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Vision is expected to play important roles for car safety enhancement. Imaging systems can be
used to enlarging the vision field of the driver. For instance capturing and displaying views of hid-
den areas around the car which the driver can analyze for safer decision-making. Vision systems
go a step further. They can autonomously analyze the visual information, identify dangerous sit-
uations and prompt the delivery of warning signals. For instance in case of road lane departure,
if an overtaking car is in the blind spot, if an object is approaching within collision course, etc.
Processing capabilities are also needed for applications viewing the car interior such as “intelli-
gent airbag systems” that base deployment decisions on passenger features.

On-line processing of visual information for car safety involves multiple sensors and views,
huge amount of data per view and large frame rates. The associated computational load may be
prohibitive for conventional processing architectures. Dedicated systems with embedded local pro-
cessing capabilities may be needed to confront the challenges. This paper describes a dedicated
sensory-processing architecture for collision warning which is inspired by insect vision. Particu-
larly, the paper relies on the exploitation of the knowledge about the behavior of Locusta Migra-
toria to develop dedicated chips and systems which are integrated into model cars as well as into
a commercial car (Volvo XC90) and tested to deliver collision warnings in real traffic scenarios.

1. Introduction
aking cars safer is one of the major challenges of
the automotive industry. Future cars might be
ideally expected to “behave” following laws sim-
ilar to those formulated by Isaac Assimov for robots.
Namely: (1) a car should not injure a human being, or,
through inaction, allow a human being damage; (2) a car
must obey orders given by human beings, except that
these orders are in conflict with the first law, and; (3) a
car must protect its own existence as long as such pro-
tection does not conflict with neither the first nor the
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second law. The challenge of increased safety requires dif-
ferent innovations among which the enhancement of car
smartness is of primary importance. A smart car should
primarily be able of sensing its state: engine parameters,
cinematic parameters, passengers typology and move-
ments, position relative to the road, obstacles, ... But just
sensing is not enough; smart cars must also be capable of
processing the acquired data to either giving information
to the driver or eventually taking control [1], [2].

Out of the many sensor types, it is generally understood
that optical sensors (devices to acquire images) and vision
systems (systems to acquire, process and extract the infor-
mation from image flows) will be key ingredients in passive
and active safety systems of future cars [3], [4]. Safety-sys-
tem roadmaps envisage the use of many vision devices per
car; some of them looking at outside the vehicle and others
looking at the inside. Inside vision sensors will be used to
monitor sizes, positions and movements

images contain. On the other hand, they are motivated by
the complex ways in which the safety-relevant information
is encoded into spatial (intra-frame variations) and tempo-
ral (inter-frame variations) of the image sequences. To
begin with, large computational and memory resources
may be needed for real-time completion of even concep-
tually simple tasks. To overcome these problems new
architectural solutions are advisable.

This paper presents a bio-inspired vision system for
detection of collisions threats in automotive applications
[10]. The rationale for adopting a bio-inspired architec-
tural approach relies on the observation that the visual
detection of motion is essential to survival in many ani-
mal species. Motion tells animals about predators and
preys, about its own movements and that of others
around it. Particularly, Locusta Migratoria (from now on
Locust) [11] is exceptionally good at detecting and

of passengers and hence to control airbag
deployment in case of crash [5]. They will
also be employed to analyze the driver
status; for instance, to detect drowsiness
[6]. Furthermore, car architects may take
advantage of the availability of vision
devices to realize not-safety-related tasks
such as human-computer-interface. Re-
garding outside sensors they will serve,
among other tasks, to keep the car within
road lanes, to calculate proper speed and
distance of the car relative to others and
to detect either objects or cars approach-
ing on a collision course.

Figure 1 compiles potential applica-
tions of vision for cars. Vision will be used
in combination with other sensor sys-
tems (radar [7], lidar, etc.) to support the
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Figure 1. Some envisaged applications of vision for cars.
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reacting to the visual motion of an object approaching on
a collision course. Indeed, some of the largest neurons in
the Locust brain are dedicated to this task. We exploit
the knowledge of the neural circuitry underlying this
ability to construct artificial vision systems capable to
deliver collision-warning alarms for cars.

Besides new paradigms, building efficient vision sys-
tems for automotive applications requires careful choice
of the hardware architecture. Two basic possibilities arise:

Using separate sensors and processors, relying
either on CCD or on CMOS for the sensors [4].
Building dedicated CMOS solutions which merge
the sensing and the processing parts [9].

The main advantage of the second alternative is that
dedicated readout circuitry, dedicated error correction cir-
cuitry and dedicated processing circuitry can be embed-
ded on-chip together with the sensing circuitry. Such
embedding can happen either pixel-by-pixel (in-pixel cir-
cuitry), or at chip level (off-pixel circuitry), or as a com-
bination of both. Thus, for instance, in-pixel processing
circuitry can be used to obtain high-speed through paral-
lel processing in tasks where many data are involved such

as spatial filtering, image feature extraction, motion esti-
mation, ... [12]. Then, off-pixel embedded digital proces-
sors can be used for control and high-level processing
tasks involving a reduced data set [13].
Sensory-processing embedding is crucial for some cus-
tomized processing architectures [14]. Furthermore, it can
be used to speed up the computations needed to adapt the
sensor response to changing conditions in the environ-
ment; i.e., to make the sensor section capable of acquiring
images with High Dynamic Range (HDR). This latter feature
is crucial since car vision sensors must be able to “see”
under a very wide range of lighting and weather conditions.
Figure 2 shows a conceptual block diagram of the

tasks involved in the development of a bio-inspired,
custom CMOS vision system to be mounted at cars for
collision-warning. The final goal encompasses the coor-
dinated completion of multi-disciplinary activities of
quite diverse nature, namely:

To model the underlying biological behaviors by

mathematical descriptions.

