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Global phylogeography suggests 
extensive eucosmopolitanism 
in Mesopelagic Fishes (Maurolicus: 
Sternoptychidae)
David J. Rees  1*, Jan Y. Poulsen2, Tracey T. Sutton3, Paulo A. S. Costa4 & 
Mauricio F. Landaeta5

Fishes in the mesopelagic zone (200–1000 m) have recently been highlighted for potential 
exploitation. Here we assess global phylogeography in Maurolicus, the Pearlsides, an ecologically 
important group. We obtained new sequences from mitochondrial COI and nuclear ITS-2 from multiple 
locations worldwide, representing 10 described species plus an unknown central South Pacific taxon. 
Phylogenetic analyses identified five geographically distinct groupings, three of which comprise 
multiple described species. Species delimitation analyses suggest these may represent four species. 
Maurolicus muelleri and M. australis are potentially a single species, although as no shared haplotypes 
are found between the two disjunct groups, we suggest maintenance of these as two species. 
Maurolicus australis is a predominantly southern hemisphere species found in the Pacific, Indian and 
southern South Atlantic Oceans, comprising five previously allopatric species. M. muelleri (previously 
two species) is distributed in the North Atlantic and Mediterranean Sea. Maurolicus weitzmani 
(previously two species) inhabits the eastern equatorial Atlantic, Gulf of Mexico and western North 
and South Atlantic. Maurolicus mucronatus is restricted to the Red Sea. No Maurolicus have previously 
been reported in the central South Pacific but we have identified a distinct lineage from this region, 
which forms a sister group to Maurolicus from the Red Sea.

Mesopelagic fishes have been highlighted as a potential target for exploitation by fisheries and the biomarine 
industry in recent years, following revised biomass estimates of 10 billion metric tons1,2. While there is still 
uncertainty concerning the exact biomass involved, these estimates support the claim that mesopelagic fishes 
are the most abundant vertebrates on Earth3. Many mesopelagic fishes, typically present in the open ocean at 
depths between 200 and 1000 m during daytime, undergo daily vertical migrations in the water column. During 
these vertical migrations, they feed at shallower depths at night and retreat to deeper waters during the daytime, 
where they excrete, with important implications for oceanic biogeochemical cycles through trophic connectivity 
and organic carbon transport4. However, there remains a significant knowledge gap surrounding the distribution 
and composition of mesopelagic biodiversity and the potential impacts of harvesting these fishes are uncertain 
on scales that range from local mesopelagic communities to global processes.

Pearlsides of the genus Maurolicus (Stomiiformes: Sternoptychidae) have a circumglobal distribution, being 
found in all non-polar oceans, where they maintain enormous population sizes5,6. Maurolicus species are dis-
tributed throughout open oceans, along continental shelves and slopes, around isolated seamounts, and in some 
cases in fjord systems and inner seas7,8. Highly variable life-history parameters have been reported on a range 
of geographic scales7,9,10 and this plasticity has been suggested as a factor in the proliferation of Maurolicus 
worldwide11. This group has a complex taxonomic history, due in part to lack of variation in photophores used 
as distinguishing characters in other mesopelagic fishes. Six species were described by the early twentieth cen-
tury, but lack of clear morphological separation led Grey5 to consider these as a single valid species, Maurolicus 
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muelleri (Gmelin, 1789). A later revision of the genus by Parin and Kobyliansky12 resurrected the earlier species 
and proposed a number of new taxa, resulting in 15 species worldwide. However, many of these species remained 
poorly defined morphologically, with overlapping ranges of meristic and morphometric characters13. Since the 
1996 revision, with the assumption of restricted species ranges, species diagnoses are often based on location 
of capture (e.g.14.).

Despite a large body of scientific work devoted to the distribution, life-history and ecology of Maurolicus from 
various regions, only a very limited number of studies have applied molecular data to species-level studies13,15–18. 
Initial examination of 16S rRNA data from M. muelleri (eastern North Atlantic Ocean) and M. walvisensis 
(eastern South Atlantic, off southern Africa) indicated a shallow divergence but Suneetha et al.15 concluded that 
these were two recently diverged species. Kim et al.16 expanded this work to include a third species, M. japonicus 
that, according to Parin and Kobyliansky12, is distributed in the western North Pacific around Japan and also an 
isolated population around Hawaii. This study maintained a distinct M. muelleri but found M. japonicus and M. 
walvisensis to be indistinguishable based on 16S and morphometric data. This treatment of M. japonicus and M. 
walvisensis as conspecifics was subsequently adopted by Habib et al.17, who referred to these as the Korean and 
Namibian populations of M. japonicus.

A multi-gene study of Maurolicus from across a wider geographical range was carried out by Rees et al.13 and 
also incorporated morphological data in a broader attempt to assess species status. As with the earlier studies, 
this work utilised 16S data but also included more variable COI data and nuclear gene sequences (ITS-2). From 
five putative species, this study identified three clear groupings with general congruence between morphological 
and molecular analyses, but which conflicted with previously recognised species. A shallow genetic divergence 
was observed between a ‘northern’ clade comprising North Atlantic M. muelleri and M. amethystinopunctatus 
(Mediterranean and eastern North Atlantic around the Azores) and a ‘southern’ clade consisting of M. australis 
(New Zealand and southern Australia) and M. walvisensis (Namibia and South Africa); by extension this would 
also include M. japonicus16, subsequently verified by Terada et al.18. A third clade comprised M. weitzmani from 
the eastern equatorial Atlantic and the western North Atlantic. While M. weitzmani was distinct from other 
Maurolicus on a molecular and morphological basis, analyses indicated a potential need to synonymise taxa in 
both the northern and southern clades.

