorless at room
temperature, very soluble in water, used to increase water hardness, dissolves in water producing
chlorine and has a very large change in enthalpy, indicated by a considerable increase in temperature
accompanying the dissolution of anhydrous salt in water. This property is the basis for its largest
application [1].

HA colloids have a negative electrical charge, as does the membrane surface. This promotes
electrical repulsion between the two surfaces. However, the presence of calcium chloride reduces or
even neutralizes the electrical double layer in the HA molecules present in the solution. This process is
known as coagulation. This effect causes these colloids to increase their tendency to deposit on the
membrane surface, because the mutual electrical repulsion is reduced, leading to the membrane to get
fouled in a higher extension.

EEMS, also known as three-dimensional fluorescence (3DEEM) or fluorescence fingerprinting, is
one of the most prevalent approaches due to the massive amount of data, visual maps and
multidimensional information it provides [33, 34]. Fluorescence technology has been increasingly
applied to the characterization of dissolved organic matter (DOM) due to its remarkable sensitivity and
selectivity. Also, in the last decade, there has been an increasing interest in investigating drinking
water processes using the EEM method, such as coagulation, adsorption, ultrafiltration and
disinfection, thus boosting their understanding of their performance to a greater extent. It is worth
mentioning that the interest for the use of fluorescent technology in order to investigate the treatment
of drinking water, focusing on coagulation, adsorption, membrane filtration and disinfection is
increasing [33, 34].

In this paper, the mathematical models and the correlations between the parameters that influence
the NF process and the parameters followed are presented, following the results obtained for the
experiments performed.

2. Materials and methods

The experimental set up and tests were performed at the Environmental Protection Laboratory of
the Department of Environmental Technologies from University of Cadiz, Spain. The pilot plant
(Figure 1) used a TiO, NF membrane with an active surface of 1.25 m? and with a useful/active cross
section of 0.00062 m? [1].
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Figure 1. Flow diagram of the NF pilot plant [1]: A - mixer; R - tank with water-reagent mixture
(100 L capacity); S - constant water temperature installation (heat exchanger); P - pressure pump;
V1 and V3 - valves; MC - ceramic membrane; M - manometer; D.P. - flow meter for permeate;
D.C. - flow meter for concentrate

The plant is provided with a tank with a mixing device R. The mixture thus obtained is directed
through a pump P towards the ceramic membrane MC which performs the NF process. In order to vary
the working parameters of the ceramic membrane, respectively the feed rate, a V1 valve was fitted
before the filter element. By passing the mixture through MC, the two permeate and concentrated
components are obtained. Their quantity is determined through the two flowmeters D.P. and D.C. In
turn, the amount of precipitate can be varied through the V3 valve, which can also contribute to the
variation of the pressure in the installations (parameter that can be determined through the pressure
gauge M) [1].

Following the process of separating the two components, concentrated and permeate, they are
introduced into the mixing recipient R [1]. Because the operation in a closed-loop circuit increases
water temperature a heat exchanger, S, is used to keep a constant temperature of the mixture [1].

The mixtures colloid-coagulant salt was made directly into the tank R, using always a volume of 50
L of ultrapure water. The reagents quantities used were 10 mg/L AH (Sigma-Aldrich) to which were
added different amounts of CaCl» (Sigma-Aldrich), respectively 1, 2, 3 and 4 mmol/L [1].

To study the performance of the NF process, samples were taken, both before and after the
filtration process from the permeate. Also, the presence of CaCl. in water was determined with the
Spectrophotometer FP-8300, with the help of which a spectral analysis of the intensity of the
ultraviolet light was performed in each filtered water sample. Spectral analysis of ultraviolet light
measures the amount of UV light absorbed by a water sample. This measurement is made by passing a
low and continuous flow of water through a glass tank illuminated by a UV beam with a wavelength of
254 nm, where the amount of light absorbed (UVA-UV absorber), respectively transmitted (UVT -
ultraviolet transmission) from the incident light is measured [1].

The experimental determinations were carried out considering the working methodology presented
in Figure 2.
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Figure 2. Working methodology

3. Results and discussions
3.1. Mathematical model

For the mathematical model of the variation of the fluorescence intensity (au) as a function of the
variation of the emission wavelength (nm) and of the variation of the excitation wavelength (hm), in
order to highlight the presence of Ca in ultrapure water TableCurve 3D program was used. The
mathematical models were designed for the two sets of samples, both for the ones taken from the feed
of the NF plant and for those obtained after the NF process, respectively from the permeate [1].