To refine the bio-models upon a representation

realizable through electronic circuits.
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Figure 2. Conceptual flow of activities and tasks from the understanding of the neuro-biological principles and behaviors of
insects to the integration of a prototype CMOS vision system in a real car and the test under real traffic conditions.
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m To optimize the structure and parameters of such
representation using benchmark real traffic
sequences specified by car builders.

® To conceive and design dedicated CMOS chips
capable of: 1) acquiring HDR images; 2) imple-
menting the bio-inspired processing algorithm;
3) fulfilling the robustness and reliability require-
ments of automotive.

m To conceive and design hardware/software plat-
form to: 1) host the dedicated chips; 2) interact
with the car electronics through the available
buses; 3) fulfilling automotive requirements.

m To integrate the hardware/software system into
cars and to perform testing in benchmark colli-
sion scenarios.

As Figure 2 shows, the abilities and features of Locust
must be supplemented with other features for proper
operation. Also, practical considerations and experience
dictate the convenience of using model cars as well as
commercial cars for testing purposes.

2. The Underlying Biological Models

Natural vision systems have been improved through mil-
lennia of evolution and are more robust, compact and effi-
cient that artificial counterparts. Many insects rely on
vision for cruise control, navigation and collision avoid-
ance [11], [15]-[21]. They are also able to perform these
tasks within wide range of lighting condition. Why not to
take advantage of the knowledge about these systems?

Figure 3 shows the concept of a system based on the

“Lobula Giant Movement Detector” (LGMD) neural struc-
ture which is found in the visual system of the Locust
[11], [21]. This structure fires an alarm if some collision
threat is detected, thus giving rise to an evasive maneu-
ver. An emulated-LGMD module is at the core of the sys-
tem in Figure 3 and has been complemented for enlarged
functionality with two other modules [22], namely:

m A Topological Feature Estimator (TpFE), whose
purpose is to make an early classification of the
approaching object that generates the alarm.

= An Attention Focusing Algorithm (AFA), aimed to
optimize the use of the computing resources by
restricting the processing to the zones of the frame
that present more activity at a given instant.

Deployment of warning signals in the presence of

looming objects on a collision course is the basic role of
the LGMD module. The TpFE and AFA modules are meant
to provide further information about the environment
and hence to: optimize the use of computer resources, to
discriminate between real and spurious alarms, and to
allow prompt appropriate evasive maneuvers.

Several works have addressed the use of insect visions

for vehicles. Based on Elementary Motion Detector (EMD)
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units, the work in [23] presents a bio-inspired analog VLSI
chip that detects collisions up to 500msec before they
occur. EMD units provide input to several directionally-
sensitive neural structures which are found in insects like
the flies. The idea is to design an array of EMD disposed
in a radial way, from the centre of the array to the bor-
ders. This is the neural structure thought to be used in
the landing mechanism of the fly. On the one hand, an
approaching object would generate response in almost all
the EMD’s, given that its edges would all move outwards
in the radial sense. On the other hand, an object that
approaches in non-collision course, or a translating
object, would generate response in only a part of them.
Simple steering and collision avoidance mechanisms
based on fly EMDs have also been investigated in [24]
using robot platforms. However system integration of
these approaches into real cars is still in its earlier stages.

A. LGMD Behaviour and Emulation

The LGMD neural structure, devised upon experimenta-
tion with Locusts [21], consists of 4 retino-topical layers
of mutually interacting neurons, see Figure 4. Layer 1 rep-
resents the input to the neuronal circuit where P-units
perform a high-pass temporal filter of the scene by sub-
tracting the value of the luminance in a previous instant,
At, from the current local value. Outputs from the P-units
are simultaneously fed into an excitatory neuron E and
an inhibitory neuron I. These two neurons constitute the
second Layer. Layer 3 contains an excitatory neuron S,
which collects excitatory inputs from E neurons within
its retino-topic unit and inhibitory activity from I neurons

Attention Focusing Module » ) »> SRSeCNToy

GMD Module

Collision
Alarms

M

Topological Classification

Module PP Classification

Figure 3. Basic components of the proposed bio-inspired sys-
tem. Input visual information is passed to the LGDM module
for evaluation. Spatial attention of that LGMD is driven by the
AFA module. Finally, information regarding the nature of the
input object is extracted by the TpFE module.
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located within a finite neighborhood—called area of
influence. Inhibitory activity spreads laterally with
delays At and 2At before entering the S units, thus pro-
viding a mechanism for spatio-temporal computation.
Finally, excitatory activity of all S neurons converges
into a single neuron, the already mentioned LGMD, in
Layer 4, where it is accumulated. This biological model
also suggests the existence of a global inhibition mech-
anism, F neuron, which is fired whenever the number of
activated photoreceptors exceeds a given threshold
within a time interval.