The work presented here is a significant expansion of earlier work on Maurolicus and incorporates new data 
for taxa from Chile (M. parvipinnis), the Galápagos Islands (M. breviculus), Brazil, (M. stehmanni), the Red 
Sea (M. mucronatus), Japan (M. japonicus) and an unknown Maurolicus species from Fiji, French Polynesia 
and American Samoa, the first known records of any Maurolicus from this region. We also expand our earlier 
sampling of M. weitzmani (Gulf of Mexico) and M. walvisensis (Southwest Indian Ridge). With the addition of 
this material we are now able to assess genetic patterns among Maurolicus on a global scale, with ten of the 15 
described species represented. In a previous study13 we demonstrated that morphological characters used in 
Maurolicus species descriptions by Parin and Kobyliansky12 are, in many cases, inadequate for reliable species 
determination. Our aims in the present work are to shed further light on genetic variation within the genus, with 
a view to establishing a reliable ‘molecular backbone’ against which to reassess species diversity, distribution and 
the evolutionary history of this important component of pelagic ecosystems. We also apply four commonly used 
species delimitation methods to objectively view the observed genetic variation and to provide a clear basis for 
further hypothesis building and testing.

Materials and methods
Sampling.  Samples of Maurolicus were obtained from a number of locations and institutions for inclusion in 
this study with details of material presented in Table 1. Further sample details, including latitude and longitude, 
are included as part of relevant GenBank accessions. A graphical overview of specimen locations together with 
published ranges of described species (following Parin and Kobyliansky12) is shown in Fig. 1. No live fish were 
involved in this work, which utilised previously collected ethanol-preserved specimens. Specimens were fixed 
in 96% ethanol, either directly after collection or subsequent to storage at − 20  °C. The majority of material 
comprised adult Maurolicus specimens but for some locations we made use of whatever samples were available, 
such as larvae (Chile) and fragments of recently ingested Maurolicus taken from bigeye tuna stomachs (Fiji and 
French Polynesia).

DNA extraction, amplification and sequencing.  Genomic DNA was extracted from ca. 2 mm3 of 
ethanol preserved muscle tissue (or whole individuals in the case of small larvae) using the QIAamp DNA Mini 
Kit (Qiagen, Oslo, Norway) following the manufacturer’s standard protocols. Mitochondrial COI and nuclear 
ITS-2 genes were amplified by polymerase chain reaction using previously published primers and PCR condi-
tions as contained in Rees et al.13. Internal COI primers were designed for Maurolicus samples recovered from 
tuna stomachs after these failed to amplify using standard amplification procedures (MA_SPAC_F1: GCG​GCT​
TTG​GAA​ACT​GAT​TA; MA_SPAC_R1: TCC​TGC​AAG​AGG​AGG​GTA​GA; MA_SPAC_F2: GGG​GAC​GAC​
CAA​ATC​TAC​AA and MA_SPAC_R2: GCG​AGC​AGA​AGA​AGG​AAA​GA.). A short fragment of COI was sub-
sequently sequenced for four specimens from Fiji (177 bp) and two overlapping fragments sequenced for two 
samples from French Polynesia (yielding 258 bp). PCR products were visualised on 1% agarose gels and stored 
at 4  °C until purification and sequencing. Sequence reactions were performed using the BigDye v3.1 Cycle 
Sequencing Kit (Applied Biosystems, Inc., Norwalk, CT, USA) with the same primers used for PCR amplifica-
tion. Both strands of all PCR products were sequenced using an ABI 3730 capillary sequencer at UiB.

Phylogenetic analyses.  A total of 53 new COI and 43 new ITS-2 sequences were generated for this study. 
Additional sequences were available from a previous study on Maurolicus by one of the authors13 and these 
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were supplemented by COI sequences from GenBank (n = 23) and BOLD (n = 2) databases, giving a total of 198 
and 157 ingroup sequences for COI and ITS-2, respectively. Full sequence details and accession numbers are 
presented in Table 1. For COI, Vinciguerria poweriae (MT128722) was used as an outgroup, along with addi-
tional sternoptychid sequences obtained from GenBank. For ITS-2 we used Anoplopoma fimbria (AB244631) 
as in our previous Maurolicus study (Rees et al. 2017). DNA sequences were aligned with MUSCLE20 imple-
mented in MEGA v7.0.2621. Best-fit models of nucleotide substitution were inferred for both COI and ITS-2 
using JModeltest v2.1.422,23. Both Akaike information criterion (AIC) and Bayesian information criterion (BIC) 
results indicated the best-fit model to be GTR + I + G for COI and GTR + G for ITS-2. Maximum likelihood (ML) 
and Bayesian Inference (BI) methods were used both for unique haplotype and full datasets in order to iden-
tify well-supported clades representing potential species under the phylogenetic species concept (i.e. molecular 
operational taxonomic units; MOTUs24). For the ITS-2 data, ML and BI analyses were run with gap-forcing sites 
included and removed.

