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Nature-Inspired Algorithms for Solving Some Hard Numerical
Problems

Abstract

Optimisation is a branch of mathematics that was developed to find the optimal solutions,
among all the possible ones, for a given problem. Applications of optimisation techniques
are currently employed in engineering, computing, and industrial problems. Therefore, op-
timisation is a very active research area, leading to the publication of a large number of
methods to solve specific problems to its optimality.

This dissertation focuses on the adaptation of two nature inspired algorithms that, based
on optimisation techniques, are able to compute approximations for zeros of polynomials
and roots of non-linear equations and systems of non-linear equations.

Although many iterative methods for finding all the roots of a given function already
exist, they usually require: (a) repeated deflations, that can lead to very inaccurate results
due to the problem of accumulating rounding errors, (b) good initial approximations to the
roots for the algorithm converge, or (c) the computation of first or second order derivatives,
which besides being computationally intensive, it is not always possible.

The drawbacks previously mentioned served as motivation for the use of Particle Swarm
Optimisation (PSO) and Artificial Neural Networks (ANNs) for root-finding, since they are
known, respectively, for their ability to explore high-dimensional spaces (not requiring good
initial approximations) and for their capability to model complex problems. Besides that,
both methods do not need repeated deflations, nor derivative information.

The algorithms were described throughout this document and tested using a test suite of
hard numerical problems in science and engineering. Results, in turn, were compared with
several results available on the literature and with the well-known Durand–Kerner method,
depicting that both algorithms are effective to solve the numerical problems considered.

Keywords: optimisation; particle swarm optimisation; artificial neural networks; roots;
polynomials; non-linear equations
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Nature-Inspired Algorithms for Solving Some Hard Numerical
Problems

Resumo

A Optimização é um ramo da matemática desenvolvido para encontrar as soluções ópti-
mas, de entre todas as possíveis, para um determinado problema. Actualmente, são várias as
técnicas de optimização aplicadas a problemas de engenharia, de informática e da indústria.
Dada a grande panóplia de aplicações, existem inúmeros trabalhos publicados que propõem
métodos para resolver, de forma óptima, problemas específicos.

Esta dissertação foca-se na adaptação de dois algoritmos inspirados na natureza que,
tendo como base técnicas de optimização, são capazes de calcular aproximações para zeros
de polinómios e raízes de equações não lineares e sistemas de equações não lineares.

Embora já existam muitos métodos iterativos para encontrar todas as raízes ou zeros de
uma função, eles usualmente exigem: (a) deflações repetidas, que podem levar a resultados
muito inexactos, devido ao problema da acumulação de erros de arredondamento a cada
iteração; (b) boas aproximações iniciais para as raízes para o algoritmo convergir, ou (c) o
cálculo de derivadas de primeira ou de segunda ordem que, além de ser computacionalmente
intensivo, para muitas funções é impossível de se calcular.

Estas desvantagens motivaram o uso da Optimização por Enxame de Partículas (PSO) e
de Redes Neurais Artificiais (RNAs) para o cálculo de raízes. Estas técnicas são conhecidas,
respectivamente, pela sua capacidade de explorar espaços de dimensão superior (não exigindo
boas aproximações iniciais) e pela sua capacidade de modelar problemas complexos. Além
disto, tais técnicas não necessitam de deflações repetidas, nem do cálculo de derivadas.

Ao longo deste documento, os algoritmos são descritos e testados, usando um conjunto de
problemas numéricos com aplicações nas ciências e na engenharia. Os resultados foram com-
parados com outros disponíveis na literatura e com o método de Durand–Kerner, e sugerem
que ambos os algoritmos são capazes de resolver os problemas numéricos considerados.

Palavras-chave: otimização; otimização por enxame de partículas; redes neurais artifi-
ciais; raízes; polinómios; equações não-lineares
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optimisation.

Hp(·) Penalty factor in a penalty function.
I Identity matrix.
Iij i-th input of the j-th neuron in an ANN.
J Jacobian matrix.
K(·) Constriction factor or the number of popula-

tions in an ANOVA procedure.
Ni Neighbourhood of the particle i.
O Output of an ANN or from a neuron unit.
P (·) Real univariate polynomial.
R1 Cognitive uniformly distributed random vec-

tor used to compute the particle’s velocity.
R2 Social uniformly distributed random vector

used to compute the particle’s velocity.
S Search space, defined by the domain of the

function to be optimised, that contains all the
feasible solutions for the problem.

Sδ δ order root moment of a given polynomial.
T (·) Transfer function applied in every neuron in

an ANN.
α Diagonal matrix whose diagonal values are

within the range of [0, 1], or a real or complex
root of a given real univariate polynomial.

β Dilation factor.
ε Absolute difference between the last and the

current best fitness value, or the algorithm ac-
curacy.

γ(·) Power of a penalty function.
ŷ Position of the best particle in the swarm or

in the neighbourhood (target particle).
µ Index of the global best particle in the swarm.
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ω(·) Inertia weight parameter used to compute the
velocity of each particle.

φ Activation function of an ANN.
ρ Diagonal matrix that represents the architec-

ture of the swarm.
σ Scale parameter of the Cauchy mutation.
τk Average of the population k.
θ(·) Multi-stage assignment function in a penalty

function.
υ Non-linear modulation index.
ϕ1 Cognitive real acceleration coefficient used to

compute the particle’s velocity.
ϕ2 Social real acceleration coefficient used to

compute the particle’s velocity.
ϕ3 Deviation real acceleration coefficient used to

compute the particle’s velocity.
~P j
t Prior best position of the particle j (nbest par-

ticle) that maximises the FDR measure at it-
eration t.

~V Particle’s velocity.
~c j Position of the centroid of the group j.
~g Global best position of a particle in the swarm.
~l it Local best position of the best particle in the

particle i’s neighbourhood at iteration t.
~p i
t Personal best position of the particle i at iter-

ation t.
~x Position vector of a solution found in the

search space.
~xmax Upper limit of the search space.
~xmin Lower limit of the search space.
~y∗ Set of feasible solutions that forms the Pareto

front.
ξ Random variable drawn from the uniform dis-

tribution over the closed interval of 0 to 1.
a Coefficient of a given real univariate polyno-

mial.
d Number of dimensions of the search space.
e Squared error between the target and the esti-

mated values or absolute tolerance parameter
used in the MRF-PSO algorithm.

ef Evolutionary factor used in the APSO.
f(·) Objective function to be minimised or max-

imised.
g Set of inequality function constraints.
h Set of equality function constraints.



hp(·) Dynamic modified penalty value in a penalty
function.

k Number of independent populations in an
ANOVA procedure.

l Number of particles in the swarm or in the
neighbourhood.

m Number of inequality constraints.
n Number of inputs of a neuron in an ANN or

the degree of a real univariate polynomial.
nr(·) Function to detect equal roots in the MRF-

PSO algorithm.
p Number of equality constraints.
qi(·) Relative violated function of the i-th con-

straint in a penalty function.
r Set of roots found by the MRF-PSO algo-

rithm.
s Number of particles in the swarm.
t Number of the current iteration.
wt Parameter, in the form of a diagonal matrix,

to add variability to the best position in the
swarm at iteration t.

wij Weight of the i-th input of the j-th neuron in
an ANN.

z Number of roots found by the MRF-PSO al-
gorithm.



Chapter 1

Introduction

— If I have seen further it is by
standing on the shoulders of Giants.

Isaac Newton (1643–1727)

1.1 Optimisation
Optimisation is one of the oldest branches of mathematics and aims to obtain the optimal
solution(s) for a given problem out of all possible candidate solutions that fulfil the problem’s
constraints, that is, to do things best under the given circumstances [1].

This term is used frequently in different contexts, e.g., in mathematics, engineering,
computing or business industry, with different applications such as agricultural planning,
data analysis, military operations, risk management and other decision-making systems.

Optimisation is, therefore, present in our daily life, but the task of finding the optimal
solution(s), according to multiple criteria, is not always straightforward. Thus, many tech-
niques and mathematical models have emerged for tackling different kinds of optimisation
problems. Interestingly, some mathematical models of optimisation take as inspiration the
biological behaviour of living beings, using individual and collective behaviour to accomplish
some common goal.

The first step to find the optimal solution(s) for a problem is to model it, that is, to
create a mathematical model considering the objective to optimise and all the underlying
conditions. The result of this phase is an objective function, which will be used to assess
the quality of the candidate solutions found, and a set of constraints [2]. (Some authors
may also refer to the objective function as fitness function, loss function or cost function,
according to the context of the problem.)

The objective function will be then minimised or maximised, according to the problem
at hands (e.g., minimisation of cost or maximisation of profit), and subject to the defined
constraints.

In this work, it will be considered, without any loss of generality, that a single objective
optimisation problem is modelled as (see [3]):

Find ~x ∈ S ⊆ Rd such that

∀ ~y ∈ S, f(~x) ≤ f(~y), (1.1)
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1.1. OPTIMISATION

subject to

gi(~x) ≤ 0, i = 1, ...,m,

hj(~x) = 0, j = 1, ..., p,
(1.2)

where f(~x) is the function to be optimised, ~x =
[
x1, x2, ..., xd

]
is the position vector of a

solution found in the search space S with d dimensions. g(~x) and h(~x) are sets of inequality
and equality constraints with m and p functions, respectively. (When m > 0 or p > 0, the
problem is called a Constrained Optimisation Problem [COP].)

The above formulation models any single objective minimisation optimisation problem;
however, it can be translated into a maximisation problem by minimising −f(~x).

Thus, three components must be set before using an optimisation technique: (a) a set of
variables, (b) a fitness function to be optimised, and (c) a set of constraints that specify the
feasible space of each variable.

One of the first techniques developed to solve optimisation problems was the linear pro-
gramming method (sometimes referred to it as linear optimisation). This method requires
that all f(~x), gi(~x) and hj(~x) to be linear functions.

Although it was used for many business, economics and engineering problems, in real-life
problems f(~x), gi(~x) or hj(~x) may not be linear. Then, other techniques were developed to
solve both linear and non-linear problems, raising the concepts of non-linear programming,
dynamic programming, and computational intelligence-based techniques, such as Particle
Swarm Optimisation (PSO).

These techniques can be subdivided into two categories: exact algorithms, which always
solve an optimisation problem to optimality (e.g., analytical derivation), and stochastic
algorithms, which rest on the presence of randomness to minimise or maximise a function
for finding quasi-optimal solutions.

Because conventional mathematical techniques for optimisation are not sufficient or some-
times even impossible to use, especially when they do not meet all the required mathematical
assumptions or when the problem’s search space is too large and complex, stochastic tech-
niques have received more attention by researchers in recent years.

Nevertheless, traditional mathematical optimisation techniques are still being employed
as, e.g., training algorithms for finding the optimal weights and biases of an Artificial Neu-
ral Network (ANN). Examples of this type of algorithm include the Newton’s method,
the Levenberg–Marquardt Algorithm (LMA) and also the well known Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm.

Inside the stochastic category, there are the so-called metaheuristic optimisation strate-
gies. These evolution-based strategies were studied to solve complex computational optimi-
sation problems. To do that, researchers have been looking into nature for years (as a model
and as a metaphor) in search of inspiration (such as the Darwinian evolution [4]), and tried
to mimic the behaviour of elements inside a population.

In these population-based strategies, each element is a candidate solution to the prob-
lem. Some biological evolution operations (e.g., selection, reproduction, recombination, and
mutation) are then applied to each population’s element to generate new elements [5], and
thus new potential candidate solutions for the problem.

Many variants of that strategy have emerged, but the general steps of any evolutionary
method include: (1) initialisation of population, (2) evaluation of the fitness value of each
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element, and (3) generation of a new population. Examples of such strategies are Genetic
Algorithm (GA), Differential Evolution (DE) and PSO.

1.2 Aim of the Research
Finding approximations for the roots, or zeros, of functions is a task that is often required
in various areas, and is still a research area with highly essential applications, e.g., signal
processing, filter design, speech processing, communication, cryptography and many other
applications of science and technology [6, 7].

Although many iterative methods for finding all the roots of a function sequentially or
simultaneously exist, there are some drawbacks, such as the necessity of repeated deflations,
which leads to the accumulation of rounding errors and inaccurate results, or the need for
good initial approximations for all the roots to the algorithm converge [8].

One of the main objectives of this research is to study how the PSO algorithm can be
used to find, at the first stage, one root, and the effect of the choice of parameters. Then,
how the algorithm can be generalised to be used to find the multiple roots of non-linear
equations or the solutions of a non-linear system of equations simultaneously.

On the other hand, since traditional ANNs are well known for their capability to recognise
numerical patterns and thus find good approximations for complex mathematical problems,
it will also be studied its potentialities and limitations to find the arbitrary (real or complex)
roots of a given polynomial.

Both approaches will be compared, in terms of effectiveness and efficiency, with other
results available in the literature and with a traditional iterative method for polynomial
root-finding.

1.3 Structure of the Dissertation
This dissertation is structured as follows. After the introduction in Chapter 1, Chapter 2
presents the state-of-the-art of the PSO algorithm and its variants. From this chapter,
the following article was extracted and published in an open-access journal (ranked Q1 in
Mathematical Physics according to Scopus’s data – impact factor: 2.494):

• [9] D. Freitas, L. G. Lopes, and F. Morgado-Dias, “Particle swarm optimisation: A
historical review up to the current developments,” Entropy, vol. 22, p. 362, Mar. 2020

Chapter 3 describes the PSO algorithm and its implementation. A comparison between
the effect of the different PSO’s parameters in the task of finding a single root is made by
conducting a set of statistical tests. In this chapter, the Multiple Root-Finding Particle
Swarm Optimisation (MRF-PSO) algorithm is presented and tested. (The MRF-PSO is a
PSO variant that will be used as a mean for finding approximations to the multiple roots of
a given function simultaneously.)

On the other hand, ANNs are used in Chapter 4 to find the real and complex roots of a
polynomial. Besides that, from this chapter, the following conference paper was extracted
and published (distinguished with the Best Student Paper Award):
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• [8] D. Freitas, L. G. Lopes, and F. Morgado-Dias, “A neural network based approach
for approximating real roots of polynomials,” in Proc. of the International Conference
on Mathematical Applications (ICMA), (Funchal, Portugal), pp. 44–47, July 2018

Finally, the conclusions and future work will be outlined in Chapter 5.
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Chapter 2

State-of-the-Art

— What we know is a drop, what we
don’t know is an ocean.

Isaac Newton (1643–1727)

Abstract – The Particle Swarm Optimisation (PSO) algorithm was inspired by the so-
cial and biological behaviour of bird flocks searching for food sources. In this nature-based
algorithm, individuals are referred to as particles and fly through the search space seeking
for the global best position that minimises (or maximises) a given problem. Today, PSO is
one of the most well known and widely used swarm intelligence algorithms and metaheuristic
techniques, because of its simplicity and ability to be used in a wide range of applications.
However, in-depth studies of the algorithm have led to the detection and identification of a
number of problems with it, especially convergence problems and performance issues. Con-
sequently, a myriad of variants, enhancements and extensions to the original version of the
algorithm, developed and introduced in the mid-1990s, have been proposed, especially in
the last two decades. In this chapter, a systematic literature review about those variants
and improvements is made, which also covers the hybridisation and parallelisation of the
algorithm and its extensions to other classes of optimisation problems, taking into consid-
eration the most important ones. These approaches and improvements are appropriately
summarised, organised and presented, in order to allow and facilitate the identification of
the most appropriate PSO variant for a particular application.

2.1 Introduction
The Particle Swarm Optimisation (PSO) technique was proposed and initially developed by
the electrical engineer Dr Russell C. Eberhart and the social psychologist Dr James Kennedy.
The method was described in two papers [10, 11] co-authored by those two authors and
published in 1995, one of them having as its title the exact name of the technique they
proposed.

This technique had (and still has) a deep connection with some social relations, concepts
and behaviours that emerged from a computational study and simulation of a simplified
social model of a bird flock seeking for food conducted by those authors, and it belongs to
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the so-called swarm intelligence, an important and extensive research area within natural
computing.

The PSO method is based on the premise that the knowledge lies not only in the social
sharing of information among generations but also between elements of the same generation.
Although PSO has some characteristics that, in some sense and to a certain extent, have
some similarity to those found in other population-based computational models, such as
Genetic Algorithm (GA) and other evolutionary computing techniques, it has the benefit of
being relatively simple, and its algorithm is comparatively easy to describe and implement.

In fact, its simplicity and apparent competence in finding optimal solutions in complex
search spaces led the PSO algorithm to become well known among the scientific community,
which contributed to its study and improvement. Thus, many approaches were suggested
and different applications were tested with it, especially over the past decade. This review
is intended to summarise all the main developments related to the PSO algorithm, from its
original formulation up to current developments.

This review is organised as follows: Section 2.2 introduces the original PSO approach
suggested by Eberhart and Kennedy [10, 11]. Section 2.3 presents the most important pa-
rameter modifications and the main topological neighbourhood structures used with PSO.
In Section 2.4, several PSO variants and its applications are presented. Subsequently, Sec-
tion 2.5 introduces a number of hybrid algorithms resulting from combinations of PSO with
other artificial intelligence tools. Finally, the last section presents some concluding remarks.

2.2 Particle Swarm Optimisation
The PSO computational method aims to optimise a problem iteratively, starting with a set,
or population, of candidate solutions, called in this context a swarm of particles, in which
each particle knows the global best position within the swarm (and its corresponding value
in the context of the problem), along with its individual best position (and its fitness value)
found so far during the search process in the problem’s solution space.

At each iteration, the velocity and position of each particle in the swarm, represented by
d-dimensional vectors, are influenced by the individual and the collective knowledge, which
directs the repeated flights of the particles over the space of possible solutions to the problem
in search of the optimum, until a suitable stopping criterion is satisfied.

The velocity of each particle i in the swarm, at every iteration t, is updated according to
the following equation [3]:

~V i
t+1 = ~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t), (2.1)

where ϕ1 and ϕ2 are real acceleration coefficients known respectively as cognitive and social
weights, which control how much the global and individual best positions should influence
the particle’s velocity and trajectory.

In the original PSO algorithm [11], both ϕ1 and ϕ2 are equal to 2, making the weights
for the social and cognition parts, on average, equal to 1.

In multimodal problems, where multiple areas of the search space are promising regions,
the fine-tuning of these parameters is even more critical to avoid premature convergence.
Premature convergence happens when some particle finds a local best position in the swarm
that is not the global best solution to the problem. Other particles will then mistakenly
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fly towards it, without exploring other regions of the search space. In consequence, the
algorithm will be trapped into that local optimum and will converge prematurely.

R1 and R2 are uniformly distributed d-dimensional random vectors, which are used to
maintain an adequate level of diversity in the swarm population. Finally, ~p i

t and ~g t are,
respectively, the personal or individual best position of particle i at iteration t, and the
current global best position of the swarm.

In turn, the position of each particle i, at every iteration t, varies according to the
following equation [3]:

~x i
t+1 = ~x i

t + ~V i
t+1. (2.2)

Note that ~x i
0 and ~V i

0 can be generated using a uniformly distributed random vector,
whereas the particle’s best personal position should be initialised by its initial position, i.e.,
~p i

0 = ~x i
0.

The information about the best personal position (and its fitness value) then flows
through the imaginary connections among the swarm of particles, making them move around
in the d-dimensional search space until they find the best position that fulfils all the problem’s
constraints.

These stochastic changes towards the ~p i and ~g positions are conceptually similar to the
crossover (or recombination) operation, which is the main exploration operation used by GA.
However, in PSO, this operation is not necessarily applied by using a random probability.

The PSO algorithm has some advantages when compared to other continuous optimi-
sation techniques; for instance: (i) it does not make assumptions on the continuity and
differentiability of the objective function to be optimised; (ii) it does not need to compute
the gradient of the error function; and (iii) it does not need good initial starting points or
deep a priori knowledge about the most promising areas of the search space.

Besides that, PSO is a problem-independent algorithm; i.e., it can be used in a wide range
of applications, since the only information that is needed to know to run the algorithm is
the fitness evaluation of each candidate solution (and possibly the set of constraints of the
problem).

The PSO algorithm has become better known over time, leading to other studies that
extended its original formulation. Many variants have been suggested, such as the adoption
of different communication structures (such as the use of ring and star topologies, often
referred to as lbest models) as alternatives to the original approach (gbest model), wherein
all particles are connected with each other [12–14].

The Gbest and Lbest Models

A gbest model swarm, with s particles, is formally defined as:

ŷ t ∈
{
~p 1
t , ~p

2
t , . . . , ~p

s
t

}
| f(ŷ t) = min

({
f(~p 1

t ), f(~p
2
t ), . . . , f(~p

s
t)
})

, (2.3)

where ŷ denotes the position of the best particle in the entire swarm in a d-dimensional
search space, also known as the target particle.

In this model, the information about the new positions found by any particle in the
swarm is shared among all the others particles, which turns ŷ into a kind of magnet, making
all the particles converge to its position.
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On the other hand, in a lbest model, a neighbourhood of size l is created for each particle
in the swarm. In this view, the lbest model is formulated as below:

ŷ t ∈ Ni | f(ŷ t) = min
({

f(~a)
})

, ∀~a ∈ Ni, (2.4)

where Ni is the set of particles neighboring particle i (in which particle i may or may not be
included).

This means that, instead of sharing the information among all the particles in the swarm,
the lbest model restricts the knowledge to the particles that are neighbouring each other.
When l is set to be equal to s, the lbest model is equivalent to the gbest model.

The selection of the neighbourhood of each particle can be defined by each index i;
however, it can also be defined by the distance between them. In this case, the set Ni can
be time-varying.

2.3 Modifications to the Particle Swarm Optimisation
Other different aspects of the original version of PSO have also been modified, and many
variants have been proposed to address different kinds of problems; e.g., a discrete binary
version of PSO [15] that is useful for combinatorial optimisation problems, such as the
travelling salesman problem [16] and task scheduling problems [17,18].

Over time, PSO gained even more attention, and thus, more research was being done
on it (see, e.g., [19, 20] for an analysis of the trajectory and velocity of each particle during
the execution of the PSO algorithm). This led many researchers to begin noticing problems
with the original version of PSO, such as premature convergence (especially in multimodal
domains) or performance issues (see, e.g., [21], wherein the number of fitness evaluations is
reduced by using an estimated fitness value for each particle).

Many different approaches were suggested, and some were proven to be equivalent to
the original PSO algorithm, leading to the same results. These changes were mainly in the
population architecture and in the way of computing the next velocity of each particle in
order to improve the efficacy and effectiveness of the search process and reduce the loss
of diversity. In-depth studies were done to tune the parameters and to control velocity
explosion (since the motion update equations usually tend towards infinity), stability and
convergence [22].

2.3.1 Algorithm Convergence Improvements

The Inertia Weight Parameter

In 1998, Shi and Eberhart [23] introduced the notion of the inertia weight, ω, of a particle.
This coefficient controls the local and global search ability, determining how much influence
the previous velocity should have on the current particle’s movement.

With this parameter, the velocity update equation (Equation (2.1)) is changed to:
~V i
t+1 = ω~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t). (2.5)

Most of the PSO algorithm variants developed since then include this coefficient. This is
why the algorithm with this improvement is commonly referred to as the Standard Particle
Swarm Optimisation (SPSO).

8



2.3. MODIFICATIONS TO THE PARTICLE SWARM OPTIMISATION

Note that the original PSO velocity update equation can be obtained when ω = 1.
Van den Bergh [24] stated a strong relationship between ϕ1, ϕ2 and ω, which can be

modelled by the following inequality:

ω >
1

2
(ϕ1 + ϕ2)− 1. (2.6)

When a high value is set for ω, the algorithm gives more importance to the particles’
self-knowledge, rather than the swarm’s knowledge (i.e., the other particles’ knowledge). On
the other hand, a small inertia weight prevents the algorithm from converging to a local
optimum, acting as a jumping out function. However, too many jumps will progressively
worsen the algorithm’s properties, making it similar to a stochastic search [25].

As stated in [23], ω can be a positive constant (within the range [0.9, 1.2]), but also a
function of time (where time corresponds to the iteration number, t), or even a random
number [26].

Unfortunately, and due to the lack of knowledge of the search process, it is difficult or
impossible to develop a mathematical model to adjust the inertia weight dynamically [27].
Therefore, typically, to better control exploration and exploitation of the search space, ω is
changed from 0.9 (ωmax) to 0.4 (ωmin) using a negative linear function of time [28, 29], such
as:

ω(t) = ωmax −
ωmax − ωmin

tmax

× t. (2.7)

As Chatterjee and Siarry suggested [30], the inertia weight parameter can also be changed
using a non-linear time-dependent function, such as:

ω(t) =

(
tmax − t
tmax

)υ
(ωmax − ωmin) + ωmin, (2.8)

where tmax is the maximum number of iterations and υ is the non-linear modulation in-
dex chosen by the user/researcher. According to those authors, υ ∈ [0.9, 1.3] is usually
satisfactory.

Changing the particles’ momentum using a linear or a non-linear time-varying approach
was proven to be the best rule of thumb in several applications, since the compromise between
global and local searching throughout the course of the search process is critical to the
success of the algorithm. That is, on its initials stages, the algorithm performs a fast initial
exploration of the search space, but gradually becomes more focused around the best solution
found until that point. This type of strategy is similar to the cooling schedule used in the
Simulated Annealing (SA) algorithm.

Shi and Eberhart then suggested a fuzzy adaptive PSO algorithm [27] to better adapt the
inertia weight to the search process. As the name suggests, a fuzzy system was implemented
to improve the performance of the PSO by dynamically adjusting the inertia weight based
on the global best position’s distance from an optimum.

In their benchmark tests, the fuzzy adaptive strategy was able to improve the performance
of the PSO algorithm when compared to the use of a time-varying inertia weight parameter.

The PSO with inertia weight is considered a canonical PSO algorithm, since the search
process runs iteratively in a region that is defined by each particle’s previous best position
and velocity, the best previous successful positions of any of its neighbours and the particle’s
current position.
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The Constriction Factor

In 1999, Maurice Clerc suggested the use of a constriction factor [14] to help the PSO
algorithm solve optimisation problems faster, ensuring the convergence of the algorithm by
making a trade-off between exploration and exploitation, affecting with this the particles’
trajectories around possible candidate solutions in the search space [14,31].

This constriction factor is given by:

K =
2∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣ , (2.9)

where ϕ = ϕ1 + ϕ2 and ϕ > 4. Thus, Equation (2.1) may be written as:

~V i
t+1 = K

[
~V i
t + ϕ1R1

i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t)
]
. (2.10)

When the constriction factor is used with PSO, typically ϕ = 4.1, and thus K ≈ 0.7298.
Eberhart and Shi [28] compared the constriction factor with the inertia weight. These

authors concluded that better quality solutions could be obtained with the constriction
factor method, although mathematically the constriction factor and the inertia weight are
equivalent.

On the other hand, Eberhart and Shi [28] used the constriction factor while limiting
the maximum velocity, since, when running a PSO algorithm without imposing restrictions
to the velocities, these may rapidly increase within a few iterations to unacceptable levels,
tending towards infinity. Basically, if ~V i

t+1 exceeds ~V max (defined by the user/researcher)
in (2.10), then ~V i

t+1 = ~V max.
~V max controls the global exploration ability of the swarm’s particles. Thus, if ~V max is

too high, particles might overfly reasonable potential solutions (prioritising, in this way, the
global exploration of the search space). However, if ~V max is too small, there will be diversity
loss problems; that is, particles may not explore sufficiently the search space, and can be
stuck in a local optimum.

Using five non-linear benchmark functions, those authors found that, when ~V max = ~xmax,
the results improved significantly when compared to Clerc’s constriction factor K. However,
there is a drawback: the need to know beforehand an approximation for the location of the
global best position in order to limit ~V .

Kar and his collaborators [32] combined the inertia weight parameter and the constric-
tion factor to overcome the premature convergence and the stagnation problem (refer to
Section 2.3.3), and thus improve the effectiveness and efficacy of the algorithm in a multidi-
mensional search space. With this, the velocity is updated as follows:

~V i
t+1 = K

[
ω~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t)
]
. (2.11)

It was reported by those authors that updating each particle’s velocity according to (2.11)
produced better exploration and exploitation of the search space, along with faster conver-
gence, for the test suite used.

Convergence issues were the most reported problem related to the PSO algorithm. In
order to lessen this problem, new parameters were introduced into PSO and different variants
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were suggested, including hybrid variants, as can be seen in Figure 2.1. Although some
strategies to prevent premature convergence have not yet been mentioned, they were included
in this figure for completeness. The reader is referred to the next sections for a description
of the remaining approaches.

Convergence
improvements

Hybrid approaches

Other
algorithms

Ant Colony Optimisation (ACO)

Simulated Annealing (SA)

Differential Evolutionary
PSO (DEEPSO)

Genetic Algorithm (GA)

Evolutionary
operators

Evolutionary PSO (EPSO)

Mutation

Selection

Fully Informed Particle Swarm (FIPS)

Stretched PSO (STPSO)

Cooperative PSO (CPSO)

New parameters

Near Neighbour Interactions

Guaranteed Convergence PSO (GCPSO)

Constriction factor (K)

Inertia weight (ω)

Figure 2.1: Summary of the most important convergence improvements developed for PSO.

2.3.2 Neighbourhoods

Static Neighbourhood

Simultaneously with the previously mentioned improvements in the PSO algorithm, some
other different neighbourhood architectures were developed, in order to mimic the sociolog-
ical phenomenon that an individual indirectly shares information with other people located
around her/him.

In 1999, Kennedy reviewed and tested some of them [13], including circle/ring, star, all-
connected-to-all and random architectures. These are known as static architectures, because
the neighbourhood does not change throughout the algorithm’s execution.

Because neighbourhood architectures produced different results when they were tested
with different functions, the optimal pattern of connectivity between particles depended
on the problem to be solved. For example, with a multimodal function, the star topology
produced the best results, although the all-connected-to-all architecture performed better
with unimodal functions.

Besides that, Kennedy [13] also concluded that the PSO with a large neighbourhood
would perform better for simple problems, whereas small neighbourhoods should be used on
complex problems.

Later on, in 2002, Kennedy and Mendes [33] synthesised all the population architectures
developed so far: all-connected-to-all, pyramid, toroid, ring and star. They found that the
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best and the worst population architectures (based on consistency, performance, number of
iterations and standard deviations from the known global best position) were, respectively,
the toroid and the all-connected-to-all topologies (the last being the topology of the original
PSO algorithm).

Dynamic Neighbourhood

Meanwhile, Suganthan [34] proposed some improvements to the PSO algorithm, such as
gradually increasing the local neighbourhood based on a computed radius for each particle.