Mathematically, the behavior of each neuron can be
defined by a spatio-temporal differential equation which
rules the evolution of a state variable—called membrane
potential in a biological language. Neuron activity and
hence the information that is transmitted to other
neurons in the structure occurs in different forms but
always as a function of such state variable. In the original
formulation, neurons belong to one of the following class-
es, namely: Linear Threshold Cells (LT), or Integrate and
Fire Cells (IF). In both cases, the membrane potential v(t)
is defined by a discrete time equation,

Figure 4. Conceptual model for the Lobula Giant Movement
Detector (LGMD) [11].
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where p; is the persistence of the membrane potential,
giEXC and gl.l”h are the gains of the excitatory and inhibito-
ry channels respectively, wy is the strength of the synap-
tic connection from neuron k to neuron i, and §j, is the
delay associated to this connection.

Neuron activity g; for Linear Threshold Cells is defined as:

awr={""

Regarding Integrate and Fire neurons, the activity is the
generation of a discrete-amplitude spike whenever the
membrane potential exceeds the threshold.

vi(t) =0
otherwise

2

B vi(t)=0
0 otherwise

a(t) = { 3)
Besides, when a spike is produced, the membrane poten-
tial is hyper-polarized such that v;(t+ 1) — v; (t + 1) — e,
being o the amplitude of the hyper-polarization.
Table 1 shows the equations governing the original
bio-model.

B. Computational LGMD Model

The bio-model of Figure 4 captures correctly the reactions
of the Locust to looming objects in collision course and is
a starting point to build a car collision warning system.
However, towards this end, its structure and its parameters
must be modified to reach the following targets:

m Fit the frame rate to the distance resolution
required by safety regulations. For instance, for 25
Fps the distance resolution will be 1 meter assum-
ing 90 km/h speed.

B Make the model realizable by electronic circuits.
Particularly, implementation becomes largely sim-
plified if all model operations are realized through
arithmetic operations between matrices.

m Select the model structure and parameters to guar-
antee robust operation within the range of illumina-
tion conditions, temperature and spreading of the
underlying circuit parameters. lllumination range
goes well from 0.3 cd/m? to 30000 cd/m?; tempera-
ture range goes from 40°C to 110°C; and for circuit
parameters spreading typically 60 design [25].

B Guarantee correct model operation for a complete
set of benchmark collision scenarios and traffic
video sequences. These sequences were delivered
by Volvo Car Corporation [26]. Figure 5 shows exem-
plary sample frames for some of them. The accuracy
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balloon car. (d) Pedestrian crossing in front of the car.

Figure 5. Exemplary sample frames from selected test sequences. (a) Highway driving. (b) Roundabout. (c) Collision with test

of the model response for each scenario/benchmark
was qualified by expert human observers.

= Suppress spurious threats by the incorporation of
features different from those observed in the bio-

model tuning is the so-called Simplified NoM (Noise
Optimized Model) shown in Figure 6. Main differences
with the original model are:

m The model parameters and state variables are tuned

such that everything can be satisfactorily executed
with 6-bits equivalent accuracy. Moreover, input
image was decided to be 100 x 150 pixels.

In the competition between inhibition and excita-
tion, the inhibitory pathway contains information
about the current spiking rate.

The LGMD threshold is made adaptive instead of
constant.

logical beings.

The modification procedure follows a heuristic
search where hypothesis are validated by simulations
with detailed electrical macro-models. To build such |
models, non-ideal electronic effects such as memory
leakage, mismatching, non-linearity in the operators, off-
sets, electronic noise, etc. must be analyzed and [ |
described by equations. The result of this heuristic

Table 1.
Original model.

Cell State equation and output equation.

P Pj(t +1) = 0.4 - Pj(t) + Lj(t) — Lj(t = 1)

P}f(t +1); Integrate and Firewithp =1 « =05 6=0.3

E Ej(t+1) = 0.1- Ej(t) + 0.6 - P;(t)

E;f(t -+ 1); Linear Threshold with® = O

| Ij(t+1) = 0.8 Ij(t) + 0.2 - P5(t)

I;If(t +1); Linear Threshold with® = O

s Syt +1) = 0.4-Sy(t) + Ej(t+1) — 0.4 5t~ +0.8- T hi(t=D+0.5- X 5t - 2)]
Nr Nr2 Nr3

«=05 6=05

S;f(t + 1); Integrate and Fire with 8 =1

where:
Nry are the four nearest neighbors (top, bottom, right, left)
Nr are the four nearest neighbors in 45° (top-right, top-left, ...)
Nr5 are the four second-level nearest neighbors (top, bottom, right, left)
N M
F F(t+1)=O.1-F(t)+0.008-ZZP;f(t)

i=1j=1
F*(t 4+ 1); Linear Threshold with & = 0.15

N M
y(t+1)=0.4-y(t)—5.F*t—1)+0.08. ;}; S;(t)
«=025 6=0.5

LGMD
y(t + 1); Integrate and Fire with 8 =1
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Threat scenarios are classified according to the fir-

ing rate of a neuron which receives information

from the LGMD and the Threshold cell.
Mathematically the model defines an ON-OFF cell which
computes the local contrast C (i, j, t) as:

with luminance values in the range [0:63].
The inhibition is produced as a spatial low-pass fil-
tered version of the contrast, then:

14, jt) =K®C(,jt) (5)

where K is a typical 3 x 3 low-pass kernel and ® denotes
convolution.