ML analyses were performed with PhyML22,25 implemented in Seaview26 and the GTR + I + G model with 
six rate categories and tree search operations using the Best of NNI & SPR option. Nonparametric bootstrap-
ping was used to assess clade support (100 replicates) and only values above 80% were considered significant27. 
MrBayes v3.228 was used to execute BI analyses of both single-gene and concatenated mitochondrial + nuclear 
datasets, the latter comprising all observed unique COI and ITS-2 haplotypes. Markov-chain Monte Carlo analy-
ses consisted of two independent runs, each consisting of four chains and running for 10 million generations, 
sampling every 1,000 generations. Results were visualised in Tracer v. 1.5.029 and proper mixing of the MCMC 
was assessed by calculating the effective sampling size (ESS) for each parameter. For each data set, the maximum 
clade credibility tree (MCC; the tree with the largest product of posterior clade probabilities) was selected from 
the posterior tree distribution (after removal of 25% burn-in) using the program TreeAnnotator version 1.8.0 
(available as part of the BEAST package; v2.1.130). Bayesian posterior probability (BPP) values of 95% or higher 
were considered significant31.

Species delimitation.  Assessment of possible species validity was explored through four methods, using 
the COI dataset for comparisons with MOTUs identified through phylogenetic analyses. Two methods used 
pairwise sequence distances between specimens to determine the number of OTUs: (1) Automatic barcode gap 

Table 1.   Sampling locations for putative Maurolicus species, with an overview of GenBank and BOLD 
accession numbers for COI and ITS-2 sequences used in analyses. Numbers of sequences per sampling 
location are given in parentheses for COI and ITS-2, respectively. Further details for new material, including 
latitude and longitude, are included as part of GenBank accessions.

Putative species Sampling locations COI accessions ITS-2 accessions

M. muelleri Central North Atlantic (24/21), Norway (25/25), 
Greenland (1/0)

new MT132216, MT132223-132,224, MT132234, 
MT132238-MT132251, MT132253-MT132261, 
MT132263-MT132264, MT132271-MT132273, 
MT132304-MT132313
also KU958034, KU958039, KU958038, 
KU958033, EU148245-EU148247, BOLD: 
GLF028-13

new MT132801, MT132806, MT132809, 
MT132814-MT132818, MT132820-MT132827, 
MT132829-MT132839, MT132842-MT132844, 
MT132873-MT132881
also KU958083, KU958084, KU958089, 
KU958092, KU958094, KU958087, KU958091, 
KU958086

M. amethystinopunctatus Azores (8/8), Mediterranean Sea (18/10)
new MT132252, MT132262, MT132270, 
MT132274-MT132284, MT132298
also KU958035-KU958037, KC616398-
KC616403, KJ709557-KJ709558,

new MT132800, MT132819, MT132828, 
MT132845-MT132855, MT132859, MT132867
also KU958085, KU958088

M. mucronatus Red Sea (8/6) new MT132322-MT132329 new MT132888-MT132893

M. weitzmani
Liberia (8/8), Gulf of Mexico (10/6), Western 
North Atlantic (7/6)
[plus two Genbank sequences with no location 
given]

new MT132197-MT132203, MT132225-
MT132228, MT132265-MT132269
also KU958021–KU958025, GQ860362, 
KF930110, KJ190037, MF041314, MF041576, 
KX098554

new MT132783-MT132788, MT132807-
MT132808, MT132810-MT132811, MT132840-
MT132841
also KU958095–KU958102

M. walvisensis Namibia (10/10), South Africa (12/11), Southwest 
Indian Ridge (5/4)

new MT132285-MT132297, MT132299-
MT132303, MT132317-MT132321
also KU958026, KU958028,KU958029, 
KU958031

new MT132856-MT132858, MT132860-
MT132866, MT132868-MT132872
also KU958073, KU958080, KU958082, 
KU958075, KU958076, KU958090

M. australis
New Zealand (10/10), Tasmania (10/6)
[plus one Genbank sequence with no location 
given]

new MT132217-MT132222, MT132229-
MT132233, MT132235-MT132237, MT132314-
MT132316
also KU958030,KU958032, KU958027, 
GQ860361

new MT132802-MT132805, MT132812-
MT132813, MT132882-MT132883
also KU958078, KU958081, KU958093, 
KU958072, KU958074, KU958077, KU958079

M. japonicus
Japan (12/11)
[plus one Genbank sequence with no location 
given]

new MT132204-MT132215
also KU199192-KU199196 new MT132789-MT132799

M. stehmanni Brazil (8/8) new MT132177-MT132184 new MT132767-MT132774

M. parvipinnis Chile (5/3) new MT132185-MT132189 new MT132775-MT132777

M. breviculus Galápagos Islands (2/3) new MT132196
also BOLD: LIDMA1145-12 new MT132780-MT132782

M. sp. Fiji (4/2), French Polynesia (2/0), American 
Samoa (1/0) new MT132176, MT132190-MT132195 new MT132778-MT132779
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discovery (ABGD32) and (2) statistical parsimony analysis (TCS33,34) and the other two are based on coalescent 
theory: (3) Generalised mixed Yule coalescent (GMYC35) and (4) Bayesian Poisson tree processes (bPTP36). 
These contrasting approaches were used in an attempt to gain a robust estimate of potential species groupings in 
our Maurolicus dataset through congruence of delimitation across methods.