If any particle is within the radius of another one, then they become neighbours and
exchange information between them. As time goes by, this radius gradually becomes wider,
until the swarm is fully connected.

The selection of the neighbourhood is, thus, based on the distance to each particle,
rather than its indices, as occurs in the static neighbourhood topologies. These forms of
neighbourhood organisation are called spatial topologies.

Suganthan [34] also suggested a gradual adjustment of the magnitude of the search in
the search space by changing the values of the acceleration coefficients and the inertia weight
during the course of the algorithm. Therefore, the parameters’ values are changed using the
following equations:

ω = ω∞ + (ω0 − ω∞) (1− t/tmax),

ϕ1 = ϕ1
∞ + (ϕ1

0 − ϕ1
∞) (1− t/tmax),

ϕ2 = ϕ2
∞ + (ϕ2

0 − ϕ2
∞) (1− t/tmax),

(2.12)

where the superscripts ∞ and 0 denote the final and the initial values of the parameters,
respectively. In the tests carried out by this author, the initial value for ω was 0.95 and the
final 0.2, whereas ϕ1 and ϕ2 had their values changed from 3 to 0.25 [34].

Suganthan [34] compared, for a set of test functions, his approach with the time-varying
inertia SPSO algorithm (ϕ1 and ϕ2 were kept constant) and reported an improved perfor-
mance when the parameters were changed according to (2.12).

In 2000, Kennedy proposed another approach for the lbest PSO, based on the spatial
neighbourhood and on the ring neighbourhood topology, called social stereotyping [35].

The designation of this approach emerged, again, from social-psychological concepts, in
this case, the concept of stereotyping, where people are grouped according to, among other
things, their social and physical characteristics, qualities, beliefs and opinions.

This social process often happens when people frequently interact with each other, be-
coming more and more similar, forming their opinions and making decisions based on the
groups that they identify with.

As humans converge to the stereotypical behaviours and beliefs of the groups that they
belong to, particles’ trajectories will be changed based on the region of the search space that
they are in.

Each restricted search region of the search space is called a cluster. To constitute clusters
in the search space, several particles are chosen as group leaders, called cluster centres or
centroids. Then, the rest of the particles are grouped in a cluster based on the distance to
each centre.

The PSO algorithm is modified so that the cognitive component (i.e., the previous indi-
vidual particle’s best position) or the social component (i.e., the best previous position in
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the neighbourhood), or both, are replaced by the appropriate cluster centroid [24]. Thus,
Kennedy [35] proposed three strategies to calculate the new velocity of each particle:

~V i
t+1 = ω~V i

t + ϕ1R1
i
t(~c

j
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t),

~V i
t+1 = ω~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~c t − ~x i

t),

~V i
t+1 = ω~V i

t + ϕ1R1
i
t(~c

i
t − ~x i

t) + ϕ2R2
i
t(~c t − ~x i

t),

(2.13)

where ~c jt is the position of the centroid of the cluster j at the iteration t, and ~c t is the
centroid of the best particle selected from the neighbourhood.

Although it has a higher computational cost, and therefore, a longer execution time
when compared to the original PSO, the first equation of (2.13) performed better than the
standard velocity update equation.

Near Neighbour Interactions

Veeramachaneni and his collaborators [36, 37] proposed a simple, effective way to update
each particle’s velocity dimension, motivated by the convergence behaviour issues detected
in the PSO algorithm, especially in multimodal optimisation problems.

They developed an expression named Fitness-Distance-Ratio (FDR) that chooses the
neighbourhood of each particle dimension based on the relative fitnesses of other particles
in the neighbourhood:

FDR =
f(~P j

t)− f(~x i
t)

|(~P j
t)d − (~x i

t)d|
, (2.14)

where ~P j
t is the prior best position of a particle called the nbest particle that maximises the

FDR measure. Then, for each particle i, at every iteration t, each velocity dimension d is
changed according to the following equation:

(~V i
t+1)d = ω(~V i

t)d + ϕ1R1
i
t

(
(~p i

t)d − (~x i
t)d
)
+ ϕ2R2

i
t

(
(~g i

t)d − (~x i
t)d
)

+ ϕ3R2
i
t

(
(~P i

t)d − (~x i
t)d

)
, (2.15)

where ϕ3 is the deviation acceleration coefficient that corresponds to the importance, given
by the particle, to the best experience of the best nearest neighbour.

Using this approach, besides the best position discovered so far, the velocity of each
particle is also influenced by the previous positions visited by its neighbours.

Veeramachaneni et al. [36] reported that, although PSO performed well in the initial
iterations of the benchmark test functions considered, overall results indicate that the FDR
approach performed better in terms of convergence and thus in terms of the number of
iterations.

The different PSO architectures can be grouped into static neighbourhoods (in which
the neighbourhood does not change during the execution of PSO) and dynamic neighbour-
hoods (where the neighbourhood changes according to, e.g., the number of iterations or the
distance among particles in the search space), as shown in Figure 2.2. The reader is referred
to Subsection 2.4.5 for a description of the niching and speciation strategies.
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Architectures

Dynamic

Niches and species

Social stereotyping

Fitness-Distance-Ratio (FDR)

Static

Gbest All-connected-to-all

Lbest

Toroid

Pyramid

Random

Mesh

Star

Circle or ring

Figure 2.2: Summary of the most important architecture strategies developed for PSO.

2.3.3 The Stagnation Problem

Van den Bergh [38] noticed a property that affected all gbest variants of the SPSO algorithm
developed until then.

If a particle’s position is the same as the global best position, i.e., if ~x i
t = ~p i

t = ~g t, then
the velocity in Equation (2.5) will only depend on ω~V i

t. This means that the particle will
only leave this point if its previous velocity and ω are non-zero.

Otherwise, eventually, all particles will stop moving, leading to premature convergence
of the algorithm to a position that is not guaranteed to be the global best position or a
local optimum, but only the best position so far found by the particles in the swarm. This
problem is known as the stagnation problem.

To solve this problem, van den Bergh [38] proposed a new algorithm, called Guaranteed
Convergence Particle Swarm Optimisation (GCPSO), by inserting a new parameter µ into
the SPSO algorithm, which denotes the index of the global best particle in the swarm.

Thus, the velocity and position update equations for the global best particle in the swarm
are respectively changed by the following equations:{

~V µ
t+1 = −~x

µ
t + ~g t + ω~V µ

t + ρ(t)(1− 2R2
i
t),

~x µt+1 = ~g t + ω~V µ
t + ρ(t)(1− 2R2

i
t).

(2.16)

The term −~x µt resets the particle’s position to the global best position and ω~V µ
t sets the

search direction; ρ(t) is a function that defines the diameter of the search area surrounding
the global best position that will be randomly searched [39].

This significant change was used in several PSO variants (see, e.g., [39–42]).
However, on multimodal functions, the GCPSO algorithm has a higher probability of

finding poor solutions when compared to PSO, due to faster convergence of the best particle
towards a local extremum. Peer and his collaborators [43] studied this problem for the lbest
models.
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Nevertheless, as this situation is unlikely to occur, most of the authors do not consider
this approach when updating the velocity and the position of the best particle in the swarm.

2.4 Particle Swarm Optimisation Variants

2.4.1 Cooperative Particle Swarm Optimisation

Due to the similarities between GA and PSO algorithms, some researchers started to propose
PSO variants that combined the PSO algorithm with the operations used in GA.

An example of this is the Cooperative Particle Swarm Optimisation (CPSO), a PSO
variant proposed by van den Berg and Engelbrecht [44] and improved later by the same
authors [45]. The CPSO algorithm incorporates the concept of cooperation used in GA,
wherein all subpopulations have to cooperate by contributing and exchanging information.

They suggested that this concept can also be applied to PSO by using a number of swarms
for each dimension, instead of having only one for all dimensions. Thus, each subpopulation
has only to optimise a one-dimensional vector. Although this approach seems simple, some
changes on the original algorithm have to be made, especially to the evaluation of the
objective function, which still requires a d-dimensional array as input.

Thus, a context vector was used to overcome the problem of the objective function
evaluation. This vector is built at every iteration and has a component from each best
particle’s dimension. Then, for each component, if the new value is better than the previous
one, that specific component of the context vector is updated (and so the best individual
fitness value).

The first variant splits the search space into exactly d subspaces [44]. On the other hand,
and motivated by the fact that components may be correlated, in the CPSO-Sk algorithm,
proposed later by van den Bergh and Engelbrecht [45], the search space is divided into k
subspaces, where k ≤ d, which makes it a generalisation of the CPSO algorithm.

The CPSO-Sk converges to the local optima of the respective subspaces, which makes
it more propitious to be trapped into local optima. However, according to those authors, it
has faster convergence when compared to PSO.

PSO, on the other hand, is more unlikely to be trapped into local optimum positions
when compared to the CPSO-Sk algorithm, because the optimisation process considers the
dimensions as a whole.

Thus, CPSO-Hk, a hybrid approach using CPSO-Sk and PSO, was suggested by van
den Bergh and Engelbrecht [45] to take advantage of the proprieties of both algorithms,
resulting in a fast one with an improved local escape mechanism.

In an overall assessment, the CPSO-Sk and CPSO-Hk algorithms performed better than
PSO both in terms of quality of the solutions found and performance [45], especially when
the dimensionality of the problem increases.

Two Steps Forward, One Step Back

Before getting into the details of the CPSO-Sk and CPSO-Hk [45] algorithms, van den
Bergh and Engelbrecht [44] stated one problem with PSO, which they named two steps
forward, one step back. They found that, at each iteration, PSO changes the elements of the
d-dimensional vector, making some components move close to the optimal solution, although
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others can move away from it. Thus, PSO can accept a new candidate solution if its fitness
value is lower than the previous one (when considering minimisation problems).

In their paper, they showed an example of this weakness of PSO with a vector with three
components, wherein one component already had the optimal value, but its value changed
in the next iteration to a poor one. Despite that, the other two components improved, and
so did the fitness value.

In this case, two components improved, although one did not, taking the algorithm two
steps forward and one step back. To overcome this problem, van den Bergh suggested
evaluating the fitness function as soon as a component changes, while keeping constant the
other d− 1 components with the values of the previous iteration.

2.4.2 Adaptive Particle Swarm Optimisation

In 2009, one important approach for solving both unimodal and multimodal functions ef-
fectively, as well as improving the search efficacy and the converge speed of PSO while
preserving premature convergence, was proposed by Zhan et al. [46].

The Adaptive Particle Swarm Optimisation (APSO) presented by those authors defines
four evolutionary states for the PSO algorithm: exploration, exploitation, convergence and
jumping out, according to the evaluation of the swarm’s distribution and each particle’s fit-
ness. Thus, for each state, different strategies can be applied, such as parameter adaptation.

The swarm’s distribution can be assessed by the mean distance of each particle to all
other particles using the following Euclidean metric:

D i
t =

1

s− 1

s∑
j=1,j 6=i

√√√√ d∑
i=1

(
~x i
t − ~x

j
t

)2
, (2.17)

where s is the size of the swarm and d is the number of dimensions.
Then, an evolutionary factor, ef , is computed by:

ef =
Dg −Dmin

Dmax −Dmin

∈ [0, 1], (2.18)

where Dmax and Dmin are respectively the maximum and minimum distances among the
particles, and Dg is the value of D i

t of the globally best particle in the swarm.
Based on this factor, the algorithm can be then classified in one of the evolutionary

states. For example, a medium to substantial value of ef indicates the exploration state,
while a shrunk value of ef means exploitation. In turn, the convergence state happens when a
minimum value of ef is reached, and the jumping out state when the mean distance value for
the best particle is significantly higher than the mean distance value for the other particles.

An adaptive ef -dependent inertia weight was also suggested by the same authors and is
given by:

ω(ef ) =
1

1 + 1.5e−2.6ef
∈ [0.4, 0.9], ∀ ef ∈ [0, 1]. (2.19)

Thus, when ef is large (jumping out or exploration state), ω(ef ) makes the algorithm give
more importance to the particle’s self-knowledge, thereby benefiting the global search. On
the other hand, when ef is small (exploitation or convergence state), the swarm’s knowledge
is more relevant than the self-knowledge of each particle, giving priority to the local search.
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The cognitive and social weights are also changed, according to the evolutionary state,
and a Gaussian mutation operation is applied to the best particle in the swarm to enable it
to jump out of a local optimum or to refine the global best solution.

If the new position found is better than the best particle’s solution, the new one replaces
the best particle’s position. Otherwise, the worst particle’s solution is replaced by this new
position.

The velocity and the position of each particle are computed, and as usual, the PSO
algorithm keeps iterating until the stopping criterion is met.

When tested with some unimodal and multimodal functions, APSO showed itself to
be efficient at improving the convergence speed, and most importantly, at enhancing the
accuracy of the algorithm when compared to other well known approaches.

2.4.3 Constrained Optimisation Problems

On the other hand, Parsopoulos and Vrahatis [47] proposed a method based on a penalty
function and on the constriction factor for constraint handling with PSO. To the author’s
best knowledge, this was the first paper that proposed a method to use PSO to optimise
constrained optimisation problems.

A Constrained Optimisation Problem (COP) can be transformed into an unconstrained
problem by using a penalty function that penalises the objective function if the conditions
on the variables are not held. Therefore, a single objective function is built and optimised
using a standard unconstrained optimisation algorithm.

A penalty function, F (~x), can be defined as:

F (~x) = f(~x) + hp(t)Hp(~x), ~x ∈ S ⊆ Rd, (2.20)

where f(~x) is the original objective function to be optimised, hp(t) is a dynamic modified
penalty value, and Hp(~x) is the penalty factor defined as:

Hp(~x) =
m∑
i=1

θ
(
qi(~x)

)
qi(~x)

γ(qi(~x)), (2.21)

where qi(~x) = max
(
{0, gi(~x)}

)
for i = 1, . . .m, θ

(
qi(~x)

)
is a multi-stage assignment func-

tion, and γ
(
qi(~x)

)
is the power of the penalty function. Note that although the equality

constraints hi were not considered, they can be transformed into two inequality constraints,
such as gi(~x) ≤ 0 and −gi(~x) ≥ 0.

Although COPs can be transformed into unconstrained problems by using a penalty
function, they require more parameters to be fine-tuned (in this case, hp(k), θ

(
qi(~x)

)
and

γ
(
qi(~x)

)
) in order to prevent premature convergence.

Hu and Eberhart [48,49] proposed a more straightforward, brute-force method to optimise
COPs, known as the Preservation of Feasible Solutions Method (FSM).

In their proposal, all feasible solutions found during the search process in the whole search
space are preserved. After a stopping criterion is met, the optimal solution that fulfils all
the problem’s constraints may be found.

When these two methods are compared using the same problems, fine-tuning of the
penalty function parameters may result in better average optimal solutions when compared
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to FSM, but the choice of which constraint handling method to be used may be very problem
dependent [50].

He et al. [51] introduced into PSO a different constraint handling method, called fly-back
mechanism. The idea is simple: when a particle fly to a non-feasible region of the search
space, its position is reset to the previous (feasible) position.

On the other hand, Sun et al. [52] proposed a more advanced approach, in which once a
particle enters a non-feasible region, a new feasible position is computed by:

~x ′ it+1 = ~x i
t + α~V i

t+1, (2.22)

where the coefficient α is a diagonal matrix whose diagonal values are set within the range
of [0, 1]. Thus, if αii = 1 for i = 1, . . . , d, then this means that ~x i

t+1 is a feasible position.
If ~x i

t+1 is not in a feasible position, α must be adjusted to bring the particle back to a
feasible position.

Sun et al. [52] suggest that α should be found by:

min
(m+2d∏

k=1

emax(0, gk(~x
i
t+α

~V i
t+1))

p∏
j=1

emax(0, abs(hj(~x i
t+α

~V i
t+1)))

)
. (2.23)

Note that the superscript m+ 2d on the first product symbol includes both the number
of inequality constraints, as well as the search space’s boundaries, that are transformed into
two inequality constraints.

Then, the algorithm proceeds like the PSO algorithm until a stopping criterion is met.
Results show that this algorithm is suitable for solving COPs. However, it did not

perform as well when the optimal values were at the boundaries of the search space.

2.4.4 Multi-Objective Optimisation

Initially, research on PSO was made considering only the optimisation of one function.
However, in real-world problems, it is rare to have only a single objective to optimise, but
multiple objectives that should be optimised simultaneously.

At first glance, the different functions can be optimised running the algorithm indepen-
dently for each of them, but optimal solutions seldom are found, because the objectives may
conflict with each other (e.g., price–quality relationship).

The multi-objective optimisation problems can be modelled as finding ~x ∈ S ⊆ Rd that
minimises f(~x) =

[
f 1(~x), f 2(~x), . . . , fk(~x)

]T .
In most of the multi-objective optimisation problems, there is no single solution that

simultaneously optimises each objective but a set of feasible solutions called Pareto optimal
solutions, ~y∗. In other words, there is no feasible vector ~x that would optimise some objective
values without penalising at least one other objective value.

This set of feasible solutions forms the so-called Pareto front. The user/researcher is then
responsible for choosing what he considers to be the best solution to the problem at hands.

This introduces a notion of dominance, namely the Pareto Dominance: a vector ~u =
[u1, u2, . . . , uk] is said to dominate ~v = [v1, v2, . . . , vk] if ∀i ∈ {1, 2, . . . , k}, ui ≤ vi ∧ ∃i ∈
{1, 2, . . . , k} : ui < vi.

Hu and Eberhart [53] proposed an approach to solving multi-objective optimisation prob-
lems with a PSO algorithm based mainly on the concept of Pareto optimally.
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They presented a dynamic neighbourhood version of PSO, such that, at every iteration,
each particle has a different neighbourhood than it had in the previous iteration.

Each particle’s neighbourhood is chosen based on the distances from the current particle
to the other particles in the fitness value space of the first objective function to be optimised.

Within its neighbourhood, each particle chooses the local best (lbest) particle, considering
the fitness value of the second objective function.

The new ~p i
t is only set when a new solution that dominates the current ~p i

t is found.
Unfortunately, Hu and Eberhart only used two objective functions to describe their

proposal and did not provide enough details on how the algorithm was implemented. Besides
that, their proposal, in essence, only optimises one objective function, and nothing guarantees
that the optimal solution for the second function is also the optimal solution for the first
one.

Coello Coello and his collaborators [54,55], on the other hand, introduced the notion of an
external (or secondary) repository, proposing a PSO variant called Multi-Objective Particle
Swarm Optimisation (MOPSO). The external repository stores non-dominated vectors of
particles’ positions used to compute the velocity of each particle at each iteration (replacing
~g t in (2.5)). This repository is dynamically chosen within each iteration. For example,
if none of the elements contained in the external population dominates the new solution
found, then such a solution is stored in the external repository. They also used a constraint
handling mechanism to solve multi-objective constraint optimisation problems with PSO,
and a mutation operator to ensure the diversity of the particles, to slow down the convergence
speed and to prevent premature convergence to a local optimum.

The constraint handling mechanism can do one of two things if a particle goes beyond
the boundaries: either set it to its corresponding boundary, or multiply its velocity by −1
in order to search in the opposite direction.

According to a certain probability, a mutation operator is applied to only one randomly
chosen dimension of each particle by changing its value according to the current and total
number of iterations, taking into account its boundaries, however. This was the first mutation
operation proposed to solve optimisation problems with constraints using PSO.

The algorithm then proceeds as the standard PSO until a stopping criterion is met. The
output of the algorithm is a Pareto front, which is built upon each iteration as a grid using
the values of the external repository.

The MOPSO approach showed better results than other multi-objective evolutionary
algorithms and required low computational time to run the algorithm.

These approaches were the first steps of the research on solving multi-objective parameter
optimisation problems using PSO. The MOPSO algorithm was improved by Fieldsend [56]
and later by Mostaghim [57].

2.4.5 Multimodal Function Optimisation

Simultaneously, efforts were made to extend the PSO algorithm for multimodal function
optimisation; that is, for finding all the global best positions (and eventually other local
optimal solutions) of an equation or system of equations.

This type of optimisation is especially useful for the decision makers, so that decisions can
be made taking into account, e.g., physical and cost constraints, having, however, multiple
optimal solutions at hand.
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Due to the existence of multiple local and global optima, all these problems can not
be solved by classical non-linear programming techniques. On the other hand, when using
Evolutionary Algorithm (EA) and PSO, the optimum positions can be found faster than by
traditional optimisation techniques [58].

However, PSO was designed to find only one optimum of a function, and so some changes
are required. In fact, PSO can be applied multiple times on the same function to find all
the desired minima. Nevertheless, it is not guaranteed that all will be found.

In this type of optimisation, fast convergence can sometimes lead to premature conver-
gence, because PSO (or other EAs) may get trapped into local optima. Thus, it is important
to maintain the population diversity before some goal is met.

At first glance, the lbest models can be thought of as potential candidates to find multiple
solutions, in which each neighbourhood will represent a candidate solution. However, one
particle can be in several neighbourhoods at the same time, causing all the particles in these
neighbourhoods to converge to the same point in case that particle has the best fitness
among all the points in the neighbourhoods it belongs to. Consequently, if that point is
a local optimum, these neighbourhoods will be biased towards that position, making the
algorithm converge prematurely.

Thus, many approaches to tackling this kind of problem have been suggested, and the
most relevant will be described in the next subsections.

Objective Function Stretching

Multimodal function optimisation with PSO was first introduced by Parsopoulos et al. [58]
with the main objective of finding a global minimum of a multimodal function, avoiding the
algorithm being trapped into local optima. They named their approach as Stretched Particle
Swarm Optimisation (STPSO).

To do so, they defined a two-stage transformation on the objective function that is applied
to it as soon as a local optimum (minimum) is found, using a function stretching technique.

A function stretching (H(~x)) acts as a filter, transforming the form of the original function
in a more flatter surface yet highlighting possible global and local optimum positions.

As already said, this transformation is applied as soon as a local minimum is found, in
order to repel the rest of the swarm from moving towards that position. After that, f(~x)
is replaced by H(~x) and the PSO algorithm is applied until a specific stopping criterion is
met.

Parsopoulos and Vrahatis [59] extended this approach to find all globally optimal solutions
and showed that this new approach could be effective and efficient.

They defined a threshold, ε, related to the requested accuracy so that when the value
of the objective function applied to the particle is lower than ε, this particle is pulled away
from the swarm and a function stretching is applied at that point to avoid the rest of the
swarm from moving towards that position.

After this transformation, a new particle is randomly added to the swarm, to replace
the one that was isolated from it. Then, if the function value of the isolated particle is
higher than the desired accuracy, a new sub-swarm is created (which is considered a niching
technique), and a new instance of the algorithm is executed, although being conditioned to
that search area.
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The algorithm stops when the number of global minimisers reaches a known one, or when
the number of global minimisers is unknown, at the maximum number of iterations.

Unfortunately, this stretching transformation (that can also be considered as a conver-
gence acceleration technique) may create local minima that were not present in the original
objective function. This may require some restarts of the PSO algorithm until a global
minimum is found [60].

Thus, Parsopoulous and Vrahatis [61] improved their method again by introducing de-
flection – a technique that incorporates knowledge from previously detected minimisers into
the objective function – and a better repulsion technique (which ensures that if a particle
moves towards one of the detected local optima, it will be repelled away from it).

Nbest Technique

In 2002, Brits et al. [60] proposed a new PSO-based technique, known as neighbourhood
best or nbest PSO, and showed its successful application in solving systems of unconstrained
equations.

A system of equations with k equations can be transformed into one fitness function:

f(~x) =
k∑
i=1

|f i(~x)|, (2.24)

where each equation is algebraically rewritten to be equal to zero. However, the formulation
of the problem using this transformation fails when multiple solutions are present in the
search space.

To overcome this problem, they redefined the objective function as the minimum of the
fitness function with respect to other equations. That is, as in the example given by Brits
and his collaborators, when a system of equations has three equations (A, B and C), the
objective function is defined as the minimum of the combinations of those equations:

f(~x) = min
(
{fAB(~x), fAC(~x), fBC(~x)}

)
. (2.25)

Thus, particles that are close to one of the solutions are rewarded and do not suffer any
penalisation if they are still far from the global best particle.

The nbest technique uses a dynamic neighbourhood approach, based on the Euclidean
distance between the particles, to change the biased information towards a single optimal
solution.

It is noteworthy that the Euclidean distance is computationally intensive to calculate,
and besides that, choosing the neighbourhood based on it led to undesirable convergence
properties. Thus, later, Euclidean neighbourhood was abandoned.

After computing the Euclidean distance from each particle to each other one, the neigh-
bourhood of each particle is defined and the centre of mass of the positions is kept as
neighbourhood best, and the PSO algorithm proceeds normally until a stopping criterion is
met.

The results presented by those authors showed that the nbest technique can find all
globally best solutions. However, in real-world applications, the systems of equations to
optimise are usually not limited to three equations, and frequently the number of them is
much higher. Thus, in such cases, this solution may face performance issues as the number
of combinations can increase rapidly.
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Subpopulations and Multi-Swarm

Another strand for the neighbourhood structure of communication happens when some sub-
populations are watching over the best local optimum. That is, when a local optimum is
found, the original swarm is split. One fraction of the swarm remains to explore the local
optimum, and the other continues the search on a different portion of the search space [62].

In natural ecosystems, animals live and reproduce in the same groups of their own species,
called niches. Based on this idea, niching techniques were proposed and implemented suc-
cessfully with GA and later with PSO.

This type of technique is most commonly used in multimodal search spaces, because
groups of individuals can move simultaneously into different search space regions. Note that
individuals can be grouped by similar fitness values, by their distance from others or other
similarity criteria.

Brits et al. [39] suggested the first PSO niching technique, named NichePSO, for suc-
cessfully locating multiple optimal solutions in multimodal optimisation problems simulta-
neously.

In their proposal, they used a main swarm and a number of sub-swarms, as well as two
variants of the PSO algorithm, namely, GCPSO [38] and the cognition-only model proposed
by Kennedy [63], where Equation (2.1) is changed to only include the cognitive weight; i.e.,

~V i
t+1 = ~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t), (2.26)

thereby allowing each particle to perform a local search, preventing the situation in which
all particles get pulled towards a single solution due to the influence of the best particle or
particles in the neighbourhood.

The cognition-only PSO variant is run for one iteration in the main swarm. Particles
are then grouped by a given accuracy threshold (similar to the one used by Parsopoulos
and Vrahatis [47] in the constriction factor PSO approach), and then, for each sub-swarm,
GCPSO is run.

After that, the sub-swarms that are too close can be merged and can absorb particles
from the main swarm when they move into them. Finally, the algorithm checks in the main
swarm for the need to split it in other swarms, and iterates until a stopping criterion is
found (e.g., when it reaches a certain number of globally optimal solutions, when known).

Later, Engelbrecht [42] improved the NichePSO by changing the merging and absorption
strategies that were proposed in the original approach. Schoeman and Engelbrecht [64]
proposed a PSO approach (which can be considered as a sequential niching PSO) that uses
an additional vector operation, namely, the dot product, to change the direction in which
particles should be headed to; viz., towards an already located niche or to explore and search
for a new niche. Shortly after that, the same authors [65] proposed a parallel vector-based
approach wherein all particles are updated simultaneously.

Li [66] extended the FDR-PSO algorithm to multimodal optimisation problems by in-
troducing two mechanisms in the original FDR-PSO: the memory-swarm and the explorer-
swarm.

The memory-swarm saves the personal best positions found so far by the population.
During its turn, the explorer-swarm saves the current state of the particles and is used to
explore the search space.
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The best positions in the memory-swarm are used as anchors, and as the algorithm runs,
niches are created around the best positions, according to the fitness-Euclidean distance ratio
between a particle’s personal best and other personal bests of the particles in the population.

The fitness-Euclidean distance ratio technique is an improved version of FDR that has a
scaling factor computed using the worst and best-fitted particles in the swarm.

Li et al. [67] split the population into species, according to the distances between the
particles. Based on this idea and the ideas presented in [68, 69], Parrott and Li [70] incor-
porated the concept of speciation into the constriction factor approach of PSO for solving
multimodal optimisation problems.

It is important to note that, although different terminology is used, both niching and
speciation techniques group similar particles by a given criteria.

In the resulting species-based algorithm, the particles are dynamically and adaptively
grouped into species around dominating particles called species seeds, each species being
used to track an optimum point.

Li [71] also presented a niching, parameter-free algorithm with ring topology for multi-
modal optimisation, which is able to form stable niches across different local neighbourhoods.

Four variants of this lbest PSO niching algorithm with ring topology were also suggested
by Li [71], two of them (r2pso and r3pso) with an overlapping ring topology; the other two
variants, namely, r2pso-lhc and r3pso-lhc, being lbest PSO algorithms with a non-overlapping
ring topology.

Recently, Yue et al. [72] improved the lbest PSO niching algorithm by including a Special
Crowding Distance (SCD) for solving multimodal multi-objective problems and reported that
the algorithm was able to find a more significant number of Pareto-optimal solutions when
compared to other well known algorithms.

2.4.6 The Fully Informed Particle Swarm Optimisation

In 2004, Mendes et al. [73] introduced the Fully Informed Particle Swarm (FIPS) optimisation
algorithm, because they were convinced that each particle should not be influenced only by
the best particle among its neighbours, but all the neighbours must contribute to the velocity
adjustment of each particle; i.e., the particles should be fully informed.

They integrated the constriction factor approach of PSO with a new velocity update
equation, wherein the social component is not explicitly considered, given by:

~V i
t+1 = K

(
~V i
t + ϕ (~p i

t − ~x i
t)
)
. (2.27)

Typically ϕ = 4.1 and K ≈ 0.7298. The particle’s individual best position ~p i
t is given

by:

~p i
t =

∑ l
i=1 σ(i) ~ϕi × ~p i

t∑ l
i=1 σ(i) ~ϕi

, (2.28)

with
~ϕi = ~U

[
0,
ϕmax

l

]
, ∀i ∈ {1, . . . , l}, (2.29)

where l is the number of particles in the population, and ~U is a function that returns a
position vector generated randomly from a uniform distribution between 0 and ϕmax/l.
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The function σ(i) can return a constant value over the iterations, or as Mendes et al. [73]
also did in their experiments, return the fitness value of the best position found by the
particle i or the distance from that particle to the current particle.

Although in this variant all particles contribute equally for the change in the next velocity
calculation, those authors also suggested a weighted version of the FIPS algorithm, in which
contributions are given according to the fitness value of the previous best position or the
distance in the search space to the target particle.

They were, in fact, right, since both FIPS variants performed well on the considered
neighbourhood architectures (except on the all-connected-to-all), finding at all times the
minimum of the benchmark functions. The weighted versions require an extra computational
cost, and such cost may not be justified, since the unweighted version performed quite well
in their study [73].