The program used to create mathematical models, TableCurve 3D, is designed to generate surfaces
corresponding to a data set, using over 450 million equations [1]. It is worth mentioning that for each
determination, a set of 20,450 values were obtained, which were used for the elaboration of
mathematical models. Following the modeling of the experimental data, two distinct mathematical
models corresponding to the two sources from which the samples were taken were obtained:

- for the feed sample the following equation was generated:

frinx
y

z=a+b-lnx+§+d-(lnx)2+%+ 1)

which corresponds to the response surface shown in Figure 3, in which the variation of the
fluorescence intensity (au) is presented as a function of the variation of the emission wavelength (nm)
and the variation of the excitation wavelength (nm), for an amount of Ca of 1 mmol/L.
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Figure 3. Variation of fluorescence intensity (a.u.) depending
on the variation of the emission wavelength (nm) and the variation of the
excitation wavelength (nm) for the feed sample

Within this graphical representation, the surface generated by the TabelCurve 3D program is
represented by means of the curved surface, and the values introduced in this mathematical model are
presented through pink. The following equation was generated for the permeate sample:

z=a+b-lnx+c-lny+d-lnx>+e-lny>+f-lnx-Ilny+g-nx3+h-Iny> +
+i-lnx - Iny? +j - Inx? - Iny 2)

where: z represents the variation of the fluorescence intensity (a.u.); X - emission wavelength variation
(nm); y - the variation of the excitation wavelength (nm); a, b, ¢, d, e, f, g, h, I and j is the coefficients
of the equation.

As in the case of the model generated for the sample taken from the feed, and in the case of the
sample from the permeate, a surface described in figure 4 was generated by means of a mathematical
equation. The representations of the two components that make up the graphical representation
presented in Figure 4 are the same as in Figure 3.

Figure 4. Variation of fluorescence intensity (a.u.) as a function
of the variation of the emission wavelength (hnm) and the variation
of the excitation wavelength (nm) for the permeate sample

For the two mathematical models in Tables 1 and 2 are presented the values of the coefficients that
compose the generated equations.
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Table 1. The values of the coefficients of the equations corresponding to the variation of the ca
content, obtained from feed sample

Parameter The values of the constants
variation a b c d e f

HA
1 mmol/L -29308.04487 | 8228.532894 | 3295840.488 -571.91179 -8452396.964 -505575.3088
2 mmol/L -24538.12389 | 6812.879133 | 2994771.585 -466.1664619 -1003657.576 -464255.1062
3 mmol/L -22217.5725 6116.819839 | 2871971.562 -413.8507783 370423.7097 -446254.1106
4 mmol/L -19917.71924 | 5412.106258 2795071.46 -359.4042292 3989011.62 -436996.4642

Table 2. The values of the coefficients of the equations corresponding
to the variation of the ca content, obtained for the permeate

‘Pg The values of the constants

HA a b c d ¢ f g h i j
LmmolL | 2662363676 5897530638 | 6812343409 -52.9869183 984.5737614 1929446195 2574130209 1955747144 -719.8876115 -506.0290982
2 mmol/L 339935 8336 -76028 68888 -86302 88998 502.7619147 1649 400988 2368792331 2787176346 2262298555 -912.0702823 -963 9632016
3 mmol/L 387966.6814 -88189.50737 -97045.77845 949 4503055 1811.8501 26718.90191 2910283198 2623082501 -1041.042976 -1076.196483
4 mmol'L 450817.1479 -97442.11101 -118171.8552 1116.004971 3872244009 2938611897 303 4699606 2014051886 -1189.255911 -1142 329081

According to equations (1) and (2) we have different values of the correlation coefficient whose
value is shown in Table 3.

Table 3. The values of the correlation coefficients corresponding
to the mathematical models

Source of sampling

The value of the
correlation coefficient r2
0.910118567
0.913014324
0.912700785
0.911904016
0.915493822
0.923483593
0.926886881
0.931087745

Parameter variation
HA
1 mmol/L
2 mmol/L
3 mmol/L
4 mmol/L
1 mmol/L
2 mmol/L
3 mmol/L
4 mmol/L

for feed sample

for permeate

From the analysis of the mathematical models generated by the TableCurve 3D program, it is
found that the value of the correlation coefficient is not less than 0.9, which gives a very close
approximation of the values obtained through the mathematical models to the real values used for the
elaboration of these models.