ABGD delimits sequence data into putative species based on the so-called “barcode gap” between intraspe-
cific and interspecific pairwise differences. A range of prior intraspecific divergence is used to infer a limit for 
intraspecific divergence from the dataset and the barcode gap, detected as the first significant gap beyond this 
limit, is then used to partition the data. Following initial partitioning a second round of splitting (recursive 
partitioning) is performed. ABDG analysis was carried out using the web version (http://wwwab​i.snv.jussi​eu.fr/
publi​c/abgd/abgdw​eb.html) using the K2P model to calculate pairwise distances (K80 option with TS/TV = 2.0), 
20 recursive steps and other parameters at default settings (Pmin 0.001, Pmax 0.1, Nb bins (for distance distri-
bution) = 20, Relative Gap width 1.5). Statistical parsimony networks have proved to be a useful approach for 
assessing biological species diversity, with sub-networks generated from COI data found to be largely congruent 
with Linnean species37. We used the TCS software (v.1.21)34 to perform this analysis, which calculates the prob-
ability of parsimony33 for pairwise sequence differences until a default 95% cutoff value is reached. The number of 
mutational differences associated with the cutoff probability is then used as the maximum number of mutational 
connections between pairs of sequences, allowing generation of haplotype networks justified under the parsimony 
criterion. Analysis was run on the full COI dataset, with gaps treated as missing data.

GMYC is a model-based approach that determines a threshold value marking the transition from speciation 
processes to coalescent population processes on an ultrametric tree, using time to identify branching rate transi-
tion points. In order to test effects of different input trees on GMYC we generated four Bayesian inference trees 
using (1) a Yule model with a constant clock, (2) a Yule model with a relaxed clock, (3) a coalescent model with 
a constant population size and a constant clock and (4) a coalescent model with a relaxed clock. Ultrametric 
trees comprising all unique Maurolicus COI sequences were generated using BEAST, with priors set in BEAUti, 
and analysed with GMYC as implemented in the SPLITS package (v. 2.10)38 in R39. The second coalescent theory 
method used, bPTP, requires an estimated gene tree with branch lengths proportional to the amount of genetic 
change. Branch lengths are used to estimate the average number of substitutions per site between two branch-
ing events, and a significantly higher number of substitutions are assumed to be present between species than 
within species36. bPTP adds Bayesian support values to delimited species on the input tree and higher values on 
a node indicate that all descendants from this node are more likely to be from one species. For bPTP analyses 
we used the web-based server (https​://speci​es.h-its.org/)36, utilising an initial Newick-format PhyML topology 

Figure 1.   Map of Maurolicus distribution and sampling locations. Sampling locations with described species 
are indicated by a two-letter code. Distributions represented display literature and museum catalogue data 
as presented by Parin and Kobyliansky (1996); species described by those authors are indicated with an 
asterisk below. ml: M. muelleri (Gmelin, 1789), am: M. amethystinopunctatus Cocco, 1838, mu: M. mucronatus 
Klunzinger, 1871, we: M. weitzmani*, st: M. stehmmanni*, wl: M. walvisensis*, au: M. australis Hector, 1875, jp: 
M. japonicus Ishikawa, 1915, pv: M. parvipinnis Vaillant, 1888, br: M. breviculus*. The unknown Maurolicus 
species from Fiji, French Polynesia and American Samoa is indicated with a question mark. Unsampled 
species and their type localities are indicated with white circles; rd: M. rudjakovi*, in: M. inventionis*, kr: 
M. kornilovorum*, jv: M. javanicus*, im: M. imperatorius*. Inset A shows Maurolicus muelleri together with 
a ventral view of the bioluminescent light organs under UV-light. The base map was constructed from the 
GSHHG World Vector Shoreline data set (WVS; Version 2.3.7) using the open source QGIS19. Symbols and the 
image of Maurolicus were added using Adobe Illustrator.

http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html
https://species.h-its.org/
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rooted on Vinciguerria poweriae. Other settings were retained as default (100,000 MCMC generations, Thinning 
100, Burn-in 0.1).

Results
Sequence data.  The final aligned COI dataset consisted of 684 bp for 198 ingroup taxa, with 51 unique hap-
lotypes. After alignment of the 157 ITS-2 sequences, that dataset comprised 410 bp; removal of 138 gap-forcing 
sites resulted in a dataset of 272  bp, with 38 and 20 unique haplotypes, respectively. Material collected and 
sequenced for this study expanded our geographic sampling to new locations including the Northwest Pacific 
(off Japan; 12 specimens sequenced for COI, 11 for ITS-2), the Red Sea (8 COI, 6 ITS-2), off Brazil (8 COI, 8 
ITS-2), over the Southwest Indian Ridge (SWIR; 5 COI, 4 ITS-2), Gulf of Mexico (7 COI, 6 ITS-2), off Chile (5 
COI, 3 ITS-2), off the Galápagos Islands (1 COI, 3 ITS-2) and the South Pacific off Fiji, French Polynesia and 
American Samoa (7 COI, 2 ITS-2). Some Maurolicus samples taken from bigeye tuna stomachs proved prob-
lematic for DNA amplification; two of four samples from off French Polynesia were successfully sequenced for a 
short fragment of COI but failed for ITS-2; two of the four samples from off Fiji were sequenced for ITS-2 along 
with all four samples for COI. All COI sequences for these specimens were identical to a previous sequence for 
a Maurolicus specimen collected from north of American Samoa by Jan Yde Poulsen (JYP_001/1380_MASP: 
MT132176).

