PUL'TEBN'CU ESCOLA SUPERIOR

DE TECNOLOGIA

oe LEIRIA ¢ GESTAL

Livestock Identification and Traceability System
— a case study mobile implementation based on a

generic architecture for livestock management

Master’s degree in Computer Engineering - Mobile Computing

Joao Pedro Dias da Rosa

Leiria, July of 2020

Livestock Identification and Traceability System
— a case study mobile implementation based on a

generic architecture for livestock management

Master’s degree in Computer Engineering - Mobile Computing

Jodo Pedro Dias da Rosa

Internship Report under the supervision of Professor Catarina Isabel Ferreira Viveiros
Tavares dos Reis, PhD in the Computer Science Department of the School of Technology

and Management of the Polytechnic of Leiria, and Jos¢ Gois from Digidelta Software.

Leiria, July of 2020

Originality and Copyright

This internship report is original, made only for this purpose, and all authors whose studies

and publications were used to complete it are duly acknowledged.

Partial reproduction of this document is authorized, provided that the Author is explicitly
mentioned, as well as the study cycle, Master degree in Computer Engineering - Mobile
Computing, 2019/2020 academic year, of the School of Technology and Management of

the Polytechnic of Leiria.

Acknowledgments

First, I would like to thank my company, Digidelta Software, for allowing me to do the
internship in a project from the ground, giving me freedom to test and choose technologies

and ideas.

I would like to thank Professor Catarina Reis, for accepting to be my advisor, for the

continuous support, motivation, and advice along this thesis.

Last, but not least, I would like to thank my friend and colleague, José Gdis, for his
continuous help and interest, for showing me that any time is a good time to learn, and that

knowledge is better when is shared.

Abstract

In a constantly growing market, the ability to provide quick, reliable solutions is
becoming more and more important. Companies want to spend less time build the base of
the project and more time in what makes it unique, perfecting it to the client’s wishes. It is
not surprising that a company ends up reusing the base of an old project and adapting it to
new ones. As this goes on, it becomes clearer that a base project with a well-defined

generic architecture would benefit the companies that do this.

Based on previous applications developed by the company, a set of requirements were
defined that would need to be included in the generic architecture, such as offline mode,
communication with RFID devices, and synchronization. This thesis purposes a solution,
based on the recommended guidelines, of how this can be achieved, the technologies it

uses, and how they interact with each other to achieve a flexible, adaptable solution.

Keywords: Android, Generic Architecture, Kotlin, Mobile

Contents

Originality and Copyright

Acknowledgments

ADSEEACT ceeeueeereeneeeereeneceereeresessessessssessessssesssssssassssssssssssssasssssssassessssasses

List of Figures

List of Tables

List of Abbreviations and ACronyms........c..cceceecereescnrccsssrcsssnrcssasnenes
1. INtroduction........ccceecccseccssenecssnnssssansssansssssssssssnssssssssnsssssnsssses

2. Internship Programmae............cccecvsereccsssnnnccsssnnsscsssssssssssssssees

2.1. Characterization of the company..........coeeeveecruenseessnecsaenne

2.2, Methodology.......ueeeeeveeencercscnicssnicssnncssssncssssncsssssssssssssssesses

2.3. Preliminary study — Technology Selection

3. Related Work

4. COre AYCHItECTUNC..cvveeeeeereeneeereereeeresnecesessesscssssesssssssesssssssesonse

4.1. Presentation Layer........cciiinceicssnrcssnnicssnnicsssnscsssnscsnsesens
LAVEDALA. ...
VIEWMOdEL. ...
Data Binding.........c.ccouieiiiiiieiieeiieie et
Material Desi@n 2......cccueeuieiiieiieeiieiieeie ettt
NAVIZALION. ..evtiieiiieiieeieeiee ettt et e ere e e sereebeesaaeeseessneenseensneens
Dependency Injection with Dagger 2...........ccceevveveviieinieeenieeeen.
Devices LADIary........cooueeiiiieeiieeeee e

4.2, Business Layer.......ccoeiicnviicssenicssnnenssnncsssncsssncssssncssssnesssees
RxJava and RXKOtHN.........cccoovuieiiiiniieiieiecieeceeeee e

4.3. Data LayYer....eiiiiineeiccsssnnicssssnsncsssssssessssssssessssssssssssssssssssnns

L 2S5 (o) £ L TR

WOTK IMANAEET......eeiiieiiieiieeiie ettt ettt ettt e et e st e e e e e saeessaesabeenbeessseenseesnseenseeenne

4.4. ReQUITEMENTS....cccovueieiinicnsnicssnncssanisssanesssnnessnsses
4.4.1. Functional reqUIremMENtS..........ccueeevuieeriiieerieeesieeeiieeesieeeerreesseeesseeessseeesnns

4.4.2. Non-functional TeqUITEMENTS.cccueeruieriiieriieeiieiie ettt

5. DILITSuiiiitinniinnensnecssneesnssssesssnssssesssassssesssassssssssassssassssssssssssassssasssssssassssassss
5.1. LOGiMNu.icuuriiiirriinnnninsnncssnncssnncsssnnsssanssssasssssssssssasssssssssssssssssssssnsssssssssssasssssassses
5.2. DashbDoard.........eeoeiiineininiiiniecseencsniicsseesssesssseessssesssssnsssssesssssssssssessns
5.3. HOIAINGS.cccuveiiueeirreniinnsnensensssensnnsssesssnesssesssnsssassssassssesssssssasssssessassssssssassssassnns

5.4. OWNEIS/IKEEPETS...cuueriessnrinssrnissssrissssncsssncsssnessssiossssrosssssssssssssssssssssssssssssssssnes

5.5. Animals

5.6. SCIVICES.ccuutiirreeiisuriissnneissntessneessstesssesssssesssssesssssnssssssssssssssssssssssasssssnsssssnsssnes
5.60.1. SEUP. i e
5002, SEIVICE...ccuuiriiiitieieeite ettt ettt et ettt ettt sttt et sb ettt s at ettt sbeenae et naeens
5.6.3. ACHION tYPES LISt..uiiuiiiiiiiiieiieeie ettt ettt
5.6.4. Intervened animals...........cccceeiiiiiiiiiiiiiiiieiee e
5.6.5. Non-intervened animals...........cccueeeiuiiiiiiieieiiieeciie e
5.6.6. Connecting t0 AEVICES.....c.ueruieriiieiieiieeieeiie et erite ettt e eaeesaeeenseeneeas

5.6.7. Reading identifiCations...........cccueevuieriieiieniieiee et
5.7. SUIMIMATICS.cccueeiiireissneessnnessnecssanecsssnessssnessssesssssessssssssssssssssssssssssssssasssssasssses

5.8. SYNCRIONIZATION....uueeiurerieeieensinistenseenssensnessaessnesssnsssnsssssssssssssnsssssssasssssesns
6. Critical analysis and improvement measures proposal............ccceeceveecuercsnne
S ©11) 1 T4 11 (1) 1 PO PR

Bibliography

42

44
44
46
47
49
51
52
53

54

56

57

59

61

10

APPENAICES.cuueriruriirsrrressrrcssssncssssiossssnsss 68
Appendix A - Technology Selection...........ceeeeeiiseecseissenisecssencseissnecsecsssncsesssneenns 68
Appendix B - Kotlin VS JAVa.....iiiiiiiniisnnnicnnssniicssssnsicssssssecsssssssssssssssssssssssssssssnssss 72
Appendix C - Functional Requirements — User Stories and Acceptance Criteria 85

Appendix D — Usability Tests Questionnaire 93

11

12

List of Figures

Figure 1 - Organizational chart of Digidelta SOftWare...........ccecvecierieiiinieiiciee s 3
Figure 2 - a- Electronic identifiers b - RFID reader..........ccccocevirininiiniiniiiiiiicieencncsc e 5
Figure 3 - Gantt DIAGIAIL......cocueeruiriirinirtitenest ettt ettt ettt st ettt ettt eseebeebeeaeeren 7
Figure 4 - Catching a click @Vent in JaVa..........cccooiiiieiiiieie et 13
Figure 5 - Catching a click event in KOtln........c.cooooiiiiiiiiiieeee e 13
FAGUIE 6 - MV VM.t t ettt h et e h et e h et e st e bt et eeeeeneesaeenbesaeeaeeneenens 15
Figure 7 - Architecture diagramm........coueiuieieriiiieitieieic ettt ettt e b et e e et eeeeneeeaee 16
Figure 8 - One-way data DiNAING............cocviieriiiiiiiiiieiecieteee ettt ste e sae e s re s e saeessesasessesssesseesnenns 19
Figure 9 - Two-way data DINAING.........c.cccveriiiieriiiierieceeieet ettt te e saeesbe e e saeesaesseessesbeessesseens 20
Figure 10 - Navigation eXamPIe.........c.coviivieriirieriieiieiieteeteeteseesaeseeessestessessesseessesseessesseessesseessesseessesses 21
Figure 11 - A Dag@er2 MOAUIC.ccuieiiriieieii ettt ettt et eaesaeesaeseeessessnesesssensens 22
Figure 12 - EXample 0f @ DAO......c.occioiiiiieieeiese ettt sttt sessaessessaessessaessesnsensens 27
Figure 13 - COrouting €Xample.........c.eeveruerierieiieieeieie et eteeeete e eseeseeesaesseessesseessesseensesssensesssensesssenes 28
Figure 14 - ANImMalAPI XAMPIE.....c.cociruiriiiriintirierietertet ettt ettt ettt sttt et eaes 28
Figure 15 - AnimalWorker dummy implementation.............ccceeieierieriereenienieeie et 30
Figure 16 - Request using AnimalWOTKeT..........cccoiiiiiiiiieet e 30
FAGUIE 17 = LLOZIN .ttt ettt et ettt e s et et e sae et e s he et e sbe e teen e e teeneenseeneenee 35
Figure 18 - Select entity/Brigade.coouieiiiiiiiiiiieeeee ettt et st 36
Figure 19 - DashbDOAId.c..ooueieieieeeee ettt sttt se st eeeebe e 37
Figure 20 - Seeding database..........c.ccuieieriieiieriieiiiieeie ittt ete et ste et e sbeessesseessesreessesreessessseseessesens 37
Figure 21 — Main SIAE MEMUL......ccvieiieiiitieieetieteieetestesteettesteeesesteessesseesseeseessesseessesssessesssesseessesseessenseenns 38
Figure 22 - HOIAINES LISt....cviiuieiiiieieiierieeieie ettt ettt et ea e steesaessaesbessaessaessesseessenseensesseensenns 39
Figure 23 - HOIAING'S dEtailS.......cccueviieiiriieieeiiee sttt ettt e s eae e esessaessesssensesssensenns 40
FAgUIE 24 - OWINETS LiSt....cuiitieieiiieie ettt ettt st et be s e e beesaesseesbesseensesseensesseensesnnensennnas 41
Figure 25 - OWNET'S ELAILS.eoueruiriiriiieietetcteeete ettt b ettt 41
Figure 26 - ANIMALS LISt..c..iiiiiiiiiiiiiiieceeen sttt sttt ettt et eae bt erea 42
Figure 27 - ANImal's details..........eoiuiiiiiiiieiieet ettt ettt ettt a e e 43