In order to highlight the difference between the real values and the values obtained by means of
mathematical models, a graphical representation is made which bears the name of residual graph.
Within this type of graph, the difference between the surface generated by the mathematical models
and the values introduced for generating the mathematical models is realized. Such graphical
representations are presented in Figures 5 and 6.
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Figure 5. Graphical representations of the residual variation obtained from
the analysis of the feed samples: a) 1 mmol/L; b) 2 mmol/L;
c¢) 3 mmol/L; d) 4 mmol/L

o
20 gt”
) 0
30 53 % E
] 3 4 3
z 5 o 3 s 3
1]
-10 5 T . 14
by -15 < -10 » K
/)e‘*ey% 350 o 15 % ey,
"t 5 75
as0 5 0
(27 0
4 500 Sy 0 )
& L 6, 0 oL
Moy 6y 0 fon wavee™®
n \F
(I[,']) exc
a)
20 - 20 -
15 720 15 20
10 15 10 15
g 9 10 e 5 10
31 0 [5 e S o 5 o
- [ h-] =
g 5 0 3 $ 51 o 3
= k]
€ 40 5 @ € 4 5 8
-15 -0 © 154 10 ©
m, - 15 » 20 - -15
"ug 35°A00, 0 %‘*a‘,% 380 '00, 20
Bop, A0 5, 0 o, Y 0 %50
2 © ) o or, 3 S0
ng,, * 0" % i ergn ™" e 50 G0p " eng™
Son 7 S0 aton 'g%,, 5% 65 o wave
'y /'7’71)
c) d)

Figure 6. Graphical representations of the residual variation obtained from
the analysis of the permeate samples: a) 1 mmol/L; b) 2 mmol/L;
c¢) 3 mmol/L; d) 4 mmol/L

By analyzing the residual graphs, and considering the values introduced in the mathematical
models, the following conclusions can be drawn:

- in the case of the analysis carried out for the sample taken from the feed, the maximum difference
obtained between the experimental value and the mathematical value varied according to the amount
of Ca used in the experimental determinations thus:

Rev. Chim., 71 (5), 2020, 330-339 336 https://doi.org/10.37358/RC.20.5.8141


https://revistadechimie.ro/
https://doi.org/10.37358/Rev

Revista de Chimie @ @

https://revistadechimie.ro
https://doi.org/10.37358/Rev. Chim.1949

- for the quantity of Ca of 1 mmol/L a maximum difference of 31 a.u. was obtained.

-for the quantity of Ca of 2 mmol/L a maximum difference of 28 a.u. was obtained.

-for the Ca quantity of 3 mmol/L a maximum difference of 27 a.u. was obtained.

- for the Ca quantity of 4 mmol/L a maximum difference of 25 a.u. was obtained.

- for the sample taken from the permeate the maximum difference between the experimental value

and the mathematical value varied as follows:

- for the quantity of Ca of 1 mmol/L a maximum difference of 10 a.u. was obtained.

-for the quantity of Ca of 2 mmol/L a maximum difference of 12 a.u. was obtained.

- for the quantity of Ca of 3 mmol/L a maximum difference of 13 a.u. was obtained.

- for the quantity of Ca of 4 mmol/L a maximum difference of 14 a.u. was obtained.

4. Conclusions

The experimental researches that aimed to identify the methods of decontamination of wastewater,
presented in this paper, aimed to extend as widely as possible this modern process of water filtration,
respectively by using the process of filtering through nanofiltration membranes (NF) to help improve
the quality of filtered water.

At the same time, the operation of the NF membrane was monitored under different working
conditions, respectively within this article it was opted for HA water contamination and the use of
different quantities of CaCly, in order to study membrane fouling.

Following the analysis performed with the help of the FP-8300 Spectrophotometer, for each
sample, were obtained 20450 values which subsequently used to create a mathematical model.

TableCurve 3D software was used to make the mathematical models and the equations obtained
were of the same shape.

The values of the correlation coefficients, corresponding to the generated equations, have values
ranging from 0.91 to 0.93.

In order to verify the mathematical models thus obtained, graphs of the difference between the
surface obtained with the help of the mathematical models and the surface obtained by means of real
data were drawn. The largest difference was obtained in the case of samples taken from the feed, with
a maximum difference of 31 a.u., and for the samples taken from the permeate the difference is 14 a.u.

The elaborated mathematical models, for the sets of values of the order of tens of thousands,
verified both from the point of view of the real values and from the point of view of the regression
coefficients (coefficients close to the value 1), demonstrate the quantity and the very good quality of
the experimental data, respectively of the measured and calculated sizes. This also confirms the
rigorous way of designing, realizing and interpreting the experiments.
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