Phylogenetic analyses.  All phylogenetic analyses recovered the same basic topology with very clear geo-
graphical groupings (Figs. 2 and 3). Four geographically distinct lineages with consistently high support were 
recovered in all COI and combined COI + ITS-2 analyses, whether based on the full dataset or only unique hap-
lotypes: (Clade 1) the Red Sea; (Clade 2) waters off Fiji and French Polynesia; (Clade 3) western North Atlantic, 
Gulf of Mexico, Brazil and the eastern equatorial Atlantic; and, (Clade 4) the Mediterranean Sea, the central and 
eastern North Atlantic, the western North Pacific, and the South Atlantic, Pacific, and Indian Oceans. Clade 4 is 
further split into two geographically distinct clades with moderate to high support in Bayesian and Maximum 
Likelihood analyses: (4A) a clade containing all Maurolicus from the Mediterranean Sea, the central and eastern 
and far northern North Atlantic; and (4B) a mainly southern-hemisphere group, comprising Maurolicus from 
Japan and all southern Atlantic and Pacific sampling locations with the exception of specimens from off Brazil, 
Fiji, French Polynesia and American Samoa.

An overview of within- and between-clade genetic distances for the COI data is presented in Fig. 2. Pairwise 
genetic distances reveal different levels of divergence within the genus Maurolicus, with low differentiation 
exhibited by clades covering an enormous geographical range contrasted by shallow to deep divergences between 
lineages. Specimens in Clade 3 exhibited low levels of genetic variation, with the highest differentiation between 

Figure 2.   Bayesian phylogeny based on COI data (full 198 sample dataset). Bayesian posterior probabilities 
and ML bootstrap support values (from ML analysis of 157 Maurolicus sequences) are indicated for the various 
clades. Geographical locations of specimens within clades are shown together with maximum p-distances next 
to white bars (minimum and maximum p-distances are shown for eastern Equatorial vs. western Atlantic / Gulf 
of Mexico). Relationships among groups are shown by mean between-group p-distances.
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the eastern equatorial Atlantic (off Liberia) and the western Atlantic material (1.9%). For the western Atlantic 
samples, spanning a range from southern Brazil to the Mid-Atlantic Bight, the maximum p-distance was 1.1%. 
Similarly, the maximum uncorrected p-distance for specimens encompassing a range from Japan to New Zea-
land, South Africa, Chile and the Galápagos was 1.2% (clade 4B). Furthermore, the TCS network showed an 
identical COI haplotype that was shared by many individuals from across this distribution. A relatively shallow 
divergence (2.5%) was found between this predominantly southern hemisphere clade and the central/eastern 
North Atlantic clade (4A). Maximum differentiation within the latter clade was low (0.7%). Deeper divergences 
appeared to exist between the other clades, ranging from 6.9% between the South Pacific and Red Sea (Clades 
1–2) to 12.0% (western/equatorial Atlantic vs. central/eastern North Atlantic; Clades 3–4) to over 17% between 
the basal clades (1 and 2) and the other Maurolicus lineages (Clades 3, 4A and 4B).

Analyses using ITS-2 data alone were congruent with patterns seen with COI and combined analyses, albeit 
with the lower variability of this marker resulting in reduced resolution for more recently diverged clades. All 
ITS-2 analyses (all sequences vs. unique haplotypes, full dataset vs. gap-forcing sites removed) yielded identi-
cal topologies in both Maximum Likelihood and Bayesian reconstructions, with three distinct lineages: (1) 
South Pacific and Red Sea specimens, (2) western and equatorial Atlantic, and (3) all other Maurolicus from the 
North Atlantic and widespread, predominantly southern hemisphere COI clades (Fig. 4). Maximum uncorrected 
p-distances (not counting gap vs. non-gap sites as differences) within the three clades were 0% for the Red Sea and 
Fiji (two haplotypes from eight individuals, differing only by a 3 bp indel), 3.6% for the western and equatorial 
Atlantic (11 haplotypes from 28 individuals, with no geographic structure evident), and 1.6% for the remaining 
material from the central/eastern North Atlantic and “southern hemisphere + Japan” clade (25 haplotypes from 
121 individuals). Minimum and maximum between-clade distances were as follows: North Atlantic/southern 
hemisphere vs. western and equatorial Atlantic: 10.9–13.4%, North Atlantic/southern hemisphere vs. South 
Pacific/Red Sea: 15.2—16.8%, and western and equatorial Atlantic vs. South Pacific/Red Sea: 16.5–18.9%.