13

Figure 28 - Select the service’s NoIdiNg.......cc.coveiiiiiiiiii e 44

Figure 29 — Select the SEIVICE™S SIOUP....c.ecieeierieiieierieetesteetesteetesteesesseessesseessesssessesssessesssessesssessesssens 45
Figure 30 - Select the SErvICe's date........coeririiririiriiiieieietee ettt 45
Figure 31 - Ask user if he wants to continue the SEIVICE..........coiviriririinienieicicieeee e 46
Figure 32 - ACLION LYPES LIST...uvetieuiieiieiieiieieeiett ettt te e ettt e ae st e e et et e eseetesseensesneesseensesseensessennsensenns 47
Figure 33 - IncOmpatible aCtion LYPES........ceeruirerteriiriertiteieieteeeiteie ettt sttt ettt sae b e 48
Figure 34 - Options to intervene animalsS...........coceecuirieriieieneeierie ettt ee e eeens 49
Figure 35 - Actions being applied to animal............ccooiiiiiiiiiiieni e 50
Figure 36 - Actions available to apply to an aninal.............ccceceriiiiiiiiiniee e 50
Figure 37 - Non-intervened animals..........c.cooeiiiiiiieiinieeeee et sttt 51
Figure 38 - Selecting animals t0 INTETVENE.ccveeviereeiierietieeeteeteesteeete et esteessesteessesreessesseesseereesaeeneas 51
Figure 39 - Devices available t0 CONMMECT.oiuiriirierieieieie ettt 52
Figure 40 - Asking to create an animal from reading...........c.ccocerireninenienieieeeeeeee e 53
FIUIE 41 = SUMIMATIES. .. .cveitiitiitiiteitetetert ettt ettt b ettt st sttt et et es s es b e bt ebeebeebesbeebesbeseesbenbeneens 54
Figure 42 - Services Performed.........co.eoueviiieiiiiieiiiec ettt ettt s 55
Figure 43 - Notification of data being downloaded to the application...........c.ccecceererinienienieieincncnene. 56
Figure 44 - A Class N JaVA....c..coiiiiiriniiceeee ettt st 73
Figure 45 - A c1ass i KOOIoouiiiieieieeee ettt et ae e sneeneeenean 73
Figure 46 - Initialization of Person using Java............cccooiiiiiiiiiiieeeee e 74
Figure 47 - Initialization of Person using KoOtlin...........coooiiiiiiiniiiiiieee e 74
Figure 48 - Constructors in @ JAVa ClasS........coeeriiieiiiieieie ettt 75
Figure 49 - Constructors in @ Kotlin Class..........cooiriieiiiiieeeeie e 76
Figure 50 - Accessing a resource from the GUI layout using Java...........cccooeverenieneneincniecncsceeee 77
Figure 51 - Accessing a resource from the Ul layout using Kotlin............coceviiinininineniniiiccee, 77
Figure 52 - Catching a click event in Java..........cceoeviiiiiiiii e 78
Figure 53- Catching a click event in later versions of Java..........ccceveverieieiiiniiinneeeeee e 78
Figure 54- Catching a click event in KOtlN.........cccooiiiiiiiiiniiieccccettecees e 78
Figure 55- Java method that throws an eXCeption...........coucvieieieiriniriniinereneeetee ettt 79
Figure 56 - Using a method that throws an exception in Java...........ccceeverierieieiinnininenenenc e 79
Figure 57 - Ternary 0perator i JAVA..........ccoeeeriiiieieiieeeiieteeee ettt et see st esaesseesseeneenseeneenseens 80

14

Figure 58- Kotlin's equivalent of a ternary operator using "if €1Se".........cccccvervirvierieciiniecienieeeeereeeenns 80

Figure 59- If else With €Xtra OPETatioNS.coveieuieieieiieiirit ettt ettt sttt ene 81
Figure 60- An extension in KOthn..........cocoiiiiiiiiiiieee e 81
Figure 61- Usage of an extensions in KOthin..........coooeririieiiiiinenseeeeeeee e 82
Figure 62- Java delegation.........coceiiiiriririirieieieeteitet ettt ettt ettt sttt naens 82
Figure 63- Safe call in KOtHN......ccooiiiiiiiiiiciccc ettt s 82
Figure 64- Non-null assertion in KOtlin...........ccooieiiiiiieiieecieeeeee e 83
Figure 65- Smart cast in KOtIN.........ooouiiiiiiiieee et 84
Figure 66 — First page of the usability qUESHIONNAILE.........c.ceviiieriiiieiieieeee e 93
Figure 67 — Dashboard page of the usability qUEStIONNAITE.ccevieriirieririeieeeeeeee e 94
Figure 68 - Holdings page of the usability qUEStIONNAIIE.c.ccvevieriiiieiieieieeeere et 95
Figure 69 — Owners/Keepers page of the usability qUESIONNAITE...........ccveveeriiieeriiiieieeierie e 96
Figure 70 — Animals pags of the usability qUESTIONNAITE.ccerviriiriereieieieeeee e 97
Figure 71 — Services page of the usability qUEStIONNAITE.........ccceceririririnerireeeeeeeeeeee e 98
Figure 72 — Summaries page of the usability qUEStIONNAITE...........ccerueruerierienieieieeieereseeese e 99

15

List of Tables

Table 1 - Application comparison

16

17

List of Abbreviations and Acronyms

API
BLE
CRUD
CSS
DAO
DLITS
ESTG
FAO
GPS
GUI
HTML
HTTP
ICAR
JSON
JVM
MVVM
OS
PoC
RFID
URL
UX

Application Programming Interface

Bluetooth Low Energy

Create, Read, Update and Delete

Cascading Style Sheets

Data Access Object

Digidelta Livestock Identification and Traceability System
School of Technology and Management

Food and Agriculture Organization of the United Nations
Global Positioning System

Graphical User Interface

Hyper Text Markup Language

Hypertext Transfer Protocol

International Committee for Animal Recording
JavaScript Object Notation

Java Virtual Machine

Model-View-ViewModel

Operating System

Proof of Concept

Radio-Frequency Identification

Uniform Resource Locator

User Experience

18

19

Livestock Identification and Traceability System

1. Introduction

The complexity of creating reusable systems is something that has been acknowledged
by designers and engineers for a long time. Although the process of designing something
reusable is expensive, both in time and in money, is it the key speed up future

developments of similar systems.

This design is even more challenging in mobile applications, as the technologies and
guidelines are being built and updated every day, and an architecture can become obsolete
in a not long time. As the world becomes more and more mobile, the focus in mobile

development is increasing, speeding up this evolution of technologies and guidelines.

This thesis will show how a generic, native Android architecture was created, which
technologies were used, their purpose, and how they interact with each other to achieve the
purposed goal. A library to abstract the communication with RFID devices was also
developed, which will also be used in future applications. This thesis is divided in three
major areas: the introduction to the thesis, company where the internship was performed,
and the internship programme; the research performed previous to the official start of the
internship, where a short study of the possible technologies to use and target market was
done, the technologies used and how they interact with each other, and the final result; the
critical analysis, where it is reported what went well, what went wrong, what can be

improved in the future, and lastly, the conclusion of the thesis and the internship.

The initial proposal was to develop a native Android application to support brigades
working in the field using RFID devices. The application is called Digidelta Livestock
Identification and Traceability System mobile (DLITS mobile), the mobile version of
DLITS, supporting, amongst other functionalities, offline mode, interaction with RFID
devices, intervention of animals, and automatic synchronization. The proposal also
included the development of a generic architecture that would, not only, be used in this
mobile application, but also serve as base for future similar Android projects, speeding up

the development and delivery of said projects.

20

Livestock Identification and Traceability System

21

Livestock Identification and Traceability System

2. Internship Programme

The internship proposal was signed-off by Digidelta Software and required the
development of a mobile application for Android or iOS, using, either a native or a cross-
platform approach to its development. The application’s name is DLITS mobile and is
intended to help brigades identify animals and perform actions to them, providing offline

mode, automatic synchronization, interaction with RFID devices, amongst others.

2.1.Characterization of the company

The internship took place in Digidelta Software [1]. Digidelta Software is a multi-
disciplinary software development and consulting firm with long-time experience in
creating tailor-made innovative solutions for various business sectors, with special focus
on applications for animal health, breeders, fund management communities, and livestock

management.

Digidelta Software was created in 1989, in Torres Novas. Its first major project,
Programa Informatico de Saude Animal (PISA), was an information system capable of
managing the livestock of Sociedade de Agricultores de Torres Novas. In 1990, the
Ministry of Agriculture started using PISA, and after an initial test, a new version was
created and eventually expanded through the entire country, making it the official livestock

health system in Portugal [2].

After several name changes, the company eventually settled in Leiria under the current

name, Digidelta Software.

Digidelta Software aims to be a worldwide reference in the development of tailor-
made information system regarding livestock management. To fulfil this, Digidelta
Software develops information systems using innovative methodologies and technologies

for state and private entities in a market without borders.

Digidelta Software can be divided in seven departments, as seen in the organization

chart in Figure 1.

Digidelta Software

Customer / T | i~]

Livestock Identification and Traceability System

Although each department is responsible for a specific set of tasks, they all work together

and constantly intercommunicate.

o Costumer support - Responsible for interacting directly with the customers.
It serves as a filter and bridge between the customers and the developers, allowing
the developers to work without as many interruptions and helping the customers in
smaller tasks that do not require the interaction of a developer. This department is
also responsible for preliminary usability tests before allowing actual clients to test
the software.

o Developers - Responsible for the entire project development process since
the requirement analysis to the delivery.