Excitation from the ON-OFF cells C (i, j, t), and inhibi-
tion I(i, j, t) are combined into the Summing Units to pro-
duce a net excitation S(i, j, t):

S H=max{CEjt)—wt) - Iijt—1),0} (6)

where w(t) are empirical, firing rate dependent,
weights which are defined below.

The net excitation enters the LGMD neuron to gener-
ate a membrane potential e (¢):

100 150 S@, j t)

e( = _X}Z 150 @
i=1j

whereas the LGMD output F (¢) is computed as:
E(ty=Td o[e(t), E(t—1),E(t—2)] ®

where o denotes the dot product, and @ = (1/24)-
[20, 3, 1], which was found by using genetic algorithms
and different test videos provided by Volvo Car Corpora-
tion. By definition E(t) is zero for the first 15 frames
(t=1,2,...15).

The threshold computation involves a second LGMD
variable v(f) which results from:

vy =T olet),vt—1,vt—2)] 9)

=
ie]
=
=
=
=

Figure 6. Computing model selected for electronic implementation.
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which is also zero for frames 1 to 15, and that is employed
to calculate a raw threshold V (t) as:

V(t) = V o [0t —5), o(t — 10), vt — 14)]' (10)

where the parameters in v are V= (17 -[1, 3, 3], and
were found in the same genetic algorithm used for .

Finally, the threshold cell output is the effective thresh-
old W (t) which is computed as:

W (t) = max{V (t), 50} + 15 (11)

Threshold and LGDM output values are passed to the fir-
ing neuron (SPK in Figure 6) which fires an spike in frame ¢ if

E(t) = W) (12)

Besides, if a spike has been produced, the LGMD suffers a
hyper-polarization which makes [E(f;—1), E(t—2),
E(t;—3)] = 0. Observe that while the LGMD states are
reset after firing spikes, the threshold cell, which is gov-
erned by a similar state equation, does not. Note also that
in cases where activity variation is low, LGMD and thresh-
old cell outputs tend to the same value and therefore no
spikes will be produced.

Finally, the model incorporates an accumulator which
contains the number of spikes produced in the last five
frames. The state of this accumulator, n (), is used to define
the response of the model (State) and to modify the strength
of the inhibitory pathway w (¢) in (6) as indicated in Table 2.

C. Attention Focusing Algorithm (AFE)

Heuristics search shows that, typically, all relevant infor-
mation is contained within reduced regions of the last
model layers. This happens for instance when an object is
approaching and the excitation is not generated by a turn-
ing movement or camera vibration—see Figure 7. In these
situations focusing on the region

tribute to the model computation. On the contrary, cells
within a disabled attention-cell remain silent and their out-
puts do not contribute to the LGMD potential.

At the beginning, the attention grid is, by default, a
chess board pattern and the following modules are used
to control the activation of attention cells:

Attention: this module decides which attention
cells exhibit enough activity to activate their
neighbors (activating cell). It also disables the
ones in which there was not enough activity in the
previous frame, transferring their activation to
the nearest disabled attention cell that belongs to
the default activation grid.

Activate: this module is called by the Attention one,
and activates the attention cells that surround the
current activating cell. It returns the number of
cells it has actually activated, since it depends on
the location of the central cell, and the previous
state of activation of its surrounding attention cells.
Disable: this module is also called by the Attention
one, and its duty is to switch off the same number
of attention cells that Activate has activated. The
goal is to maintain constant the amount of informa-
tion to be extracted from the array of the S-cells.
The rule is to switch off the attention cells that are
furthest to the current activating cell.

Experience reveals that the best default attention grids
are the ones that uniformly distribute the attention over
the frame when there is no particular source of excitation.

Table 2.
w (t) and model output as a function of the spiking rate.

n(t) 1 2 3 4 5

w(t) 0.75 1.0 1.25 1.5 1.5

State No danger Attention Danger Extreme
Danger

of interest reduces the amount of
information to be processed and
improves the model efficiency.
Inputs to the AFE module are
taken from the S-layer because
there the background and other
non significant pieces of informa-
tion have been already removed.
The AFE divides the input frame
by defining an attention grid
formed by groups of cells, some of
which are enabled and other dis-
abled. Each group defines an atten-
tion-cell. Cells within an enabled

Figure 7. Examples of distribution of the excitation in the S layer. Observe that it main-
ly concentrates in the surroundings of the approaching object (inside the red border),
whereas the rest of the cells in the image remain silent.

attention-cell are active and con-
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Examples of the concentration of the attention can be
observed in Figure 8. The circle pointer indicates the cen-
tre of mass of the excitation in the S-layer. Green color
means neither danger nor activity; yellow means activity
but no danger; and red activity an alarm.