Species delimitation.  Our species delimitation analyses aim to identify putative species, ideally identi-
fying lineages consistent across multiple methods. These putative species require further validation through 
additional lines of evidence such as multi-gene sequence data and morphological characters. An overview of the 
results of the various species delimitation approaches is presented in Fig. 5. Three of the four methods (ABGD, 
Maximum Likelihood solution bPTP and TCS) applied to our COI dataset resulted in the same putative species 
groupings, in agreement with the four well-supported clades in our phylogenetic analyses (COI and combined 

Figure 3.   Statistical parsimony haplotype network resulting from analysis of Maurolicus COI data. Putative 
species are colour coded with the same coding applied to the sampling and distribution map (Fig. 1). Circle size 
indicates haplotype frequency; frequency of haplotypes is also presented, with a breakdown for those shared 
between multiple sampling locations. Small circles with no number given represent unique haplotypes. Branches 
connecting haplotypes within a subnetwork represent single nucleotide substitution steps; bars crossing these 
branches represent additional substitution steps (i.e. missing haplotypes).
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dataset Clades 1–4). ABGD analysis resulted in 12 sequence partitions with identical output for both initial 
and recursive partitions. The first two partitions (P = 0.0010 and 0.0013) resulted in oversplitting, each with 44 
MOTUs, while partition 12 contained just one MOTU (P = 0.0144). Otherwise, results from ABGD were very 
stable, with partitions 3 to 11 all producing four MOTUs (P = 0.0016 to 0.0113) corresponding to the highly sup-
ported Clades 1 to 4 in our phylogeny.

The statistical parsimony network analysis performed with TCS resulted in four unconnected networks with 
each haplogroup again consistent with the four major geographically distinct lineages described previously 
(Fig. 3). Of the 51 COI haplotypes identified at the 95% connection limit, 11 were only present in sequences 
from GenBank and one from BOLD (Greenland specimen). The first two haplogroups have narrow geographical 
ranges (corresponding to Clades 1 and 2; the Red Sea and the South Pacific) while the other two are far more 
widespread. The third haplogroup contains Maurolicus from the eastern equatorial and western Atlantic, while 
the fourth contains individuals collected from all World Ocean divisions except for the Southern Ocean. The most 
common haplotype for Clade 3 was shared by individuals from the Gulf of Mexico and the Mid-Atlantic Bight, 
with specimens from off southern Brazil differing from this by 1–2 substitutions. Eastern equatorial Atlantic 
specimens were also distinct, differing from the majority haplotype by 7–8 substitutions. The shallow divergence 

Figure 4.   Topologies resulting from maximum-likelihood and Bayesian analyses of Maurolicus for ITS-2 and 
concatenated COI + ITS-2 data. Bootstrap support (ML) and Bayesian posterior probability values are indicated.

Figure 5.   Overview of groupings resulting from the various species delimitation methods applied to COI data. 
A representative, simplified topology (combined COI + ITS-2) is shown; the four strongly supported clades are 
indicated with a star and basic geographical ranges of clades are indicated. Vertical bars indicate putative species 
groups for each method. Groupings from GMYC are shown for Yule and coalescent models with a constant 
clock. Results for bPTP from Maximum Likelihood (ML) and Bayesian (B) partitions are indicated.
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between subclades 4A (central/eastern Atlantic and Mediterranean) and 4B (southern hemisphere + Japan) is 
again reflected by the TCS analysis. No shared COI haplotypes were observed between these subclades. The 
closest haplotypes from these geographically consistent subclades differed by 10 substitutions. Although all 
sequences from the combined Clade 4 formed a single subnetwork, the observed pattern was of a majority hap-
lotype for both subclades 4A and 4B, with a number of less common or unique haplotypes differing from the 
majority by 1–3 steps for Clade 4A (14 haplotypes) and for 1–8 steps for Clade 4B (18 haplotypes). The majority 
COI haplotype in Clade 4A is found in the Mediterranean Sea and the North Atlantic from the Azores to Arctic 
Norway, while that in 4B is shared by individuals collected off Japan, New Zealand, Tasmania, the Southwest 
Indian Ridge, South Africa, Namibia and Chile.

For the GMYC analysis, the Maximum Likelihood of the null model (uniform branching across the tree, 
indicating all sequences form a single cluster) was significantly lower than the GMYC model for three of the 
four prior tree settings tested (Table 2), with putative species entities broadly conforming to those emerging 
from other methods. Both Yule and coalescent models with a constant clock gave the same six clusters and 
seven ML entities (i.e. including singletons). The differences between these seven putative species and the four 
clades in the phylogenetic analyses are the splitting of: (1) eastern equatorial Atlantic Maurolicus from the 
western Atlantic, (2) the North Atlantic and the predominantly southern hemisphere material, and (3) three of 
the Japanese haplotypes from the remainder, which remain grouped with the rest of the material from multiple 
regions within that clade. For the coalescent model with a relaxed clock, eight clusters and nine entities were 
identified, with the same splitting as for the seven-entity results but with additional division of North Atlantic 
material into two entities (with no geographical pattern) and splitting of the predominantly southern hemisphere 
material into three entities (Japan, Japan + Galápagos, and all other material, including more haplotypes from 
Japan). Employing a Yule model with a relaxed clock gave 11 clusters and 14 entities but with a non-significant 
result for the likelihood ratio test.

In bPTP analyses, four and five putative species were recovered by Maximum Likelihood and Bayesian par-
titions, respectively (excluding outgroup). In both cases, Red Sea and the South Pacific were highly supported 
(support = 1.000). The remaining putative species had lower support, indicating difficulty in delimiting species in 
these cases. Clade 3 (eastern equatorial and western Atlantic) was consistent in both partitions (ML and Bayes-
ian support = 0.660) while Clade 4 (ML support = 0.496) was split along the lines of subclades 4A and 4B (i.e. 
central/eastern North Atlantic + Mediterranean vs. predominantly southern hemisphere + Japan) in the Bayesian 
partition (support = 0.504 for both putative species).