. Marketing - Responsible for promoting the company’s projects, finding new
projects, and managing its image to the outside.

. Design - Responsible for designing mock-ups (which greatly reduce the
development process time), improving the application’s user interface and user
experience.

o Sales - Responsible for finding customers for already developed
applications (such as Wezoot).

. Financial - Responsible for handling the company’s money, such as
employee’s payments.

o IT Support - Responsible for providing and maintaining the infrastructure
that the company uses, such as the hardware (computers, keyboards, servers,
internet) and the software (such as Microsoft licences), allowing each department to

focus on their respective tasks.

As a developer, my main interaction was with other developers, either to help with
business logic questions or opinions based on their experience on previous related projects.
Since the project is not yet being tested by Customer Service or used by clients, my
interactions with the Customer Service department was not as much as it would be
otherwise. However, since they serve as usability testers and often know the concerns of
clients, they were very important in the development in matters regarding the user’s usage

of the application.

23

Livestock Identification and Traceability System

Digidelta Software’s clients can vary between small livestock owners and country’s
governments. Smaller clients usually use a common platform, shared by other small
clients, while bigger clients, like country’s governments have tailor-made systems to fit
their specific needs. Although most of its clients are in Portugal, Digidelta Software has
developed for other countries’ official entities, such has Morocco (SNIT.maroc) and

Botswana (BAITS.botswana), amongst others.

To help keep track of the livestock, Digidelta Software’s systems interact with a lot of
hardware. Understanding and working with such hardware is critical to the vast majority of
the software development done at the company. Some examples are visual and electronic
earrings, RFID scanners, scales, and animal sorting sleeves. Digidelta Software has a
partnership with DataMars, a livestock management and animal health company that,
amongst other things, supplies earrings and RFID scanners [3]. This partnership is helpful
to allow Digidelta Software and DataMars to enter international grant funding, since most
of the time they involve the earrings and scanners suppliers, such as the ones presented in
Figure 2. This is helpful for both sides, since Digidelta Software provides the software, and

DataMars provides the hardware.

-
MAR
02 BD00000

9798

(@)

Figure 2 - a- Electronic identifiers b - RFID reader

Identified as “(a)”, we can see electronic earrings (with a yellow color) that can be read
with a RFID reader [4], [5]. Below the electronic earrings, we can see the ruminal bolus, a
device ingested by bigger ruminants (such as cows) that stays in their stomachs. Like the

electronic earrings, it can be read using a RFID reader.

Recently Digidelta has been involved in multiple new projects. One of those projects
is a system to digitalize the livestock markets, collecting business data to later inform of

strategic decisions for trade and markets. It was tailor-made to Amfratech and named (by

24

Livestock Identification and Traceability System

the client) Mifugo Data (which means Livestock Data in Swabhili) [6]. A WebApp and a
mobile application were both developed. Digidelta Software has also been developing a
tailor-made system to help manage maternities to produce clam larvae called Oceano
Fresco (the final name is not yet assigned). The software will interact with sensors
capturing temperature, salinity, phytoplankton levels, amongst others, and alert the staff to

adjust the levels, or adjust them automatically if possible.

Digidelta Software is currently a medium sized company. Everyday a world of
opportunities rises, and the industry market is becoming more demanding than ever with
new businesses appearing. To fulfil the ever-growing market requests, the company is

growing with it.

2.2.Methodology

When it comes to requirements. the user must be able to list the holdings associated
with the previously selected entity, register new holdings, and update existing ones. A
holding is a local (such as a farm) that can have multiple owners (the people who own the
holding), keepers (the people who take care of the holding and its animals) and animals,
following the FAO and ICAR guidelines [7], [8]. The user must be able to check a given
holding’s owners, keepers, and animals. When it comes to owners and keepers, the user
must be able to list the ones related with a given holding, create new ones and edit existing
ones. The user must be able to list the animals present in each holding, create new ones,

and edit existing ones.

As for services, the user must be able to register multiple actions to multiple animals at
the same time, identifying the animals either manually or with RFID readers. The user

must be able to consult previously made services and edit them if they are yet to be

finished.

The user should also be able to consult the summaries of the current session, that

includes, amongst other things, the services made.

The application must be able to work offline, saving the operations performed, except
the login and entering an entity, which must be performed online. The application should
regularly upload the user’s data to the remote API, so it becomes available to other users.

Data relevant to the user should also be regularly updated so he uses up-to-date data.

25

Livestock Identification and Traceability System

The application should be able to handle a high amount of data and users, while still
performing well. The application should also be intuitive, allowing users to use it without
much troubles. Lastly, the application should be easy to modify and adapt to different

scenarios.

The application’s goal is to be used both for online and offline scenarios. Amongst
other things, the proposal required skills in Kotlin and Android, Swift and i0OS, mobile

cross-platform frameworks, and Git, as the source code versioning management system.

One of the purposes of the internship was to develop a generic architecture to be
adapted to future projects, speeding up the applications’ development process in the future.
This necessity comes from having multiple applications with the same common
requirements, difficulties, and functionalities, such has synchronization and integration
with external devices. Finding a way to standardize these processes and use them in future

applications will bring value to the company, far beyond the application’s value by itself.

In the beginning of the internship, a preliminary version of the work plan was made.
During the period of the internship and evolution of the work, the plan suffered minor

adjustments reflected in the Gantt Chart presented in Figure 3.

set/19 nov/19 jan/20 mar/20 maif20 jul/20

Methodclogy Definition phase
Definition of base architecture

Backend support methods ||
Login B
Holdings CRUD
Owners CRUD I
Services POC]

Service Setup
Services

Devices

Summary of services

Start of remote work X
Keepers CRUD |
Change entity/brigade -
Initial Seed]
Synchronization (download and upload) ——
Fine tunning/Bug fixes from tests I

Figure 3 - Gantt Diagram

26
The first month of the internship was dedicated to the definition of the methodology

where responsibilities were assioned. the Scrum artifacts and events were defined (Sorints.

Livestock Identification and Traceability System

and conflicts. Therefore, this phase affected the whole project and allowed a much

smoother transition into later phases.

The next month of the internship was the phase of developing the core architecture.
Multiple versions of the architectures were tested until the team accepted one. The goal of
the architecture was to make the application reactive, rather than proactive. This phase was
crucial since the entire development of the application and all its processes are grounded
on the generic architecture. A change in the architecture could require a great amount of
time and effort since it involves the entire application. The development of a generic
architecture to be used in multiple projects was the goal, and accepting an architecture
known to be flawed would mean that either its flaws would be replicated through multiple
applications or each new application would need to fix its flaws, failing the task of creating
a generic architecture. Therefore, it was necessary to test multiple architectures until one
was discovered that could fit both the application’s needs as well as envisioning the
requirements for future applications. Although we knew the architecture would have to
receive small improvements as the application grew and new challenges appeared, we were

confident that no major changes would be required.

The next phase was the development of the application’s core functionality, the launch
of services. Several minor improvements were made to the architecture, to better
accommodate the requirements. First, a proof of concept (PoC) was developed; to test the
idea we had designed for the functionality was feasible and accurate. The PoC included the

setup of the service and the actual service along with a device’s module integration.

Around the beginning of March, due to the pandemic outbreak, the company started
working remotely, maintaining the normal work schedules. This created a few setbacks.
The Devices Module development stopped since it needed specific devices (such as the
RFID readers) to test and that were left in the company, which was isolated for two
months. In addition, the lack of presential communication difficulted the usability tests by

the users (other company employees).

After that, the focus was automatic synchronization. Synchronization was necessary to
make sure the work done on the application is integrated with the remote API, and that the

application is using the most recent data present, in the remote API.

27

Livestock Identification and Traceability System

The final step was the publish of the application to the Google Play, where a beta
version was published and given access to a closed group of testers. The testers were given
a questionnaire, where they could rate how hard it was to perform certain tasks. An area to
leave comments on each section was also provided, allowing the testers to explain why
they had difficulties doing something or leave suggestions of improvements. The

questionnaire can be consulted in Appendix D — Usability Tests Questionnaire.

2.3.Preliminary study — Technology Selection

Previously to the start of the internship, it had to be decided which technologies would
be used in the application. As stated before, there were several options available: native
(for Android and 10S) or cross-platform (using a hybrid development framework that
served those two operating systems by providing both with specific binaries generated
from the same source code). Since I was already a member of the company before the
internship, I was able to take part on this phase, helping in the decision of the technologies.
The result of this preliminary study is presented in a resumed way in chapter 3 — Related
Work and can be consulted with more details in Appendix A — Technology Selected and
Appendix B — Kotlin vs Java.

To help with the decision process, four versions of the same demo application were
developed: a native version for Android with Kotlin, an hybrid version developed with
Ionic, an hybrid version developed with NativeScript and lastly, an hybrid version
developed with React Native. To assure that a good comparison was made, the demo
application provided the same functionalities that were implemented in all versions: a

master-detail view of animals and interaction with Bluetooth devices.

Considering the team’s previous experience with Android (using Java) and with
Angular (Ionic and NativeScript), React Native was the less-known technology by the
developers. After a few tests, it was decided to exclude it since it would bring a greater
learning curve than what it was intended. After that, the other three versions were
presented to the company. The team presented them without sharing the information of
which technologies were behind each version, to prevent biased opinions. Both the aspect
and usability of the versions were considered, and the selection led to the one that had a

more natural feeling to its usage.

28

Livestock Identification and Traceability System

After the study and presentations, the team decided that native Android with Kotlin
would be used. The study can be read in further detail in appendix X.

29

Livestock Identification and Traceability System

30

Livestock Identification and Traceability System

3. Related Work

Mobile app development is the process of developing apps for mobile devices, such as
smartphones and smartwatches. With the increase in numbers of mobile devices per user,
there are more and more mobile devices which can support mobile applications. The need

for said applications grows and, with it, the need for standards to help develop them.