2.4.7 Parallel Implementations of Particle Swarm Optimisation

Besides being trapped into local optima, PSO has another problem: its performance becomes
progressively worse as the dimensions of the problem increase [74]. To alleviate this problem,
some approaches were suggested, such as the use of multiple processing units of a computer
system to distribute processing among them, creating sub-swarms, and thus speeding up the
execution of the algorithm.

As each sub-swarm can be thought to be independent, PSO maps well to the parallel
computing paradigm. In this section, a survey of the most common approaches to Parallelised
Particle Swarm Optimisation (PPSO) will be described.

For PPSO approaches, a multi-core Central Processing Unit (CPU) or a Graphics Pro-
cessing Unit (GPU) can be used to process the tasks of each parallel sub-swarm, along with
some mechanism to exchange information among them. The exchange of information can
be made synchronously or asynchronously.

Synchronous exchange is made when particles of each sub-swarm are synchronised with
each other, i.e., the particles wait for the others to move to the next iteration, leading to
the same result as the sequential approach, although its processing is done in parallel. On
the other hand, when the exchange of information is made asynchronously, the sub-swarms
are independent of each other, and thus, at the end of an iteration, each particle uses the
information available at the moment (especially the global best position information) to
move to the next position.

In addition, different architectures can be used to control the exchange of information,
such as master-slave (where there is one processing unit that controls the execution of the
other processing units), fine-grained (in which the swarm is split into sub-swarms and ar-
ranged in a two-dimensional grid, wherein the communication is only made within the neigh-
bours of each sub-swarm) and coarse-grained (where the swarm is also split into sub-swarms
independent of each other; however, from time to time, they exchange particles between
them) [31,74,75].

Gies and Rahmat-Samii [76] proposed the first PPSO. They reported a performance gain
of eight-fold (when compared with sequential PSO) with the PPSO algorithm for finding
the optimal antenna array design. The results of this first work about PPSO motivated
other researchers, such as Baskar and Suganthan [77], who improved the performance of
FDR-PSO [37] by introducing a novel concurrent approach, called CONPSO.
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Three communication strategies were presented in [78, 79] by using the GA’s migration
technique to spread the gbest position of each sub-swarm to the others. In the first one, the
best particle of each sub-swarm is mutated and migrated to another sub-swarm to replace
the poorest candidate solutions. In the second strategy, on the other hand, although similar
to the previous one, the exchange of information only happens in neighbour sub-swarms.
Finally, the later solution is a hybrid between the first and the second strategy.

Schutte et al. [80, 81] used a synchronous master-slave architecture for a bio-mechanical
system identification problem. All particles were evaluated using parallel processes; however,
all processes had to finish in order to update the next velocities and positions of all particles.
Additionally, they reported that the time required to solve the system identification problem
considered was reduced substantially when compared to traditional approaches.

As stated by Schutte et al. [81], synchronous implementations of PPSO are easy to
produce. Nevertheless, such implementations usually have a poor parallel efficiency, since
some processing units may be idle. Due to this fact, Venter and Sobieszczanski-Sobieski [82]
proposed a master-slave asynchronous implementation PPSO algorithm and compared it
with a synchronous PPSO.

One can consider the fact that the behaviour of each particle depends on the information
available (possibly not from all other sub-swarms) at the start of a new iteration as a draw-
back of asynchronous approaches. However, in the author’s opinion, this can be negligible
because, although particles may not have updated information about the best solution before
moving to a next position in the search space, communication always exists between particles
and sub-swarms. Thus, in further iterations, the information about the best position found
so far will inevitably be shared.

Koh et al. [83] introduced a point-to-point communication strategy between the master
and each slave processing unit in an asynchronous implementation of PPSO for heterogeneous
computing conditions. This condition happens, e.g., when the number of parallel sub-swarms
can not be equally distributed among the available processors. In this type of condition, a
load balance technique is essential for the robustness of the algorithm.

The results obtained by Koh et al. [83] were compared to the algorithm presented by
Schutte et al. [81], and showed that the asynchronous implementation performs better, in
terms of parallel efficiency, when a large number of processors are used.

In 2007, McNabb et al. [84] introduced the MapReduce function for the PPSO. This
function has two sub-functions: map and reduce.

On the one hand, the map function finds a new position, computes the velocity of the
particle, evaluates the objective function on its position, updates the information of the
personal best position and shares this information among all dependent particles. On the
other hand, the reduce function receives the information and updates the global best position
information.

This type of formulation allows the algorithm to be split into small procedures and
easily balanced and scaled across multiple processing units, following the divide-and-conquer
parallel approach.

Aljarah and Ludwig [85] proposed a PPSO optimisation clustering algorithm (MR-CPSO)
based on the MapReduce approach. This parallel PSO-based algorithm showed efficient
processing when large data sets were used.

Han et al. [86], in turn, included constraint handling in PPSO, whereas Gülcü and Ko-
daz [87] proposed a synchronous parallel multi-swarm strategy for PPSO.
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In this multi-swarm approach, a population is divided into subpopulations: one master-
swarm and several slave-swarms which independently run a PSO variant. However, the
slave-swarms cannot communicate with each other, since communication is made through
the master-swarm by migrating particles. The parallel multi-swarm algorithm also uses a
new cooperation strategy, called Greed Information Swap [87]. This work was extended by
Cao et al. [88] to include multi-objective optimisation.

Lorion et al. [89], in turn, proposed an agent-based PPSO that splits PPSO into sub-
problems. There are two types of agents: one coordination agent and several swarm agents,
which, similarly to the multi-swarm strategy, do not communicate with each other.

Then, a strategical niching technique is used to increase the quality gain. A fault tol-
erance (e.g., when a processing unit stops responding to requests) was also implemented,
by either saving agent’s state in other swarm agents or by using the coordination agent’s
information available at the moment about the failed agent.

Along with all these developments, some researchers suggested approaches that used a
GPU instead of using a CPU, especially when the CUDA development kit of NVIDIA was
released. GPUs are designed for image processing and graphics applications, although they
have more processing capacity (since they have more processing elements) than CPUs.

Developing parallel algorithms on a GPU is far more complicated than the corresponding
implementations on a CPU [90]. However, several studies have reported significant improve-
ments in terms of execution time when a GPU implementation of the PPSO is compared to
its corresponding implementation on a CPU (see, e.g., [91–94]).

A GPU-based fine-grained PPSO was proposed by Li et al. [67]. In turn, the performance
of the Euclidean PSO, proposed by Zhu et al. [95], was improved by Dali and Bouamama [96],
where a GPU-based parallel implementation of the original algorithm was presented.

Finally, it is also worth mentioning the distributed and load balancing versions of the
PSO algorithm on GPU developed by using a grid of multiple threads [97] or distributed
memory clusters [98], along with the OpenMP API.

2.5 Connections to Other Artificial Intelligence Tools

2.5.1 Hybrid Variants of Particle Swarm Optimisation

A PSO variant is called hybrid when the PSO algorithm is combined with other optimisation
techniques, such as the operators used in GA (e.g., selection, crossover or recombination and
mutation) and other population-based algorithms.

The objective of hybridization is to increase the quality of particles in a swarm and
improve the effectiveness and efficiency of the algorithm. The PSO algorithm is known by its
tendency to become trapped into local optima, which prevents it from exploring other regions
of the search space. Combining PSO with other EAs can overcome this difficulty in escaping
from local optimal solutions and suppress the inherent deficiencies of other algorithms with
which it is hybridised.

Evolutionary Computation Operators

In 1998, Angeline [99] incorporated a selection mechanism into PSO similar to those used
in more traditional evolutionary algorithms, thereby producing what is considered the first
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hybrid PSO algorithm.
That mechanism compares the current fitness of each particle with the fitnesses of other

particles, and the least fit score a point. Then, the population is sorted using this score.
Current positions and velocities of the worst half of the population are then replaced with

the positions and velocities of the best half, leaving the personal best position unchanged.
Thus, the selection process resets the low-scored particles to locations within the search
space that have yielded better results.

It was shown that this truncation selection mechanism incorporated into PSO improves
the performance of the algorithm significantly on most of the tested functions. The roulette
wheel selection operator was also used by Yang et al. [100], wherein the best particles in the
swarm are the more likely to be selected.

On the other hand, many researchers then suggested and reported good performance by
combining PSO with crossover operators (see, e.g., [12,42]) and different mutation strategies,
such as Gaussian and Cauchy mutations [40,101–103]. These researches were essentially mo-
tivated by the fact that PSO presents difficulty in finding optimal or near-optimal solutions
for many complex optimisation problems, including multimodal function optimisation and
multi-objective optimisation.

Mutation is a genetic operator, analogous to the biological mutation, which, with a
certain probability, changes the value of ~g t or the next particle’s position from its current
state, hoping to find a better solution, while maintaining the population diversity. This
operation provides strong exploration and exploitation capabilities to the swarm and also
prevents premature convergence to a local optimum.

For example, the Cauchy mutation operator can be implemented as follows [101]:

(~g t1)d = (~g t)d +
(
(~xmax)d − (~xmin)d

)
× Cauchy(0, σ), (2.30)

where (~g t)d and (~g t1)d are, respectively, the current and the new values of the global best
position for dimension d, and (~xmax)d and (~xmin)d are the upper and lower limits of the
dimension d. Finally, σ is the scale parameter of the Cauchy mutation, which is updated as
follows:

σt+1 = σt −
1

tmax

. (2.31)

As can be seen, σ linearly decreases at each iteration, so that, in the first iterations, the
exploration capability is stronger, while in the last ones, the exploitation ability is privileged.
Naturally, this mutation operator can be applied to both gbest and lbest models, and often
σ0 = 1.

On the other hand, reproduction or breeding is the process of combining any two parti-
cles (chosen among the particles selected for breeding at a given breeding probability) and
performing a crossover operation that generates two new particles based on the characteris-
tics of their parents (which are replaced by those new particles). In their hybrid algorithm,
Løvbjerg et al. [12] used an arithmetic crossover operator, so the position of each new child
particle is computed as follows:

~x i
c1 t

= r × ~x i
p1 t

+ (1− r)× ~x i
p2 t

,

~x i
c2 t

= r × ~x i
p2 t

+ (1− r)× ~x i
p1 t

,
(2.32)
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where r is a uniformly distributed random value between 0 and 1, and the velocities are
given by [12]:

~V i
c1 t

=
~V i
p1 t

+ ~V i
p2 t∣∣∣~V i

p1 t
+ ~V i

p2 t

∣∣∣
∣∣∣~V i
p1 t

∣∣∣ ,
~V i
c2 t

=
~V i
p1 t

+ ~V i
p2 t∣∣∣~V i

p1 t
+ ~V i

p2 t

∣∣∣
∣∣∣~V i
p2 t

∣∣∣ . (2.33)

In the last two equations, the subscript c indicates the position or velocity of a child
particle, while the subscript p identifies a parent particle.

These evolutionary computation operators aim to reduce the diversity loss in the swarm
and can be combined with others. Despite usually slowing down the efficiency of the algo-
rithm, they can produce better results, especially when faced with multimodal functions.

In 2002, Miranda and Fonseca [104] proposed an approach, denoted Evolutionary Parti-
cle Swarm Optimisation (EPSO), which merged the concepts of evolutionary computation
with PSO. In their algorithm, the operations of replication (where each particle is replaced
r times; usually r = 1), mutation (on the cognitive, social, and inertia weights), crossover
and selection (before evaluation) were used to generate diversity and to enable the fittest
particle to survive and propagate. This is analogous to the mechanism of survival of the
fittest of natural selection, from the Darwinian theory of evolution [105].

Wang et al., in 2013, proposed the Diversity Enhanced Particle Swarm Optimisation
with Neighbourhood Search (DNSPSO) [106], a PSO variant that includes a new diversity
enhanced mechanism using a crossover operation, and a new neighbourhood search strategy.

The crossover operation is applied to each dimension of the current particle’s position, by
replacing it with the previous correspondent dimension where the particle was in the search
space. This operation is, however, applied according to a uniform random number within
the range [0, 1] generated for each dimension. If the generated random number is lower than
a predefined probability, the particle’s position is recombined with the previous dimension.
Otherwise, it remains unchanged.

This operation creates what those authors called a trial particle that replaces the current
particle only if its fitness value is lower than the current fitness (for minimisation problems).

In turn, the neighbourhood search strategy interestingly combines the gbest and lbest
models, creating two more trial particles, based on the gbest and the lbest information.
This search strategy is applied according to a predefined probability, and it was developed
to improve the exploration of the search space by the particles in the swarm.

Then, the current particle is replaced by the most fitted particle among the current
particle, the trial particle derived from the gbest information and the one from the lbest
information.

The results presented by those authors showed that the DNSPSO algorithm achieved
better results when compared to other PSO variants, both in terms of the quality of the
solutions found and performance.
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PSO with Genetic Algorithms

On the other hand, PSO was also combined with GA. In GA, similarly to PSO, there is
a population of potential candidate solutions. Each element of the population has chro-
mosomes that are mutated, based on a certain probability, to maintain a certain level of
population diversity and improve the solution.

Each iteration is called a generation, and the algorithm reflects the process of natural
selection, wherein the best fit individuals are chosen for reproduction in order to produce
the next generation (which is expected to be better than the previous one).

PSO is known for not being able to effectively avoid being trapped into local optima
during the search process. However, the GA algorithm can be used, along with its operators,
to reduce this weakness.

On the other hand, GA has a slower convergence speed when compared to PSO [100,
107]. These advantages and disadvantages motivated the researchers to develop optimisation
algorithms that combine PSO with GA.

Robinson et al. [107] introduced the first hybrid approach using PSO and GA for opti-
misation of a profiled corrugated horn antenna.

In their approach, they used the result of the execution of one of the algorithms as a
starting point to the other. They either first use PSO and then GA (PSO-GA), or vice-
versa (GA-PSO).

When the solutions found by one of the algorithms show no improvement, the algorithm
is changed to either PSO or GA.

Some other applications using PSO combined with GA were suggested to, e.g., recurrent
network design [108], wherein individuals in a new generation are created by crossover and
mutation operations as in GA, but also by running an instance of PSO.

However, unlike the previous approach, GA and PSO both work with the same popula-
tion. In each generation, after the fitness values are computed, the top 50 % of elements are
marked for maturing (and the other half is discarded).

The maturing technique, handled by the PSO algorithm, is used to enhance the best-
performing elements, instead of using them directly to reproduce and generate the next
generation.

Parents are then chosen based on a tournament selection, and then crossover and muta-
tion are applied to produce the next offspring.

Yang et al. [100] suggested a PSO-based hybrid combining PSO with the genetic opera-
tions of selection, reproduction, crossover and mutation.

Like the previous approach, the same population is used as input for the GA and PSO
algorithm, but the enhancement of the population is done by applying the motional be-
haviour of the PSO algorithm, while the population diversity is maintained by the genetic
mechanisms (selection, reproduction, crossover and mutation). Additionally, they showed
the application of the algorithm to solve three unconstrained optimisation problems and
three COP.

Valdez et al. [109] tried to integrate the results given by the PSO algorithm and GA by
using fuzzy logic. In their approach, a fuzzy system is responsible for choosing, according to
the last results of the execution of either the GA or the PSO algorithm, which one should
be executed next. Besides that, other two fuzzy systems are also used, one to change the
crossover probability and the mutation rate of the GA, and the other to adjust the cognitive
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and social acceleration factors of PSO.
They compared the hybrid variant with the individual GA and PSO approaches, and the

hybrid algorithm was shown to be superior to the individual evolutionary methods.
Some hybrid variants of the PSO algorithm with GA were used, e.g., for cancer clas-

sification [110], route planning [111], task allocation and scheduling [112, 113] and image
classification [114].

PSO With Differential Evolution

Differential Evolution (DE) also belongs to the class of evolutionary computation meth-
ods. Like PSO, DE tries to optimise a problem by iteratively improving a candidate solu-
tion (called agent, that belongs to a population of candidates) using metaheuristics.

In addition, this method does not require that the functions involved are differentiable,
and it was designed to solve optimisation problems with real-valued parameters.

Although it is not guaranteed that an optimal solution is ever found, it has a great
ability to maintain an adequate level of diversity within the population, and to perform a
local search in specific areas of the search space. However, it has no mechanism to memorise
the previous process, so the combination of DE and PSO is promising.

Each agent is represented by a set of real numbers (the parameters of the objective
function) and moves around in the hyperplane until a stopping criterion (e.g., accuracy or
number of iterations) is satisfied.

DE uses mutation and crossover (using three different agents) for generating a new trial
parameter vector. If the new parameter vector is better than the previous one when evaluated
in the objective function, then the newly generated vector replaces the current vector [4,115],
in accordance with the principle of the survival of the fittest [105].

Hendtlass [116] proposed the first hybrid approach using PSO and DE. In his simple
approach, the PSO algorithm runs conventionally, and from time to time, the DE algorithm
takes place to move the particles to better positions.

Two years later, Zang and Xie proposed the DEPSO algorithm [117]. In this case, PSO
and DE run alternately according to the number of the current iteration. If the current
iteration number is odd, then PSO runs; if is even, then DE is executed (or the other way
around).

Additionally, the algorithm uses a bell-shaped mutation and crossover to increase the
population diversity, but instead of applying both changes at the same time (as DE originally
does), different operations are applied at a random probability.

Several applications of this hybrid algorithm based on PSO and DE have emerged, includ-
ing digital filter design [118], multimodal image registration [119] and data clustering [120].

In 2003, inspired by EPSO, Miranda and Alves [121] proposed the Differential Evolu-
tionary Particle Swarm Optimisation (DEEPSO), an algorithm that is similar to the EPSO
sequence, but in which the velocity of each particle is calculated as:

~V i
t+1 = ω~V i

t + ϕ1R1
i
t(~x

r
t − ~x i

t) + ρ
(
ϕ2R2

i
t(~g
∗
t − ~x i

t)
)
, (2.34)

where ρ is a diagonal matrix with 0 s and 1 s that controls the flow of information within the
swarm (and can be seen as defining the communication topology among particles). ~x r

t is a
distinct particle from ~x i

t that belongs to the set of particles currently in the search space or
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from the previous best particles, and can be chosen at random in the current iteration and
be the same for all particles or different for each one.

Finally, ~g ∗t is given by:
~g ∗t = ~g t

(
1 + wtN(0, 1)

)
, (2.35)

where wt is a parameter or weight in the form of a diagonal matrix to add noise to the best
position in the swarm, and N(0, 1) is the standard normal distribution.

Those authors suggest that ~g ∗t can be chosen from the past bests and sampled once from ρ
or can be sampled from ρ to each particle, although, according to the results presented,
sampling ~g ∗t from past bests to each particle leads to the best results.

Other hybrid approaches using PSO and DE have been proposed. These include, e.g., the
LEPSO algorithm, developed by Abdullah et al. [122] with the objective of improving local
best particle searching; and the enhanced DEPSO with adaptive parameters for the position
update equation presented by Omran et al. [123]. On the other hand, Pant et al. [124]
incorporated the PSO algorithm in DE to create a perturbation in the population that helps
maintain diversity within the population and produce a good optimal solution; meanwhile,
Epitropakis et al. [125], in addition to the social and cognitive experience of the swarm,
included the personal experience of each particle in their hybrid approach.

Zhang et al. [126] used PSO and DE alternately, including the lbest and gbest models
of the PSO algorithm. Xiao and Zuo [127] used a multi-population strategy in the DEPSO
algorithm to improve diversity and keep each subpopulation on a different peak. In turn, Om-
ran [128] presented a DE-PSO algorithm with a constriction factor, whereas Das et al. [129]
used a hybrid approach of these algorithms combined with some concepts of SA, such as the
probability of accepting poor solutions.

Either way, these authors did not explore the possibility of executing the PSO in the initial
iterations and a change coming to the DE algorithm at the final stages of the algorithm,
wherein local search around a potential solution to a problem is more advantageous.

PSO with Simulated Annealing

Simulated Annealing (SA) is also a metaheuristic optimisation algorithm which is based on
the thermodynamic process of annealing; that consists of the slow and controlled cooling of
a metallic material, in order to alter its microstructure, and with this, change and improve
its main properties, such as strength, hardness and ductility. This process ends when the
material reaches a state of minimum energy.

As other metaheuristics, SA does not make any assumption on the continuity, differen-
tiability or convexity of the cost and constraint functions of the problem. However, unlike
PSO, SA accepts poor solutions by a given probability to maintain the diversity and improve
the search process [130].

SA incorporates an important mechanism called cooling schedule, which controls the
decreasing of temperature during the optimisation process and the deteriorations in the
objective function.

At the very beginning, the annealing process (and SA) requires higher temperatures.
Then, the temperature is decreased, and some candidates are generated at that temperature
level.

A candidate solution is accepted when its fitness value is lower than the current con-
figuration (for minimisation problems). Otherwise, it may still be accepted with a certain
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probability, but as temperature decreases, only small deteriorations are accepted.
This strategy allows uphill moves that help SA to escape from optimal local solutions

towards the end of the algorithm, when no deteriorations of the objective function are ac-
cepted.

Hybrid variants of PSO and SA were proposed because of the well known inability of
the PSO algorithm to jump out of local optima, and because the SA algorithm is known for
making upward movements and escaping from those solutions, avoiding premature conver-
gence. Unfortunately, this does not ensure that the algorithm can always converge to the
global minimum. Besides that, the computational effectiveness and efficiency of these hybrid
algorithms can also be compromised.

The first studies on a hybrid algorithm based on PSO and SA were made by Wang
and Li [131], Zhao et al. [132] and Yang et al. [130]. Wang and Li showed that, after
evaluating each particle’s fitness, running SA independently on each of them and changing
the movement according to the PSO algorithm can speed up the rate of convergence and
enable the algorithm to escape from local optimal solutions. The algorithm was named
SAPSO [131].

Zhao et al. [132] proposed the HPSO algorithm, in which the PSO runs first, providing
an initial solution for SA during the hybrid search process. On the other hand, the PSOSA
algorithm, proposed by Yang et al. [130], runs the PSO and the SA algorithm simultane-
ously; that is, after computing the velocity and position of each particle in the swarm using
Equations (2.5) and (2.2), a Gaussian mutation operation is applied on each particle’s per-
sonal best position. If the new value found is lower than the previous one (in the case of
a minimisation problem), then it is replaced by this new value; otherwise, the solution can
still be accepted according to a certain probability. A similar algorithm was proposed by
Sadati et al. [133].

Both hybrid algorithms showed to be successful when compared to the PSO algorithm
and the SA algorithm separately, in terms of search behaviour (and thus the quality of the
solutions found), performance and computation speed.

Xia and Wu [134] proposed another hybrid approach combining PSO and SA, in this case,
for the job-shop scheduling problem. Like in HPSO, in this hybrid algorithm, PSO provides
an initial solution for SA. Chu et al. [135], in turn, proposed a parallel PSO algorithm with
adaptive SA (ASA-PPSO).

PSO algorithms with SA were also used by Shieh et al. [136] and Deng et al. [137],
in which the Metropolis criterion was used to determine the acceptance of a new-found
solution that is worse than the previous one. A hybrid discrete PSO-SA algorithm was
proposed by Dong et al. [138] for the optimal elimination ordering problem in Bayesian
networks. In turn, He and Wang [139] suggested a hybrid approach involving PSO and SA
for constrained optimisation problems, which applies SA to the best solution of the swarm
to help the algorithm in escaping from local minima.

PSO With Other Evolutionary Algorithms

GA, DE and SA were not the only metaheuristics that were combined with PSO.
In the literature (see, e.g., [25]), it is possible to find PSO-based hybrid algorithms that

use, e.g., Ant Colony Optimisation (ACO) [140], a population-based metaheuristic algorithm
inspired by the social behaviour of real-life ants searching for food; Cuckoo Search [141], a
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metaheuristic approach idealised to reproduce the breeding behaviour of cuckoo birds, who
leave their eggs in the nests of other host birds of different species; and also the Artificial
Bee Colony (ABC) optimisation [142], a swarm-based metaheuristic algorithm based on the
behaviour of real honey bee colonies, which are organised in groups of bees to maximise the
nectar amount found in a food source.

It is important to note here that, considering the large number of new developments in
this field, especially in the last decade, only the hybrid PSO-based algorithms that are most
relevant in practice or future research have been addressed and emphasised in this section.

2.5.2 Artificial Neural Networks with Particle Swarm Optimisation

The first experiment on using PSO to train ANN weights was done by Eberhart and Kennedy
in the two papers that introduced PSO [10,11].

They claimed to have successfully trained a feedforward multilayer perceptron ANN using
PSO to solve the exclusive OR (XOR) problem and to classify the Fisher’s Iris data set, which
lead to the same, and sometimes better, results as the backpropagation algorithm.

It should be noted that the inertia weight is similar to the momentum term in a gradient
descent ANN training algorithm [45].

Eberhart and Hu [143] showed the use of sigmoid activation functions in training a
feedforward multilayer perceptron ANN using PSO to classify tremor types in Parkinson’s
disease.

They used an ANN with 60 inputs, 12 hidden nodes and two outputs nodes. Despite
the small size of the data set, PSO has been successfully applied to train the ANN with low
error and high performance.

In turn, Engelbrecht and Ismail [144] showed that the PSO could also be used to train
product unit ANNs (in which the output of each node is computed as a weighted product),
and when compared to other training algorithms, such as GA, the PSO showed the lowest
errors.

Kennedy [63] used the social-only and the cognition-only models to train an ANN for solv-
ing the XOR problem, and showed that the social-only version outperformed the cognition-
only model.

The cooperative learning approach presented in Section 2.4.1 was used by van den Bergh
and Engelbrecht [44], and different two-layered network architectures were considered for
testing; namely, plain (where a single swarm was used to train all the weights and bias),
Lsplit (in which two swarms were used to train each layer), Esplit (where one swarm opti-
mised 90 % of the weights and the other swarm optimised the remaining) and Nsplit (similar
to Esplit, but in which weights were split according to a function).

These authors performed some tests on various databases, and split architectures (espe-
cially the Esplit architecture) outperformed the plain architecture in terms of performance,
although correlated variables should be removed of the data set beforehand to improve the
effectiveness of these type of architectures.

Zhang and Shao [145] split the data set into three sets, a training set, a validation set
and a testing set, and used the PSO to train the architecture of ANN, including the number
of nodes, generated at algorithm initialisation.

Chatterjee and his collaborators [146] showed that the PSO algorithm can be used to
train the weights of a Takagi-Sugeno neuro-fuzzy network for voice-controlled robot systems.
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A detailed comparison of PSO and backpropagation as training algorithms for ANN
was made by Gudise and Venayagamoorthy [147]. Results showed that the ANN’s weights
converge faster with the PSO than with the backpropagation algorithm to achieve the same
error goal.

On the other hand, Mendes et al. [148] showed that, for the problems they considered,
PSO is not the best algorithm for ANN training, but it is the best one when a high number
of local minima is known to exist.

Juang [108] applied PSO to recurrent neural/fuzzy network training, by combining GA,
PSO and the concept of elite strategy to produce the best network design.

Ince et al. [149] used a modified version of the PSO algorithm, called MDPSO, to find
the optimal architecture and weights of a feedforward multilayer perceptron ANN for the
classification of electrocardiogram signals.

The MDPSO algorithm was proposed with the aim of finding the optimal solution in
the search space, but also the best number of dimensions for that search space; that is, the
particles explore the search space with different dimensions, and at the end of the algorithm,
the optimal global solution is chosen according to the lowest optimal solution found from
each dimension.

Interestingly, a hash function was used to set higher hash indexes to ANNs with higher
complexity, i.e., with higher numbers of hidden layers and neural units per hidden layer, and
thus the MDPSO can be used to optimise this unique dimension and find the simplest ANN
that is able to classify electrocardiogram signals correctly

It was also shown by Ince et al. [149] that the proposed algorithm strategy performs
better than most of the existing algorithms for classification of electrocardiogram patterns.

Pehlivanoglu [150], in turn, used a periodic mutation strategy to determine which parti-
cles should be mutated, when the operation should happen, and which ones should be added
to the swarm.

Quan et al. [151] also integrated mutation in the PSO algorithm to train a feedforward
ANN to short-term load and wind power forecast.

Besides optimising the network architecture and the weights of each connection, Garro
and colleagues [152] also computed the best transfer (or activation) function for the problems
at hand.

Al-Kazemi and Mohan [153] used a PSO variant named Multi-Phase Particle Swarm
Optimisation (MPPSO) algorithm with ANNs. This variant of the PSO algorithm uses
niching techniques to increase the diversity and the exploration of the search space. Besides
that, according to the phase of PSO execution, the direction of each particle changes, and
the particles only move to positions that will increase their fitness [154].

When compared to the backpropagation algorithm, MPPSO showed to be the more stable
algorithm for optimising the ANN weights for the problems considered.

Conforth et al. [155], on the other hand, used a hybrid PSO approach, combining PSO
and ACO, to adjust the ANN connection weights for the XOR problem.

In the aforementioned approaches, the PSO algorithm and its variants are used for ANN
training. The use of the backpropagation algorithm for network training is neglected, since,
in addition to requiring gradient and differentiable information, it also suffers from slow
convergence and has a high probability of getting trapped into local minima when compared
to PSO [156,157].
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Furthermore, in most of these approaches, PSO seems to need fewer epochs to get good
results when compared to the backpropagation algorithm.

As can be seen in the previous sections, PSO is one of the most used metaheuristic
optimisation algorithms, and is currently being applied for different purposes, as can be seen
in Figure 2.3.

Applications

Multi-objective
External repository

Multi-Objective PSO (MOPSO)

ANN’s weights and architecture

Multimodal functions

Fitness-Distance-Ratio (FDR)

Subpopulations and multi-swarm

Nbest technique

Stretched PSO (STPSO)

Adaptive PSO (APSO)

Constrained Optimisation

External repository

Preservation of Feasible Solutions Method (FSM)

Fitness-Distance-Ratio (FDR)

Figure 2.3: Summary of the most important applications of PSO.

2.6 Conclusion
In the previous sections, a literature review focusing on the PSO algorithm and its variants
was presented, describing the most important developments in this field since the introduc-
tion of the algorithm in the mid-1990s.

The PSO algorithm was inspired by some characteristics of the collective behaviour ob-
served in the natural world, in which elements of a population cooperate with each other
seeking to obtain the greatest mutual benefit.

Over the years, the PSO algorithm has gained attention from many researchers due to
its simplicity and because it does not make assumptions on the characteristics and proper-
ties (such as continuity or differentiability) of the objective function to be optimised.

Inevitably, the algorithm has suffered changes to, e.g., improve its effectiveness and effi-
ciency.

The use of different topologies was one of the first suggestions to improve the algorithm.
However, a conclusion was reached: the topologies of communication are problem dependent.