D. Topological Feature Estimator (TpFE)

The way how the LGMD potential is calculated involves los-
ing information about the shape of the object originating
the alarm. However, this information is pertinent in many
cases. For instance, a sharp turning of the car makes the
background to move rapidly, spreads the activity out across
the entire S-layer and may produce false alarms. Similar sit-
uations happen when the car is approaching a horizontal
road line, if a bulge of the road shakes the camera, etc. The
TpFE module overcomes these problems by making an
early classification of the approaching objects. In addition
to making the system more accurate, such classification
helps when taking countermeasures with better fitting in
the type of the approaching object (whether it is a pedes-
trian, a car, etc.).

Using the information contained in the S-layer, shapes
are classified into four different classes corresponding
respectively to:

vertical-shaped object such as traffic lights, per-
sons ... —vertical-shaped class

road line or road stripe—horizontal-shaped class
turning movements—spatially global class

an approaching car—squared-shaped class.

Classification requires, first, calculating a vertical vector
(obtained by adding up column entries, row-by-row) and a
horizontal vector (obtained by adding up row entries, col-
umn-by-column), respectively. Usually, the first entries of
the vertical vector are discarded to filter out the spurious
activity caused by the movement of the horizon. Then two
statistical descriptors dy () and 8y (¢) are built using the
mean value 1 and the variance o of these vectors, namely:

Sy ) =py(t) —oy(t)
S (t) = puy (&) —oy (£) a3
The dominant components of the shape are evaluated by
comparing the values of these descriptors with a priori
defined values for each of the classes being considered.
Figure 9 shows examples of object classification by the
TpFE module.

3. From the Locust to the Car: LOCUST CMOS Chips
The correct operation of the collision-warning system
when mounted on real cars requires proper image acqui-
sition at the photosensor layer. This is challenging due to:

The necessity to handle wide illumination ranges.
The stringent automotive requirements regarding
temperature range, vibrations, EMI, ...
The necessity to guarantee correct operation
under wide tolerance margins of the underlying
technological parameters.

While the last two challenges apply to both the sensor

and the processor, the first is spe-

Figure 8. Examples of the attention focussing depending on the activity detected in
each part of the image. The attention pattern in zones where no activity is detected
corresponds either to the default attention grid or to disabled attention cells (black).

cific for the front-end [29].
Different approaches for High
Dynamic Range (HDR) image sen-
sors have been reported such as
logarithmic compression, dual and
multiple sampling, programmable
gain, intelligent control of expo-
sure, ..., etc. Some of the most rel-
evant early ideas are found in
[30]-[37]. Overviews are present-
ed in [38] and then in [39], [40].
Practical circuit implementations
can be found at /EEE Solid-State Cir-
cuits archive. One may rely on
available HDR sensors and com-
bine them with standard digital
processors to implement the colli-
sion warning models.
Alternatively, the design of the
front-end sensory part and that
of the processing part can be
affronted as linked components
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design problem. Still different architectural solutions
apply, namely:

m Using a fully retino-topic architecture where a sig-
nificant part of the processing is completed in fully
parallel manner through dedicated in-pixel analog
and mixed-signal circuitry

= Keeping only a few mixed-signal functions in-pixel
and shifting all the remaining to be handled by ded-
icated digital processors.

To untie the gordian knot of this architectural choice
the following question should be answered: where to
place the border between the parallel mixel-signal circuit-
ry and the serial digital processing circuitry? This ques-
tion arises when one confronts the design of any on-chip
sensory-processing system [13]. Its answer involves
issues regarding the application (for instance whether
complete images or only image features must be down-
loaded from the sensor); considerations on the computing
paradigm to adopt [14]; and issues regarding feasibility of
the available technologies and circuit primitives [41].

In the case of automotive applications the decision about
where to place the border between the analog and the digi-
tal domain is largely conditioned by data storage issues. Par-
ticularly by those related to short-term storage of
intermediate data. Analog storage provides compact solu-
tions for neural and bio-inspired VLSI systems [42] and has
been demonstrated through both academic [12], [43], [44]
and industrial [13] CMOS VLSI chips. However, in automo-
tive applications leakage currents and reliability considera-
tions pose difficult challenges to the practical usage of
analog storage. They can be addressed by using a refreshing
scheme consisting of AD and DA converters in a loop [42],
buts this increases the pixel size and severely penalizes the
pixel count and hence the spatial resolution of the sensor.

A. HDR CMOS Pixel

Figure 10 shows a concept of a HDR pixel which com-
bines the principles of companding pixels with those of
pixels based on the control of the integration time. Com-
panding in this pixel is not determined by inaccurate
device features as it happens with logarithmic compres-
sion based on the IV characteristics of MOS transistors in
weak inversion. Instead, companding is controlled by tim-
ing. The principle is similar to that of integration pixels.
The photogenerated current is integrated in a capacitor
producing a decay of the voltage. Assuming that both the
photogenerated current and the pixel capacitance remain
constant during the operation, the decay happens to be
linear and determined by the result of the multiplication of
this current and the integration time,

JA
Von(8) = Vst — t (14)

Cpix
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In integration pixels this voltage defines the pixel output.
In the pixel of Figure 10 this voltage signal is employed to
set the time interval during which a reference signal is
first tracked and finally sampled. This latter signal is
either stored on a capacitor, Figure 10(a), or on a digital
register, Figure 10(b).