Looking at similar applications can give a good idea of how they work, what they did
right and what can be improved. We started looking at some of the company’s

applications, and then to some external ones.

e Pisa Mobile
Despite being developed for laptops in Windows Forms, and not exactly
smartphones, it is considered a mobile application as it has the functionalities that
this kind of mobile applications have: offline capabilities and connection to external
devices, such has stick readers and printers [9]. It is used for applying actions
animals in the field. DLITS services are based on this functionality . This version
is used usually in larger holdings, where its more practical to sit and register the
interventions with multiple people working on it.
It has a simpler interface compared to its desktop version (Pisa.NET). It works with a
manual synchronization mechanism. It was developed by Digidelta Software.

e Pisa Pad [2]
Pisa Pad, developed by Digidelta Software , is the Android version of the current
Pisa, Pisa.NET. Its and Android application with offline functionalities. To
synchronize its data, Pisa Pad uses a manual file system, importing a file to seed the
local database before starting to work, and exporting it at the end of the work. Like
Pisa Mobile, it can connect with RFID stick readers and portable tag prints to place
on test tubes with blood samples, via whether Bluetooth or Wi-Fi. It has the same
purpose as Pisa Mobile, allowing the users to choose which platform they prefer to
work on, choosing the version that better suits them.

e Wezoot [10]
Wezoot, developed by Digidelta Sofiware, is an Android application designed for
livestock producers, to help ease their work and increase productivity. It supports

connection with external devices, such as draft gates and scales, which was one of

31

Livestock Identification and Traceability System

the main motivations for developing the Devices Library. Unlike Pisa Mobile and
Pisa Pad, Wezoot’s synchronization system is automatic. DLITS synchronization
system is based on this functionality.
Amongst other things, Wezoot offers an alert system paired with a task manager to
help producers stay on time.
Yagro
Yagro is an input management ordering tool that connects farms directly to their
suppliers, helping farmers manage their input costs and boosting their productivity
[11]. It has as main functionalities:

o Receiving quotes directly from UK’s leading suppliers

o Real-time visibility of the costs

o Online marketplace for farm products
Herdwatch
Herdwatch is a livestock recording and management app that registers animal births,
manages breeding-cycle information, stores animal movements and holds individual
health records [12]. Amongst other functionalities, it has:

o Automatic synchronization

o Paperless movements and permits

O

Fast calf registration

o Weight recording
Farmwizard Beef Manager
Farmwizard is an app that enables farmers to record breeding data, herd health, cattle
movements and field records [13]. It connects with supported Bluetooth scales to
retrieve the animal’s weight. It has offline mode and synchronizes the data via

internet when available.

In Table 1 we have a comparison between the relevant features of the applications.

Table 1 - Application comparison

32

Livestock Identification and Traceability System

Application/Feature DLITS
Pisa Mobile

Intervention of animals
Offline mode
Connection to external devices

Pisa Pad

x <KX

Manual synchronization
Wezoot

Automatic synchronization
Yagro

Live updates of data

x L

Herdwatch
Paperless movements

Fast animal registration

{ X

Farmwizard Beef Manager

\/ Digitalization of processes

To help with the decision process on the technology to use, four versions of the same
demo application were developed: a native version for Android with Kotlin, a hybrid
version developed with Ionic, an hybrid version developed with NativeScript and, lastly,
an hybrid version developed with React Native. To assure that a good comparison was
made, the demo application provided the same functionalities that were implemented in all

versions: namely, a master-detail view of animals and a connection to Bluetooth devices.

Considering the team’s previous experience with Android (using Java) and with
Angular (Ionic and NativeScript), React Native was the less-known technology by the
developers. After a few tests, it was decided to exclude it since it would bring a greater
learning curve than what it was intended. After that, the other three versions were
presented to the company. The team presented them without sharing the information of
which technologies were behind each version, to prevent biased opinions. Both the aspect

and usability of the versions were considered, and the selection led to the one that had a

33

Livestock Identification and Traceability System

more natural feeling to its usage: native Android. A more detailed study can be read in

Appendix A — Technology Selection.

After the presentations, it was needed to decide between using Java or Kotlin as the

development language.

A study was made to decide which language, Java or Kotlin, would be a better fit.
Amongst other things, some of the factors evaluated were the functionalities, the

conciseness of the syntax and the amount of boiler-plate code necessary.

In Figure 4 we see the code necessary to catch a click event in a button using Java, and
in Figure 5 the same functionality in Kotlin. Although the difference might not seem much,

it’s a good example of the conciseness of Kotlin, which was a deciding factor.

Button button = findViewById(R.id.button);
button.setOnClicklistener(v -»> {

thi

Figure 4 - Catching a click event in Java

button.setOnClickListener [it View!

This study println("Button clicked!") can be read in further

o } . .
detail in Appendix B — Kotlin vs
Java. Figure 5 - Catching a click event in Kotlin

After the studies and

presentations, the team decided that native Android with Kotlin would be used.

After choosing the technology to be used and analyzing the previous applications
developed by Digidelta Software, what worked for them and what we know that could be
improved, both in usability and in their core technologies and architecture, it was decided
the application would follow a generic architecture, using automatic synchronization,
and an external devices library being developed as a separate module . This way not
only would the application support and improve the development of future applications,
but also allow room for customization on itself, being able to adapt with relative ease to

changes new customers might need.

34

Livestock Identification and Traceability System

35

Livestock Identification and Traceability System

4. Core Architecture

This chapter will present different components of the architecture developed and
how they work together to fulfill the application’s requirements as well as explaining how

the architecture can be used for future applications with similar requirements.

This application follows Model-View-ViewModel (MVVM), a software architecture
pattern recommended by Android. One of MVVM'’s benefits is the separation of the
development of the view from the development of the business logic. Between the views
and the model, there is the ViewModel, which is responsible for exposing the data from the
model in a way that is easy to present by the view. The ViewModel can control most of the

view’s display logic and acts as a mediator, organizing the access to the backend.

In Android, the Activities, Fragments, and their layouts represent the View. The
ViewModel are the ViewModels, which merge data from multiple places to expose it
properly formatted to the view. The Model is made by the services and repositories, which

enforce the business logic and handle data.

In Figure 6 we have a simplified representation of MVVM, based on Android’s

architectural common principals [14].

Exposes data via LiveData Sends and requests data

View Model

Activities, Fragments

Services, Repositories, Room,
and Layouts

Remoto API

Figure 6 - MVVM

In the application’s architecture, each layer has a specific function, following the
separation of concerns: The Model Layer retrieves and formats the data properly; the
ViewModel Layer merges and exposes multiples data sources to satisfy the view’s needs;
and the View Layer displays the data to the user. Each layer has its responsibilities, and
changes in one layer may not need to be applied to other layers (depending on the

changes).

36

Livestock Identification and Traceability System

Based on the best practices and the guidelines reported by the Android development

community, an architecture diagram was drawn, with the layers and their respective

technologies, shown in Figure 7.

Presentation Layer Activitiss/Fragments
Dizplay the data from the ViewlModel
w Mavigation
Depency : \
Injection with Ehchiala Data Binding
Dagger 2 \.
Material
ViewModels Design 2
Hold the view's data and
manage its data
ViewModel Devices
l r Library
h
L4
Business Layer
Depency
Injection with
Rxd D 2
aﬂa;jva Services G
Rxkotlin Validate the businas logic and

process the data coming

from/geing to the view
[y

Data Layer

LiveData

Model

Stores data locally

Room

Depency
Injection with
Dagger 2

Remote Data Source

Redrofi

Synchronization

Synchronizes the data
with the Remote AP

WaorkManager

RxAndroid

Figure 7 - Architecture diagram

The4\./iefwigs and the es%eigivee\l/_iewModels that manage their data compose the

resentatio ay

Presentation Layer. A view is an Activity or a Fragment that is responsible for the interface

in which the user will interact with the application; it is therefore known as the top layer of

an application [15], [16].

37

Livestock Identification and Traceability System

According to the separation of concerns, no business logic should be implemented in
an Activity of Fragment; it should be implemented in the view’s ViewModel. The view

should listen to changes in the ViewModel and react accordingly.

Android suggests Single Activity Application, which is an app that has an activity to
serve as an entry-point and uses fragments to create the entire GUI. However, to better
organize the flow of the application, it was decided that the app would consist of multiple
activities, one per area. Once in a certain area, for example, Animals, fragments are used to

display, create, and edit the data.

Initially, each activity would have a ViewModel that would hold all the data shared by
the activity’s fragments. That ViewModel would store and manage the GUI-related data.
The ViewModel is also used to communicate between fragments. However, this approach
would prove to be unpractical, since there would be a repetition of operation every time a
fragment was used in a different place (since it was the activity’s ViewModel that would
implement the logic). This would cause some ViewModels, especially those of activities
with multiple fragments, to be overwhelming and complex. This code repetition and
complexity would prevent scalability, since no one would be able to improve the code, and

the addition of a single fragment could bring a lot of work.

Ideally, each fragment would have its own ViewModel to hold and manage its data,
preventing the repetition of operations every time the fragment was used in a different
activity. For example, a fragment to list animals would fetch its animals and display them.
However, this would prevent the fragment from being reused, since we might want to
display different animals in different contexts. For example, we might want to display all
the animals of an entity in one place, and only the animals of a certain holding in other
place. This would mean that a different fragment was necessary every time the source of
the data was different, which would cause a big repetition of code and reduce
standardization (since we want to list animals always the same way, with the same

behaviors).

To fix these problems, a third approach was made, a merge between the first, which
allows the reusability of fragments, and the second, that give fragments independence and
greatly reduces code repetition. This approach consists of each fragment having two

ViewModel. One ViewModel (the ViewModel of the activity) is used to make the

38

Livestock Identification and Traceability System

communication fragments-activity and serves as the control point for all the fragments in
it. The other ViewModel implements that specific fragment’s logic, its behaviors, etc. For
example, the fragment that lists animals has a search functionality, which is implemented
in the ViewModel of the fragment. When an animal is clicked, the fragment communicates
it to the ViewModel of the activity, which, depending on the activity, might signal the
activity to navigate to that animal’s details. On other activity, something else might be
done when an animal is clicked. The important part is that the fragments do not perform

outside actions (such has navigation to other fragments), allowing them to be reused.

Now, we will explain the technologies being used in this layer, and how they interact

with each other to create the GUI.

LiveData
LiveData is a lifecycle aware, event-based, stream of data, which means it respects the
lifecycle of the components listening, such as activities, fragments, and other lifecycle

owners [17].

Besides preventing memory leaks and handling of components lifecycle, LiveData
allows to have constantly updated data across the entire application (especially when used
with Room) and react to configuration changes (when used with ViewModel), such has the

rotation of the screen, making it fundamental for any application that handles lots of data.