PSO was widely used for different applications, which led to some researchers to report
convergence problems with the algorithm. To lessen this problem, changes were made,
mostly by the introduction of new parameters, or by combining PSO with other operators
or algorithms.

The algorithm has also been extended to solve a panoply of different problems and appli-
cations since its original formulation in 1995. Constrained, multi-objective and multimodal
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optimisation problems were some of the most relevant applications and problems solved with
the PSO approach.

To conclude, PSO is one of the leading swarm intelligence algorithms and is superior when
compared to other optimisation algorithms in some fields of application. Although it has
some drawbacks, those were lessened by using different types of strategies and modifications
to the original version of the algorithm. PSO is also a problem-independent algorithm; i.e.,
it can be used in a wide range of applications due to its great capacity for abstraction, which
further highlights its importance.
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Chapter 3

On the Use of Particle Swarm
Optimisation for Root-Finding

— Progress is made by trial and
failure; the failures are generally a
hundred times more numerous than
the successes; yet they are usually left
unchronicled.

William Ramsay (1852–1916)

Abstract – Particle Swarm Optimisation (PSO) is a bio-inspired algorithm motivated
by the social and biological behaviour of bird flocks searching for food. PSO is considered a
stochastic algorithm and uses particles, organised in a swarm, and the information gathered
during the search process, in order to find the global best position for a given problem. Each
particle has a position and a velocity, which enables it to explore the problem’s solution
space. Throughout the years, many PSO algorithm variants were suggested, leading to the
inclusion of new parameters into the original PSO, such as the constriction term in the
velocity update equation, and the adoption of new communication structures. Since then,
the PSO algorithm is being used in a myriad of applications. In this chapter, the ability
of PSO to find the roots of a given non-linear equation or a system of non-linear equations
is examined. The PSO algorithm is adapted to enable it for root-finding, and the optimal
parameters are found by conducting a set of statistical tests on the different executions.
The objective is to give the user/researcher a framework that, according to the purpose,
can choose the best parameters set for PSO. In the end, a concurrently PSO algorithm
variant– Multiple Root-Finding Particle Swarm Optimisation (MRF-PSO)) – is suggested
to find the approximations to the roots of a given non-linear function simultaneously. Results
showed that swarms with 24 particles organised in an all-connected-to-all topology, with the
constriction term, are the optimal parameter configuration, in terms of the accuracy of the
roots approximations found, number of iterations and execution time. MRF-PSO, on the
other hand, showed to be effective for root-finding.
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3.1 Introduction
The Particle Swarm Optimisation (PSO) algorithm is a population-based stochastic search
algorithm that uses particles and the information gathered throughout the search process,
in order to find the optimal solution(s) in a (possible complex) search space (S) defined by
a given problem.

Particles are placed randomly in the search space and move stochastically by exchanging
information among all the other particles in the search space, or among the neighbourhood
of particles to which they belong.

Each particle has a memory mechanism that enables it to store the exchanged informa-
tion, as well as saving information about itself, such as the best position found by it. This
last type of information is often referred to as the particle’s experience.

Based on this information, particles explore the search space seeking for the best global
position(s) regarding minimisation or maximisation problems. Different strategies to update
the particles’ position were, however, proposed, tested, and discussed, since the original
version of the algorithm developed by Eberhart and Kennedy [10,11] in 1995.

The PSO algorithm stood out among all the other methods available for optimisation (es-
pecially exact methods) because, in addition to being simple to implement and having few
parameters to adjust, PSO does not make any assumption on the continuity and differentia-
bility of the objective function to be optimised, as most of the exact methods require.

Inevitably, the algorithm is currently being used in different applications and problems,
e.g., engineering optimisation problems [158], vehicle crash research [159] and financial risk
early-warning [160]. In this chapter, however, the author wants to analyse how the PSO
algorithm can be used to find approximations for the roots of non-linear equations or systems
of non-linear equations, and what are the parameters that leverage the success and efficiency
of PSO.

Therefore, this chapter is intended to: (i) analyse how the PSO algorithm can be used for
root-finding; (ii) assess the influence of the different parameters settings, and (iii) introduce
and test a concurrently-based approach of PSO for finding approximations for the roots of
a given non-linear equation or system of non-linear equations.

The rest of this chapter is organised as follows: after the introduction, Section 3.2 presents
the PSO algorithm and the most important convergence improvements suggested for the al-
gorithm. On the other hand, in Section 3.3, a survey of the related approaches is done.
Section 3.4 presents the changes in PSO for root-finding and, based on an Analysis of Vari-
ance (ANOVA), on Kruskal–Wallis tests, and followed by post hoc analysis, the optimal
parameters for the PSO algorithm are found. In Section 3.5, a PSO algorithm variant for
finding approximations for the roots of a given non-linear equation or system of non-linear
equations simultaneously is suggested and investigated. Finally, the last section presents
some concluding remarks.

3.2 Particle Swarm Optimisation
As already mentioned, the PSO algorithm was introduced in 1995 by an electrical engineer,
Dr Russell C. Eberhart, and the social psychologist Dr James Kennedy [10,11], inspired by
a computational simulation of a social model of a bird flock seeking for food.
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In order to explore the search space of a given problem, the PSO algorithm uses agents,
called in this context particles. Each particle, in turn, has a velocity and a position in the
search space and belongs to a set of particles, or, as Eberhart and Kennedy named, to a
swarm of particles.

Besides that, the PSO algorithm also takes advantage of the cognitive and social in-
formation of each particle, in order to move it around the search space. The cognitive
information (also known as particle’s experience) is made by the best position found by the
particle during the search process. On the other hand, the social information (also known
as swarm’s experience) is the best position found by the swarm of particles. This last bit
of information is shared among particles at every iteration using imaginary connections be-
tween them, which enables the particles to be connected to all particles in the swarm. This
model of communication is designated as gbest model.

In this way, the equations of motion of each particle i in the swarm, at every iteration t,
are defined as follows:{

~V i
t+1 = ~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t),

~x i
t+1 = ~x i

t + ~V i
t+1,

(3.1)

where ϕ1 and ϕ2 are respectively the cognitive and social weights, controlling how much
the particle’s own experience and the swarm’s experience should influence the particle’s
movement, whereas R1 and R2 are uniformly distributed random vectors between the search
space’s boundaries, being responsible for adding diversity to the swarm, and thus try to
lessen the premature converge of the algorithm to a local minimum or maximum. Lastly, ~p i

t

and ~g t denote the personal best position of particle i and the current global best position of
the swarm at iteration t, respectively. It is important to note that ~V i

t+1, R1, R2 and ~x i
t+1

are d-dimensional vectors, where d is the number of dimensions of the problem’s solution
space.

It is noteworthy that both R1 and R2 are generated for every dimension, in order to
increase the variability in each component, meaning that it is not the same random number
for all dimensions. This is a common error that one incurs because the equations of motion
are usually written in vector notation, affecting the efficacy and effectiveness of the search
process, since there is a loss of diversity.

In short, the PSO algorithm can be described in three main steps: (i) initialise the swarm;
until a stopping criterion is met: (ii) compute, for each particle, the new velocity and the
new position using Equation (3.1), and (iii) update the personal and global best position (if
necessary) for each particle.

Equation (3.1) and the social information sharing process presented above correspond to
the original PSO approach [10, 11]. However, different velocity update equations and infor-
mation sharing processes (i.e., different swarm communication structures) were proposed, in
order to improve the convergence characteristics of PSO.

3.2.1 Convergence Improvements

Since early, when it was first introduced, the PSO algorithm became one of the most well
known and widely used swarm intelligence algorithm and metaheuristic technique, because
of its simplicity and since it is considered a problem-independent algorithm, meaning that
it can be used in a wide range of applications.
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However, it was reported by some authors that PSO suffers from convergence problems,
making the algorithm converge to a position that is not granted to be the global best position
for the problem but only a local optimum.

This loss of exploration capabilities of the search space is caused when one particle founds
a local optimum and reports this position to the other particles. The remaining particles will
then fly headed to that position without exploring new areas of the search space, causing
the algorithm to get stuck into a local optimum.

This problem motivated researchers to develop in-depth studies and propose different
PSO approaches with the objective of lessening this problem, leading to the introduction
of new parameters (such as the inertia weight parameter and the constriction factor) or by
changing how the particles communicate between each other (giving rise to the lbest models,
as an alternative to the gbest model).

The Inertia Weight Parameter

One of the most known and used PSO variant is known as Standard Particle Swarm Opti-
misation (SPSO), and was presented by Shi and Eberhart [23] in 1998.

They introduced the inertia weight parameter, ω, as a mean of controlling the influence
of the previous velocity in the next particle’s velocity, and thus controlling the local and
global search strategy.

With the introduction of the inertia parameter [23], the equations of motion (3.1) are
now given by: {

~V i
t+1 = ω~V i

t + ϕ1R1
i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t),

~x i
t+1 = ~x i

t + ~V i
t+1.

(3.2)

In turn, ω can take different forms, such as being a simple constant value, but can also
vary according to the iteration number, or even be a random number [26]. When the inertia
parameter was introduced by Shi and Eberhart [23], they used different constant values for
the ω parameter and found that when ω ∈ [0.9, 1.2], the SPSO has a higher chance of finding
the global optimum within an acceptable number of iterations, when compared with the
original PSO.

On the other hand, some authors [28,29] proposed a negative linear time-varying inertia
weight, that can be given by:

ω(t) = ωmax −
ωmax − ωmin

tmax

× t, (3.3)

where t denotes the current iteration number, tmax is the maximum number of iterations
defined, and ωmax and ωmin are respectively the maximum and the minimum value that the
inertia parameter can assume. The user/researcher is responsible for choosing these values,
but usually, ωmax is set to be equal to 0.9 and ωmin to 0.4.

Another way of defining the inertia weight parameter is, as suggested by Chatterjee and
Siarry [30], to use a non-linear time-dependent function, such as:

ω(t) =

(
tmax − t
tmax

)υ
(ωmax − ωmin) + ωmin, (3.4)
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where υ is the non-linear modulation index. Usually, according to those authors, υ ∈ [0.9, 1.3]
is satisfactory.

The time-varying inertia weight approaches make a trade-off between exploration and
exploitation of the search space, avoiding that PSO gets stuck into a local optimum. In this
way, at the initial stages of the SPSO algorithm, the particles should explore all areas of the
search space, and thus have a higher inertia value. Differently, and as soon as a potential
area of the search space is found, particles should exploit that area, reducing the inertia
value, and consequently the velocity of each particle.

Lastly, the inertia weight parameter can be a random number [26], such as:

ω = 0.5 +
ξ

2
, (3.5)

with ξ being a random variable following a uniform distribution over the closed interval
of 0 to 1. This expression turns ω into a uniform random number between 0.5 and 1, with
a mean value of 0.75.

The Constriction Factor

In 1999, Maurice Clerc [14] suggested that the use of a constriction factor could improve
the effectiveness, and efficiency of the PSO algorithm, and thus ensuring the convergence of
the algorithm by making a trade-off between exploration and exploitation, similarly to the
inertia weight parameter.

In 2000, Eberhart and Shi [28] proposed one of the first and most known constriction
factors. In their approach, this factor is given by:

K =
2∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣ , (3.6)

where ϕ = ϕ1 + ϕ2 and ϕ > 4. Typically, ϕ = 4.1, and thus K ≈ 0.7298.
In turn, Equation (3.1) should be changed in order to accommodate this new parameter,

that is: {
~V i
t+1 = K

[
~V i
t + ϕ1R1

i
t(~p

i
t − ~x i

t) + ϕ2R2
i
t(~g t − ~x i

t)
]
,

~x i
t+1 = ~x i

t + ~V i
t+1.

(3.7)

Other authors [14, 161] suggested different constriction factors and deeply studied their
effect in the particles’ search process, while some combined the constriction factor and the
inertia factor in the velocity update equation [32].

Nevertheless, Equation (3.7) is still the most used approach when combining the PSO
algorithm with a constriction factor and will be the only one considered in this work.

The Communication Structure

The communication structure, or the swarm topology, defines which particles share informa-
tion with other particles, directly influencing how particles explore the search space, since
the global best information is shared among a restricted set of neighbours (lbest models) or
among the entire swarm (gbest model).
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In the original approach of the PSO algorithm [10, 11], particles were all connected to
each other. This type of communication structure is known as the gbest model and can be
formally expressed by:

~g t ∈
{
~p 1
t , ~p

2
t , . . . , ~p

s
t

}
| f(~g t) = min

({
f(~p 1

t ), f(~p
2
t ), . . . , f(~p

s
t)
})

, (3.8)

where f is the objective function and s is the total number of particles placed in the search
space.

However, some researchers soon detected that the gbest model has a high probability of
getting PSO trapped into a local minimum since particles are affected by only one particle:
the best particle in the swarm. This problem motivated the development of other communi-
cation structures, giving rise to the lbest models, and the concept of neighbourhoods [13,33].

The lbest models define neighbourhoods of particles, in which the knowledge is only
shared among particles that belong to the same neighbourhood. It is important to note that
the same particle can belong to more than one neighbourhood, and although it will not be
considered in this work, the neighbourhood of each particle can also be time-varying, i.e., it
can change according to the current iteration number [24,34,35]. (The neighbourhood of the
particle i with l neighbouring particles is denoted here as Ni.)

Differently from the gbest model, the lbest model can be formally expressed as follows:

~l it ∈ Ni | f(~l it) = min
({

f(~a)
})

, ∀~a ∈ Ni, (3.9)

where ~l it denotes the local best position, at iteration t, between all the particles belonging
to the neighbourhood of the particle i.

Examples of lbest model’s swarm topologies include the mesh, pyramid, random, ring,
star, and toroid structures [13, 33]. A more detailed description of these topologies will be
presented in the subsequent sections.

The lbest variant of the algorithm will be the communication model used from now on,
since it can be seen as a generalisation of the gbest model, i.e., when the neighbourhood of
each particle is the set of all particles in the swarm, then the two models are analogous.

3.2.2 Swarm Initialisation

The first step of the PSO algorithm is to randomly initialise each particle of the swarm,
within the search space bounds (~xmin, ~xmax), using a uniformly distributed random vector
with the same dimensions of the search space (d).

In turn, and because there is no previous position visited by the particles, the personal
best position of each particle is initialised with the position occupied at that moment by the
particle. On the other hand, the neighbourhood’s best position of each particle corresponds
to the position of the particle that has the lowest cost (when considering minimisation
problems) in the set of neighbouring particles. However, the neighbourhood’s best position
is only updated with the position of the best particle in the neighbourhood if it has a lower
cost when compared to the current cost of the particle. Otherwise, the neighbourhood’s best
position is initialised with the current personal best position. Note that the cost of each
particle, in all phases of the algorithm, is given by the evaluation of the objective function f
in the position that the particle is at that iteration.
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Like the position, the initial velocity is also a uniformly distributed random vector,
generated within the boundaries of the search space.

This initialisation scheme is presented in Algorithm 1 (refer to Appendix A), and it was
chosen by the author in order to increase the initial diversity of the swarm between the
boundaries of the search space since the PSO algorithm was shown to be highly influenced
by its initial diversity [162]. However, other schemes exist [163], and other strategies may
be used, such as placing the particles in specific positions, especially when there is a priori
knowledge of which areas of the search space are more favourable than others.

3.2.3 Optimisation Cycle

At each iteration, until a stopping criterion is met, the position and the velocity of each
particle are updated according to Equation (3.1), Equation (3.2) or Equation (3.7). At the
end of each iteration, if necessary, the best personal position and the neighbourhood best
position are synchronously updated, as can be seen by the flowchart of PSO presented in
Figure B.1.

In this work, particles are identified by an index, i, because it is computationally inex-
pensive to share information among the particles using this strategy. Also, it simplifies the
algorithm and makes it less prone to human errors.

When a stopping criterion is met, the output of the algorithm is the position, within
the search space, where particles found the lowest cost (when considering minimisation
problems), regardless of the swarms’ topology, i.e., the output of the algorithm is the position
of the particle in the swarm with the lowest cost value.

3.2.4 Stopping Criterion

The stopping criterion defines the objective of the execution of the algorithm. For example,
the algorithm can stop when no improvements are detected, when the number of iterations
reached the maximum allowed, when the standard deviation of the particles’ positions is
below a predefined threshold [164], or when the cost of the best particle in the swarm is
lower than a predefined threshold ε.

A combination of two stopping criteria can also be used, especially when one of the
stopping criteria is the maximum number of iterations, in order to force the termination of
the algorithm when it fails to converge.

Although the stopping criterion defined by the maximum number of iterations does not
require a priori knowledge about the problem at hands, care should be taken when choosing
the maximum number of iterations in order to prevent the algorithm from terminating pre-
maturely. The use of a stopping criterion that requires a frequent calculation of the fitness
function should also be avoided.

The stopping criterion is, thus, one of the algorithm’s characteristics that is crucial for
its performance and solution quality.

Concluding, as can be seen, PSO is relatively easily implemented, does not require a high
computational capacity to be run and can be used in a wide range of applications, since its
application is problem independent.

For its natural division of tasks and processes, the PSO algorithm can be easily split
into small computer processes for each particle or for each swarm (when multiple swarms
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are placed in the search space), that can be executed concurrently in a multi-processor and
multi-core system, improving the efficiency of PSO significantly. This will be explored later
in this chapter.

3.3 Related Work
The first report related to solving systems of equations with PSO was done by van den Bergh
and colleagues [24, 60] in 2002. They introduced the nbest PSO, in order to locate multiple
global solutions in a problem’s solution space.

For that purpose, they redefined the objective function as the minimum of the fitness
function with respect to other equations. For example, when the given system of equations
has three equations (say A, B and C), the fitness function is given by:

f(~x) = min
(
{fAB(~x), fAC(~x), fBC(~x)}

)
, (3.10)

where fAB denotes the fitness function with respect to equation A and B, fAC to A and C,
and fBC to B and C. This strategy rewards particles that are close to one of the solutions,
and does not apply any penalisation if they are still far from the global best particle. This
way, particles will find the position where all lines of the given system of equations intersect.

Besides changing the fitness function, the nbest technique uses a dynamic neighbour-
hood approach, based on the Euclidean distance, in order to define the neighbourhood of
each particle, and thus which particles communicate with other particles. The effect of the
neighbourhood size was also investigated [24].

Their strategy has revealed some promising results when compared to the gbest and
some lbest architectures. Nevertheless, in real-world applications, the systems of equations
are usually not limited to three equations. Thus, as the number of equations increases, the
number of combinations also increases, causing the algorithm to face performance issues.

Wang and collaborators [131], also with the objective of solving systems of equations,
opted to control the adjustment of the inertia term (ω) during the execution of the PSO
algorithm.

Interestingly, they proposed two approaches for adjusting the inertia term. The first
approach uses a Proportional Integral (PI) controller to perform the adjustments on the
inertia term based on the current error (e(t)), given by the difference between the desired
output (r(t)) and the output given by PSO (P (~x)), and on its past values.

On the other hand, an Artificial Neural Network (ANN) based approach was used along
with a Proportional Integral Derivative (PID) controller, in order to tune the PID’s constants
and add the information about the current rate of change of e(t), besides the information
related to the current and past information about e(t) (that were previously integrated into
the model by the PI controller).

The ANN is used, in turn, to tune the coefficients for the proportional, integral, and
derivative terms of the PID controller, denoted here by Kp, Ki and Kd, respectively. These
coefficients represent the weights of a single neuron ANN with three inputs.

Figure 3.1 summarises this approach. In this figure, I1, I2 and I3 are the inputs of
the ANN, which are defined by the difference between the desired output and the actual
output, i.e., e(t), and the first and second-order differences of the error, respectively. These
differences are computed by the SG module. In this way, I1 constitutes the proportional
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part, I2 the derivative part and I3 the integral part in the PID controller, being w11,w21 and
w31 the same as Kp, Ki and Kd.

Finally, the inertia term, in this case, the control variable in the PID controller, is passed
to the PSO algorithm, which is then run. Therefore, the PID controller is responsible for
balancing the global and local search strategies.

r(t) ∑
SG

w11

w21

w31

I1

I2

I3

ω(t) PSO P (~x)e(t) ∑
+ −

+

+

+

Figure 3.1: PID controller, proposed by Wang et al., to control the inertia term.

Abraham et al. [165] then used the PSO algorithm to find the integer numerical approx-
imations for the solutions of the Diophantine equation, which represents an elliptic curved
function. Later, Pérez and collaborators [166] proposed a discrete version of the PSO algo-
rithm for solving identical problems.

Amaya and colleagues [167] tested the PSO algorithm for solving systems of non-linear
equations and studied the effect of considering different swarms sizes. They found that,
as the swarms get bigger, the PSO algorithm required fewer iterations to achieve the same
accuracy level, and thus have a faster convergence speed; however, the algorithm’s execution
time increased.

Grailoo and collaborators [168] suggested to change the position update equation as
follows:

~x i
t+1 = ~x i

t + C(t+ 1)~V i
t+1, (3.11)

with C(t) given by:

C(t) =
1

eαt
, (3.12)

where α =
µ

tmax

, and tmax and µ are the maximum number of iterations and a parameter,

both defined by the user/researcher.
This strategy changes the weighting given to the velocity of the particles, by using an ex-

ponential decreasing relationship between the iteration number and the parameter µ. Thus,
particles tend to give privilege to the exploration of the search space initially and, on the
last stages of the algorithm, the exploitation of it.

The experimental results were compared to some classical methods for root-finding (e.g.,
Newton’s method and Broyden’s method) and the proposed algorithm revealed to be more
accurate.

Jaberipour et al. [169], on the other hand, proposed to change both the velocity and
position update equations as follows:

~V i
t+1 = (2ξ1 − 0.5)~V i

t + (2ξ2 − 0.5)(~p i
t − ~x i

t) + (2ξ3 − 0.5)(~g t − ~x i
t),

~ω i
t+1 = (2ξ4 − 0.5)(~g t − ~p i

t) + (2ξ5 − 0.5)(~g t − ~x i
t),

~x i
t+1 = ~p i

t + (2ξ6 − 0.5)~V i
t+1 + (2ξ7 − 0.5)~ω i

t+1,

(3.13)
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where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 and ξ7 are randomly generated numbers between 0 and 1.
After updating the velocity and the position of each particle, the personal best position

is, if necessary, updated, and stored in a matrix. Then, one of the dimensions of the worst
personal best position in terms of fitness value is mutated and is updated with the mutated
position if its fitness is lower (considering minimisation problems) than the previous fitness
value. Finally, the global best position of the swarm is found and the algorithm proceeds as
the original PSO’s strategy. A similar approach was also followed by Salomon et al. [170],
but for load-flow studies.

Besides changing the equations of motion, Zhao and collaborators [171] applied a specia-
tion strategy, where particles are grouped in neighbours according to the Euclidean distance
between them. Thus, the information sharing is reserved for particles belonging to the same
species, making the algorithm able to find multiple solutions, more specifically, a solution
per species.

Reyes-Sierra and collaborators [172] showed that the PSO algorithm can be used to find
both real and complex roots of a given non-linear system of equations, by changing the
velocity update equation as:

~V i
t+1 = ω~V i

t + ϕ1R1
i
t

(
Re(~p i

t − ~x i
t)
)
+ ϕ2R2

i
t

(
Re(~g t − ~x i

t)
)
+

ϕ1R1
i
t

(
Im(~p i

t − ~x i
t)
)
+ ϕ2R2

i
t

(
Im(~g t − ~x i

t)
)
,

(3.14)

where Re and Im are respectively the real part and the imaginary part of a complex number.
Mai and Li [173] hybridised the Bacterial Foraging Optimisation (BFO) with the PSO

algorithm with linear time-varying inertia [28,29] for solving systems of non-linear equations.
On the other hand, Ibrahim and Tawhid [174] hybridised the Cuckoo Search Optimisation
algorithm with PSO for the same task.

3.4 Root-Finding Particle Swarm Optimisation
Although there are many iterative exact methods for finding one root or a pair of roots
of a given equation, these methods require repeated deflations in order to find the set of
arguments where the function assumes the value of zero. That is, these algorithms use the
last computed root approximation for computing a new approximation.

However, this repeated approximation technique can lead to very inaccurate results due
to the problem of accumulating rounding errors, even if all machine (finite) precision for
floating-point arithmetic is used. Examples of iterative methods for root-finding include
the well known Newton’s method (also known as Newton–Raphson method), based on the
2nd order Taylor series expansion.

The Newton’s method has a fast convergence speed, being quadratically when the method
converges. However, it needs very good initial approximations for all roots in order to con-
verge, which makes it complex to be used when no a priori information about the function is
available. It also requires the computation of the derivative information (like the Jacobian
matrix) of the function whose roots are being computed, which is not always possible. Fi-
nally, and although it is simple to implement, the Newton’s method is very computationally
expensive to execute [175].
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The secant method and other quasi-Newton variations (such as the Broyden’s method and
the Broyden–Fletcher–Goldfarb–Shanno [BFGS] algorithm) [176] facilitate the computation
of the exact derivative of the equation by using an approximation; however, it is still a
repeated approximation technique with an associated medium-high computational effort
and, in some cases, a slow convergence rate.

On the other hand, due to the search strategy implemented in PSO, the algorithm is able
to explore all the search space and progressively converge to the most propitious areas of it.
Thus, there is no need to have good initial approximations for the roots of a given function
for the algorithm to converge.

Besides that, the PSO does not need the derivative information to be computed, since
the cost of each particle is given by evaluating the function on the particles’ position, nor is
a deflation technique; therefore, high-quality solutions may be obtained.

In this way, the PSO algorithm is tested here for finding approximations for the real
roots of non-linear functions, using different parameters configuration and communication
structures, in order to find the best set of parameters for root-finding with PSO.

Later, a PSO variant for finding approximations for all roots of a given non-linear equation
or system of non-linear equations simultaneously is suggested and tested. Results, however,
cannot be compared to the previously mentioned exact approaches, since they were not
designed to find all roots simultaneously. As an alternative, it is possible to find each root
sequentially by using different initial guesses, but in the author’s opinion, this is not a fair
comparison for both approaches.

3.4.1 Adaptation of Particle Swarm Optimisation

Using the PSO algorithm for root-finding is, in essence, very similar to the use of PSO
for minimisation or maximisation problems. Changes were made specifically in the way of
computing the cost of each particle, as well as ensuring that the particles stay within the
search space’s bounds in the course of the algorithm.

On the other hand, the search strategy was not directly changed, since particles should
always move into the best-fitness particle, in this case, to the particle with the lowest root
value.

The algorithm then iterates until the maximum number of iterations is reached or until
the root value is lower than a pre-established tolerance ε (usually, ε = 10−12).

Cost of Each Particle

In the PSO algorithm for root-finding, the cost of each particle is given by the absolute value
of the evaluation of the function at the current position of the particle, i.e., the root value.

It is important to note that since the PSO algorithm was designed for optimisation
problems, where particles with lower cost (considering minimisation problems) have a higher
probability of being at the best global position, the same may not happen with the roots of
a given function.

If the absolute value of the evaluation of the function in some position was not taken as
the cost of each particle, particles far from the function’s root with negative costs will have
more influence than particles that may even be closer to the root but have a higher fitness
value.
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Since there are no negative costs, the root value can be seen as a measure of the quality
of each particle; thus the pbest and lbest information will still be used to influence particles
to move towards the best-fit particle, in this case, to the particle that is closer to the root
of the given non-linear function.

Search Space’s Bounds

Even though in the first iteration of PSO particles are inevitably positioned within the search
space’s bounds, during the later iterations, some particles can leave the search domain, and
thus the feasible region. Consequently, particles may take some iterations to return to the
feasible region again, or they may not even come back, and influence other particles to move
towards invalid positions, affecting the quality of the solutions found by the algorithm.

To overcome this problem, particle’s dimensions that exceed its bounds are reset to the
nearest available boundary, such that:

(~x i
t+1)d =


(~xmin)d if (~x i

t+1)d < (~xmin)d,

(~xmax)d if (~x i
t+1)d > (~xmax)d,

(~x i
t+1)d otherwise.

(3.15)

Nevertheless, others strategies exist when particles exceed the feasible region, such as
position randomly the particle inside the dimension’s bounds, position the particle in the
midpoint between its current position and the dimension’s bound, or re-adjust the particle’s
velocity using a shrinking method [177,178].

The pseudo-code for the optimisation cycle is listed in Algorithm 2 (refer to Appendix C),
where ŷ denotes the root approximation found by the PSO algorithm. It is also important
to note here that Algorithm 2 adopted the velocity update equation given in Equation (3.2),
but other velocity update equations will also be considered in this work.

Particles, in turn, are initialised, at the first iteration, as the initialisation scheme pre-
sented in Algorithm 1.

3.4.2 Parameter Tuning

Although PSO has few parameters to be regulated when compared to other optimisation
techniques, these need to be chosen and have a significant impact on the successful execution
of the algorithm. Unfortunately, most of the times, the right-tune of these parameters can
only be made experimentally, using a trial and error methodology.

In this section, a set of test functions commonly used for testing optimisation algorithms
will be used to test how the parameters affect the convergence, performance and the ef-
fectiveness of the PSO algorithm adapted for root-finding. The author also intended to
provide a framework to other users/researchers so that, according to their purposes (e.g.,
accuracy or efficacy), one can choose the best set of parameters for some application taking
into consideration the results presented in the following subsections.

Nevertheless, the optimal combination of parameters (considering accuracy and efficacy)
will be drawn from the tests and will be used with the proposed PSO algorithm variant for
simultaneously finding approximations for the roots of a given non-linear equation or system
of non-linear equations.
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Experimental Setting

To assess the impact of the different parameters in the execution of the PSO for root-finding,
a set of tests were performed using different test functions [179,180].

Test functions are functions that were intentionally developed to test, evaluate and com-
pare different optimisation algorithms and their parameters. For this work, functions were
chosen based on the number of local minima and function’s shape and taking into account
that its optimal solution coincides with the root of the function. In this view, it is possible
to test the convergence rate, accuracy, effectiveness and efficiency of the PSO algorithm for
root-finding.

The parameters considered in each test include: (i) the number particles in the swarm (24,
36, 48 and 60); (ii) the communication structure (all-connected-to-all [gbest model], mesh,
pyramid, random, ring, star and toroid [lbest models]), and (iii) the velocity update equa-
tion (constant, linear and non-linear time-dependent inertia, stochastic inertia and constric-
tion factor).

The value found by each swarm, the number of iterations, the total execution time and
the number of roots that were not found are the metrics that were collected from each
test. Note that, when the algorithm fails to converge to an acceptable root approximation
according to the predefined accuracy, it is said that the algorithm has not found a root.

Due to the high number of dimensions and the complexity of the search space, ε was set
to 10−5. In addition to setting the stopping criterion by the value of the objective function
in a given point, in order ensure that the algorithm will end, it was also defined that the
algorithm can have a maximum of 5 000 iterations.