Figure 9. Examples of object classification using the TpFE
module and the corresponding alarm level.
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The mixed-signal choice of Figure 10(b) has the main
advantages of precluding the analog memorization errors
and the Fixed Pattern Noise artifact (FPN [39]) caused by
the mismatch of the analog buffer which delivers V;, across
the photosensor array. In this pixel, an analog signal Vg (£)
is compared with the photo-generated voltage V,,(#), and a
N-bit digital signal Vig[N-1:0] is continuously sampled by
the N-bit register on the pixel. While Vj,(¢) < Vggp(t), the
comparator disables the write-enable signal in the memory
and the pixel output tracks the time evolution of the digital
signal. When Vjy,(t) = Vgep(t) the current value of the digi-
tal signal is stored as the pixel output.

In the case of linearly increasing reference signals
(as shown in Figure 10(c)), the I-V compression curve
is given by:

VRsT
Vpix (pm) = —27 - (15)
1+E
Which is obtained by assuming that Vggp(t) =

Vrst - t/Tgxp, and where Is, denotes the value of the
photogenerated current which produces a voltage drop

VgsT within a time interval Tgxp> or, in other words, the
photogenerated current wich produces the saturation of
the pixel in integration mode for this exposure.

This companding approach enhances the dynamic
range by precluding brightest pixels to saturate. Conven-
tional integration pixels exhibit a dynamic range given by

DRyv = 20Log (FV—S> (16)

N

where FS = Vgsr — Vy is the maximum attainable
(detectable) voltage drop across the integration capaci-
tance, and Vy is the minimum voltage drop that can be
detected (usually this is referred to the noise value, since
it is assumed that a signal is detectable if its SNR is one).
This is also the value of the dynamic range at the integra-
tion capacitor of the HDR pixel. However, the dynamic
range of the photogenerated current is larger due to the
action of companding. Maximum photogenerated current
produces a voltage drop Vgs7 — Vy in a short time,
whereas the minimum photogenerated current produces
a voltage drop Vy in a time interval Ty p. After some cal-
culations one obtains:

My
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1
1
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Figure 10. HDR mixed-signal active pixel concept with analog sampling (a), and digital sampling (b), typical waveforms for a 3-bit
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I
DRppr = 20Log max (hn) | 40Log <E> 17)
min (L) Vv

It is seen that the DR of the photocurrent is two-orders-of-
magnitude larger than that of the integrated voltage.
Seeking for simpler design, the reference signal is
replaced by a digitally-generated staircase followed by a
Digital to Analog Converter (DAC). If the converter satis-
fies Vi sp > Vy, and it is properly programmed to cover
the maximum attainable voltage drop at the photodiode
capacitance, then the dynamic range results:

(1 2N 2—<N+1>)}
(18)

The global operation is illustrated by the transfer curve
of Figure 11(a), where the code 2V — 1 corresponds to a

1— 27(N+1)

DRHDR = 20L0g [W

photogenerated current of 18pA. The figure also shows
the curve corresponding to linear integration. It is seen
that the HDR pixel produces non-saturated outputs at
higher luminances. Besides, different transfer curves can
be obtained by properly programming the reference sig-
nal Vgep(f) and Vio[N-1:0] as it is illustrated by the 3-D
family of measured curves shown at the figure inset.
Hence a feedback signal can be applied to adapt the pixel
response to the global (inter-frame) illumination condi-
tions. Under the assumption that V;sp > Vy, equation
(18) shows that the DR can be controlled as a function of
the number of bits in the DAC. It provides some degree of
freedom to cover different specifications, but has coun-
terparts. Particularly it has a direct impact on the number
of memories on the pixel which are devoted to Vig[N-1:0]
storage, and hence on the spatial resolution of the sensor.

Figure 11(b) illustrates the operation of a CMOS
imager prototype with a 6-bit DAC (DRypr = 78 dB

Output Code (Dec) Transfer Curve for Staircase Reference Signals
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Figure 11. HDR pixel response: (a) Transfer curve; (b) System mounted in the roof of a XC90 and exemplary HDR image acquisition.
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and). This picture shows an exemplary HDR image
captured when the car is exiting a tunnel. Note that
both the darker and brighter parts of the scene are
captured with good level of details.

B. Semi-Retinotopic Sensor Architecture

The pixel architecture of Figure 12(a) takes into account
considerations regarding data storage reliability and the
computational demands of the collision warning algo-
rithm. Besides the photodiode and the comparator need-
ed for HDR acquisition, the pixel contains three DRAM
blocks, a DRAM refresh buffer, and a bidirectional I/O
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e iﬁ-b Column Bus
é Biasing Signals
| 0 |4 l
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Figure 12. Semi-retinotopic pixel (a) and sensor chip (b) for
collision warning based on the vision system of the Locust.
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buffer which transmits VIO to the pixel during optical
sensing and outputs the pixel values during readouts.
DRAM#1 block is employed as VIO memory during opti-
cal acquisition. Thus, at the end of a given image captur-
ing process, the contents in the three pixel memories
correspond to three consecutive frames. This informa-
tion is downloaded into the digital processor described in
the next section which executes the collision alarm algo-
rithm. Afterwards, the chip moves DRAM#2 to DRAM#3,
and DRAM#1 to DRAM#2, leaving DRAM#1 available for
the next optical acquisition.