ViewModel

ViewModel is a class responsible for preparing, holding, and managing data for one or
multiple activities or fragments. In this case, it also handles the communication between
the respective component and the business logic classes (such as the services) [18]. The
ViewModel will be alive until the view (activity or fragment) is destroyed. Contrary to the
view, the ViewModel will not be destroyed for configuration changes (e.g. the screen is
rotated), maintaining its data intact. When the view is recreated, it connects to the same
instance of the ViewModel, receiving the data that was stored in it. This works particularly

well with Room and LiveData.

ViewModels can hold LiveData that is listened by one, or multiple views, allowing

them to communicate between each other.

39

Livestock Identification and Traceability System

To allow the reusability of fragments, the fragment data source is defined ty the
controlling activity, so that the same fragment can display different data, according to the

context.

Fragments are unaware of anything outside their ViewModel, therefore certain
operation, such as navigation between fragments, must be implemented by the activity

when reacting to the activity’s ViewModel.

Fragments also have another, internal ViewModel, that makes operations the
fragments need to work properly, preventing the repetition of the same code everywhere
the fragment is used. For example, in the fragment that holds a holding’s details, the
generic ViewModel passes the holding’s id to the fragment, and the fragment’s specific

ViewModel will take that id and fetch all the data necessary to show/edit the holding.

Data Binding
Data Binding is a library that allows the binding of GUI components in the layout to
data sources [19]. This will cause the GUI components to update when the data source

updates. It is possible to bind variables, events (such has clicks), amongst other things.

Shown in Figure 8, we can see that the component’s enabled state is bonded to the

object’s (called “premises”) active state, using one-way data binding (“represented by the

2 (13

“=" before the “@”). The component’s state will change when the object’s “active”
property changes. This object is present in the ViewModel, which is not necessary, but
recommended since it is the ViewModel that should hold the view’s data.

<com.dlitsmobile.ui.components.editText.DLitsEditText
android:id="f@+id/uniqueld edit text"
enabled="@{vm.premises.active}"
android:layout width="match_ parent"
android:layout_height="wrap_content”
android:layout_marginTop="1@dp"
app:layout constraintEnd toEnd0f="parent"
app:layout constraintStart_toStartOf="parent”
app:layout constraintTop toTopOf="parent" />

Figure 8 - One-way data binding

40

Livestock Identification and Traceability System

It also supports two-way data binding, which means that not only the GUI updates as
the data source changes, but the source changes when the GUI changes, allowing to keep

the GUI and the data source synchronized [20].

<com.dlitsmobile.ui.components.editText.DLitsEditText
android:id="@+id/uniqueld edit_ text"
text="@={vm.premises.uniqueId}"
android:layout width="match_parent"
android: layout_height="wrap_content”
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent”
app:layout_constraintTop_toTopOf="parent" />

Figure 9 - Two-way data binding

In Figure 9 we can see a custom component to encapsulate a specific behaviour, in this
case, an edit text with extra behaviours. Although custom components do not come with
data binding implemented by default, it is possible to implement it and customize it,

allowing great flexibility.

Material Design 2
Material Design is a set of guidelines that illustrate the classic principals of good
design[21]. They tell how an application’s components should interact, in either a broad, or
a detailed perspective. Amongst other things, the guidelines talk about colors, which
components to use and how they should react, motions, transitions, icons, etc. Material
Design 2 is a direct upgrade of Material Design 1, both developed by Google. They are
used not only to make good looking applications, but also intuitive. Although they are not

specific for Android, there is a specification for it [22].

There is a great need to make the application as simple and clean as possible, allowing

its users to figure out what they need to do and how to do it with as few clicks as possible.

Considering most users might not be tech-fluent, a complicated interface will cause
them to easily give up on doing what they were trying to achieve. Following the Material
Design 2 guidelines means shortening a lot of user-acceptance work, since we did not need

to test some of the design choices as they were previously tested and therefore

41

Livestock Identification and Traceability System

recommended by Google. Although there is no solution that fits every user, we can assume

a good majority will be satisfied.

Navigation
Navigation is an Android library that facilitates handling the navigation between
different pieces of content in the application [23]. It can help implement navigation from
simple events, such as a button click, or more complex events, such as app bars and
navigation drawers. It also assures a consistent and predictable user experience, according

to Android’s navigation principles [24].

With Navigation we can create navigation graphs (called navGraphs) which define the
interaction between fragments (or activities) and their animations. We can also have nested
navGraphs inside another navGraph, to better isolate certain processes (for example, the

master-details view of animals).

Figure 10 - Navigation example

In Figure 10 we have a navigation graph. Each letter is a fragment, except “C” and “D”

which are nested navigation graphs, that represent master-detail views. Each number

42

Livestock Identification and Traceability System

represents an action: number “1” is the navigation between fragment “A” and fragment
“B”, and so on. Each navigation (between fragments) can have different animations, but

for consistency, similar navigations should have similar animations.

Dependency Injection with Dagger 2
Dagger is a compile-time dependency injection framework for both Java and Android
[25]. The earlier version was developed by Square and is now maintained by Google.
Dagger is a replacement for the common Factory classes that implement dependency
injection design patterns, without the need to write all the boilerplate code. It helps the
developer focus on how the classes work, rather than how to get their dependencies

satisfied.

Using Dagger, we can create simple modules that provide a certain area (for example,
Aptitudes, shown below) and inject it wherever it is necessary. New instances of the
injected classes are created every time they are injected somewhere, which means that two
places using the same modules will have different instances of the same classes. Because
of this, it is important that those classes are stateless, which means they should not have a
state, rather just perform operations. However, it is possible to mark methods of a module

as Singletons, meaning that always the same instances are injected.

In Figure 11 we can see a Dagger2 module, in this case, AptitudeModule, which

provides the AptitudeApi and AptitudeRepository.

11 @EModule

12 class AptitudeModule {

13

14 EModule

15 companicn object {

16

17

18 2

19 fun providefptitudeApi(retrofit: Retrofit): Aptitudefpi {
20 return retrofit.create{Aptitudedpi::class.java)
21 y

22

23

24

25 3

26 fun providefptitudeRepository(

2T db: AppDatabase

28 aptitudefpi: Aptitudedpi,

29 coreRepository: CoreRepository

30 }: AptitudeRepository {

31 return AptitudeRepository(db, aptitudeApi, coreRepository)
32 1

33

i
=
—

Figure 11 - A Dagger2 module

43

Livestock Identification and Traceability System

Devices Library
Devices Library is an internal library being developed to abstract the communication
with external devices, whether via Bluetooth, BLE or Wi-Fi [26], [27]. The purpose of this
library is, not only support this application, but also support other company’s applications,
standardizing and abstracting the way the applications interact with devices. This library
can be used outside the application, since it was developed as a separate module, that can

be integrated in other applications.

The devices the application will communicate with can vary from small stick readers
to large draft gates. The library is be able to detect nearby devices and connect to them,
abstracting from the application the way the connection and communication is made

(regardless of the device and its communication type).

Depending on its usage by the user (and if the device allows it), the readings from the
devices can either be done one by one (a reading is performed and emitted) or in batch,
called sessions (multiple readings are done and emitted all at once). The library must

handle both scenarios.

Some devices have non-standard data protocols, which means that they send data in a
non-standard format. To deal with this, a generic implementation is made (that handles
how most devices work), and a specific implementation is made for that specific devices.
The API provided must be the same, regardless of the devices since the purpose of the

library is the abstraction of the procedures.

In chapter 5 - DLITS, we will see interactions of the application with this library.

Together, ViewModel, LiveData, Data Binding, Material Design 2, Navigation,
Dagger 2 and the Devices Library create the GUIL. ViewModel holds and manages multiple
instances the view’s LiveData, presenting it in an updated, easy-to-read manner. Using
data binding, we can bind the LiveData directly from the ViewModel to the GUI, using
either one-way or two-way data binding, according to the necessity. With Material Design
2, we can create a clean, easy to use GUI for the user, promoting better usability. With

Navigation, we can navigate between views, such as fragments, with standardized

44

Livestock Identification and Traceability System

animations, in an easy to implement way. With Dagger2, we can make sure every

ViewModel has its dependencies fulfilled, allowing us to focus on the implementation.

4.2.Business Layer

The Business Layer acts as a middleman, between what the user does (in the
Presentation Layer), and what is saved to be synchronized (in the Data Layer), enforcing
the business logic. This layer is composed by multiple services that validate the requests

they receive before performing a certain operation.

Each service is responsible for managing a section of the data. For example, the
AnimalService is responsible for managing requests related to animals, such as creates,
updates, reads, amongst others. A service might have access to multiple services, to fetch
data from different areas to validate the requests performed (for example, the creation of an
animal). If the request is valid, it forwards it to the respective repository (in this case,
AnimalRepository), that will create the animal, not validating it, since it is already

validated.

This layer allows for standardization of the processes; since the same operation can be
performed in multiple contexts, we want to make sure it is processed the same way every
time. ViewModels do not have direct access to repositories, only via services, so we can
guarantee that when the implementation of an operation (like a create) changes, only the

service needs to change, and the ViewModels remain the same.

This layer is also responsible for handling the user’s permission. Each user has a role
associated with him in each entity he is associated with. Depending on the user’s

permissions, the Presentation Layer might disable/hide some options and functionalities.

In this layer, the technologies used are RxJava, RxKotlin and Coroutines.

45

Livestock Identification and Traceability System

RxJava and RxKotlin
RxJava and RxKotlin are part of Reactive Extensions (shortened to ReactiveX), a
library for composing asynchronous and event-based applications. ReactiveX operates on
discrete values that change over time [28]. Instead of getting the current state of an object,
it observes its state, and allows the application to react to it. By using Observables, we can

treat streams of asynchronous events with simple, easy-to-read, and less error-prone code.

RxJava is Java’s implementation of Reactive Extensions [29]. RxKotlin is a
lightweight library that adds convenience functions to RxJava. Although RxJava can be
used out-of-the-box with Kotlin, RxKotlin makes the usage of those feature more Kotlin-

like [30].

They are used to sometimes communicate with the Data Layer, such as in data
validations, that are not directly GUI-related. However, most of the communication

between the Business Layer and the Data Layer is made via LiveData.

Like in Presentation Layer, Dagger?2 is used to fulfil dependencies, in this case, the

service’s dependencies.

Together, RxJava, RxKotlin, and the application of the business logic create the
Business Layer. This layer is does not rely very heavily on technologies, since its work is
business validation. Most of it are requests to the Data Layer to make sure the requests
coming from the Presentation Layer are valid. After a request is deemed valid, it is

processed and sent to the Data Layer.