In total, 7 000 tests were executed. That is, ten tests were executed for each combination
of the four number particles in the swarm, the seven communication structures, the five
velocity update equations and the five test functions. Besides that, all the tests were executed
in the same machine with an Intel Core i7-7560U CPU, running at 2.40 GHz, with 16 GB
of RAM.

Test Functions

The Ackley, Rastrigin, Rosenbrock and sphere functions, and the Schaffer function no. 2
were used in this work to find the best parameters for root-finding. Except for the Schaffer
function no. 2, which is defined only for two dimensions, 30 dimensions were used in all of
the test functions. In Appendix D, all the functions’ graphical illustrations, expressions and
search-domains are presented.

Functions with flat surfaces threat the convergence of the algorithm since there is no
information about which direction are the promising areas of the search space. An example
of a function with a flat surface is the Ackley function [181,182].

This symmetric function has many local minima in the outer region, whereas at the
centre of the search space there is a large hole, where the root (and the global minimum) of
function is located. Besides that, the function is continuous and differentiable.

Another well know test function is the multimodal Rastrigin function [183], in which the
search space besides being large and complex, has many local minima with the particular-
ity that they are regularly distributed, due to the cosine function. Like the previous test
function, this function is non-convex with its root sitting at the origin.
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The Rosenbrock function [184] is a unimodal function with the global minimum, in this
case, also the root of the function, located in a long and narrow parabolic valley in the search
space, more specifically at (1, . . . , 1).

In addition to varying rapidly [185], tests made by Picheny et al. [186] report that it is
easy to find the valley. However, the global minimum is more complex to be found, and this
is one of the reasons why this function is considered by many researchers to be a proper test
function.

On the other hand, the Schaffer function no. 2 [187] is only defined in a 2-dimensional
space. Nevertheless, the search process is still laborious because it is extensive and has many
local minima in the sided wells. The function is non-convex, unimodal and differentiable,
and has its root at (0, 0).

The sphere function [188], in turn, is a bowl-shaped function where all the points are
equidistant between them and the centre of the sphere, where the root is sitting. This
function is symmetric, unimodal and convex.

In terms of complexity of the search process, the Ackley function and the Schaffer function
no. 2 are considered hard; the Rastrigin and Rosenbrock functions are considered medium-
level, whereas the sphere function has the most simple search space, being categorised into
the easy level.

Analysis of Variance and the Kruskal–Wallis Test

The Analysis of Variance (ANOVA), introduced by Sir Ronald Fisher [189], is a statistical
technique that is used to compare the average values of random variables when subject to
different experimental conditions, identified by one or more independent variables, called
factors [190].

To conduct an ANOVA, the experimental procedures are applied to k ≥ 2 populations,
to test the differences between the populations’ averages. Besides that, the ANOVA is also
used to determine which of the factors are more relevant to explain the variability of the
dependent variable(s).

For example, an ANOVA should be conducted when one wants to compare the grades
of students, from different colleges, that took the same exam, in order to verify either if the
exam performance is the same or if one college is better than the other.

For this work, a one-way multiple ANOVAs were conducted. That is, only one dependent
variable was considered at a time and analysed in each of the three independent variables,
indicated in Table 3.1.

Table 3.1: Independent variables and their respective levels.

Independent variable Levels of the independent vari-
able (factors)

Population size 24, 36, 48 and 60.
Velocity update equation Constant, linear, non-linear, and stochastic

inertia and constriction factor.
Communication structure All-connected-to-all, mesh, pyramid, ran-

dom, ring, star and toroid.
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The dependent variables for this study are: (i) the root approximation value found by
the swarms; (ii) the number of iterations, (iii) the total time of execution (in seconds), and
(iv) the number of roots not found.

The ANOVA procedure tests if the mean values of a random variable in the k populations
are equal, that is, if the effect of the factor is null, determining whether the populations are
all part of a larger population or are populations with different characteristics. In this view,
the hypotheses of interest can be given as:

H0 : τ 1 = τ 2 = · · · = τ k vs.
H1 : ∃i, j : τ i 6= τ j, i, j = 2, · · · , k,

where τ k denotes the average of the population k.
If the null hypothesis is accepted, under a certain significance level, the average value be-

tween the populations is assumed to be equal; on the other hand, when the null hypothesis
is rejected, at least one population’s average is different from at least one other popula-
tion’s average. In this last case, post hoc tests may be performed in order to detect which
groups have a statistically significantly different average values from the other groups. (This
procedure is known as Multiple Comparison Analysis.)

However, the ANOVA procedure can only be applied when all the following assumptions
are met [191]:

• Independent and randomly selected samples.

• The distribution of each group follows a normal distribution (which can be checked
using Shapiro–Wilk Test or the Kolmogorov–Smirnov test).

• Equal variances between the groups, i.e., groups must be homogeneous (which can
be examined using Levene’s test). It is important to note that if the hypothesis of
homogeneity of variances is not satisfied and groups have the same number of samples,
the ANOVA procedure is little affected.

If the ANOVA’s assumptions are met and the null hypothesis is rejected, then differences
between specific groups can be detected using the Tukey post hoc test (or the Tuckey–
Kramer’s when there are unequal sample sizes).

There is also the case when the ANOVA’s assumptions are not met. In these situations,
the Kruskal–Wallis test, a non-parametric alternative to the usual ANOVA, may be used
along with the null hypothesis that the samples come from similar population distributions.

It is important to note here that the ANOVA’s hypotheses of interest are written in
terms of the population’s average value whereas the Kruskal–Wallis are written in terms
of the median value. Besides that, when the null hypothesis is rejected on the Kruskal–
Wallis test, the Dunn’s test can be used in order to make the comparisons between any two
groups levels and detect which specific groups are statistically significantly different from
the others. (That is, the Dunn’s test will be used here as a post hoc test to test for median
statistically significantly difference.)

The ANOVA results will be presented here as following [F(df1, df2) = ·, p = ·], where
F represents the statistic value using df1 degrees of freedom between groups and df2 within
groups, and p the p-value. On the other hand, the Kruskal–Wallis test will be presented as
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follows: [χ2(df) = ·, p = ·], where χ2 denotes the chi-squared statistic value, and df denotes
the degrees of freedom.

Finally, the Pearson’s chi-squared test for independence, which is suitable for categorical
data, was used to test if the different parameters influence the number of roots not found by
the PSO for root-finding (in this case, true, if the algorithm found a root; false, otherwise).
In a similar way to the Kruskal–Wallis test’s notation, the Pearson’s chi-squared tests’ results
will be presented as follows: [χ2(df) = ·, p = ·].

All the tests were made considering the significance level of .05 and using the R software
version 3.6.3 [192], and taking into account only the successfully executions of PSO, except
for the test of the number of roots not found. It is also important to note that the Dunn’s
test was applied using the Bonferroni adjustment for the p-value.

In what follows, the different PSO algorithm parameters will be introduced and its effect
on the execution of the PSO algorithm for root-finding will be assessed. Throughout the
analysis, auxiliary tables will be presented with the average (when the ANOVA is used) or
with the median values (when the Kruskal–Wallis test is utilised) for each level.

3.4.3 Population Size

The population size, i.e., the number of particles in the swarm, is one of the first parameters
to be considered. Usually, the number of particles varies from 20 to 60.

However, if a small number of particles is chosen, particles tend to take longer (i.e.,
require more iterations) to explore the entire search space, slowing down the convergence
speed, which may help the algorithm to escape from local optimum positions. Still, there
are few function evaluations, when compared to a larger number of particles.

On the other hand, when a higher number of particles is used, there are more interac-
tions and exchanges of information among the swarm, thus PSO has a higher probability
of increasing the quality of the solution(s) found when compared to a smaller number of
particles.

Nevertheless, some studies [28, 193] reported that the effect of the population size does
not have a significant impact on the overall performance of the PSO algorithm.

El-Gallad et al. [194] tested some different swarm sizes with PSO for solving Constrained
Optimisation Problems (COPs), and they concluded that increasing the number of particles
in the swarm also increased the quality of the solutions found. However, increasing the
swarm size from 30 to 50 did not result in a significantly better solution. Similar results
were also reported by Dai et al. [195].

Notwithstanding, a compromise must be reached between quality and performance.

Tests and Results

A different number of particles was tested with different combinations of parameters, to
choose the number of particles that, on average, gives the best results in terms of the value
of the root found, the number of iterations required, execution time and the number of roots
not found.

Table 3.2 serves as an auxiliary table for selecting the best number of particles for each
test, considering the results of the multiple comparison analysis.
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Table 3.2: Auxiliary table used to compare the effect of the different number of particles in
the swarm on the PSO algorithm.

No. of particles Median root value Average no. iterations Median execution time (s) No. roots not found

24 4.990e−06 276.966 0.019 80.057 %
36 6.580e−06 296.063 0.022 78.343 %
48 6.545e−06 355.203 0.028 76.343 %
60 6.880e−06 295.169 0.030 75.371 %

For the first experiment, a Kruskal–Wallis test was conducted to compare the effect of
the number of particles on the accuracy of the roots found by the PSO algorithm with
swarms with 24, 36, 48 and 60 particles. The choice of this test is based on the fact that the
groups’ sizes are different and, according to the Levene’s test, the populations’ variances are
considered to be not equal (p ≈ .010).

In this view, the analysis suggests, at the level of significance of .05, that there are
statistically significant differences between the effect of the number of particles in the swarm
on the value of the root found by the algorithm for the four population’s size [χ2(3) ≈
12.337, p ≈ .006]. Post hoc comparisons using the Dunn’s test then indicated that swarms
with 24 particles differ statistically significantly from swarms with 60 particles (p ≈ .003);
nevertheless, the comparison between the pairs with 36, 48 and 60 did not show statistical
evidence that they differ.

Taking into consideration the results presented in Table 3.2, it is possible to verify that
swarms with 24 particles revealed to have the lowest median root value. Thus, in what
concerns to the root values’ accuracy, swarms with 24 particles found more accurate root
approximations.

Regarding the number of iterations and since all ANOVA’s assumptions were fulfilled,
a one-way ANOVA was conducted to compare the effect of the number of particles on the
number of iterations required for the algorithm to be successful. Results showed, at the level
of significance of .05, that there was not a statistically significant evidence that the different
number of particles affects the number of iterations [F(3, 1569) = 1.364, p ≈ .252].

In order to examine the effect on the execution time when a different number of particles
in the swarm is considered, a Kruskal–Wallis test was conducted and reported that the
number of particles has a statistically significant effect in the execution time of the algorithm
[χ2(3) ≈ 22.244, p < .001]. (This test was used due to the populations’ variances are
considered to be not equal [p < .001] and since the groups have a different number of
samples.) Thus, for any level of significance, at least one number of particles in the swarm
is statistically different from the others in terms of execution time.

In fact, the Dunn’s test revealed that no statistically significant differences were found in
the pair 24-36 (p ≈ 1.000), which, according to Table 3.2, has the shortest execution times.
On the other hand, pairs 24-48 (p ≈ .004), 24-60 (p < .001) and 36-60 (p ≈ .020) were found
to have statistically significant differences. Thus, swarms with 24 or 36 particles are the
optimal numbers of particles in the swarm in terms of execution time. It is also important
to note that, as one would expect, as the number of particles increases, the execution time
required for the execution of the PSO algorithm also increases.

Finally, a Pearson’s chi-squared test was performed comparing the frequency of the num-
ber of roots found in the different population sizes. The result of this test showed that there
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is a statistically significant relationship between these variables [χ2(3) ≈ 13.175, p ≈ .004].
That is, there is a statistically significant evidence that increasing or decreasing the number
of particles in the swarm increases or decreases the probability of PSO to find the root of a
given function.

In order to detect the pairs that are statistically significantly different, the Pearson’s
chi-squared was used again, but with the Yates’ correction for continuity. As a result,
swarms with 60 particles showed to be statistically significantly different from particles with
24 (p ≈ .001) and 36 (p ≈ .041); however, no statistically significant differences were found
in between swarms with 60 and 48 particles (p ≈ .527). As can be seen by the results of
Table 3.2, swarms with 60 and 48 particles have a higher success rate when compared to
other swarms with a lower number of particles. (In fact, increasing the number of particles
reflects an increase in the success rate of the algorithm.)

The analysis of all these tests allowed to conclude that, for the test functions considered,
swarms with 24 particles perform better than any other number of particles in the swarm,
proving to be a good approach in terms of root accuracy and efficiency, at the expense of a
decrease in the effectiveness of PSO.

A summary of the statistical results on different swarms’ sizes can be found in Table 3.3.

Table 3.3: Comparison of the different number of particles in the swarm (X means performed
better.)

No. of
particles

Root value No.
iterations

Execution
time

No. roots
not found

Total

24 X X X 3
36 X X 2
48 X X 2
60 X X 2

3.4.4 Velocity Update Equation

The velocity update equation is the mechanism that makes particles move around in the
search space, being the most critical tuning strategy for the successful execution of the
algorithm.

In most of the PSO algorithm variants, the velocity update equation is made of an
inertia or a constriction term, cognitive and social acceleration coefficients, and stochastic
components to create diversity in the swarm’s movement.

Inertia Weight and Constriction Term

The inertia weight parameter was introduced by Shi and Eberhart [23] to balance the global
and local search in the defined search space, controlling how much the previous velocity
should affect the next velocity and position update.

Therefore, if a high value is assigned to the inertia component, particles will give more
importance to the self-knowledge, whereas a small inertia gives a greater weighting to the
social’s knowledge, helping the algorithm to escape from local minima.
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To control the exploration and exploitation capabilities, Shi and Eberhart suggested a
constant inertia weight parameter. However, many researchers reported that using a dynamic
inertia weight (e.g., based on the iteration number) increased the capabilities of the PSO
algorithm [196].

On the other hand, the constriction factor (K) was suggested by Maurice Clerc [14] and
later introduced by Eberhart and Shi [28] in the PSO velocity update equation, with the
objective of ensuring, based on mathematical theory, the stable convergence of the algo-
rithm [161]. Besides that, this constriction term can be used to prevent the rapid increase
in the velocity of the particles towards infinity.

The inertia weight and the constriction factor can be seen as similar approaches since the
previous velocity is multiplied by a constant. Typically, when the constriction term is used,
the sum of the cognitive and social accelerations coefficients is equal to 4.1 (ϕ1 = ϕ2 = 2.05),
and thus, K ≈ 0.729. However, in the velocity update equation of (3.7), ϕ1 and ϕ2 are not
equal to 2.05, but approximately equal to 1.494 (0.729× 2.05 ≈ 1.494). Thus, when ω = K
and ϕ1 = ϕ2 ≈ 1.494, Equation (3.2) can be obtained.

Table 3.4 lists the inertia weights variations and the constriction term used in the tests,
as well as the value of the parameters used.

Table 3.4: Inertia weights variations and the constriction term used in the tests, and the
values of the parameters used.

Name Function Experiments

Constant [23] ω = c c = 0.9

Linear decreasing [28,29] ω(t) = ωmax−
ωmax − ωmin

tmax

×
t

ωmax = 0.9 and ωmin = 0.4

Non-linear decreasing [146] ω(t) =

(
tmax − t
tmax

)υ
(ωmax −

ωmin) + ωmin

υ = 1.2, ωmax = 0.9 and
ωmin = 0.4

Stochastic [26] ω = 0.5 +
ξ

2
n/a

Constriction factor [23] K =
2∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣ ϕ = ϕ1 + ϕ1 and ϕ1 = ϕ2 =
2.05

Acceleration Coefficients

It is already known that the acceleration coefficients (ϕ1 and ϕ2) can affect stochastically
the magnitude of the search, how much importance is given to self and swarm’s experience
and the convergence behaviour.

When ϕ1 � ϕ2 or ϕ2 � ϕ1, particles will be more attracted to ~p i
t or ~l it, respectively.

However, keeping one of these conditions throughout the execution of the algorithm can
cause the particles to wander in the search space or the algorithm to converge prematurely.

To enhance the exploration capabilities of the swarm, high values should be assigned to
both ϕ1 and ϕ2. In this case, particles will be more sensitive to the difference between the
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current position and the best position in the neighbourhood and thus will move faster and
to distant regions of the search space.

When a refined local search is better for the search strategy, these parameters should
be set to lower values, since particles will move slower and will continuously improve an
objective and the exploitation capabilities of the swarm.

Usually, their values are static, but may also vary according to the iteration number [34,
193] to give the swarm better exploration capabilities at the beginning and, when a promising
area of the search space is found, enhance the exploitation capabilities of the swarm.

Besides that, both should be greater than zero, although, when ϕ1 = 0, particles have no
cognitive abilities and are influenced only by the best particle in the neighbourhood. Thus,
the algorithm is more susceptible to get stuck into a local optimum. On the other hand,
when ϕ2 = 0, the particles do not have a social component, i.e., there is no cooperation
and communication among particles, making the algorithm more time consuming and less
likely to find the optimum position [197]. In most applications, ϕ1 = ϕ2, since particles are
attracted to the mean position between its personal and neighbourhood’s best position [163].

The best settings for ϕ1 and ϕ2 is, derived from theoretical studies and benchmark tests,
ϕ1 = ϕ2 = 2 or ϕ1 = 2.5 and ϕ2 = 1.5. When the constriction factor is used with PSO,
typically ϕ1 + ϕ2 = 4.1.

ϕ1 and ϕ2 can also be related with ω, such that ϕ1 = ϕ2 = 1.4961, when ω = 0.72984;
ϕ1 = ϕ2 = 1.193 when ω = 0.721 [24, 198].

For the tests of this work, except for the constriction factor approach, ϕ1 = 0.5 and
ϕ2 = 0.3, since a priori tests conducted by the author revealed that, for the suit of test
functions considered, the algorithm is most likely to succeed.

Tests and Results

In this subsection, different velocity update equations will be tested and compared in order to
find which is (or are) the best equation(s) among all the velocity update equations considered
in this study.

Table 3.5 complements the information that will be presented bellow and shows a com-
parison between the effects of the different particle’s velocity update equations. Beforehand,
it is important to note that the non-linear inertia term is not, by any means, a good approach
for finding the roots of a given function, since it was not successful in all the executions.

Table 3.5: Auxiliary table used to compare the effect of the different particle’s velocity
update equations on the PSO algorithm.

Equation Median root value Median no. iterations Median execution time (s) No. roots not found

Constant 8.805e−06 83 0.046 63.429 %
Linear 6.926e−06 75 0.021 68.357 %
Non-linear n/a n/a n/a 100.000 %
Stochastic 5.881e−06 44 0.012 75.857 %
Constriction factor 3.805e−06 128 0.031 80.000 %

Since the populations’ variances are considered to be not equal (p ≈ .002), a Kruskal–
Wallis test was performed to explore the different equations effects on the value of the roots
found by the algorithm, i.e., which velocity update equation(s) found more accurate root
values. In this regard, the relation between the different roots’ values and the velocity
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update equations showed to be statistically significant at the level of significance of .05
[χ2(3) ≈ 98.144, p < .001].

Using the Bonferroni adjustment, Dunn’s post hoc tests were carried out on each pair
of equations, finding that the velocity equation that accommodates the constriction factor
was statistically significantly different from all the other pairs (for all cases, [p < .001]).
Nevertheless, no statistically significant differences were detected between the linear and
stochastic equations (p ≈ .487) and in between the linear and the constant inertia term (p ≈
.508). Referring to the Table 3.5, it is possible to conclude that the constriction factor term
is the best strategy for updating the particles’ velocity, since it found, in terms of median
value, the lowest (i.e., more accurate) root approximation values.

In turn, a Kruskal–Wallis test showed that choosing a specific velocity update equation
statistically significantly affects, at the level of significance of .05, the number of iterations of
the PSO algorithm [χ2(3) ≈ 93.787, p < .001]. (The populations’ variances are considered
to be not equal [p < .001].) The pairwise comparisons using the Dunn’s test then revealed
that the stochastic update equation performed statistically significantly different from the
other velocity update equations (in all comparisons, p < .001). In addition to this, no statis-
tically significant differences were detected between the pairs constant-linear (p ≈ .285) and
constant-constriction factor (p ≈ .673). Thus, using the information available in Table 3.5,
it is possible to conclude that, in terms of the number of iterations, the best velocity update
equation is the one with a stochastic inertia term.

Following a similar approach, after verifying that the variance between the groups was
not equal (p < .001), a Kruskal–Wallis was conducted to compare the effect of the different
velocity update equations on the execution time of the PSO algorithm. Tests showed that
there are statistically significant differences in the execution time between all the update
equations [χ2(3) ≈ 40.009, p < .001].

Dunn’s test revealed again that, at the level of significance of .05, the stochastic velocity
update equation is statistically significantly different from the other equations (with p < .001,
for all pairs). On the other hand, the constant, linear and non-linear inertia statistics did
not provide sufficient evidence that they are statistically significantly different. Taking into
account the values presented in Table 3.5, the shortest execution times are associated with
velocity update equation with a stochastic inertia term, being this the best approach for
updating the particles’ velocity when considering the algorithm’s execution time.

To assess the influence of the different velocity update equations on the number of roots
found by the PSO algorithm, a Pearson’s chi-squared test was carried out and found that
the velocity update equations are associated with the number of roots found by the PSO
algorithm [χ2(4) ≈ 640.295, p < .001]. Using the same test, but with the Yates’ correction
for continuity, the statistical evidence provided showed that the constant inertia found more
roots when compared to the other velocity update equations. (For all comparisons with the
constant inertia, p < .001, except for the linear inertia, where p ≈ .007).

As can be seen in Table 3.6, if one is interested in obtaining accurate root approximations,
then one should choose the constriction factor approach. However, the constant inertia
should be chosen when the objective is to increase the number of successful executions.
Nevertheless, to leverage the efficacy of the PSO algorithm, the stochastic inertia term is
the best option. In the context of this work, the constriction factor approach will be, from
now on, the strategy used for updating the velocity of the particles.
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Table 3.6: Comparison of the different particle’s velocity update equations (X means per-
formed better.)

Equation Root value No.
iterations

Execution
time

No. roots
not found

Total

Constant X 1
Linear 0
Non-linear 0
Stochastic X X 2
Constr. factor X 1

3.4.5 Communication Structure

Selecting the best swarm topology for a given problem is crucial for the successful execution
of the algorithm [73]. However, the task of choosing the best swarm topology has shown to be
complex, since no swarm topology is superior to all others [199] when different optimisation
problems are considered.

Studies were done to understand better the different impacts of the swarm communication
structure in the algorithm [13, 33, 199], all concluding that the swarm topology is problem-
dependent and cannot be easily generalised to all optimisations problems.

In general, a faster convergence speed can be obtained when gbest social communication
structure is used, and thus a better performance when compared to the lbest model. On
the other hand, lbest models are better to escape from a local minimum, particularly on
multimodal problems. However, they require more iterations.

Engelbrecht [200] even reported that the gbest and lbest are equivalent, in terms of
solution accuracy, based on 60 benchmark tests.

In the subsequent sections, the different static communication structures will be intro-
duced and its effects on the PSO for root-finding, as before, will be assessed and compared
in order to find the optimal communication structure(s), based on the effectiveness and
efficiency.

All-Connected-To-All

The all-connected-to-all communication structure was the first swarm communication struc-
ture introduced with the PSO algorithm [10,11], and it is characterised by a fully connected
network, as illustrated in Figure E.1 (refer to Appendix E).

In this communication structure, particles are all connected to other particles and spread
information among all particles in the swarm, making the best performing particle in the
population the only social source of influence [201]. The other particles, in turn, are biased
towards the position of that particle.

Because this communication structure has a greater connectivity when compared to other
communication structures, it can speed up the converge of the algorithm. However, there is
less exploration of the search space, and thus the algorithm is susceptible to being trapped
into a local minimum. Therefore, this communication structure should be used in unimodal
optimisation problems with a simple search space.
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Ring and Pyramid

In a ring communication structure, each particle has two immediately adjacent neighbour-
hoods, based, e.g., on the index of each particle, which they share information with, as can
be seen in Figure E.2a.

Since particles have few connections between them, the converging speed of the algo-
rithm is slower when compared to the gbest communication structure, being more useful for
multimodal optimisation problems.

Particles are, thus, influenced by the best of the two neighbours, making indirect, remote
communications and dividing the population into parts, so that different areas of the search
space can be explored simultaneously until the best position of the areas have been found
and influence all particles towards that position.

On the other hand, the pyramid communication structure is similar to the ring commu-
nication structure; however, all particles have tree connections, being one of them with a
common neighbour to all particles, as illustrated in Figure E.2b. This particle can be chosen
randomly, or other different strategies can be employed to choose it, such as the best or
worst particle in the swarm, or even the most distant particle in the swarm.

For this study, the common particle was chosen randomly at the beginning of the execu-
tion of the PSO algorithm and did not change throughout the iterations.

Random

A random communication structure, as presented in Figure E.3, is also an alternative for the
swarm communication structure. For this communication structure strategy, each particle
has a random number of connections, as well as a random set of neighbours.

In this communication structure, each particle can be affected by any particle in the
swarm. Connections between the particles, in its turn, can be bidirectional as well as unidi-
rectional, and can be changed randomly throughout the algorithm, e.g., when no improve-
ments are detected in the global or local best particle in the swarm [202].

Howsoever, the successful execution of the PSO algorithm is always dependent on the
luck factor associated with the random number of neighbours, as well as which neighbours
each particle will neighbour with.

In this case, and for the sake of simplification, the number of unidirectional links between
each particle was generated randomly at the beginning of the algorithm. Each particle has
at least one connection to another particle, and at most, it can be linked to all particles in
the swarm.

Moreover, the set of neighbours of each particle was also generated randomly at the
beginning of the algorithm and did not change during the execution of PSO.

Mesh and Toroid

In a mesh communication structure, particles are connected in a two-dimensional grid net-
work layout, where each inner particle is connected to the left, right, upper, and lower
neighbourhoods, and the outer particles are connected to the left and right neighbourhoods
when possible, as can be seen in Figure E.4a. As other lbest social topologies, the information
is still shared among all particles in the swarm; however, delayed.
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Another variant is the toroid communication structure, also known as von Neumann
communication structure, in which every particle has four connections in a tree-dimensional
grid network layout. Inner particles are still connected to the left, right, upper and lower
neighbourhoods; however, outer particles are connected to the opposite particles, enclosing
the edges, as illustrated in Figure E.4b.

Studies reported that the toroid communication structure [33, 201, 203] performed, in
general, better than any other swarm communication structure. Howsoever, all the commu-
nication structures will be tested in this work.

Star

In a star swarm communication structure, particles are independent or isolated from others,
except one central particle (also known in the literature as the focal point), that intermediates
the communication between the particles.

As illustrated in Figure E.5, the central particle knows the performance of every particle
in the swarm and changes its position according to the best particle’s position. If its new po-
sition is better than the previous best global position, then the central particle is responsible
for spreading this discovery [162, 204]. Thus, this communication structure is centralised,
since the central particle is influenced and is the only particle that influences the remaining
particles.

From all the communication structures considered, this is the one that has the lowest
converge speed. However, it must have a higher probability of achieving good results, when
compared to other topologies, especially in multimodal search spaces.

The central particle can be randomly chosen at the very beginning of the algorithm, and
be the same until the end (this was the strategy followed in this work); however, it can vary
throughout the algorithm’s execution and may not be necessarily chosen at random but take
into account the state of the search in the search space.

Tests and Results

Finally, auxiliary Table 3.7 shows the comparisons of the different swarm’s communication
structures effects in the behaviour of the algorithm.

Table 3.7: Auxiliary table used to compare the effect of the different swarm’s communication
structures on the PSO algorithm.

Architecture Mean root value Median no. iterations Median execution time (s) No. roots not found

All-connected-to-all 4.884e−06 42 0.005 81.100 %
Mesh 6.306e−06 113 0.028 74.200 %
Pyramid 5.424e−06 67 0.014 80.300 %
Random 6.106e−06 66 4.788 76.800 %
Ring 6.809e−06 165 0.041 72.400 %
Star 3.988e−06 79 0.016 85.100 %
Toroid 6.508e−06 116 0.025 72.800 %

Starting with the root value, a one-way ANOVA was performed to find if the com-
munication structure of the swarm influences the result of the execution of the algorithm.
Results found, at the level of significance of .05, that there was a statistically significant
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effect of the swarm’s communication structure on the roots found by the PSO algorithm
[F(6, 1566) = 16.207, p < .001].

Besides that, the Tukey post hoc tests revealed that the star communication structure is
statistically significantly different from the other communication structures, except for the
all-connected-to-all, that did not show to have statistically significant difference (p ≈ .215).
In fact, according to Table 3.7, the star communication and the all-connected-to-all structures
showed to produce, on average, more accurate root approximations.

The number of iterations required for the algorithm to stop has also revealed, according
to the Kruskal–Wallis test, at the level of significance of .05, that is statistically significantly
different among the communication structures [χ2(6) ≈ 244.041, p < .001]. (The Kruskal–
Wallis was chosen because the populations’ variance are considered to be not equal [p <
.001]).

In this view, the all-connected-to-all communication structure revealed to be statistically
significantly different from all other communication structures, with all p < .001. Thus, the
all-connected-to-all architecture required fewer iterations, in terms of median value, to meet
the stopping criteria when compared to the remaining communication structures. These
results were found by performing a Dunn’s post hoc test with the Bonferroni adjustment, at
the level of significance of .05, and by the results presented in Table 3.7.

After checking that, according to the Levene’s test, the population’s variance is considered
to be not equal (p < .001), a Kruskal–Wallis test was conducted to compare the effect of
the different communication structures on the execution time of the PSO algorithm. The
test showed a statistically significant effect on the execution time of the PSO, at the level of
significance of .05, for the seven communication structures [χ2(6) ≈ 244.041, p < .001].

Post hoc comparisons using the Dunn’s test then indicated that, similar to the previous
tests, the all-connected-to-all was the communication structure that has statistically signifi-
cantly differences from all the other communication structures considered for this study (all
p < .001). When analysing the data from Table 3.7, it can be seen that the all-connected-to-
all is the best approach in terms of the median value of the execution time and the random
the worst approach, that also revealed to be statistically significantly different from all other
pairs, requiring a higher execution time.

To end this test set, the number of roots found by each swarm’s communication struc-
ture was also compared. Using the Pearson’s chi-squared test, it was found a signifi-
cant relationship between these communication structures and the number of roots found
[χ2(6) ≈ 79.231, p < .001]. Using the same test, but with the Yates’ correction for conti-
nuity, the pairs were compared, and the ring architecture revealed to not have a statistical
evidence to be different from the mesh (p ≈ .390) and toroid (p ≈ .880). These three
architectures had, according to Table 3.7, the highest success rate.