Discussion
The findings of this study clearly suggest that multiple described species of Maurolicus group together to form 
cosmopolitan mesopelagic taxa, rather than discrete allopatric entities, as has previously been reported. Our phy-
logenetic analyses of Maurolicus on a global scale indicate four main groups with clear geographical subdivision 
(Figs. 2 and 3). Within Clade 4 there is a relatively shallow divergence between a central/eastern North Atlantic 
clade (4A) and a cosmopolitan ‘southern’ clade (4B: South Pacific, South Atlantic, and Indian Oceans + North-
west Pacific). Although species delimitation analyses suggest that this group may be a single species, there is 
some degree of separation between the North Atlantic / Mediterranean and the predominantly southern hemi-
sphere group and we propose maintenance of M. muelleri for the North Atlantic / Mediterranean (previously 
two species) and M. australis for the southern hemisphere (previously five species). These clades correspond 
to the ‘northern’ and ‘southern’ clades identified by Rees et al.13 but with a significant geographic expansion of 
the southern hemisphere clade and an extension of the northern group to include Maurolicus from western 
Greenland. Our data indicate that the geographical range for the ‘southern’ clade encompasses Maurolicus from 
Chile and the Galápagos Islands. Within this group the majority COI haplotype was shared by specimens from 
across the entire range (with the exception of the Galápagos, from which only a small number of samples were 
available) and low genetic divergence was observed for the clade as a whole (maximum COI p-distance 1.2%).

For the ‘southern’ clade (Clade 4B), a lack of genetic and morphological differentiation between North Pacific 
M. japonicus, South Pacific / Indian Ocean M. australis and South Atlantic M. walvisensis has been noted previ-
ously, with studies proposing synonymisation of M. walvisensis and M. japonicus16,17 and a subsequent expansion 
to include both of these as junior synonyms of M. australis13,18. On a genetic basis, this group is now expanded 
to include two eastern Pacific species, M. breviculus and M. parvipinnis. Furthermore, several other species have 
been described with very restricted distributions that lie within the geographical range of the ‘southern’ clade. In 
the North Pacific, M. imperatorius is associated with the Emperor Seamount, with populations of M. japonicus 
found to the west around Japan and east around Hawaii. In the light of our data, it seems unlikely that distinct 

Table 2.   Results of generalised mixed yule coalescent (GMYC) analyses of COI data. Clusters, OTUs identifed 
by GMYC containing more than one specimen; Species, number of ML entities (includes singletons); CI, 
confidence interval for number of entities; L-Null, likelihood of the null model (i.e. all sequences form a single 
cluster); L-GMYC, likelihood of GMYC model; LRT, P-value of likelihood ratio test.

Tree prior Clusters Species CI L-null L-GMYC LRT

Yule, constant clock 6 7 6–13 357.660 371.066  < 0.000

Yule, relaxed clock 11 14 2–20 349.493 351.555 0.127 n.s

Coalescent, constant 6 7 5–15 370.612 382.075  < 0.00

Coalescent, relaxed clock 8 9 6–16 370.465 381.486  < 0.000
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Maurolicus species persist on these seamounts and it is instead perhaps more probable that these represent an 
additional population of the widespread ‘southern’ clade Maurolicus.

A similar situation may apply to M. inventionis in the South Atlantic and M. rudjakovi in the eastern South 
Pacific. Both species are described with distributions restricted to seamounts (Discovery Seamount and sea-
mounts of the Nazca Ridge, respectively) adjacent to or nested within described ranges of other taxa now identi-
fied as part of the widespread southern hemisphere clade. Populations of Maurolicus on seamounts in the South 
Atlantic have been reported to comprise mainly immature specimens40 and it has been suggested that these rely 
on advection from populations near Argentina and Tristan da Cunha Island41. Whether such populations are 
self-sustaining or require recruitment from neighbouring populations is unknown. Taking this further, of the 
five described species we have been unable to include in our work to date (white circles in Figs. 1 and 6), four 
have very localised distributions (seamounts or, in the case of M. kornilovorum, Saya de Malha Bank in the 
Indian Ocean).

The shallow divergence between the ‘southern’ and North Atlantic / Mediterranean clades was reflected by 
bPTP (Bayesian) analysis, with low support for these as two putative species. GMYC analysis also resulted in 
putative species for the ‘northern’ and ‘southern’ clades but also split three Japanese haplotypes from the southern 
clade into a separate species group, which would seem to emphasise the tendency of this method towards over-
splitting (e.g.32,35.) and limit confidence in this result. The ‘northern’ and ‘southern’ Maurolicus clades, previously 
found by Rees et al.13 to form unconnected groups in TCS haplotype networks based on COI data, now form a 
single subnetwork due to ‘bridging’ haplotypes stemming from inclusion of material from Japan (Fig. 4). How-
ever, despite extensive sampling, no shared haplotypes were found between Maurolicus from these two regions 
and the most similar haplotypes from the two remain separated by 10 substitutions (Fig. 4). Since no shared 
haplotypes were found between the North Atlantic and ‘southern’ clades, it may be that our results reflect the 
difficulty of species delimitation methods in dealing with species with a shallow divergence.