4.3.Data Layer

The Data Layer is made by the repositories (each responsible for handling data of a
certain area), the local database (supported by Room), the synchronization (with Work
Manager) and the communication with the remote API (with Retrofit, integrated in each

respective repository).

This layer responsible for managing the application’s data. It has no business logic
implemented; its only concern is making sure the data is valid. This layer is responsible

for, amongst other things, serving as an entry point to the remote API and Room. It

46

Livestock Identification and Traceability System

converts the objects coming from the remote API to application’s models to be inserted in

Room and merges Room requests to facilitate its exposure to the other layer.

When the Business Layer makes a request to create, for example an animal, it provides
a model used to display it in the Presentation Layer, which might not be the same model as
the one saved in Room. After the Business Layer validated the animal, it requests its
creation to the Data Layer, which assumes its already valid, and won’t validate it again. It
will transform that object into the different appropriate models, and insert them into the

necessary tables, creating/updating the relations, if any.

The Data Layer is also responsible for keeping track of the data that is yet to be
synchronized. Each object that can be created/update in the application (such has Holdings,
Animals, Owners, Keepers, amongst others that the user doesn’t create/update directly,
such as relations), has two flags that annotate the object as either new (“isNew”) or
updated (“isUpdated”). Any object that has either of these flags set to “true” needs to be

synchronized. After its synchronization, the objects flags are set to “false”.

The technologies used in this layer are Room, DAO, Coroutines, Retrofit, Work
Manager, RxAndroid, LiveData and Dagger?2.

Room
Room is a persistence library from Android’s Architecture Components that provides
an abstraction layer over SQLite to allow for a more robust database access [31]. It has all
the functionalities of SQLite, being a relational database with Primary Keys, Foreign Keys,

and relation validations. Room’s models were generated via T4 Text Template [32].

Room serves as a cache database, allowing for the application to work while offline
and is used as the single source of truth, working very well with LiveData. Single source of
truth means that all data used in the application comes from Room, never directly from
other places, such as the remote API. Even though some repository’s methods are
responsible from fetching data from the remote API, that data will be put into Room, and
not passed to the application directly. Only repositories interact directly to Room via

DAOs (Data Access Object) [33].

47

Livestock Identification and Traceability System

DAO

DAQOs are the classes where we can define the interactions with the database, in this
case, Room. A DAO is an interface marked as DAO with the @Dao annotation. Each
method has an SQLite query annotated above, representing the query it will run against
Room. Also, we must specify the return type of the method. Although the type of the
object must match the SQL query (for example, if we say the method returns an Animal,
the query must return an Animal), we can specify if it comes as LiveData, regular objects,

as we can see in Figure 10.

2o

interface AnimalDao

@Query("SELECT * FROM animal_table")
fun getAll(): LiveData<lList<Animalxs
@Insert(onConflict = OnConflictStrategy.REPLACE)

suspend fun insert{animal: Animal)

@Insert{onConflict = OnConflictStrategy.REPLACE)
.F

suspend fun insertAll{animal: List<Animal:)

@Insert(onConflict = OnConflictStrategy.REPLACE)
E a

suspend fun insertExternal{animal: AnimalExternal)

@Insert{onConflict = OnConflictStrategy.REPLACE)

suspend fun insertAllExternal(animal: List<AnimalExternal>)

ff rest of the class...
Figure 12 - Example of a DAO

Coroutines are light-weight threads [34]. Coroutines help make asynchronous requests
Coroutines
feel more fluid, and avoid multiple call-backs inside each other, which could create a
normally called “call-back hell”. Coroutines give a more synchronous feel to asynchronous

programming, making the application easier to develop and maintain.

Since LiveData with Room was used to fetch the data, there is no need to use coroutine
to access Room (which should only be access asynchronously) for normal GET methods.
However, when validating the data (for example, to create/update an animal), we need to
implement the business logic against the database. In these cases, coroutines were used to
make simples GETs, fetching as little data as possible, since making an asynchronous

request synchronous still takes time.

48

Livestock Identification and Traceability System

Coroutines can use dispatchers [35]. A CoroutineDispatcher determines what thread or
threads the coroutine uses for its execution. It can confine the coroutine to that thread,

assign it multiple threads or let it run unconfined.
There are four dispatchers: Unconfined, 10, Default and Main.

e Unconfined: The coroutines uses whatever thread the calling function is using,
without confining to any specific thread.

e O: This dispatcher is optimized to perform disk or network I/O outside of the
main thread. Examples of good usage of this dispatcher include using Room,
reading from/writing to files, and performing network operations.

e Default: This dispatcher is optimized to perform CPU-intense operations
outside the main thread. Examples of good usage of this dispatcher include
sorting lists and serializing/deserializing data.

e Main: This dispatcher should be used to perform operations that interact with
the GUI. and, therefore, should be performed on the main thread. This
dispatcher should only preform quick work, since it could block the main

thread, blocking the GUI.

Shown in Figure 13 is a coroutine with dispatcher Default.

withContext(Dispatchers.Default) { this: CoroutineScope

Immirid O AR e e

¥

Figure 13 - Coroutine example

49

Livestock Identification and Traceability System

Retrofit
Retrofit is a type-safe REST client for Android and Java by Square [36][37]. This
library provides a framework for interacting with remote APIs and making network
requests with OkHttp (an efficient HTTP and HTTP/2 client for Android and Java
applications) [38][39]. Retrofit also facilitates the deserialization of JavaScript Object
Notation (JSON) objects to Plain Old Java Objects (POJO), which must be defined for

each “resource” in the response.

A Retrofit service is an Interface with methods annotated as Http methods (can be
@GET, @PUT, @POST, etc...), and the respective paths, as seen in Figure 14.
interface Animaldpi {
@GET("animals/getAnimalsByEntityID/entityId={id}"}
fun petAnimalsByEntityId(@Path({"id") entityId: Long?)}: Flowable<Response<List<AnimalDTO>>>
BGET("externaldnimals")

fun getExternaldnimals(): Flowable<Responsze{lizt<AnimalExternallTO»>>

Figure 14 - AnimalApi example

Since we only need one instance of Retrofit, we can declare it in the AppModule to
make it a Singleton. To create a Retrofit instance, we can use its builder, give it the base
URL of the remote API it is consuming and, the converter factory, which is the factory
used to deserialize the responses from JSON to POJO. In this case we are using Gson,

Google’s parser [40].

Work Manager
Work Manager’s purpose is to reliably schedule deferrable, asynchronous tasks that
are supposed to run even if the app exits or the device restarts [41]. Amongst its

functionalities, Work Manager allows to:

e add constraints to requests (for example, available internet connection, the
device being idle)
e chain tasks (one task running after other successfully finishes)

e schedule repetitive tasks to be ran after a certain period

Work Manager is not supposed to be used if the purpose is to run the tasks on an exact

moment; its purpose is to make sure a task runs, even tasks schedule to run immediately

50

Livestock Identification and Traceability System

might take a while to start, since it’s the operating system that handles them. There is no

way to force a task to run when we want, only in a certain time frame.

All these functionalities make it ideal for synchronizing the data with the remote API.
To make API requests, we need to make sure we have internet connection. We can even
constraint the connection to make sure it only syncs the data using an unlimited data
connection, to avoid performing such a big data transfer using limited data plans. We can
also constraint the requests to not run when the device has low battery, to prevent its
unexpected shutdown (user see device has enough battery, synchronization runs without

user being aware and drains the battery).

Work Manager is used to both download the data from the remote API and to upload
the data changed to the remote APIL.

To create a Work Manager, simply create a class that extends Worker, then implement
“doWork()”, as seen in Figure 15. If we want our worker to use coroutines, extend

CoroutineWorker instead.

class AnimalWorker(
context: Context,
params: WorkerParameters
}: Worker(context, params) {

override fun doWork(): Result {
"/ TODO DO WORK HERE

return Result.success()

bt

Figure 15 - AnimalWorker dummy implementation

After creating the worker, we need to create a request that uses it, shown in Figure 16.

val constraints =
Constraints.Builder()
. setRequiredNetworkType (NetworkType . CONNECTED)
.setRequiresDeviceldle(true)
Lbuild()

val interval = 15L
val timeUnit = TimeUnit.MINUTES

val req = PeriodichiorkRequestBuilder<AnimalWorker>(interval, timeUnit)
.setInitialDelay(interval, timelUnit)
.setConstraints(constraints)
Lbuild()

Livestock Identification and Traceability System

Lastly, we enqueued the request. A request can have multiple workers, and a worker can be
used on any type of request, since it is unaware of the request type, it only performs a

certain operation.

Ideally, we would have multiple workers, where each worker would be responsible for
a certain area, and we would chain the workers to run periodically (for example, first we

upload the holdings, if it succeeds, we upload the owners and keepers, and so on).

Initially, we had four download workers, DownloadConfigsWorker,
DownloadHoldingsWorker, DownloadPeopleWorker and DownloadAnimalsWorker (and
similar for upload workers). The goal was to chain them and run them periodically.
However, it is not possible to chain periodic request, only one-time requests. Since it is
crucial both for the downloading and uploading data that the requests stop running if the
previous worker fails, to prevent inconsistent data, we had to use other approach. For
example, if the order of the workers is DownloadConfigsWorker ->
DownloadHoldingsWorker -> DownloadPeopleWorker -> DownloadAnimalsWorker, and
the DownloadHoldingsWorker fails, if DownloadPeopleWorker runs and succeeds we
would have people associated with a holding that does not exist (in the local database),

which is not possible (i.e., invalid data).

To fix this problem, the download workers and upload workers were merged into two
workers: DownloadWorker and UploadWorker. Instead of a (Work Manager) request
having chained workers, each worker chains the API requests internally, which simulates
the initial approach. However, this way we can run the Work Manager requests
periodically and still stop running if any of the API requests fails, ensuring data

consistency.

Together Room, DAOs, Coroutines, Retrofit, and Work Manager work together to
form the Data Layer. With Room, we can have a local database, allowing the user to work
while offline, also providing many useful functionalities, such as live updates of the data
displayed. With DAOs, we can access Room in an intuitive way. With Coroutines, we can
process CPU-heavy requests and I/O requests (such as certain Room accesses)
asynchronously, in a synchronous way making the app easier to develop and maintain.