Figure 12(b) shows the architecture of the complete
sensor which, besides the sensor array, contains the fol-
lowing blocks:

A 16 kBytes SRAM block which is used by the
processor in calculations

An input/output digital buffer which stores 150 pix-
els (a whole row) and allows data transfer rates at
high-speed (128 Mbytes/s)

A HDR profile block which stores, in digital format,
the waveforms to be applied at VIO[5:0] during
optical acquisition, and the digital codes to be pro-
vided to the Digital-to-Analog converter which gen-
erates Vgpp(t)

A biasing generator, which creates the required
analog signals for the chip

A PTAP temperature sensor which is used to adapt
the DRAM refreshing period, and

An auto-exposure block. This auto-exposure block
allows the definition of a region of interest and a
target value for the average value for the pixels
within that region. It computes the mean value of
the pixels in the defined region of interest during
image downloading and generates a feedback sig-
nal to adapt the sensor response to the global illu-
mination conditions.

C. Dedicated Digital Processor
Figure 13(a) shows the architecture of a System-on-Chip
consisting of the semi-retinotopic sensor and a dedicated
digital processor. This latter processor embeds four cores
dedicated respectively to: a) control the sensor (LuC
micro-controller); b) perform the arithmetic operations
and memory access tasks involved in the emulation of the
LGMD model (Full Custom Locust Model Computing Unit);
¢) perform the corresponding operations for the Topolog-
ical Feature Extractor (Full Custom TpFE Computing Unit);
d) control and coordinate the overall operation. The first
one is a full custom RISC micro-controller; the second and
the third are identical full-custom arithmetic processing
cores; and the fourth is a general purpose processor.

The first three cores above operate in parallel, syn-
chronously, in order to guarantee real-time operation
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with a fixed frame rate. As compared to a single core easier to re-program when fine tuning is required to fit
choice, the multi-core solution yields reduced hardware the model response to real-time automotive scenarios.
complexity. Hence, its corresponding hardware design Conversely, the single-core processor is prone to exhibit
cycles are shorter. Besides, the multi-core architecture is non-deterministic behaviors that impact on the frame
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Figure 13. Collision-warning System-on-Chip (SoC) architecture based on the vision system of the Locust: (a) Chip architecture;
(b) Full custom computing unit block diagram; (c) Sensor microcontroller.
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rate. As the matter of fact, successful automotive vision
processors use multi-core solutions for computationally
intensive applications, real-time visual recognition and
scene interpretation [45]-[47].

\(— Transceiver |-=s—m| 80c51 pP RAM
t |— Flash
Camera e | XC25200E
Video Sender FPGA
[ |
Speed Direction Motor
Sensor Servo Controller

(b)
Figure 14. Model car: (a) High-Level architectural concept
and (b) photo.

Figure 15. Installation of the collision-warning system in the
rear mirror area of the XC90.
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The core labelled L C micro-controller in Figure 13(a)
is devoted to low-level control functions, while the so-
called full custom computing units are devoted to inten-
sive arithmetic calculus. The corresponding tasks are
enumerated below:

m Low-level control of the HDR sensor. These tasks
comprise the downloading of images and the con-
trol of the surrounding circuitry of the sensor
array: control of the HDR profile block, the inter-
nal analog references, the auto-exposure block
and the internal DRAM memories refresh and
moving data processes.

= Emulation of the LGMD model. These tasks include
memory transfers, matrix calculus and convolutions
related with the LGMD neural structure model: the
ON-OFF cells movement map, the inhibition layer
low pass filter and the S-units layer calculations.

m Topological Feature Estimator algorithm. These
tasks include matrix calculus, means, variances
and arithmetic operations related with the geo-
metrical descriptors of the objects that are in
the field of view.

The digital processors and the HDR CMOS image sen-
sor are arranged into three levels of control hierarchy:
the general-purpose processor at the top-level; the arith-
metic computing units together with the RISC micro-con-
troller at the second; and the HDR CMOS image sensor at
the third. This multi-core design is flexible and powerful
enough to accept changes and improvements of the rou-
tines and models without affecting the real-time perform-
ance of the collision-warning.

The control-commanding requirements of the HDR
sensor include asynchronous and real-time low-level
tasks. The custom micro-controller included in the
system, called LuC, frees the general purpose proces-
sor from these tasks, increasing the overall system
efficiency. This controller receives high level com-
mands from the host processor and translates them
into a series of function sequences to control the HDR
sensor circuitry.

The LuC is a RISC computer with fixed encoding reg-
ister-register Harvard architecture whose programming
is realized in assembler. Its architecture (see Figure
13(c)) comprises General Purpose Registers (GPR), Spe-
cial Function Registers (SFR), an ALU, a bidirectional
shifter, timers and two control units with sequencers.
The device accepts up to 5 interrupts sources.

The LuC architecture is designed to receive new high
level commands from the host CPU and to send data,
coming from the micro-controller control routines, even if
the LuC is busy. Its data path includes special features to
speed-up the interchange of information between regis-
ters and between registers and memory. The controller’s
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instruction-set has a subset
of instructions designed to
accelerate image uploading
and downloading processes
while saving CPU load.