As can be seen in Table 3.8, the all-connected-to-all communication structure revealed
to be the best communication structure approach, since higher accurate root values and a
higher efficiency was observed, when compared to the other topologies; however, it comes
with the cost of a medium success algorithm’s rate.

It is also interesting to observe that the all-connected-to-all architecture was the com-
munication structure that revealed to have the faster convergence speed, as well as the one
with the lowest number of iterations. On the other hand, the lbest models needed more
iterations; however, those architectures showed to have better convergence characteristics.
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Table 3.8: Comparison of the different swarm’s communication structures (X means per-
formed better.)

Architecture Root
value

No.
iterations

Execution
time

No. roots
not found

Total

All-connected-to-all X X X 3
Mesh X 1
Pyramid 0
Random 0
Ring X 1
Star X 1
Toroid X 1

3.4.6 Summary

The tests performed in the last sections allowed to conclude that the best combination of
parameters found is given by 24 particles, organised in an all-connected-to-all topology, using
the constriction term in the particles’ velocity update equation. These parameters showed to
find more accurate root approximations with a lower execution time and a reduced number
of iterations when compared to other sets of parameters.

On the one hand, increasing or decreasing the number of particles revealed to not affect
the number of iterations. On the other hand, as one would expect, increasing the number
of particles impose an increase in the execution time. Although swarms with 24 particles
found more accurate roots, swarms with 48 and 60 were able to escape from local minima
and found more roots. (This is because there are more sources of information about the
most propitious areas in the search space and, consequently, more information sharing.)

The non-linear decreasing inertia was the worst approach for updating the particles’
velocity, while the stochastic velocity equation revealed to be the best strategy in terms
of efficiency. Besides that, there was not a unanimous decision between the use of the
constant inertia value (that revealed to have the highest success rate) or the constriction
factor approach (that found more accurate roots), being the user/researcher responsible for
choosing the best communication structure according to her/his needs.

Furthermore, the all-connected-to-all topology was the architecture with the fastest con-
vergence speed, as well as the one that found more accurate roots; however, lbest architec-
tures were better in escaping from local minima, and thus increasing the number of times
that PSO ends successfully.

3.5 Multi Root-Finding Particle Swarm Optimisation
In the previous sections, the PSO was introduced and adapted for root-finding. This algo-
rithm finds, at every execution, only one root approximation. However, in many Engineering,
Physics, Chemistry and Economics problems, the common situation is to have and find mul-
tiple roots.

In fact, the PSO algorithm could be executed several times in order to find the multiple
roots for a given non-linear function. Notwithstanding, the PSO algorithm will tend to
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converge to the same roots, and the other (possible) roots seldom are found.
In this view, the Multiple Root-Finding Particle Swarm Optimisation (MRF-PSO), in-

troduced in this section, is proposed to find, for a given non-linear equation or system of
non-linear equations, its distinct roots by using multiple swarms that explore different areas
of the same search space simultaneously.

In the previous section, swarms with 24 particles organised in an all-connected-to-all
communication structure, with the constriction term on the particles’ velocity update equa-
tion showed to be the best set of parameters in terms of accurate root values, the number of
iterations, and also in terms of execution time. Thus, this set of parameters will also be used
in MRF-PSO; despite this, this algorithm can be used with all other parameters introduced
in Section 3.4.2.

In the MRF-PSO algorithm, multiple swarms are placed in the search space and the
algorithm stops when no swarms are exploring it. Swarms do not exchange information
among them but between them and a master. The master, as can be seen in Figure 3.2, stores
the information about the roots found by each swarm and is responsible for synchronising
the execution of each swarm and for spreading the knowledge gained during the execution
of the algorithm. In this figure, r denotes the list of roots found, and rn the root found by
Swarm n.

Master

r =
{
r1, r2, ..., rn−1, rn

}

Swarm 1 Swarm 2 ... Swarm
n− 1

Swarm n

r
1 r

2 rn−
1

r n

Figure 3.2: The MRF-PSO architecture for sharing information about the roots found during
the search process of each swarm.

The MRF-PSO algorithm can be seen as multiple instances of the PSO algorithm running
in parallel, where each swarm explores the search space and waits for the other swarms to
finish, in order to exchange information.

Some strategies, however, must be applied for the purpose of detecting equal roots and
to prevent particles to search in the same search areas where a root was found before.

This algorithm was developed and tested using the Python general-purpose programming
language at version 3.7. To leverage the execution time, the Ray framework [205] was used
to create a system’s process for each swarm. Thus, in multi-core processors systems, several
swarms can explore the search space simultaneously. Generally speaking, this means that
the time required to find a root is approximately equal to finding multiple roots.

It is important to note that a parallelism architecture was followed to develop MRF-PSO,
not a multithreading scheme, by the fact that, in a parallelism paradigm, processes can run
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at the same time on different cores. On the other hand, in a multithreading scheme, processes
are run in the same core, not substantially improving the execution time of PSO (or any
other algorithm).

3.5.1 Detecting Equal Roots

For the master to detect equal roots, a new parameter was added to the PSO algorithm: the
absolute tolerance parameter (e), such that

nr(~x, r, e) =


1,

∣∣∣(~x)i − (rj)i

∣∣∣ > e ,∀i ∈ 1, ..., d,

j ∈ 1, ..., z,

0, otherwise,

(3.16)

where d is the number of dimensions of the search space, r is the set of roots found by the
MRF-PSO and z is the number of roots in r, i.e., z = |r|. Thus, if nr(~x, r, e) = 1, then ~x is
appended to r, meaning that a new distinct root was found.

Since the execution of the nr function on all swarms is dependent on the order of evalu-
ation, swarms are sorted by ascending order of its cost value (i.e., the root value), such that
swarms that found a lower cost value have a higher probability of being appended to r.

To clarify this, consider that z = 0, e.g., after the first iteration. (In the MRF-PSO
algorithm, the iteration number is incremented after the execution of the PSO algorithm in
all swarms.) Now consider that four swarms were placed in a two-dimensional search space
and e = 0.1.

Swarm 1 found a root at (1, 2) with a root value of 0.01. On the other hand, Swarm 2
found a root at (1.01, 2.01), but with a root value of 0.001. Swarm 3 and 4 found distinct
root positions, then the root positions found by those two swarms will be appended to r.
Nevertheless, Swarm 1 and Swarm 2, according to the absolute tolerance parameter, found
the same root.

In this example, the position found by Swarm 2 represents a more accurate root position
than the position found by Swarm 1. However, if Swarm 1 was the first swarm to be evaluated
in nr, then its root position will be appended to r, and the root found by the Swarm 2 will
be discarded, since a similar root was already found (in this case, by Swarm 1).

Thus, not considering Swarms 3 and 4, if the swarms were sorted by its cost value, then
root found by Swarm 2 would be appended to r, and Swarm 1 would be discarded since a
similar root (found by Swarm 2) was already in r.

The example presented before is intended to show the importance of sorting the swarms
by its cost value after running the PSO algorithm in each swarm. It is important to note that
the root values presented before were chosen to illustrate why ordering swarms is important,
and do not represent, by any means, the required accuracy imposed to MRF-PSO.

3.5.2 Particle Positioning

Besides the absolute tolerance parameter, another parameter was added to the MRF-PSO
algorithm, namely the maximum time to live parameter. This parameter defines how many
times should the particles of a given swarm be repositioned in the search space.
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Swarms (and its particles) are repositioned in the search space when they found a root
that was already found before; however, unlike the algorithm initialisation, particles are not
distributed uniformly in all the search space using the Algorithm 1.

As mentioned before, the master is the mean for sharing information about the roots
found by other swarms. This information is used not to position particles in places in the
search space that have already been detected as being roots. Thus, the algorithm has a
higher probability of converging to a root that was not found before.

It is noteworthy that swarms that found distinct roots are removed from the search space.
As an example, consider Figure 3.3. Three roots were detected by Swarm 1, Swarm 3

and Swarm 5. Since those swarms successfully found roots that were not found before,
they were removed from the search space. Particles of the remaining swarms, in turn, are
repositioned uniformly in the search space in the areas where roots were not detected, i.e.,
in the remaining search space.
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Figure 3.3: Example of particle repositioning when three roots were discovered by Swarms
1, 3 and 5.

Besides that, the number of iterations of the repositioned swarms is reset, since its par-
ticles will explore a new search area. However, when the number of times that each swarm
is repositioned in the search space reaches the maximum time to live, swarms are removed
from the search space and are not repositioned again.

It is important to note here that unsuccessfully swarms, i.e., swarms that were not
able to found any root until the maximum number of iterations was reached are directly
removed from the search space, without being repositioned, even though they have never
been repositioned yet.

The flowchart of Figure F.1 summarises the workflow of the MRF-PSO algorithm.

3.5.3 Examples of Execution

Similarly to what was done for the PSO algorithm, a set of well known test functions [179,206]
were chosen to test if the MRF-PSO algorithm was able to find, within a reasonable execution
time, all roots for a given non-linear equation or a system of non-linear equations. The
convergence of the algorithm was also tested by the average number of roots found.
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The test functions used to test the PSO algorithm for the root-finding problems have
only one root, thus they were not used here to test the MRF-PSO, since it is an algorithm
developed to find approximations for the multiple roots of a given function simultaneously.

It is important to note that the chosen test functions are non-linear equations or system
of non-linear equations, and that finding approximations for roots of non-linear functions are
one of the most complicated mathematical problem currently in discussion in the research
community.

It is also noteworthy that, for root-finding, systems of non-linear equations were consid-
ered as a single non-linear equation, such that:

f(·) = |f 1(·)|+ |f 2(·)|+ . . .+ |fn(·)|, (3.17)

where fn(·) denotes the n-th non-linear equation of a given system of non-linear equations.
Each test function was tested 500 times, and the results are presented below in terms

of the average values of all the trials. Except for Price 4 Function (Example 3.5.6), where
ε = 10−5, for all other test functions ε = 10−12. That is, the computed roots approximations
had a function value less or equal to 10−12. Finally, e = 0.1 and the time to live parameter
was set to be equal to 5. The rest of the parameters were kept from the previously executed
tests with the PSO algorithm.

The tests were executed in a machine with Dual-Core Intel Core i7 CPU running at
1.70 GHz, and with 8 GB of RAM. It is worth mentioning that, until the date of writing of
this chapter, the Ray framework [205] was only available for Linux-based operations systems.
So, a different machine than the one used in previous tests was used.

It is important to note that the effectiveness is computed by dividing the average number
of roots found by the total number of known roots. On the other hand, the execution time,
given in seconds, is the time required by the algorithm to finish its execution, that is, until
there are no more swarms exploring the search space, even though the algorithm may have
discovered all the roots at the end of the first few seconds. This metric is usefully to study,
since in most situations the number of roots is not known. On the other hand, it is also
reported the execution time that the algorithm required to find all the known roots, even if
the algorithm continues to run.

Example 3.5.1 (Himmelblau’s objective function).

f(x, y) =

{
4x3 + 4xy − 42x+ 2y2 − 14 = 0

2x2 + 4xy + 4y3 − 26y − 22 = 0
(3.18)

• Number of swarms placed in the search space: 18 swarms.

• Average number of roots found: 8.81 (effectiveness: 98 %).

• Number of know roots: 9.

• Average execution time: 31.62 seconds (22.74 seconds to find all the roots).

Example 3.5.2 (Merlet problem).

f(x, y) =

{
− sin (x) cos (y)− 2 cos (x) sin (y) = 0

− cos (x) sin (y)− 2 sin (x) cos (y) = 0
(3.19)
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• Number of swarms placed in the search space: 26 swarms.

• Average number of roots found: 13 (effectiveness: 100 %).

• Number of know roots: 13.

• Average execution time: 39.03 seconds (20.05 seconds to find all the roots).

Example 3.5.3 (Floudas problem).

f(x, y) =


0.5 sin (xy)− 0.25

y

π
− 0.5x = 0(

1− 0.25

π

)(
exp(2x)− e

)
+ e

y

π
− 2ex = 0

(3.20)

• Number of swarms placed in the search space: 4 swarms.

• Average number of roots found: 2 (effectiveness: 100 %).

• Number of know roots: 2.

• Average execution time: 6.40 seconds (4.03 seconds to find all the roots).

Example 3.5.4 (Robotic – Planar Parallel Manipulators).

f(x) = k0 + k2x
2 + k4x

4 + k6x
6 +

(
k1x+ k3x

3+

k5x
5
)√

1− x2 = 0,
(3.21)

where k0 = 3.9852, k1 = −8.8575, k2 = −10.039, k3 = 20.091, k4 = 7.2338, k5 = −11.177
and k6 = −1.17775.

• Number of swarms placed in the search space: 12 swarms.

• Average number of roots found: 4.68 (effectiveness: 78 %).

• Number of know roots: 6.

• Average execution time: 23.77 seconds (22.52 seconds to find all the roots).

Example 3.5.5 (Wayburn Seader 1 Function).

f(x, y) =
(
x6 + y4 − 17

)2
+ (2x+ y − 4)2 (3.22)

• Number of swarms placed in the search space: 2 swarms.

• Average number of roots found: 2 (effectiveness: 100 %).

• Number of know roots: 2.

• Average execution time: 5.62 seconds (2.70 seconds to find all the roots).

Example 3.5.6 (Price 4 Function).

f(x, y) =
(
2x3y − y3

)2
+
(
6x− y2 + y

)2 (3.23)
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Table 3.9: Comparison of the MRF-PSO with some of the results available on the literature
for Example 3.5.1.

Metric Value

Effectiveness MRF-PSO 98 %
Effectiveness [206] 82 %
Effectiveness [207] 100 %
Execution time MRF-PSO 31.62 (22.74)
Execution time [206] 19.917
Execution time [207] 5

• Number of swarms placed in the search space: 6 swarms.

• Average number of roots found: 3 (effectiveness: 100 %).

• Number of know roots: 3.

• Average execution time: 7.91 seconds (4.59 seconds to find all the roots).

The MRF-PSO algorithm showed to be a viable approach for finding the roots of a given
non-linear equation or a system of non-linear equations. Even though it only presented
difficulties in Example 3.5.4, for the other examples, the effectiveness was always 98 % or
more.

Results of Examples 3.5.1–3.5.4 were compared, in terms of the number of the roots
found and execution time, with some results available on the literature about the use of
stochastic optimisation algorithms, different from the PSO approach, for solving systems
of non-linear equations [206–210]. These results were summarised in a paper authored by
Ramadas et al. [206], that also proposed a metaheuristic algorithm for finding multiple roots
of systems of non-linear equations. The results of the comparison between MRF-PSO and
other approaches are presented in Tables 3.9–3.12.

As can be seen, despite not being able to be superior in all considered approaches, the
MRF-PSO revealed to be a promising approach in terms of effectiveness, especially when
compared to the results presented by Ramadas and collaborators [206].

However, it is possible to note that, in most cases, the MRF-PSO required a higher
execution time when compared with the other algorithms. Possible justifications for this
result may arise from the different algorithm accuracy considered, and from the programming
language used to develop both the algorithms. Nevertheless, it is still a weakness of the
MRF-PSO algorithm to be considered in future work.

3.6 Conclusion
In this chapter, the PSO algorithm was described in both theoretical and practical ap-
proaches. The algorithm was divided into processes and, for each process, a description was
given.
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Table 3.10: Comparison of the MRF-PSO with some of the results available on the literature
for Example 3.5.2.

Metric Value

Effectiveness MRF-PSO 100 %
Effectiveness [206] 61 %
Effectiveness [207] 100 %
Effectiveness [208] 100 %
Effectiveness [209] 100 %
Execution time MRF-PSO 39.03 (20.05)
Execution time [206] 0.881
Execution time [207] 46
Execution time [208] 20
Execution time [209] 0.03

Table 3.11: Comparison of the MRF-PSO with some of the results available on the literature
for Example 3.5.3.

Metric Value

Effectiveness MRF-PSO 100 %
Effectiveness [206] 100 %
Effectiveness [207] 100 %
Effectiveness [208] 100 %
Effectiveness [209] 100 %
Execution time MRF-PSO 6.40 (4.03)
Execution time [206] 0.505
Execution time [207] 0.607
Execution time [208] 0.461
Execution time [209] 0.03

Table 3.12: Comparison of the MRF-PSO with some of the results available on the literature
for Example 3.5.4

Metric Value

Effectiveness MRF-PSO 78 %
Effectiveness [206] 88 %
Effectiveness [210] 100 %
Execution time MRF-PSO 23.77 (22.52)
Execution time [206] 5.345
Execution time [210] n/a

69



3.6. CONCLUSION

During this work, PSO was adapted for root-finding, by changing the way of computing
the cost of each particle, and by adding a strategy to ensure that particles stay within the
search space’s bounds.

This algorithm was then tested with different parameter settings, and conclusions were
drawn regarding the parameters that showed the best results in terms of accuracy, the
number of iterations, execution time and the number of roots not found.

Thus, the best combination of parameters was found to be 24 particles, in an all-
connected-to-all communication structure, in which the particles’ velocity should be updated
using the velocity update equation that integrates the constriction term (Equation (3.7)).

This optimal parameter setting was then used in a proposed PSO algorithm variant that
concurrently finds approximations to the roots of a given non-linear equation or the solutions
of a system of non-linear equations.

Finally, some well known functions were used to test the MRF-PSO and results were
compared to other results available on the literature. The MRF-PSO algorithm has shown
to be effective in finding multiple roots. However, it demonstrated a weak point, which is
the need of a considerable execution time in order to find all of the roots of a given function
or to end its execution. This part will be considered in future works.
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Chapter 4

A Neural Network-Based Approach for
Approximating the Roots of Polynomials

— The most beautiful thing we can
experience is the mysterious. It is the
source of all true art and science.

Albert Einstein (1879–1955)

Abstract – Finding arbitrary roots of polynomials is a fundamental task in various areas
of science and engineering. A myriad of methods was suggested to address these tasks, such
as the sequential Newton’s method and the Durand–Kerner (D–K) simultaneous iterative
method. The sequential iterative methods, however, need to use a deflation procedure in
order to compute approximations to all the roots of a given polynomial, which can produce
inaccurate results due to the accumulation of rounding errors. In turn, the simultaneous
iterative methods require good initial guesses to converge. On the other hand, Artificial
Neural Networks (ANNs) are widely known by their capacity to find complex mappings
between the dependent and independent variables. This chapter aims to determine, based on
comparative results, whether ANNs can be used to compute approximations to the real and
complex roots of a given polynomial, as an alternative to simultaneous iterative algorithms
like the D–K method. Although the results are very encouraging and demonstrate the
viability and potentiality of the suggested approach, the ANNs were not able to surpass
the accuracy of the D–K method. The results indicated, however, that the use of the
approximations computed by the ANNs as an initialisation scheme for the D–K method can
be beneficial to the accuracy of this technique.

4.1 Introduction
An Artificial Neural Network (ANN) is a biologically inspired model that enables a system
to learn, as living animals do, from observational data. Today, ANNs are one of the main
tools used in machine learning for a myriad of applications.

Each ANN is composed of a set of artificial neurons that are interconnected by synaptic
connections, as an analogy to the biological neural network. Mathematically, an ANN is
basically a directed graph with vertices and edges.
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Every synaptic connection, in turn, has a weight, also known as strength, that will be
adjusted according to the examples provided and the feedback from the error (i.e., the
difference between the estimated and the true target values).

ANNs are, thus, an adaptive system that maps a given input to a desirable output,
having been proven, by the Universal Approximation Theorem [211–213], to be a universal
approximator to any continuous function, in a d-dimensional space.

Today, ANNs have shown to be successful in various areas, such as disease risk predic-
tion [214], natural language processing and speech recognition [215, 216], image recognition
to identify people or objects [217,218], among other applications [219].

Notwithstanding, there are some applications (e.g., image recognition) that the ANNs are
not even close to human performance (in terms of processing speed and accuracy) since only a
small fraction of the functioning of our neural circuit is known [220] and it is not possible yet
to implement that behaviour on an ANN. (In fact, the Drosophila and Nematode’s brain are
the only two brains that are known in detail, and it took over 100 years of research [221,222].)

Polynomial Root-Finding

Finding the arbitrary (real or complex) roots of a given polynomial is a fundamental task
in various areas of science and engineering. Applications of root-finding emerge from, e.g.,
control and communication systems, filter design, signal and image processing, codification
and decodification of information.

Most of the methods available in the literature are based on Newton’s method or derived
from it, such as the Durand–Kerner (D–K) method [223, 224]. The D–K method is an
iterative method that finds all the roots of a given polynomial simultaneously, although
requires very good starting approximations for all the roots in order to converge.

Due to the drawbacks mentioned above, and since traditional ANNs, or shallow neural
networks, are well known for their capability to model data and to find good approximations
for complex problems, in this chapter, a different approach for finding the real and complex
roots of polynomials based on neural networks is tested, in order to assess its potentiality and
limitations in terms of efficiency and accuracy. (It is important to note that this approach
uses the inductive inference in order to find the roots of a given polynomial simultaneously.)

The ANN-based approach is compared with D–K method, one of the most traditional
simultaneous iterative methods for polynomial root-finding. Finally, the approximations
computed by the ANNs are used as an initialisation scheme for the D–K method.

Thus, this chapter is organised as follows: after the introduction, Section 4.2 introduces
the key concepts of ANNs. Section 4.3 presents a summarised state-of-the-art from the initial
proposals of ANNs up to the current developments. Section 4.4 offers a description of related
work about the use of ANNs for root-finding and Section 4.5 and 4.6 describe respectively
the methodology followed to address the same problem and the comparative results between
the ANN-based approach and the D–K method. In turn, Section 4.7 suggests an enhanced
version of the previously proposed approach by using Particle Swarm Optimisation (PSO)
as a training algorithm. Finally, the ANN-based approach is tested, in Section 4.8, as an
initialisation scheme for the D–K method. This chapter ends with a section dedicated to
conclusions.

72



4.2. FEEDFORWARD ARTIFICIAL NEURAL NETWORKS

4.2 Feedforward Artificial Neural Networks
ANNs are composed of artificial neurons organised in layers, typically an input layer, some
hidden layers, and an output layer, as illustrated in Figure 4.1. The number of layers gives
the depth of the ANN [225]; in this example, three. However, there is still no consensus
regarding the depth of an ANN, as some researchers argue that because the input layer and
output layer are not responsible for the learning process, they should not be counted for the
depth of an ANN. In turn, other researchers claim that the depth corresponds to the total
number of layers.

I1

I2

I3

I4

Output

Hidden
layer

Input
layer

Output
layer

Figure 4.1: An example of a shallow ANN with four inputs nodes, five hidden nodes and an
output node.

ANNs with only one hidden layer are called shallow networks. However, when the number
of hidden layers is higher than one, the ANN is called a deep network.

Each layer has a set of neuron units that are only connected to the succeeding layer. This
type of network architecture is known as Feedforward Artificial Neural Network (FNN) and
will be the only one considered for this work, although other architectures exist (e.g., the
recurrent neural networks).

Despite the number of input and output neurons are known, the number of units per
each hidden layer is unknown, being the user/researcher responsible for deciding the rest of
the ANN architecture, including the number of hidden layers.

These two hyperparameters control the effectiveness and efficacy of an ANN, being ex-
tremely important to find the best configuration for the problem at hands. The optimal
parameters configuration is still an open question in research; thus, a trial and error strategy
is often followed in order to find the optimal parameterisation.

4.2.1 Neuron Functions

Each neuron in an ANN performs, as can be seen in Figure 4.2, two functions: a transfer
function and an activation function.

The transfer function is given by a weighted sum of the neuron inputs, i.e.:

T j =
n∑
i=1

Iij · wij, (4.1)
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Figure 4.2: Behaviour of a single artificial neuron for shallow networks.

where n is the total number of inputs of the neuron j, I ·j and w·j the inputs and the weights
of those inputs, respectively.

After the transfer function has been computed, an activation function is applied to the
transfer function, and the neuron’s output is obtained, such that:

Oj = φ
(
T j

)
. (4.2)

This output will be then transmitted to the following neuron of the next layer, until the
output layer. This transmission process is known as forward propagation [226].

Activation function

Like the biological neurons, the neuron units in an ANN are only fired when the amount of
excitation is high; otherwise, they must remain silent [221].

An activation function, as the name implies, is the function responsible for activating or
deactivating neuron units, and thus add variability to the dot products between the inputs
and the weights of the synaptic connections.

There are two types of activation functions: linear (also known as identity function)
and non-linear. Although linear activation functions can be used, non-linear functions are
the most used type of activation function, since it enables the network to create non-linear
mappings between the inputs and outputs. Heaviside, Logistic, Hyperbolic tangent and
later the Rectified Linear Unit (ReLU) functions are the most known and used non-linear
activation functions.

In most of the ANN applications (especially regression), hidden layers apply non-linear
activation functions, whereas the output layer applies a linear activation function so that the
final output is not restricted to the range of values of the previous activation function [227].

4.2.2 Number of Neurons

The input and output layers’ number of units is, for most of the applications, reasonably
easy to know.
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The number of inputs units corresponds to the number of independent variables in the
training set, i.e., the number of features or columns in the data set. On the other hand, the
number of output neurons is related to the number of dependent variables (for regression
problems) or the number of class labels (for classifications problems).

In turn, the number of units in the hidden layer is not straightforward. Like other bio-
inspired methods, a trial and error methodology is often required to select the architecture
that best fits the problem at hands, and that avoids overfitting or underfitting problems.
Some strategies, however, exist.

Kolmogorov’s Mapping Neural Network Existence Theorem [228], for example, states
than any given continuous function in a d-dimensional unit cube can be implemented by
using d neuron units in the input layer and 2d+ 1 in the hidden layers. The formal proof of
this theorem can be found in [228].

Simple rule-of-thumb methods also exist, such as the number of hidden neuron units
should be 2/3 of the number of neuron units in the input layer, in between the number
of input and output layers or should be less than twice the size of neurons in the input
layer [229]. On the other hand, Principe and colleagues [230] also suggested that the number
of neuron units should be 1/10 of the number of observational data used for training the
ANN.

Ultimately, pruning techniques or Evolutionary Algorithms (EAs) (such as the PSO
algorithm) can be applied to ANNs [231], in order to produce the optimal ANN structure.

4.2.3 Number of Hidden Layers

ANNs with no hidden layers can only implement linear-separable functions [232]; however,
most of the real-world problems are non-linear-separable, motivating the introduction of
multiple hidden layers in an ANN.

The Universal Approximation Theorem [211–213] states that any ANN with one hid-
den layer with a sigmoid activation function and a linear activation function in the output
function can approximate any function.

Although according to the Universal Approximation Theorem one hidden layer is enough,
deep ANNs have a better generalisation capability; however, it comes with a much higher
computational cost and with significantly more complex learning algorithms. Thus, appar-
ently, it is better to start with a simpler ANN (e.g., with only one hidden layer), and, if
necessary, increase the number of hidden layers based on the generalisation results.

Similar to the number of neuron units in the hidden layer(s), the optimal number of
hidden layers can also be achieved using an EA algorithm with a performance measure, such
as the Mean Squared Error (MSE).

4.2.4 Training Algorithms

In order to adjust the weights of the connections between neurons, a training algorithm is
run. A training algorithm is an iterative process that, based on an optimisation method,
is responsible for finding the optimal set of weights that leverage the ANN’s performance,
i.e., the weights that reduce as much as possible the error between the target and the value
outputted by the network. The process of training a basic ANN can be described, in little
detail, as follows:
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1. The input units receive the feature values and send them to the hidden layer(s).

2. Based on a mathematical function, each node in the hidden layer outputs a value and
passes this value to the next hidden layer (if it exists) or the output layer.

3. The output layer receives the outputs from the last hidden layer and computes the
predicted value.

4. This predicted value is then compared to the expected value, and the error is used to
update the weights of the synaptic connections, based on a training algorithm.

This training process is applied to each example in the training set until a stopping
criterion is met (e.g., the minimum MSE, maximum number of iterations, among others)
and is known as supervised learning, since the training set contains some examples of the
mapping between the input and the output variables. (It is important to note that although
unsupervised learning techniques have already been developed, they will not be studied in
this chapter.)

There are two categories of training algorithms [227]: the ones that are based on the
derivatives of the error function, and the ones that are based on stochastic methods, e.g., PSO
and Genetic Algorithm (GA). The Newton’s and Gauss–Newton method and the Levenberg–
Marquardt Algorithm (LMA) are, in turn, examples of training algorithms based on deriva-
tives.

Although derivative-based methods are the most used to train ANN, they cannot be used
to, e.g., also optimise the architecture of the ANN, which can be done using a stochastic
method.

In this work, both the categories of training algorithms will be studied. On the one hand,
the LMA will be used as a training algorithm based on derivatives. On the other hand, the
PSO algorithm will be used as a stochastic method.

4.3 State-of-the-Art
ANNs are currently an active research area that tries to mimic the human neural circuit,
either in the way neurons interconnect and in the form of learning by examples (known
as inductive inference), intending to enable machines to behave identically to intelligent
agents [233].

McCulloch and Pitts [234], in 1943, developed the first computational model for the
ANNs utilizing a linear model. According to these authors, neurons in the brain perform
a weighted sum of their inputs, in order to implement any logical operation (such as the
operations performed by a Turing machine).

In the late 50s and early 60s, Rosenblatt [235–237] extended the approach suggested
by McCulloch and Pitts [234] and introduced the perceptron. Perceptrons are units that
perform a weighted sum of their inputs and outputs a binary value when compared to a
threshold. If the weighted sum of their inputs is greater than the pre-defined threshold, then
the output of the perceptron would be 1. Otherwise, the perceptron unit would be disabled.

This work is considered to be the first model that can learn how to adjust the weights of
the connections between neurons, in order to classify the inputs in two categories, based on
previously given examples (i.e., supervised learning).
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In 1965, Ivakhnenko and Lapa [238] introduced the first deep ANN and used the method
of least squares with polynomial activation functions to train the connections’ weights.

However, in 1969 Minsky and Papert [239], showed that the techniques developed so far
were not able to solve some problems or applications that do not have a linear relation-
ship between the independent variables and the dependent, or handle non-linear separable
problems (such as the XOR function).

Nevertheless, the works developed by McCulloch, Pitts, Rosenblatt, Ivakhnenko and
Lapa were the most relevant approaches that leveraged the development of the ANN of the
current days [221].

Linnainmaa [240] introduced, in his Master’s thesis in 1970, the backpropagation and
automatic differentiation; however, without mentioning that it could be used to train an
ANN, something that would be explored later byWerbos [241,242] and Rumelhart et al. [243],
between 1974 and 1985. Until today, the backpropagation is still the most used training
algorithm for ANN, and it was responsible, at the time, for the resurgence of research in
machine learning areas.