With Work Manager we can synchronize (both download and upload) the user data to and

52

Livestock Identification and Traceability System

from the remote API, making sure the user is working with the most updated data, and that
his data is being uploaded so other users can use it. Dagger?2 is used to fulfil the
repositories and service’s dependencies. LiveData is the main communication form
between the Data Layer and the Business Layer, and when used with Room, we can make

sure the user is presented with the most updated data.

4.4.Requirements

The application’s requirements were defined prior to its start. Some were a mix from
the D-LITS’s WebApp requirements (such as holdings, owners/keepers, animals CRUD)
and previous company’s mobile applications (such as intervening animals, external devices

interaction, and automatic data synchronization).

4.4.1. Functional requirements
A functional requirement is a description of a functionality a software must have. It
can be something big and complicated or something small and simple. They describe what

a system must do, how to behave and react to use.

Functional requirements should be gathered before the functionality is developed,
since they will help the developers to make sure they are on track with the intended
purpose of the application. They also help with catching errors before the actual
development, which means said errors are easier and cheaper to fix. A detailed description
of each user story and corresponding acceptance criteria is available in Appendix C —

Functional Requirements — User Stories and Acceptance Criteria.

Regarding the major features related to the requirements, the architecture should

contemplate the following:

e Login/Logout

¢ Enter/Update entity/brigade
e Holding CRUD

e Owner/Keeper CRUD

e Animal CRUD

e Service

e Summaries

53

Livestock Identification and Traceability System

e Devices Library
e Automatic synchronization

e Automatic seed of the local database

A more detailed explication of the functional requirements can be consulted in

Appendix C — Functional Requirements - User Stories and Acceptance Criteria

4.4.2.Non-functional requirements
Non-functional requirements are used to measure the usability and effectiveness of the
system, as well as the overall quality of the system: how fast it is, how much users and data
it can handle, how resilient it is to bad inputs, how long it takes to develop and how much
it costs, amongst other things. A system may be very good in a functionality aspect (lots of
features that work as they should) but the system might be unusable (slow, hard to

comprehend, no feedback), which ultimately makes the system useless.

Non-functional requirements can help the verification and validation process of,
amongst other things, performance, stress, usability, security, feedback to invalid inputs.
Said tests are made after the functional tests, to make sure the functionalities developed are

usable.

Non-functional requirements are many times overlooked. Unexperienced developers
usually focus a lot on if it works, and not on how well it works. When it comes to non-
enterprise applications, for example, Instagram™, poor non-functional requirements (such
as response times or security breaches) may make the users simply not use the
applications; in these cases, the users are the ones choosing whether to use the application
or not [42]. However, in enterprise applications, where the users are not the ones choosing
whether to use the application or not, an application with poor non-functional requirements

may make the users frustrated and uncooperative with the system.

When the same users are using the same application all day during a workday, it is
very easy to get frustrated. Trying to work with a slow system, inserting data considered
invalid by the system and not getting feedback of why it is invalid, not understanding how
to use it to produce the expected results, are common conditions that make a system hard

to use. When this happens, users might stop performing certain actions.

54

Livestock Identification and Traceability System

When looking and the application’s non-functional requirements, some stand out more

than others, such as performance, scalability, usability, and modifiability.

Performance is the time the software takes to respond to events and process
information. Scalability is the highest workloads under which the system can work while
still meeting the performance requirements. When paired together, they measure how well
the application will perform when the user base starts to grow. The data the application
will handle will increase a great deal, since a lot of it comes from the WebApp, that has its

own user base. Weak performance or scalability can easily make the application unusable.

Usability measures how intuitive and easy to use the application is, how fast the users
learn, how quickly they achieve their goals, amongst other things. Usability is essential in
any application, since if the users feel frustrated by not being able to understand/do
something, they will not use the application. Since a good part of the application is related
to data inputs, good feedback is very important, not only, so the users do not feel frustrated
when not understanding what they are doing wrong, but also allow them to fix their

erroneous inputs, to ultimately achieve their objectives.

Modifiability can be described as how easy it is to modify the components to adapt to
different scenarios. Clean code can be a big part of this, since if other developers cannot
understand it, they will not be able to modify it. However, there is more to it than clean
code. Since this is a generic architecture, the ability to adapt it to different scenarios is very
important. It is crucial that when it is used to create a new application, the time it takes to
detach and attach components should be as reduced as possible. Later we will talk about

how we achieved this.

55

Livestock Identification and Traceability System

5.DLITS

This chapter talks about DLITS, the application which named this thesis. In this
chapter, we will see the screens of the application, along with some of the technologies
used to create them. We will also see some examples of fragments being reused,

highlighting the reusability of the architecture.

5.1.Login

The login has two stages; the first one is the

authentication, where the user must insert the credentials

associated with his account. He must be linked to a 1 1

: . : . S DI—I 1J
veterinary or veterinary assistant to log in, shown in Figure T o NI i
17.

The Login button is an external library that allows the

button to go into a loading state, notifying the user that gk o
something is being processed [43]. This also prevents the ~ ***22222*” o
user from interacting with it while something is being

processed.

The application uses AuthO to decode the token coming

from the remote API, which contains important, encrypted

data [44].
Figure 17 - Login
. . D-LITS
Once he logs in, he must select the brigade he wants Select a brigade to
start working on. He is presented with all the brigades SEnt | DRA. DOS AGORES he
SAR | DRDA

brigada_leiria_1 | Brigada Leiria 1

56
brigade_leiria_2 | Brigada Leiria 2

Livestock Identification and Traceability System

is associated with, grouped by their respective entity, as

shown in Figure 18.

Each brigade is associated with one or more entities. The application merges multiple
Room requests to expose a list of “Entities” where each “Entity”” has multiple brigades

associated, to allow the interface to easily be constructed.

The entities and brigades are displayed using an ExpandableListView, a native

Android view that shows items in a vertical scrolling two-level list [45].

Each item was custom created to display the most relevant information. In the entities,
their unique identifier, and their name, with the respective role the user has in that entity

below. In brigades, their unique identifier, and their name.

After selecting the brigade, he is directed to the Dashboard of the application.

5.2.Dashboard

= Dashboard

The Dashboard is the main page of the application, the
access point to most areas of the application, shown in Figure
19. The Dashboard has the primary actions available as big
buttons, to facilitate its access, since it is what users usually HOLDINGS SERVICES

will go to when they enter the application.

This Dashboard is a variation of Wezoot’s Dashboard,

where the main actions are displayed on the main screen.

As the application grows, the Dashboard will be

SUMMARIES

improved, with more relevant functionalities and icons, to

better identify each functionality-

Figure 19 - Dashboard

= Dashboard
When a user enters an entity and is online, the application

automatically seeds the local database with the necessary

HOLDINGS SERVICES

57

Livestock Identification and Traceability System

data to operate, shown in Figure 20. While the data is being
seeded, the user is prevented from progressing through the
app, to prevent seeing invalid/inconsistent data. After the
seed is done, the user is notified and free to use the rest of

the app.

If the user is offline (must have that entity’s data seeded previously) or the entity’s
data has been seeded not long ago, no seed is done. After the seed is complete (or if it is

not necessary), the user can go offline.

The notification of the database being seeded was created using a Snackbar with a

custom layout, with a ProgressBar to notify the progress of the seed [46], [47].

SEnt | DRA. DOS
In the Dashboard, the user can also access the D AGORES

brigada_leiria_1 |

Main side menu, via the Burger menu on the top left i
oldings

corner. This menu holds, besides the main actions, B i
secondary actions, such as Bluetooth and Wi-Fi 5 Bugs

settings, Change entity/brigade, Logout, and session

Settings

information relevant to the user, such has the _
* Bluetooth settings

entity/brigade in which he is in, the user’s role and his

= WiFi settings
username, shown in Figure 21. .
The side menu was created using a Drawer Current Session

. . T o .
associated with the Navigation Library, where each Change enity/brigade

item is associated with a destination. Some of the B tosou

icons are directly from the Material Icons collections,

others were custom made following the Material

Desi 2 ideli 4 491. 00 | Super Admin
esign 2 guidelines [48] [49] el

Figure 21 — Main side menu

58

Livestock Identification and Traceability System

5.3.Holdings

. . Holdings
When the user accesses Holdings, he is presented < .5 .

with a list of all the holdings associated with the entity

in which he is working in, shown in Figure 22. Each

holding displays its unique identifier, its name, and its ~ honey-bee_farms
Name Honey Bee Farms

active state since this is the most relevant data for the Active

user, displayed in a customized layout. If no holdings

. C . wolfs_farms
are available, a warning is displayed, using a Snackbar. .. woir & wolf Farms

Active []
In the bottom right corner (called

FloatingActionButton), a “create new” button (with an blue_ranch

. . . Name Blueberry Ranch
“+” icon) is displayed at the bottom of the screen,

Active

allowing the user to create a new holding [50]. If the

has no permissions to create a new holding, the button

is invisible. This “create new” button follows the

Material Design 2 guidelines, which state the °

FloatingActionButton should be used for constructive

actions, such as create. Figure 22 - Holdings list

59

Livestock Identification and Traceability System

On the top of the page, it is also displayed where the user is, in this case, “Holdings”,

along with the total holdings being listed.

A custom search functionality is also present; to facilitate the user finding the holding

he is looking for. This custom edit text above the list is linked directly to the ViewModel

that uses the input from the user to filter the holdings, displaying the ones that match the

search, or all if no search is introduced. This is the default behavior for all search

functionalities in the application.

< wolfs_farms | Wolf &... Save

wolfs_farms [x]
Wol.f & Wolf Farms [%]
WWF [x]
54321 1)
Active

13 | Gado Bravo v
11| Lisboa v

11-13| Torres Vedras v

11-13-14|Sdo Pedro da Cadeira € v

Figure 23 - Holding's details

By clicking in a holding, the user is presented with the
holding’s details, where he can update them, if he has
the permissions, as shown in Figure 23. If he has no
permissions to update, he can only consult the details,
without changing them. In this page, its present the
holding’s unique identifier, name, short name, tax
number, active state, default aptitude of its animals,
responsible brigade, and its country zone (configurable
in the WebApp). The user can also create a new

holding, by filling the same fields listed above.

The user can access its animals, owners, and keepers via
the top right menu. Like in all places where it is possible
to save, the save button is present on the top right corner

of the screen.