The full custom arithmetic
computing units are con-
ceived to deal with memory
transfers and matrix calculus
related with neurons models
and statistical descriptors.
Besides coordinating the
operation of the whole sys-
tem, the general purpose
processor deals with low pro-
cessing demanding scalar cal-
culations of the LGMD model
and the object classification.

Both units, Figure 13(b),
include a vectorial comput-
ing core, with functionality
resembling that of standard
DSP execution units. It con-
tains a vectorial ALU, a multi-
plier and a barrel shifter, plus
two sets of registers for tem-
poral data storage and a pro-
grammable sequencer. In
addition, a multi-channel
Direct Memory Access de-
vice (DMA), which operates
as a stand-alone sub-system,
is devoted to image and
intermediate data transfers,
servicing interrupts when
data transactions are com-
plete. The computing cores,
once programmed, work as
peripheral units, processing
raw data corresponding to
the sensed images, and deliv-
ering processed information
according to the programmed
sequences of instructions.

The computing capabili-
ties of the processing units
are oversized to allow new
functions and enhancements,
such as including the speed
of the vehicle together with
the steering angle within the
Locust model and improving
the TpFE capabilities.
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The car is overtaken by the other car.

In this scenario, a car passes the camera. It comes from back in the left lane. Observe
the signal in the red rectangle. The threat signal also changes, it goes into negative
showing that moving object (the car) falls into the central region asymmetrically.
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In this scenario, the car hits a balloon car. In all experiments the systems responded
approximately 1 s in advance to the collision. Activity above ten means potential danger.

Figure 16. Real car in-field test examples.
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4. System Integration into Cars and Test
Integration into a car and testing are the mandatory cul-
mination of all tasks and the gateway for eventual practi-
cal usage. In addition, they are necessary for refinement
of the models and the hardware/software processors.
This latter task requires test platforms which are handy,
manageable, open and flexible. Since these features are
difficult to achieve with real cars, resorting to model cars
is absolutely necessary during the first stages of model
development and tunning.

Figure 14(a) shows the architecture of a model car
(photo in Figure 14(b)) which is controlled via radio by
interchanging control commands and state information
with an external computer. The electronic system of the
car comprises: a radio transceiver with a FSK modem; an
expandable embedded single board computer for radio
packet transmission management tasks; a full custom
data 10 handling control unit; peripheral control units
devoted to control the electromechanical subsystems of
the car; and a camera connected to a SHF emitter for
image capture and transmission. The mechanical subsys-
tem contains a servo for steering angle control, a high
speed electric motor and differential drive.

For practical use, the model car must be complemented
with scaled-down reproductions of the benchmark traffic
scenarios considered. Realistic situations are replicated in
these scenarios and the feedback from qualitative and
quantitative tests employed to refine the models. Particu-
larly, the model car is crucial for experimenting with dan-
gerous traffic situations which are not feasible in real cars.

The most significant milestone of the model car tests is
a stable hardware platform, ready to integrate into an
actual car. A Volvo XC90 was prepared, mechanically and
electrically, for that purpose. The sensor system was
mounted into the specially made bracket in the interior
rear mirror area as shown in Figure 15. A Head Up Display
and an audible warning device were installed. The Head Up
Display is the black plastic bar on the dashboard, in the
front side of the instrument cluster cover. Inside the black
plastic cover there is a row of red LEDs that are pointing at
the windscreen (approximately 15cm up from the lower
edge of the windscreen). When there is a collision alarm, a
virtual brake light is projected on the windscreen glass as
a red horizontal line. An audible warning is also given by
activating the buzzer that is mounted in the environmental
node which is connected to the CAN bus in the vehicle.

In-field tests covered many different scenarios
involving pedestrians and other cars. To enhance the
selectivity for objects moving in different directions,
the image is divided into four regions (see picture at the
top in Figure 16). The regions are defined by their sepa-
rating sections and sections are defined by endpoints
that can be dynamically adjusted to the geometry of the
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road. Figure 16 shows some representative examples of
the way this segmentation works. Problems are basical-
ly encountered with the handling of some shadows due
to the monochrome and monocular nature of the sen-
sor. In some cases, shadows produce false alarms. Ways
to overcome this drawback requires either incorporat-
ing color information, or 3D vision or advanced adap-
tive brightness control algorithms.

Conclusions

Conventional engineering methodologies follow a top-
down approach (system specification, behavioral
modeling, architecture and block selection, block imple-
mentation, block assembling, system simulation and tun-
ing, verification and refinement). Alternatively, biology
has evolved to solve complex sensory-perception-actua-
tion problems by following what can be considered as a
bottom-up approach (systems evolve through the organi-
zation of elementary units which improve by following a
kind of trial-and-error sequence of events). This paper
outlines the main facets and results of a hybrid strategy
that combines a bottom-up route from biological behav-
iors up to circuit implementations; and a top-down route
from system specifications to processor and chip archi-
tectures and then finally to system integration and test.

Such hybrid methodological flow is needed to go from
the mathematical modeling of the behavior of biological
structures to the in-field test of collision threats in real traf-
fic scenarios. The outcome of such a combination of multi-
disciplinary activities is the practical demonstration of the
possibilities of biological systems when supplemented with
proper circuit architecture design. It motivates further
developments looking at the design of automotive-qualified
vision processors for dealing with collision threats.
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