In 1979, Fukushima [244] introduced the convolutional ANN using a gradient-based learn-
ing algorithm and in 1989, LeCun and colleagues [245] tested the Fukushima’s approach, but
using the backpropagation algorithm. They showed that the ANNs were able to classify, with
high accuracy, handwritten digits.

In 1982, Hopfield [246] popularised the recurrent ANNs (also known as Hopfield networks)
introduced by Little [247] in 1974, where neurons in the same layer can be connected, or a
neuron unit from a frontmost layer be connected to a unit from a previous layer, enhancing
the ANNs with memory mechanisms.

Ballard [248] in 1987 suggested the Autoencoder ANN, one of the most known unsuper-
vised learning technique that tries to copy the inputs to the outputs using an encoder and a
decoder module.

Despite all this studies and works about ANNs, in 1991, Hochreiter [249] reported that
training a deep ANN with the backpropagation algorithm is hard due to the vanishing
gradient problem, where the gradient gets smaller from layer to layer. The vanishing gradient
problem causes the deeper layers not to be able to learn the data as well as the initial layers;
thus, affecting all the learning process of the ANN and its results.

In fact, the idea presented by Hopfield [246] of the ANN model to mimic the human
memory can be used to solve the vanishing gradient, since it flows back and forth the
gradient in the ANN. This originated the Long Short-Term Memory (LSTM) ANN proposed
by Hochreiter and Schmidhuber [250] in 1997. In the LSTM ANN, an LSTM neuron unit
stores information from past iterations and from time to time that information is erased.
Besides solving the vanishing gradient, like the Hopfield networks, the LSTM ANNs are
especially useful for natural language processing, since the ANN can memorise the previous
words of a given sentence, and thus have a better understanding about its meaning.

In 1995, Cortes and Vapnik [251] introduced the Support-Vector Networks for classify-
ing data in two groups. The idea behind the Support-Vector Networks is to increase the
dimensionality of the feature space to the point that categories can be separated linearly,
and to maximise the distance between the support vectors, in order to improve the ANN’s
generalisation capabilities.

Two years later, in 1997, Bidirectional Recurrent ANNs were introduced by Schuster
and Paliwal [252] with the objective of reducing the number of samples required to train
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an ANN. Bidirectional Recurrent ANNs can be seen as two ANN connected to the same
output layer. The first ANN is trained using a feedforward approach and the other by using
backpropagation. Thus, the output layer can access information about past and future
states.

These advances made ANNs gaining, again, traction among the scientific community, but
the computational resources that existed at the time did not allow significant improvements.

In 2006, the Deep Belief ANNs were introduced by Hinton and Salakhutdinov [253]. The
technique combined an unsupervised leaning before supervised training the ANN, in order
to be used in classification tasks. Bengio et al. [254], in the same year, showed that the
Deep Belief ANNs were able to generalise the test data set better than other unsupervised
learning techniques.

Deep Belief ANNs were inspired by the autoencoder technique suggested by Ballard [248],
since the first ANN’s training (unsupervised) is responsible for reconstructing the ANNs’
inputs, in order to extract the most important features.

Since then, many researchers started to develop parallel GPU-based versions of the back-
propagation algorithm [255–257], and ANNs were wining contests, achieving, most of the
times, the human performance [258].

Glorot et al. [259] popularised, in 2011, the ReLU activation function by testing and
showing that very deep ANN for image classification tasks can be trained faster with ReLU
than other activation functions (such as the hyperbolic tangent).

In 2012, Krizhevsky [260] introduced the AlexNet, a deep convolutional ANN for classi-
fying 1.2 million images from the ImageNet data set.

At the same time, efforts were conducted to enhance the capabilities of the ANN for
speech recognition [216,261].

Srivastava et al. [262], on the other hand, in 2014, introduced the Dropout Regularisa-
tion technique, with the objective of reducing the overfitting problem (especially in deep
fully-connected ANNs trained with few samples) and, thus, improving the generalisation
capabilities.

As the name suggests, the dropout technique drops some neuron units from an ANN
during the training phase by a given probability. Neuron units to be dropped are chosen
from both the input layer and hidden layer(s) and have the opportunity to re-enter in the
network.

In 2014, Kingma and Jimmy [263] introduced the Adam stochastic method for improving
the learning ability of deep ANN and increasing the speed of training, by using an adaptive
learning rate (also known as the step in classical stochastic gradient descent methods) for
each neuron units throughout the learning process.

Goodfellow and collaborators [264] introduced, also in 2014, the Generative Adversarial
ANN. The approach uses two ANNs competing with each other: a generative ANN and a
discriminative ANN.

The generative ANN generates samples from a given distribution and the discriminative
ANN is responsible for detecting if the data is true or generated by the generative ANN.

On the one hand, the objective of the generative ANN is to maximise the error in the
discriminative ANN. On the other hand, the discriminative ANN strive to minimise the
classification error (i.e., strive to detect fake samples better).

The two networks compete until an equilibrium state where the generative ANN is able to
produce samples from the same distribution of the training data set, and the discriminative
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ANN is able to identify successfully either if the data is from the training data set or was
generated.

More recently, Vaswani et al. [265] introduced the concept of transformers in the ANN
for natural language processing, as an alternative to the LSTM ANN. The transformer uses
a set of encoders and a set of decoders modules (like those from Ballard [248] in 1987) and
is identical to the recurrent ANNs; however, without connections of neuron units from the
upper layer to lower layers.

The concept of transformers uses a self-attention and a mechanism of attention. The
self-attention mechanism, located in both encoders and decoders, extracts what it considers
to be the most important words in a sentence (i.e., keywords). Similarly, the mechanism of
attention, located only in the decoder units, extracts the information that it considers to
be the most important, but from the encoded words. Keywords then flow by all chained
encoders which, in turn, take all the encoded keywords, process them, and output a sentence
according to its deducted meaning.

Later, Devlin et al. [266] introduced the Bidirectional Transformers (also known as
BERT).

The state-of-the-art presented here does not describe, by any means, all the approaches
developed for ANN. The artificial intelligence scientific community is growing very fast, and
many works are being published, mainly due to the fact of the development of open-source
software libraries, such as TensorFlow [267] and PyTorch [268].

4.4 Related Work
Although there are many iterative methods to calculate one root or a pair of complex con-
jugate roots of a polynomial, such as the well known Laguerre’s and Jenkins–Traub’s meth-
ods [269], the determination of all roots of a given polynomial by one of such methods
involves repeated deflations, which can lead to very inaccurate results due to the problem of
accumulating rounding errors when using finite accuracy floating-point arithmetic.

Iterative methods for finding all roots of a polynomial simultaneously, such as the methods
of D–K [223, 224] and Ehrlich–Aberth [270, 271], appeared in literature only in the 1960s.
The simultaneous root-finding algorithms have the advantage of being inherently parallel;
however, they need very good initial approximations for all the roots in order to converge.

On the other hand, the first works about finding the roots of a given polynomial with
ANN-based approaches started in 1995, when Hormis and colleagues [272] presented the∑
−
∏

ANN with the objective of separate a two-dimensional polynomial into two one-
dimensional polynomials (with the same degree).

The
∑
−
∏

ANN includes two other sub-ANNs with only two layers: an input layer (that
receives the values of each independent variable of each training pattern) and an output layer.
These two layers are interconnected by synaptic connections associated with a weight, that
represents the values of the independent variables in the two one-dimensional polynomials.

On the other hand, the output layer of each sub-ANN has only a single output, that
corresponds to a weighted sum according to the weights of the synaptic connection and the
coefficients of each independent variable.

The final output of the
∑
−
∏

ANN consists of multiplying the weight of the output
synaptic connection by the two sub-ANNs outputs. The output is then compared to the
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two-dimensional polynomial’s output using the MSE, and the error is backpropagated and
the weights are adjusted.

Perantonis et al. [273] extended the approach proposed by Hormis and colleagues [272] in
order to factorise a two-dimensional polynomial as a product of polynomials of lower order.

The ANN structure used contains two hidden neurons that correspond to each one of the
factors of the two-dimensional polynomial. The hidden neurons perform a weighted sum of
the inputs and then apply a logarithmic activation function. The output layer contains a
single neuron unit that simply sums its two inputs.

Besides that, a Constrained Learning Algorithm (CLA) was applied, in order to in-
corporate additional prior knowledge about the relationship between the two-dimensional
polynomial and the coefficients of the desired factored polynomials.

Interestingly, they used the Optimal Brain Surgeon (OBS) weight elimination technique,
in order to remove small coefficients in the factored polynomials that should be zero, and
with this increase the accuracy of the approach.

In 2000, Huang and Zhao [274] suggested an ANN structure for the same objective
of polynomial factorisation. Their approach, however, was designed for factorisation of
polynomials with more than two dimensions.

The proposed ANN structure is identical to the
∑
−
∏

structure and consists of using
two hidden layers and one output layer with a single product unit. The first hidden layer
performs a weighted sum of its inputs (the values of each independent variables of the training
pattern); in turn, the second hidden layer has a number of difference hidden neurons (one
for each factored polynomial), that computes the difference between the weighted sum of its
inputs and the training pattern. In turn, its outputs are passed to the final layer.

Although their proposal was able to factorise polynomials in several other polynomials
with a lower degree, it required a significant number of iterations in order to obtain accurate
solutions, mainly due to the fact that the gradient descent backpropagation algorithm was
used.

In 2001, Huang and Chi [275] presented an approach for finding the real roots of a given
polynomial. This is considered to be, by the author, the first work that addressed the
root-finding with an ANN directly.

An n-th degree polynomial (with n ≥ 2), P (x), can be given by:

P (x) = a0 + a1x+ . . .+ anx
n, (4.3)

where an 6= 0 and usually set to be equal to 1, without loss of generality.
In turn, the polynomial P (x) can be factorised as follows [275]:

P (x) ≈
n∏
i=1

(x− wi), (4.4)

being wi the calculated value of i-th real root of P (x).
In order to find the real roots of a given polynomial, Huang and Chi [275] used a similar

ANN to the one presented by Hormis and colleagues [272] (the
∑
−
∏

ANN). In essence, the
ANN has two inputs corresponding to the terms 1 and the training pattern x. The number
of hidden neurons is set to be equal to the degree of P (x), i.e., n.

Each neuron unit in the hidden layer is responsible for computing the difference between
the training pattern x and the weight of the synaptic connection that connects the input
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with term 1 and the respective hidden neuron. That is, the output of i-th hidden neuron is
given by x− 1 · wi.

The single unit in the output layer, in its turn, computes the multiplication of its inputs.
The final result of the network is then compared to the output of P for each training pat-
tern x, and the weights of the synaptic connections between the input node with term 1 and
each hidden neuron are updated according to the CLA suggested by Perantonis et al. [273].

In their approach, the additional a priori knowledge was incorporated in the form of
relationships between the roots and the coefficients of P (x), such that:

∑n
i=0wi + an−1 = 0,∑n
i<j wiwj + an−2 = 0,

...
w1w2 · · ·wn − (−1)na0 = 0.

(4.5)

It is important to note that the weights of each synaptic connection correspond to one
real root of P (x).

In the same paper [275], these authors presented an approach for reducing the com-
plexity of the computational calculation in each epoch. Thus, they suggested that the
polynomial P (x) can be refactored in order to find i roots at the time (i < n) as follows:

P (x) ≈
n∏
i=1

(x− w1)(x− w2) · · · (x− wi)P b(x), (4.6)

where P b(x) is the remaining n− i order polynomial given by:

P b(x) = b0 + b1x+ . . .+ bn−ix
n−i. (4.7)

The ANN’s structure is changed in order to receive as input the training pattern values
of x, x2, · · · , xn−i−1, xn−i. The number of hidden neurons is i + 1, that corresponds to the
number of roots to be found at the time and an additional hidden neuron that computes
the output of P b(x). The output of the output neuron is still a product of the i+ 1 hidden
neurons. The weights are now {w1, w2, · · · , wi, b0, b1, · · · , bn−i} and are adjusted using the
CLA [273]. This is an iterative process that terminates when all roots were found.

In the same year, these authors extended this approach to also compute the complex
roots of a given polynomial [276], with coefficients as being complex numbers. The ANN
was trained using the CLA and the relationships of Equation (4.5), that still hold in the
complex case, were included as a priori knowledge.

This partitioning approach was then compared with non-neural traditional approaches
for root-finding and revealed to be more efficient and effective [277].

In 2003, a dilatation method for finding close arbitrary roots of polynomials was sug-
gested [278]. In essence, the idea is to rewrite the original polynomial as follows:

P (x)′ = P (βx), (4.8)

where β is the dilation factor (0 < β < 1), i.e., P (x)′ is given by:

P (x)′ = P (βx) = βn
(
xn +

a0
βn

+
a1
βn−1

x+ . . .+
an−1
β

xn−1
)
. (4.9)
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This rewrite of P (x) magnifies the distance between close roots, allowing them to be
found more easily.

In 2004, Huang et al. [7, 279] integrated into the CLA the root moment method and the
Newton identities.

The δ order root moment of a given polynomial P (x) is given by:

Sδ = wδ1 + wδ2 + · · ·+ wδn =
n∑
i=1

wδn. (4.10)

The relationship between the δ-order root moment and the coefficients of the polynomial
P (x) is known as the Newton identities and is given by:

S1 + an−1 = 0,

S2 + an−1S1 + 2an−2 = 0,
...
Sδ + an−1Sδ−1 + · · ·+ δan−δ = 0 (δ ≤ n),

Sδ + an−1Sδ−1 + · · ·+ a0Sδ−n = 0 (δ > n),

(4.11)

when δ ≥ 0; otherwise (when δ < 0):

a0S−1 + a1 = 0,

a0S−2 + a1S−1 + 2a2 = 0,
...
a0Sδ + a1Sδ+1 + · · ·+ |δ|aδ = 0 (δ ≥ −n, an = 0),

a0Sδ + a1Sδ+1 + · · ·+ Sδ+n = 0 (δ < n).

(4.12)

The same authors [279] also showed that the computational complexity for computing
the a priori knowledge for the CLA using the Equations (4.11) and (4.12) is significantly
lower than Equation (4.5), resulting in a faster training speed. They also studied the effect
of the different parameters in the behaviour of the CLA.

Besides that, the
∑
−
∏

structure and the logarithmic structure proposed by Peranto-
nis et al. [273] were tested and compared, and although the

∑
−
∏

revealed to compute the
roots with a higher accuracy, it had a slower training speed and a higher probability of not
converging, when compared to the logarithmic structure. Nevertheless, these two types of a
priori knowledge can be used simultaneously in the CLA [7,280].

Mourrain and colleagues [281] then investigate the determination of the number of real
roots of polynomials using an FNN and concluded that the ANNs were capable of performing
such task with high accuracy.

Zhang et al. [282] suggested using a discrimination system in order to compute the number
of distinct real or complex roots or, in other words, the roots’ multiplicities. They used the
ANN structure proposed by Huang and Chi [275].

Das and Seal [283] proposed a completely different approach using a set of divisors of
a0, a1, . . . , an, denoted here as D. In this view, if r is a divisor of D and a divisor of a0, then
r is a potential root of the specific polynomial.
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The coefficients of a given polynomial are fed into an ANN by the input neurons and
then the first hidden neuron in the first hidden layer separates the coefficients list into two
other lists. Each list serves as inputs for the two hidden neurons in the second hidden layer.
These two nodes compute the divisor of its coefficients in parallel, and those that are also
divisors of an are passed to the next two hidden neurons of the next hidden layer, who are
responsible for improving the candidate roots using a learning algorithm.

The approaches presented above do not make use of the inductive inference capacity of
the ANNs to compute an approximation for each root of a given polynomial. This is the
focus of this study.

4.5 Methodology
In this section, the steps taken to build a training and a test data set, and to train the ANNs
to produce approximations for the arbitrary roots (both real and complex) of polynomials
are described.

The main focus of this study is to compute approximations of the roots αi (i = 1, 2, . . . , n)
of an n-th degree real univariate polynomial, P (x) = a0 + a1x + . . . + anx

n, with both real
and complex roots, given its real coefficients.

The block diagram of this approach is presented in Figure 4.3, and it shows that the
coefficients of a given polynomial are used as the inputs for the ANNs, that are then processed
by it, and used to output an approximation for each root.

It is important to note that, according to the Fundamental Theorem of Algebra [284], an
n-th degree polynomial has n real or complex roots. Thus, a priori, the number of output
nodes is known.

This study was conducted with two different ANN architectures. The first architecture
was used for computing the approximations of the real roots from polynomials with only real
roots. On the other hand, the second architecture was used for the case when polynomials
can have both real and complex roots. Thus, the limitations in terms of efficiency and
accuracy can be studied separately.

The results were then compared in terms of accuracy and in terms of execution time with
the D–K method described below.

P (x)

a0

a1

...

an

ANN n

α1

α2

...

αn

Figure 4.3: Flowchart showing the inputs, processing flow and the outputs of the proposed
neural approach for polynomial root-finding.
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4.5.1 Durand–Kerner Algorithm

The D–K [223, 224], also known as Weierstrass’ or Weierstrass–Dochev’s method [271], is a
well known iterative method for the simultaneous determination of all roots of a polynomial
that does not require the computation of derivatives, but has the drawback of requiring
a good initial approximation to each of the roots (which must be obtained using another
numerical method) in order to converge and produce approximations to these roots with the
required accuracy.

Let P (x) = anx
n + an−1x

n−1 + · · · + a1x + a0 (an 6= 0) be an n-th degree univariate
polynomial with real (or complex) coefficients. The D–K is given by [285]:

α
(t+1)
i = α

(t)
i −

P (α
(t)
i )

an

n∏
j=1
j 6=i

(α
(t)
i − α

(t)
j )

, (4.13)

where i = 1, . . . , n and t the current iteration number.
The convergence order of the D–K is quadratic for simple roots but only linear in case of

multiple roots [286].

Table 4.1: Example of execution of the D–K algorithm.

Iteration no. α1α1α1 α2α2α2 α3α3α3

0 1 2 7
1 7.6667 -0.4 6.7333
2 4.9118 1.6420 7.4461
3 4.9340 2.6891 6.3769
4 4.9760 2.9764 6.0476
5 4.9987 2.9999 6.0014
6 5 3 6

Example 4.5.1 (Execution of the D–K method). This example shows the execution of the
D–K method for finding the real roots of a polynomial.

The chosen polynomial is given by P (x) = x3 − 14x2 + 63x − 90, and it has three real
roots. α(0)

1 , α(0)
2 , α(0)

3 were randomly chosen; however, studies were done on how to initialise
the roots of a given polynomial to leverage the effectiveness of the D–K method [285].
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The first iteration of α2 is computed as:

α
(1)
2 = α

(0)
2 −

P (α
(0)
2 )

1
3∏
j=1
j 6=i

(α
(0)
2 − α

(0)
j )

= 2− P (2)

1
3∏
j=1
j 6=3

(2− α(0)
j )

= 2− −12(
(2− 1)(2− 7)

)
= −0.4.

This process is then repeated for the number of roots until a stopping criterion is met.
Table 4.1 shows, for this example, the following iterations until the computed roots are fixed.
In this case, because the absolute differences between iterations 6 and 7 are all lower than
ε = 10−5, the algorithm stopped improving; thus, it came to an end.

When 0.1 is added to each initial root value, i.e, when α(0)
1 = 1.1, α(0)

2 = 2.1, α(0)
3 = 7.1,

for the same stopping criteria as the example in Table 4.1, the algorithm took 16 iterations
to stop. Table 4.2 presents a more detailed comparison between the different initialisation
values assigned to α(0)

1 , α(0)
2 and α(0)

3 , number of iterations and average execution time of 100
trials. In this table, the execution time is given in milliseconds and the variation is computed
with respect to the first initialisation scheme.

It can be observed that as the initialisation gets further away from the roots’ positions,
the number of iterations and the execution time increase approximately exponentially. This
demonstrates that the D–K is very sensitive to the initial roots’ approximations, and it also
provides a motivation for the use of ANNs for root-finding since they do not require initial
approximations in order to compute the output.

Table 4.2: Comparison between the different initialisation values assigned to α(0)
1 , α(0)

2 and
α
(0)
3 .

Initialisation No. of iterations Execution time Variation no.
of iterations

Variation no.
execution time

α
(0)
1 = 1, α(0)

2 = 2, α(0)
3 = 7 7 0.02± 0.14

α
(0)
1 = 1.1, α(0)

2 = 2.1, α(0)
3 = 7.1 16 0.05± 0.22 128.57% 150.00%

α
(0)
1 = 0.001, α(0)

2 = 0.002, α(0)
3 = 0.003 61 0.39± 0.55 771,43% 1850.09%

This example also shows the involved repeated deflations required to compute a root, i.e.,
the computation of the next approximation uses the approximation computed before. This
strategy can lead to very inaccurate results due to the problem of accumulating rounding
errors.

It is important to note that, although only real roots are being used here, the formulation
of the iterative process of the D–K method, utilising Equation (4.13), allows its use to
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compute both complex and real roots of a given polynomial. Therefore, if the imaginary
part of a complex root is lower than a predefined threshold, the root is considered to be a
real root.

4.5.2 Artificial Neural Networks

As described previously, two cases were considered for this study: (i) when polynomials only
have real roots, and (ii) when polynomials can have both real and complex roots. The latter
case is the most general for real polynomials.

In this study, five neural networks for each case, with three layers (input, hidden, and
output layer), were trained using the LMA and PSO, being the inputs the real coefficients
of a set of polynomials of degrees 5, 10, 15, 20 and 25. In Figure 4.3, ANN n denotes the
neural network that can output the roots of a real n-th degree polynomial.

Data sets

Tables G.1 and G.2 (refer to Appendix G) show the head of the data sets (with 100 000
records) that were used with ANN 5 to compute approximations for the real roots.

To generate these data sets, two algorithms were used to: (i) generate real roots for any
polynomial degree in the closed interval of -1 to 1, and (ii) given a set of real roots, compute
the respective coefficients.

On the other hand, Tables G.3 and G.4 in Appendix G show the head of the data
sets (with 100 000 records) that were used with ANN 5 to compute approximations for both
real and complex roots.

Differently from the data set of real roots, where the number of columns is equal to the
degree of the polynomials (i.e., n), the output data sets for the ANNs that compute the
approximations for both real and complex roots have n × 2 columns. In these data sets,
the odd columns represent the real part of the complex number, and the even columns the
imaginary part, such as:

αi = {Re(αi), Im(αi)} , i = 1, 2, . . . , n. (4.14)

Contrary to the strategy employed to generate the databases for the real roots, the
coefficients of the polynomials were generated first (in the closed interval of 0 to 1) and from
these, the exact roots were calculated (which can be real or complex). Thus, the ANN does
not know a priori which roots are complex or real.

For the two cases, it is important to note that, although coefficients and roots are shown
with only four decimal places, double-precision values were used to generate the data sets.

From these data sets, 70% of the samples were used to train the ANNs. The remaining
30% was used to test the generalisation capabilities of the ANNs, by computing a perfor-
mance measure on samples that were not used to train the ANNs.

Besides that, this test-train data set division is also important to avoid overtraining, i.e.,
to avoid the ANN to learn specific information about the data (such as noise) and, thus,
losing its capacity to generalise the results.
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Architecture

For this study, shallow FNNs were used and, after several tests according to the rule-of-
thumb methods presented in Section 4.2.2, it was found that there is little variance resulting
from a change in the number of hidden neurons of the neural network. Given this, in this
experimental study, ten neurons were used in the hidden layer for all the final tests.

Besides that, the hyperbolic tangent sigmoid (tansig) activation function [287] was ap-
plied only in the hidden layer.

The tansig activation function is given by:

φ(x) =
2

1 + e−2x
− 1, (4.15)

and it was chosen to ensure that values stay within a relatively small range and to allow the
network to learn non-linear relationships between coefficients and roots.

The use of this anti-symmetric (S-shaped) function for the input to output transforma-
tion allows the output of each neuron to assume both positive and negative values in the
interval [−1, 1].

It is important to note that a min-max normalisation method [288] was used to scale data
within the range of [−1, 1], in order to improve the convergence properties of the training
algorithm [227].

In the output layer, no activation function was embedded, since the final output (rescaled)
is still a linear function of the original data, allowing the ANNs to output values that are
not circumscribed to the range of values of the activation function.

The architecture of the ANN is represented in Figure 4.4. However, it is important to
emphasise that for the case of the ANNs that compute the approximations for both complex
and real roots, two output units were used for each root: one for the real part and the other
for the imaginary part.

a0

a1

...

an ... 5

α1

α2

α3

...

αn

Hidden
layerCoefficients Real roots

Figure 4.4: Architecture of the ANN n for root-finding.
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Training Algorithm

The well known LMA [289, 290] was used for ANN training, due to its efficacy and conver-
gence speed, being one of the fastest methods for training FNNs, especially medium-sized
ones. The application of the LMA to neural network training is described, e.g., in [291]
and [292], since its details go beyond the scope of this work.

Furthermore, the LMA is a hybrid algorithm that combines the efficacy of the Gauss–
Newton method with the robustness of the gradient descent method, making one of these
methods more or less dominant at each minimisation step through a non-negative algorithmic
parameter (λ) that is adjusted at each iteration [293].

The weights of the synaptic connections are then updated according to the difference
between the predicted and the observed value, backpropagating that error, such as:

wt+1 = wt −
(
2(J t)T · J t + λtI

)−1
·
(
2(J t)T · et

)
, (4.16)

where I is the identity matrix and e is the squared error between the target and the estimated

values. Finally, J is a Jacobian matrix given by J i,j =
∂ei
∂wj·

.

The LMA was used following a batch learning strategy, meaning that the network’s
weights and biases are updated after all the samples in the training set are presented to the
network.

4.6 Results and Discussion
In this section, the results obtained with this approach are presented, along with comparisons
with the numerical approximations provided by the D–K, in terms of accuracy and execution
time, when the polynomials have only real roots and for the case when the polynomials have
both real and complex roots.

4.6.1 Polynomials with Only Real Roots

It is important to note that the D–K method and the ANNs’ training used the same stopping
criteria, i.e., the maximum number of iterations is 5 000 and ε = 10−12 (this means that the
value of the polynomial, when evaluated on the position of the root found, is less or equal
to 10−12). Besides that, for the D–K method, the Cauchy’s upper bound [294] was used in
order to compute an initial approximation for the roots of a given polynomial, such as:

ub = 1 +max
{∣∣∣a0
an

∣∣∣, · · · , ∣∣∣an−2
an

∣∣∣, ∣∣∣an−1
an

∣∣∣}. (4.17)

Thus, the initial approximation for each root is chosen randomly from a uniform distri-
bution between −ub and ub, inclusive.

Table 4.3 shows the MSE for each of the five polynomial degrees with only real roots
considered. The MSE is computed as follows, whereDi denotes the actual i-th root value (i =
1, . . . , n) in the test data set, and Ni the corresponding approximation obtained with the
D–K method or the proposed ANN approach:

MSE =
1

n

n∑
i=1

(Di −Ni)
2. (4.18)
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As already mentioned, in order to compute the MSE, 30% of the original data set was
reserved, and it contains samples randomly chosen that were not employed to train the
networks.

It should be pointed out that all the ANN were trained 20 times and based on the
lowest MSE on the test data set, only one was chosen to be compared to the numerical
approximations provided by the D–K method.

Table 4.3: Comparison between ANN and D–K methods in terms of the MSE for polynomials
with only real roots.

Degree MSE of ANN MSE of D–K

5 0.4428 9.4418e−16
10 0.6032 2.8480e−15
15 0.6474 2.1328e−11
20 0.6213 1.8378e−09
25 0.4731 7.2990e−09

Table 4.4: Comparison between ANN and D–K methods in terms of average execution
time (in seconds) for polynomials with only real roots.

Degree ANN D–K

5 0.007 0.0402
10 0.009 0.4386
15 0.009 0.5526
20 0.013 2.4546
25 0.016 3.1650

Table 4.3 shows that this approach does not yet surpass the accuracy of the D–K method,
that always finds the roots with an accuracy greater than 10e−9. It is important to note
that, as expected, as the degree of the polynomials increases, the D–K method shows more
difficulty in finding the roots, thus justifying the increase in the MSE values. This situation
is not, however, clearly observed in the ANN approach, since polynomials of 5th and 25th

had similar MSE values.
Since all the MSE values presented in Table 4.3 are significantly less than one, it can be

inferred that the networks have a good capacity to generalise the space of results. Thus, with
some confidence, it is possible to conclude that the networks can solve any real univariate
polynomial of the respective degree with only real roots.

The results on the execution time for both methods, showed in Table 4.4 and in the
following tables, were obtained using a personal computer equipped with a 7th generation
Intel Core i7 processor and 16 GB of RAM.

Table 4.4 shows that, when the degree of the polynomial increases, the execution time
with ANN remains almost constant. The opposite happens with the D–K, which with an
increase in the degree of the polynomial implies an increase in the execution time.
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Comparing the execution times of both methods, it can be observed that the execution
time required to compute the approximations to the roots using ANN is significantly lower
than that of the D–K. This result was already expected because computing polynomial roots
using the D–K method, unlike ANN, is a pure iterative procedure.

Thus, the results obtained with the ANN-based approach, although limited, are very en-
couraging and demonstrate the viability and potentiality of the approach for approximating
real roots of polynomials.

4.6.2 Polynomials with Both Real and Complex Roots

In what follows, the results of the use of the proposed approach for computing the real and
complex roots of a given polynomial will be presented.

It is noteworthy that, since the proposed approach computes the real and imaginary part
separately, in order to perform a comparison with the D–K, the results of the D–K method
were also split into real and imaginary parts.

Besides that, the Cauchy’s upper bound [294] is still valid for the case of complex roots.
Nevertheless, it represents the upper bound (ub) of the modulus of the complex roots, forming
a circle in the complex plane centered at the origin with a radius equal to the upper bound
where all the real and complex roots are located.

In this view, the initial root values α0
i (i = 1, 2, . . . , n) of an n-degree real univariate

polynomial will be set randomly inside the circle with a radius equal to ub, such as:

α0
i = cos(θ)× ub+ sin(θ)j × ub, (4.19)

where j =
√
−1 and θ given by:

θ = r × π × 2, (4.20)

being r a random number between 0 and 1 (exclusive).
Table 4.5 shows the MSE of the ANN-based approach for polynomials with both real and

complex roots. In this table, it is possible to observe that the ANN-based approach failed
to converge, in all the trials, to an acceptable accuracy, and that the MSE is not related
with the degree of the polynomial, since polynomials of 10th degree had a worse MSE when
compared to the results from polynomials of 15th degree.

On the other hand, the D–K method is still an available approach to compute accurately
both the real and imaginary parts of the roots of a given polynomial. However, interestingly,
as the degree of the polynomials increases, the D–K method becomes more accurate. Also,
when compared with the results of Table 4.3, it can be perceived that, for lower degree
polynomials, the D–K method does not calculate complex roots as accurately as real roots.
In any case, the D–K is still an accurate alternative to compute the approximations for both
real and complex roots of a given polynomial.