Maurolicus weitzmani from the equatorial and northwest Atlantic, together with M. stehmanni from the 
western South Atlantic, also form a single putative species (Clade 3), which we propose are synonymised as 
M. weitzmani. A single species was recovered in almost all species delimitation analyses (Fig. 5). The exception 
was in the GMYC analysis, where the eastern equatorial samples were differentiated from the western Atlantic 
Maurolicus. A significant geographical distance was initially reported between the distributions of M. stehmanni 
(the continental slope of the western South Atlantic, between 34° and 40° S) and M. weitzmani (western North 
Atlantic to the Gulf of Mexico and Equatorial Atlantic from 45° W to slopes of Africa12). However, subsequent 
studies of M. stehmanni extended the range of this putative species to 11° S in the western Atlantic14, significantly 
narrowing the gap between the known distributions of the two species described for the western Atlantic. COI 
sequences for Maurolicus from off Brazil are relatively indistinct from other populations in this clade, differing 
by only one to two substitutions (compared with a minimum of seven substitutions [1.9%] between the western 
and eastern equatorial Atlantic; Fig. 4).

The remaining two clades (1 and 2) represent a highly divergent lineage containing two distinct taxa, one 
from the Red Sea (M. mucronatus) and one from the central South Pacific (sp. undetermined). Maurolicus 
mucronatus Klunzinger, 1871 (Clade 1) represents one of the earlier described species in the genus; this species 
is restricted to the Red Sea and is clearly distinct in all species delimitation estimates based on COI data (Fig. 5). 

Figure 6.   Revised map of Maurolicus species distribution. Representation of current genetic groupings for 
Maurolicus, colour coded to reflect COI haplotype groupings and suggested putative species: (1) M. muelleri; (2) 
M. australis; (3) M. mucronatus; (4) M. weitzmani and (5) a presently uncharacterised Maurolicus species from 
the central South Pacific. Unsampled species are indicated as in Fig. 1. The base map was constructed from the 
GSHHG World Vector Shoreline data set (WVS; Version 2.3.7) using the open source QGIS19. Symbols were 
added using Adobe Illustrator.
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Equally distinct is the Maurolicus species from the central South Pacific (Clade 2), which is deeply divergent 
from all other main Clades and is clearly identified as a putative species in all analyses. Our material appears 
to represent the first records in the region for this genus. Known distributions based on museum collections, 
published data and specimens examined by Parin and Kobyliansky12 (see overview in Fig. 1) indicate no known 
Maurolicus species present in this area. Without material to perform adequate morphological analyses we are 
unable to formally characterise the central South Pacific Maurolicus; presently, we have just one complete speci-
men available. However, molecular and distribution data suggest that this may represent an undescribed species.

The geographic range of the central South Pacific Maurolicus is unknown but our sampling includes Fiji, 
French Polynesia and American Samoa. Since the Maurolicus from Fiji and French Polynesia were obtained from 
bigeye tuna caught with longlines it is worth commenting on the certainty of the probable locations of where 
these Maurolicus were ingested relative to where the tuna were caught. Prey as small as Maurolicus are likely 
to be fully digested by tuna within 4–5 h; our samples were relatively intact and, based on average swimming 
speeds and allowing for the unknown position of the exact point where the tuna were caught on the longline, 
ingestion was estimated at 100–150 km from the catch location (Valerie Allain, pers. comm.). A number of 
described Maurolicus species are found in areas adjacent to, but at significant distance from, this region; to the 
north (M. japonicus and M. imperatorius), south (M. australis), west (M. javanicus) and east (M. breviculus, M. 
rudjakovi, M. parvipinnis; see Fig. 1). Four of these seven putative species have been included as part of this study 
and form part of the genetically indistinguishable ‘southern’ clade while two others have very restricted ranges 
that lie nested within sampled species’ distributions and that we therefore consider to have somewhat doubtful 
status (Figs. 1 and 6; see discussion below). The last remaining species is M. javanicus, reportedly distributed 
in the eastern tropical Indian Ocean off Java and Australia and the northern Coral Sea12. At present, we cannot 
rule out that our central South Pacific Maurolicus may represent an extended distribution for a described spe-
cies that has not been sampled—M. javanicus being the most likely candidate. To examine this possibility, we 
would need samples collected from within the described range of M. javanicus with which to compare with our 
central South Pacific material.

Our data indicate a lack of support for maintenance of many of the currently described allopatric species in 
this genus. Conversely, members of Maurolicus appear to be true eucosmopolitan species42—taxa with a natural 
and prehistorically global (or extremely broad) distribution. Figure 6 presents a summary of geographic group-
ings based on our species delimitation analyses and subsequent recommendations, updating the distribution 
information presented in Fig. 1. More data are required to evaluate levels of gene flow between seemingly disjunct 
Maurolicus populations and whether this is sufficient to prevent evolutionary divergence. Some populations may 
be in the process of allopatric speciation in different ocean basins. This may be the case with the ‘northern’ and 
‘southern’ clades, between which no shared haplotypes were found, and we have therefore retained the separa-
tion of clades 4A and 4B in Fig. 6 until further data are available. Additional data, particularly a geographically 
widespread survey involving population-level genetic markers, are needed to verify the putative species bounda-
ries identified here. Further studies of Maurolicus promise to provide valuable insights in the complex nature of 
speciation in the open ocean.

Data availability
Voucher specimens have been deposited into DJR’s private collection with additional material held in the collec-
tions of ZMUB. DNA sequences were submitted to Genbank with the following accession numbers: MT128722, 
MT132176-MT132329 and MT132767-MT132893.
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