In terms of execution time, as one would anticipate from the previous result where only
real roots where considered, the ANN-based approach performed better to compute the real
and complex roots when compared to the D–K method.

It is important to note that the ANN-based approach for computing the real and the
complex roots is more time consuming than the ANN-based for computing only the real
roots, since the number of weights doubled.
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Table 4.5: Comparison between ANN and D–K methods in terms of the MSE for polynomials
with both real and complex roots.

Degree MSE of ANN MSE of D–K

5 36.5387 4.9290e−09
10 386.7120 3.4800e−09
15 2.7157 2.6766e−09
20 146.2455 1.8608e−09
25 4.6057 9.7454e−10

Table 4.6: Comparison between ANN and D–K methods in terms of the average execution
time (in seconds) for polynomials with both real and complex roots.

Degree ANN D–K

5 0.018 0.0842
10 0.015 0.4098
15 0.027 1.2728
20 0.025 3.0516
25 0.028 5.4552

Considering that accurate results were not achieved when using the ANN-based approach
for computing the real and the complex roots using the real and the imaginary parts of the
roots in the test data sets, the roots were transformed into polar coordinates, in order to
assess its impact on the accuracy of the approach, such as:

α′i =
{√

x2 + y2, tan−1
(y
x

)}
, (4.21)

where x and y correspond to the real and the imaginary of αi, respectively.
However, and as can be seen from Table 4.7, the MSE obtained is even higher in most

of the polynomials degrees when compared to the previous approach.
Interestingly, in this approach, polynomials with a higher-order degree had a lower MSE.

Nevertheless, for all the polynomial degrees, the LMA was not successful in updating the
ANNs’ weights in order to reduce the MSE.

Table 4.7: Comparison of the MSE between complex roots in polar coordinates, and in real
and imaginary parts for ANN-based approach.

Degree MSE (polar coordinates) MSE (real and imaginary parts)

5 678.9594 36.5387
10 249.7066 386.7120
15 210.9323 2.7157
20 146.6783 146.2455
25 114.6380 4.6057
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Concluding, the proposed approach showed to have limitations in terms of accuracy
when compared to the D–K method, especially when computing the roots of polynomials
with both real and complex roots. Nevertheless, this approach surpassed the efficiency of
the D–K method, since the ANN-based approach required a lower execution time in all the
executed tests when compared with the D–K method.

Motivated by these results, in the next section, the ANN-based approach is enhanced
using the PSO algorithm, introduced the previous chapter.

4.7 Enhancing the Artificial Neural Network for Root-
Finding

In this section, the ANN approach for root-finding is enhanced by using the PSO algorithm,
as an alternative to the LMA.

The PSO algorithm runs in every iteration to minimise the cost function defined by the
MSE between the output of the ANN and the expected value.

The structure, i.e., the number of neuron units in the hidden layer and the activation
functions of the ANN, as well as the data sets, were kept the same as in the previous sections
in order to enable a fair comparison between the two approaches: ANN trained with the
LMA and ANN trained with the PSO algorithm. (Although it has not been investigated in
this work, it is important to note that the PSO algorithm could also be used to obtain the
optimal ANN architecture that most minimises the difference between the observed and the
predicted values.

For the purpose of this work, the PSO will minimise the cost function, i.e., the MSE, in a
search space with 10+21n (for polynomials with only real roots) or 10+32n (for polynomials
with both real and complex roots) dimensions, each one corresponding to each synaptic
connection between the neuron units in an ANN with one hidden layer. (For example, for
the ANN 25 to be used on polynomials with real roots, 260 weights are needed to connect
the input layer to the hidden layer [26 coefficients neurons × 10 hidden neurons]. On the
other hand, 275 synaptic connections are required in order to connect the hidden neurons
and the one bias neuron to the nodes in the output layer [(10+1) hidden neurons with bias×
25 neurons for each root]. This defines a search space with 535 dimensions to optimise using
PSO.)

The LMA is known for being a successful algorithm even if it starts in a zone far from the
optimal one. However, the calculation of the Jacobin matrix may cause some performance
issues in the algorithm, especially in deep ANNs, in ANNs with many hidden neuron units,
or in big data sets [295]. PSO, on the other hand, also has a good ability to explore the
search space; however, the calculations needed for the algorithm’s execution are far more
simple and expected to be less computationally demanding when compared to LMA.

24 particles, organised in star communication structure, were used in the PSO algo-
rithm’s. Besides that, the constriction term, proposed by Eberhart and Shi [28], was
used in the particles’ velocity update equation (Equation (3.7)), with ϕ = ϕ1 + ϕ1 and
ϕ1 = ϕ2 = 2.05. (A priori tests using the same optimal parameters as the ones found in
Chapter 3 did not reveal such accurate results [refer to Appendix H for the generalisations
results] when compared to this configuration.)
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Each particle corresponds to an ANN with distinct weights configuration from other par-
ticles in the swarm. The PSO then proceeds normally until a stopping criterion is met. In
this case, the algorithm stops when it reaches the maximum number of iterations (5 000 iter-
ations) or when the MSE derived from the training data set is lower than a predefined ε (in
this case, ε = 10−12).

For each ANN, ten tests were executed and, for each experiment, the MSE was com-
puted as Equation (4.18). Nevertheless, only the ANN with the lowest MSE was kept for
comparison. The MSE results are presented in Table 4.8 for the case of real roots.

Table 4.8: Comparison of the capacity of the networks to generalise the outputs between the
D–K method, ANN trained with LMA and with the PSO algorithm for the case with real
roots.

Degree MSE of D–K MSE of LMA MSE of PSO

5 9.4418e−16 0.4428 0.0665
10 2.8480e−15 0.6032 0.0763
15 2.1328e−11 0.6474 0.0799
20 1.8378e−09 0.6213 0.0797
25 7.2990e−09 0.4731 0.0816

As can be seen, the MSE of the ANN training using the PSO algorithm is almost constant
among the different degrees of the polynomials considered and is always lower when compared
to the MSE of the ANN trained with the LMA.

An improvement in terms of accuracy was also detected for the case of the complex roots,
as can be seen in Table 4.9. Besides that, is possible to observe that as the degree of the
polynomial increase, the accuracy of the ANN trained using PSO is little affected, except
for the case of polynomials of degree 20 and 25. Nevertheless, polynomials of degree 20 and
25 showed a similar MSE value.

Table 4.9: Comparison of the capacity of the networks to generalise the outputs between
the D–K method, ANN trained with LMA and with the PSO algorithm for the case with
complex roots.

Degree MSE of D–K MSE of LMA MSE of PSO

5 4.9290e−09 36.5387 0.0036
10 3.4800e−09 386.7120 0.0069
15 2.6766e−09 2.7157 0.0083
20 1.8608e−09 146.2455 0.0121
25 9.7454e−10 4.6057 0.0111

Similarly, the accuracy of the results obtained with the ANN-based approach for com-
puting both real and complex roots in polar coordinates was also improved by training the
ANN with the PSO algorithm, when compared to the LMA. The results of this approach
are presented in Table 4.10, and show that the use of the PSO algorithm produced a stable
MSE, especially in higher-order degree polynomials.
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It is noteworthy that converting the complex roots to polar coordinates resulted, in all
the polynomials degrees considered, in a loss of generalisation capabilities. Thus, the real
and imaginary parts should be used, along with the ANN trained using the PSO algorithm,
in order to compute both real and complex roots of a given polynomial.

Table 4.10: Comparison of the capacity of the networks to generalise the outputs between
ANN trained with LMA and with the PSO algorithm for the case with complex roots in
polar coordinates.

Degree MSE of LMA MSE of PSO

5 678.9594 0.0159
10 249.7066 0.0253
15 210.9323 0.0343
20 146.6783 0.0344
25 114.6380 0.0397

This comparison allowed to conclude that the ANN trained with the PSO algorithm
seems to be a more effective alternative when compared to the training using the LMA since
it was able to generalise better the results (in this case, the roots of a given polynomial). As
noted by Mendes et al. [148], one possible justification for the fact of the PSO had surpassed
the LMA generalisation capabilities may be related to the number of local minima present in
the search space, since PSO revealed to be the best training algorithm when a high number
of local minima exist.

Besides that, even for higher-order degree polynomials, the ANN trained with the PSO
algorithm revealed a modest MSE. However, these results are, again, limited, especially when
compared to the D–K method, but it was already a step towards the improvement of the
initially proposed approach.

4.8 Initialisation Scheme for the Durand–Kerner Method
This section is intended to focus on the use of the ANN-based approach, trained with the
PSO algorithm, in order to compute the initial guesses for the roots of a given polynomial,
i.e., the initial approximations to the roots to be used with the D–K method. This section
appears since the presented results of the ANN-based approach are not superior to the ones
computed by the D–K method. So, instead of competing, the ANN-based approach will
hopefully help to leverage the effectiveness and efficiency of the D–K method.

As already mentioned, the D–K method requires good initial approximations for all the
roots in order to converge. Thus, the objective of this section is to compare the use of the
D–K method when it is initialised using the Cauchy’s upper bound or by using the ANNs
introduced in the previous section.

Results will be compared in terms of the MSE, execution time (in seconds), the number
of iterations and effectiveness. In turn, the effectiveness is computed by dividing the number
of times that the D–K method found the roots of a given polynomial by the total number
of tests. It is also important to note that all the presented results correspond to the average
of the different tests that were run.

94



4.8. INITIALISATION SCHEME FOR THE DURAND–KERNER METHOD

Like in the previous sections, and for the sake of comparison, only the test data set con-
taining the coefficients and the polynomial roots will be used. Following a similar approach,
it will be considered the case when only real roots exist, and the case when both real and
complex roots exist.

Table 4.11 presents the comparison between the Cauchy’s upper bound and the ANN-
based approach for the case when the polynomials have only real roots.

In that table, it can be analysed that using the ANN, in order to compute the initial
approximation for each root for the D–K method, represent a significant advantage to the
method, when compared to the Cauchy’s upper bound in all parameters of the tests.

Comparing the MSE of the Cauchy’s upper bound and the ANN, for all polynomial
degrees considered, the ANN allowed the D–K method to find more accurately, on average,
the roots of the polynomials. On the one hand, using the ANN-based approach, the algorithm
needed more iterations or a longer execution time in polynomials of degree 5 and 15; however,
when considering the other polynomial degrees, this situation no longer exists, since the use
of the ANN in the D–K method required a lower number of iterations and a lower execution
time, when compared to the use of the Cauchy’s upper bound in the D–K method.

Finally, in terms of effectiveness, the ANN-based approach was able to leverage the
number of times that the D–K method was successful when compared to the Cauchy’s upper
bound initialisation, by the fact that the use of the Cauchy’s upper bound in the D–K was
not able to find all roots of polynomials with degree exceeding 5 in the test data set, and
the ANN initialisation only presented difficulties from polynomials of 20th and 25th degree.

Table 4.11: Comparison between the Cauchy’s upper bound and ANN-based approach to
provide the initial approximation for each root to the D–K method for the case with real
roots.

Cauchy’s upper bound ANN
Degree MSE Exec. time No. iterations Effectiveness MSE Exec. time No. iterations Effectiveness

5 9.4418e−16 0.0402 11.7425 100.00 % 2.4284e−18 0.0638 12.0500 100.00 %
10 2.8480e−15 0.4386 26.8239 99.99 % 2.5737e−17 0.3050 19.6400 100.00 %
15 2.1328e−11 0.5526 50.0772 99.89 % 6.3421e−14 1.0206 29.4500 100.00 %
20 1.8378e−09 2.4546 84.9369 98.65 % 6.3063e−11 1.3748 41.3939 99.99 %
25 7.2990e−09 3.1650 138.1522 92.00 % 1.6325e−09 2.0469 41.8125 96.00 %

Following a similar approach, the case when polynomials have both real and complex
roots was also tested, and results are presented in Table 4.12.

The comparison between the Cauchy’s upper bound and ANN-based approach, in this
case, leads to the conclusion that the ANN-based approach can be used only to improve the
accuracy of the D–K method, surpassing the Cauchy’s upper bound in all tests; however, if
one is interested in enhancing the performance of the algorithm, then the use of the D–K
using the Cauchy’s upper bound initialisation technique should be considered, taking into
account that in all degrees of the polynomials, this strategy required a shorter execution
time and a smaller number of iterations.

Besides, in terms of effectiveness, the Cauchy’s upper bound strategy was superior to the
ANN-based approach, especially in higher-order degree polynomials. Thus, concluding that
the ANN-based approach can be used only to improve the accuracy of the D–K method.

Finally, this section shows that the ANN-based approach trained with PSO can be used as
an initialisation scheme for the D–K method, since it found, on average, more accurate roots,
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Table 4.12: Comparison between the Cauchy’s upper bound and ANN-based approach to
provide the initial approximation for each root to the D–K method for the case with complex
roots.

Cauchy’s upper bound ANN
Degree MSE Exec. time No. iterations Effectiveness MSE Exec. time No. iterations Effectiveness

5 4.9290e−09 0.0842 67.5155 99.82 % 4.5822e−09 0.1008 77.7170 99.84 %
10 3.4800e−09 0.4098 83.1480 99.77 % 2.7444e−09 0.6589 105.5526 99.67 %
15 2.6766e−09 1.2728 103.4006 99.72 % 1.4705e−09 2.3469 151.4768 99.43 %
20 1.8608e−09 3.0516 127.3676 99.68 % 9.2850e−10 4.3203 184.3324 99.33 %
25 9.7454e−10 5.4552 143.9964 99.58 % 4.8588e−10 8.6969 226.1480 99.01 %

when compared to the Cauchy’s upper bound initialisation technique. It is also important
to note that, for the case when polynomials have only real roots, the ANN-based approach
should always be chosen by the user/researcher; however, when polynomials have both real
and complex roots, one should choose between accuracy, giving preference to the ANN-based
approach, or efficiency, giving preference to the Cauchy’s upper bound.

4.9 Conclusion
This chapter introduces an approach for computing approximations for both real and complex
roots of a given polynomial, based on the inductive inference capabilities of the ANNs.
Results were then compared in terms of effectiveness and efficacy to the D–K method.

The author started by training the ANNs using the LMA algorithm and as inputs the
coefficients of the polynomials and the LMA to adjust the weights based on the error between
the true values and the values produced by the ANN, i.e., the roots of the polynomials.

Although for the cases when polynomials have only real roots the proposed approach
revealed a modest MSE, for the case when both real and complex roots exit, the LMA was
unable to converge to an acceptable solution. The approach shows, however, advantages in
terms of performance.

These results were then significantly improved by using PSO acting like a training algo-
rithm, as an alternative to the LMA. Nevertheless, results still showed that ANNs were not
able to surpass the accuracy of the D–K method.

As an example of the utility of this approach, the author tested the use of the ANNs as an
initialisation scheme for the D–K method and reached to the conclusion that the ANN-based
approach is a viable alternative when compared to the initialisation scheme provided by the
Cauchy’s upper bound, especially in terms of accuracy and mostly for real roots.
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Chapter 5

Conclusions and Future Work

— The science of today is the
technology of tomorrow.

Edward Teller (1908–2003)

5.1 Conclusion
This dissertation started with a systematic review of the PSO algorithm, taking into con-
sideration the initial developments up to the recent stages of the algorithm. This gives to
the reader a broad view of PSO and the most relevant approaches and applications. The
interested reader has then the opportunity to explore the different PSO modifications and
variants and apply them to real-world problems.

After the state-of-the-art chapter, the document focused on the use of the PSO algorithm
for solving complicated non-linear equations and systems of non-linear equations, which is
considered one of the most difficult numerical problems to solve. This served as motivation
for the study on the effect of the parameters on the execution of the PSO for root-finding,
and later the proposal of a PSO variant able to find the roots of a given non-linear function
simultaneously.

The last chapter presented an ANN-based approach for approximating both real and
complex roots of a given polynomial. Polynomials of degree 5, 10, 15, 20 and 25 were tested,
and the algorithm revealed a modest MSE, but still suggesting its viability and potentiality.

Thus, the use of PSO for root-finding was investigated and two distinct nature-inspired
algorithms for the same task were proposed and tested using some difficult problems with
applications in Science and Engineering. These were the main contributions of this disser-
tation.

5.1.1 Parameter Selection for Root-Finding with Particle Swarm
Optimisation

The original PSO was adapted for root-finding, and different combinations of parameters
were used to test the effectiveness and efficiency of the PSO algorithm. By conducting
an ANOVA, swarms with 24 particles organised in a all-connected-to-all communication
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structure, with the constriction term in the velocity update equation revealed, on average,
to be the best parameter configuration in terms of the accuracy of the root approximations
found, number of iterations and execution time.

5.1.2 Multi Root-Finding Particle Swarm Optimisation

The MRF-PSO algorithm is a bio-inspired stochastic algorithm that uses the search strategy
implemented in the PSO algorithm in order to compute approximations for the roots of a
given non-linear equation or system of non-linear equations.

Thus, multiple swarms are placed in the search space and, following a parallel architec-
ture, they are able to explore the search space at the same time, using different cores of a
multi-core processor, and report the results to the master.

The master, in turn, stores all the roots that were found during the search process, and
is responsible for randomly positioning the particles of the swarms uniformly in the search
areas where a root was not found yet.

For this algorithm to find the roots of a function simultaneously, two parameters were
introduced into the MRF-PSO: the absolute tolerance (e) and the time to live parameter.
On the one hand, the absolute tolerance is responsible for detecting equal roots, and it is
also used to prevent particles from searching in the same search space areas where a root
was found before. On the other hand, the time to live parameter defines how many times
should the particles of a swarm be repositioned in the search space after not founding a root
or after finding a root that has already been found.

The MRF-PSO algorithm was tested with different, commonly used non-linear functions.
The results of the executions were compared with other results available on the literature
and, although the MRF-PSO can be considered an effective algorithm on finding the multiple
roots of a given function, it showed some issues related with the time required to compute
an approximation for all roots.

5.1.3 Neural Network-Based Approach for Approximating Roots of
Polynomials

The implementation of an ANN for finding the arbitrary roots (real and complex) of a
given polynomial simultaneously is also considered one of the main contributions of this
dissertation.

This approach uses the inductive inference capabilities of the ANN in order to approxi-
mate the roots of polynomials of degree 5, 10, 15, 20 or 25, giving its coefficients. The ANNs
were trained using the LMA algorithm and PSO for finding the optimal networks weights
that minimise the MSE. Hence, it resulted that training the ANNs with PSO improved the
generalisation capabilities of the networks, since the LMA was not capable of converging to
an acceptable solution.

Although this approach was not able to surpass the accuracy of the D–K method, it
presented advantages in terms of performance.
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5.1.4 Initialisation Scheme for the Durand–Kerner Method

Since the D–K method requires good initial approximations for all the roots in order to
converge, the results provided by the ANN approach, suggested for approximating the roots
of polynomials, were used as initial guesses for the roots. When compared with the initial
approximations obtained from the Cauchy’s upper bound, the ANN approach revealed to
better leverage the accuracy of the approximations calculated by the D–K method.

5.2 Future Work
Concerning Chapter 3, many different PSO modifications and variants have been left for
future research due to time restrictions. The use of dynamic neighbours with the concept
of stereotyping [24, 34, 35], Fully Informed Particle Swarm (FIPS) [73], and the Adaptive
Particle Swarm Optimisation (APSO) [46] are some ideas that the author would have liked
to test.

These ideas would, for instance, improve the convergence behaviour of the MRF-PSO
algorithm, enhancing its effectiveness and efficiency. The author is also considering rewriting
the MRF-PSO algorithm in another computer programming language, such as the Julia
Language [296], in order to reduce the total execution time.

The way the algorithm is designed does not enable it to solve non-linear equations or
systems of non-linear equations subject to a set of constraints. A penalty function strategy,
like the one introduced by Parsopoulos and Vrahatis [47], can be a good starting point.

In terms of the ANN-based approach, presented in Chapter 4 for approximating the
roots of polynomials, another training algorithms could be investigated, such as the Adam
stochastic method [263], stochastic gradient descent [236] or other quasi-Newton methods.

It is of interest to test the mini-batch approach, meaning that the training data set is split
into small data sets, denominated batches. The mini-batch strategy is often suggested [297]
in order to improve the robustness convergence, avoiding the training algorithm to be trapped
into a local optima.

Finally, the early stopping regularisation should also be considered in future works as a
mean to improve the generalisation capabilities of the ANN, i.e., as a mean to avoid model
overfitting.
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Appendix A

Particle Swarm Optimisation
Initialisation Scheme

Algorithm 1 A PSO initialisation scheme for both gbest and lbest models.
for i← 1, l do . For each particle...

~x i
0 ← U(~xmin, ~xmax) ∈ Rd . Generate a random initial position

~p i
0 ← ~x i

0 . Set the best personal position to its initial position
~nbest ← min(Ni) . Find the position of the best particle in the neighbourhood
if f(~nbest) < f(~p i

0) then . If the neighbourhood’s best position is better than the
current personal best

~l i0 ← ~nbest . Accept the neighbourhood’s best position
else

~l i0 ← ~p i
0 . Otherwise, set the neighbourhood’s best position to the current

personal best position
end if
~V i

0 ← U(~xmin, ~xmax) ∈ Rd . Generate a random initial velocity
end for
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Appendix B

Particle Swarm Optimisation Algorithm
Flowchart

Start

Initialise particles’ position

Initialise particles’ velocity

Set pbest = initial position

Update pbest and lbest information

Stopping criterion met?

Update the particles’ velocity

Update the particles’ position

Update pbest and lbest information

End
yes

no

Figure B.1: Flowchart of the PSO algorithm.
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Appendix C

Particle Swarm Optimisation Cycle

Algorithm 2 The optimisation cycle of the PSO algorithm for root-finding.
while t < maximum_number_of_iterations and not precision_stop do

t← t+ 1 . Increment the number of iterations...
for i← 1, s do . For each particle...

for j ← 1, d do . For each dimension, compute velocity
ϕ1 ← U(0, 1) . Generate two random numbers
ϕ2 ← U(0, 1)
~V i
t+1[j]← ω~V i

t[j] + ϕ1R1
i
t(~p

i
t[j]− ~x i

t[j]) + ϕ2R2
i
t(~g t[j]− ~x i

t[j])
end for
~x i
t+1 ← ~x i

t + ~V i
t+1 . Compute next position

~x i
t+1 ← check_bounds(~x i

t+1) . Change, if needed, the next position according to
the search space’s bounds

fit it+1 ← |f(~x i
t+1)| . Compute the cost

if fit it+1 < f(~p i
t) then . If necessary, update personal best position

~p i
t ← ~x i

t+1

~nbest ← min(Ni) . Find the position of the best particle in the neighbourhood
if f(~nbest) < f(~p i

t) then . If the neighbourhood’s best position is better than
the current personal best

~l it ← ~nbest . Accept the neighbourhood’s best position
else

~l it ← ~p i
t . Otherwise, set the neighbourhood’s best position to the current

personal best position
end if

end if
end for
ŷ ← min(~p t) . Find the position of the best particle in the swarm
if ŷ ≤ ε then . Check the precision stop criterion

precision_stop← True
end if

end while
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Appendix D

Test Functions

D.1 Ackley Function

∙1010

Figure D.1: A 2D graphical representation of the Ackley function.

• Graphical representation: Figure D.1

• Expression:

f(x1, · · · , xd) = −20exp

−0.2
√√√√1

d

d∑
i=1

x2i


−exp

(
1

d

d∑
i=1

cos(2πxi)

)
+ 20 + e

(D.1)

• Number of dimensions used: 30

• Search domain: −5 ≤ xi ≤ 5

• Root at: (0, · · · , 0)
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APPENDIX D. TEST FUNCTIONS

D.2 Rastrigin Function

Figure D.2: A 2D graphical representation of the Rastrigin function.

• Graphical representation: Figure D.2

• Expression:

f(x1, · · · , xd) = 10d+
d∑
i=1

(
x2i − 10 cos(2πxi)

)
(D.2)

• Number of dimensions used: 30

• Search domain: −5.12 ≤ xi ≤ 5.12

• Root at: (0, · · · , 0)

D.3 Rosenbrock Function

∙104

Figure D.3: A 2D graphical representation of the Rosenbrock function.
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APPENDIX D. TEST FUNCTIONS

• Graphical representation: Figure D.3

• Expression:

f(x1, · · · , xd) =
d−1∑
i=1

(
100(xi+1 − x2i )2 + (1− xi)2

)
(D.3)

• Number of dimensions used: 30

• Search domain: −2.048 ≤ xi ≤ 2.048

• Root at: (1, · · · , 1)

D.4 Schaffer Function No. 2

Figure D.4: A 2D graphical representation of a Schaffer function no. 2.

• Graphical representation: Figure D.4

• Expression:

f(x, y) = 0.5 +
sin2(x2 − y2)− 0.5

[1 + 0.001× (x2 + y2)]2
(D.4)

• Number of dimensions: 2

• Search domain: −100 ≤ x, y ≤ 100

• Root at: (0, 0)

D.5 Sphere Function
• Graphical representation: Figure D.5
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APPENDIX D. TEST FUNCTIONS

Figure D.5: A 2D graphical representation of the sphere function.

• Expression:

f(x1, · · · , xd) =
d∑
i=1

x2i (D.5)

• Number of dimensions used: 30

• Search domain: −5.12 ≤ x, y ≤ 5.12

• Root at: (0, · · · , 0)
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Appendix E

Swarm Architectures

E.1 All-Connected-To-All

Figure E.1: An example of a graphical representation of an all-connected-to-all communica-
tion structure, also known as gbest model, with six particles.

E.2 Ring and Pyramid

(a) An example of a graphical
representation of a ring com-
munication structure, with six
particles.

(b) An example of a graphical
representation of a pyramid
communication structure,
with ten particles.

Figure E.2: An example of the mesh and toroid communication structures.
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APPENDIX E. SWARM ARCHITECTURES

E.3 Random

Figure E.3: An example of a graphical representation of a random communication structure,
with five particles.

E.4 Mesh and Toroid

(a) An example of a graphical represen-
tation of a mesh communication struc-
ture, with twelve particles.

(b) An example of a graphical represen-
tation of a toroid communication struc-
ture, also known as von Neumann archi-
tecture, with 30 particles.

Figure E.4: An example of the mesh and toroid communication structures.
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APPENDIX E. SWARM ARCHITECTURES

E.5 Star

Figure E.5: An example of a graphical representation of a star communication structure,
also knows as wheel architecture, with ten particles.

133



Appendix F

MRF–PSO Algorithm Flowchart

Start

Initialise particles in the swarms (velocity and random position)

Swarms in S? End

Master commands the concurrent execution of the different swarms

Place particles uniformly distributed in remaining space of S

Swarm 1
(PSO)

Swarm 2
(PSO) · · · Swarm n− 1

(PSO)
Swarm n
(PSO)

Master synchronises the different swarms

Remove unsuccessful swarms from S

Order swarms by cost value

Append distinct roots to r

Remove successful swarms from S

Decrement the time to time to live parameter on swarms that found a repeated root

Remove swarms that have reached the maximum time to live

yes

r r r r r

r1 r2 r··· rn−1 rn

no

N
or
m
al

ex
ec
ut
io
n
of

P
SO

Figure F.1: Flowchart of the MRF-PSO algorithm.
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Appendix G

Data Sets

G.1 Input Data Set for Training the ANN 5 for Comput-
ing the Real Roots

Table G.1: Head of the input data set for training the ANN 5 for computing only the real
roots.

a0a0a0 a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

-0.0452 -0.0216 0.6994 -0.7907 -0.7857 1
-0.0075 -0.0660 0.0624 0.9778 1.8083 1
0.0007 0.0045 -0.0694 -0.4979 -0.2036 1
-0.0936 0.1581 0.4911 -0.8276 -0.5898 1

...
...

...
...

...
...

G.2 Output Data Set for Training the ANN 5 for Com-
puting the Real Roots

Table G.2: Head of the output data set for training the ANN 5 for computing only the real
roots.

α1α1α1 α2α2α2 α3α3α3 α4α4α4 α5α5α5

0.8984 0.5802 -0.2214 -0.9046 0.4330
0.2375 -0.1197 -0.5886 -0.6316 -0.7060
0.8643 -0.4946 -0.1466 0.0997 -0.1192
0.5233 -0.5453 0.6685 0.6728 -0.7295

...
...

...
...

...
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G.3 Input Data Set for Training the ANN 5 for Comput-
ing the Real and Complex Roots

Table G.3: Head of the input data set for training the ANN 5 for computing both real and
complex roots.

a0a0a0 a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

0.6489 0.5608 0.0764 0.9170 0.6737 0.0856
0.1398 0.8675 0.6737 0.7915 0.6805 0.3244
0.8254 0.8206 0.5198 0.7785 0.8128 0.0229
0.1884 0.4211 0.5824 0.0200 0.9023 0.7577
0.4004 0.5791 0.8399 0.8190 0.9042 0.2391

...
...

...
...

...
...

G.4 Output Data Set for Training the ANN 5 For Com-
puting the Real and Complex Roots

Table G.4: Head of the output data set for training the ANN 5 for computing both real and
complex roots.

Re(α1α1α1) Im(α1α1α1) Re(α2α2α2) Im(α2α2α2) Re(α3α3α3) Im(α3α3α3) Re(α4α4α4) Im(α4α4α4) Re(α5α5α5) Im(α5α5α5)

-6.1207 0 -1.8031 0 -0.8277 0 0.4406 -0.7973 0.4406 0.7973
-1.1952 -0.8191 -1.1952 0.8191 -0.1822 0 0.2375 -1.0345 0.2375 1.0345
-34.5703 0 -0.8836 -0.4828 -0.8836 0.4828 0.4004 -0.9324 0.4004 0.9324
-1.4203 0 -0.3379 -0.3584 -0.3379 0.3584 0.4527 -0.7189 0.4527 0.7189
-2.9534 0 -0.6260 -0.5992 -0.6260 0.5992 0.2114 -0.8430 0.2114 0.8430

...
...

...
...

...
...

...
...

...
...
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Appendix H

Results of the Neural Network-Based
Approach for Approximating the Roots
of Polynomials Using Particle Swarm
Optimisation with the Parameters Found
in Chapter 3

Table H.1: Capacity of the networks to generalise the outputs using PSO with the parameters
found in Chapter 3. Results are given in terms of MSE.

Degree Real roots Complex roots Complex roots (polar coordinates)

5 0.2090 0.6461 0.8774
10 0.3622 1.8710 1.8418
15 0.7587 2.6139 2.3439
20 0.9031 2.8137 1.9875
25 2.5435 3.5868 3.0355
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