Every editor displayed in this screen, such as the edit texts, the checkbox, and the

dropdown menus, were custom created for this application, to support extra behaviors,

such as clearing the content, displaying errors when related to that editor, regex (certain

fields, such as the unique identifier, must follow rules), provide extra feedback to the user,

amongst others. These editors, and others, are present in the entire application.

60

Livestock Identification and Traceability System

5.4.0wners/Keepers
Owners
When checking a holding’s details, the user can check el
its current owners and keepers, by accessing the top right
menu. This will direct the user to the holding’s T —
owners/keepers, where he can see the owners and the 16 Bistantor DAHLOMOSS

Name James Wolf
keepers that are currently working there, shown in Figure — active

24,
ID P_000037
. . . . Id. Detentor
The user is presented with a list of either owners or Naifié 9. ARG Sasee
. Active
keepers (depending on what he chose before). Each
owner/keeper displays its unique identifier as a person, its |1 5 111040

Id. Detentor OWN_000071

Name lan Hopkins

professionally), and its active state, displayed in a custom Active

unique identifier as an owner/keeper (what identifies him

layout. The user can create a new owner/keeper via the
“create new’’ button (with an “+” icon), in the bottom right o

corner of the page. Figure 24 - Owners list

Like in most listings, a search functionality is

displayed above the list, connected directly to the ViewModel.

¢ P_0o0103 save By clicking an owner/keeper, the user can check its details
SR o and edit them (if he has permissions), shown in Figure 25.
—— " The user can edit the owner/keeper’s unique identifier,
unique identifier as an owner/keeper, name, birthdate, tax
number, active state, if it is a company (only applies to
Jemesiiol © owners) and, if it is not a company, its gender. Since both
07/06/2020 the listing and the editing of owners and keepers are very
ol o similar, only the owners are displayed here.
e Like the edit texts present here, the birth date component and
7 1s Company

the gender component were custom created, to encapsulate
Gender - Required B . ..

®F0 9 behaviors and support extra functionalities. In the case of the
date component, it allows the choosing of a date and time,

according to the used precision (can be precision to the date,

Figure 25 - Owner's details

61

Livestock Identification and Traceability System

hour, minute or second, depending on the need). In this case,

only the date is relevant.

5.5.Animals
Animals
Much like owners and keepers, the animals present Total: 5
in a holding can be accessed via the top right menu
when checking the holding’s details. Animals can have
br_000461
multiple identifications, but only one preferred, which is Q 2 | Pequenos Ruminantes
2 | Caprinos
the one used to refer to the animal. This identification,
1l : : elec_004214
along with its group, species and gender, is used to O7| &| Bequenve Huriihanias
identify the animals in their listing, displayed in a L EAp
custom layout, as shown in Figure 26. By clicking an vis_009992
i . . Q 2 | Pequenos Ruminantes
animal, the user can check its details. 2| Caprinos
elect_000052
Q 2 | Pequenos Ruminantes
2 | Caprinos
Oz vis_00092

< br_000461
2-100 | SERRANA v
12 | Ovinos v

br_000461 (Bolus Reticular - 4 | Bolus ReticL

Gender - Required
Od®@Q

Figure 27 - Animal's details

2 | Pequenos Ruminante
2 | Caprinos °

Figure 26 - Animals list

3¢ Amongst other data,

we can see the animal’s group, species (must be of the
previously selected group), and breed (must be of the
previously selected species), shown in Figure 27.
When the selected group changes, the available
species change too; when the selected species
changes, the available breeds change too, so that the
user can only select species belonging to the selected

group, and breeds belonging to the selected species.

We can also see the animal’s identifications (the four
fields after the aptitude, configured in the WebApp),
and the preferred identification (above the gender).

The available types of identifications (in this case,

62

Livestock Identification and Traceability System

“ELEC”, “VIS”, “Brinco Eletronico” and “Bolus
Reticular”) are created dynamically since they are
configurable in the WebApp. When checking the
animal’s details, the identifications are always locked,
since changing the identifications is a different, more
complex process, which is yet to be implemented in the mobile version. However, by
clicking the preferred identification component, the user is presented with a custom
component and can change the preferred identification (i.e. select the new preferred

identification amongst the ones already created.

Other relevant fields (not visible in this image), are the animal’s mother and father and
its owner and keeper (must be of the same holding, presented previously). The mother and
father of the animal must be older than the animal, and of the same species. When the
species of the animal, or its birth date, changes, the ViewModel filters and displays only
the animals that fulfil these requirements, making sure the user is prevented only with valid

data.

5.6.Services

Services are the focus of the application. Multiple animals, each having one or more
actions being applied to it, compose a service. Brigades are in the fields identifying

animals and performing actions on them, like applying vaccines, taking blood samples, etc.

63

Livestock Identification and Traceability System

5.6.1.Setup

Multiple actions can be performed to multiple 3

Select an holding

animals at the same time; however, a service can only be

constituted of animals of the same holding and the same

group. So, before starting to perform actions, the user
must select the holding in which he is operating, shown

in Figure 28, and the group of animals to which he will

be performing the actions on.

wolfs_farms
Name Wolf & Wolf Farms

Active

honey_bee_farms
Name Honey Bee Farms

Active

The component responsible for listing the available

holdings is the same component previously shown, using

blue_ranch
Name Blueberry Ranch a

Active

different data source, exemplifying the reusability of each

component.

'S Select a group
Holding: wolfs_farms | Wolf & Wolf Farms

1 | Grandes Ruminantes
2 | Pequenos Ruminantes

3| Suinos

Figure 29 — Select the service’s
group

Figure 28 - Select the service’s
holding

After selecting the holding, the user must select the group
of the animals to which the brigade is applying the actions
to, shown in Figure 29. Although the animals are
classified by group, species, and breed, only the group is
relevant here, due to health procedures reasons (the same
group of animals usually has the same diseases, and
therefore, the same treatments, depending on the
country’s policies). Also, due to physical limitations, such
as fences and the drafter gates adaptable size it is
impractical since the size of animals from different groups

and vary a lot).

64

Livestock Identification and Traceability System

After the group is selected, the user must select the

date in which the actions are being/were performed

(never after the current day), shown in Figure 30.

2020

Thu, Jun 4

June 2020

CANCEL

Figure 30 - Select the service's date

If a previously done

service matches these parameters (same group, holding
and date), and is yet to be finished, the user is asked if
wants to continue it, shown in Figure 31. If the service
already finished, the user can only consult without
changing it.

he
is

The warning is displayed in an AlertDialog, since it is
prioritary, and the user must pay attention to it,
following the Material Design 2 guidelines [51].

D This service already exists

Do you want to continue it?

CANCEL YES
After this step, the user cannot change the parameters.

Going back and choosing different data will start a new

service (or continue other).

Figure 31 - Ask user if he wants to
continue the service 65

Livestock Identification and Traceability System

5.6.2.Service

After the setup is complete, the brigade can now start registering actions.

5.6.3. Action types list

Action types are the types of the actions that can be
applied to the animals (usually called an intervention);
an action is the application of a certain action type (for
example, “Deworming” is the action type, and when it is
applied to a certain animal, creates an action). Action
types are configurable in the WebApp. To facilitate the
application of actions in batch to multiple animals, the
user can select a template of the actions types, which
will be applied automatically to every animal he
registers after (the user can change the template and the
actions specific to any animal at any time, not
influencing previously intervened animals). The list of

available action types is shown in Figure 32.

Select the actions to perform
Total: 67 | Selected: 4

AT_1| Action Type 1

disease_1 | Disease 1

AT_2 | Action Type 2

disease_2 | Disease 2

AT_3 | Action Type 3
disease_3 | Disease 3

AT_4 | Action Type 4
disease_4 | Disease 4

AT_5 | Action Type 5

disease_5 | Disease 5

AT_6 | Action Type 6

disease_6 | Disease 6

AT_7 | Action Type 7

Figure 32 - Action types list

Action types have multiple configurations, one of them is the animal group they can be

applied to, which means only action types of the animal’s group can be applied to the

animal. Each action type can have a disease associated, which would require a sample from

the animal to be tested in laboratory.

66

Livestock Identification and Traceability System

Action types can also be incompatible with each other. Two
action types are incompatible if they cannot be applied at
the same time to the same animal. When the user selects
incompatible action types, a warning is displayed,
preventing the user from selecting them, as shown in Figure
) Acﬁo T T —— 33. Following the Android separation of concerns

with:

Thie action is incompatible with: [AT_1 guidelines, the ViewModel is notified when an action type
AT_5]

g is selected and makes sure that it is compatible with the
ones selected. If it is incompatible, it notifies the view to

notify the user of the incompatibility.

After the user is satisfied with his template, he can confirm
by clicking the bottom right button. This button is a
variation of the FloatingActionButton present throughout
Figure 33 - Incompatible action th€ application (usually with the “+” icon). It expands and
ypes shrinks as the user scrolls through the list, something that is
seen in a lot of Google applications, such as Google

Messages. When it is in the collapsed mode, it displays only the icon.

67

Livestock Identification and Traceability System

5.6.4.Intervened animals < Intervened Animals

Total: 2

The main screen of the service is the list of intervened
animals. This list holds the animals that have at least one

action being applied to them in this service. e RS

. AT_1|AT_5|AT_6| AT_7
Each animal displays its preferred identification, along

with the unique identifier of each action being applied to elec_004214
. . AT_1|AT_5 | AT_6| AT_7
them, separated by “|”, as shown in Figure 34.

‘¢|’7

To intervene new animals, the user can click the
bottom right bottom (that display a “+” when closed),
which will present him with two options: one to connect to
a RFID reader via Bluetooth, Wi-Fi or BLE, to a add them
via the reader (the top option), and the other to add them
manually (the middle option).

Figure 34 - Options to intervene
animals

To remove an animal from the service (making it no longer intervened), the user can
swipe it and confirm, using a custom layout. The animal will no longer be displayed in this
list, but will be present in the non-intervened animals, shown further above. The swipe
action is the default action to delete an item from a list in Android, seen in many
applications, such as Outlook. The confirmation is necessary to prevent users from
accidentally removing an animal from the service and having to do it all again.

br_000461

Save
Total: 67 | Selected: 4

Show selected @

68
AT_1 | Action Type 1
disease_1 | Disease 1

Livestock Identification and Traceability System

When the user selects one animal, he is presented with the
actions being applied to that animal. By default, the option
“show selected” is selected, which means the user only
sees the actions being applied to the animal, as shown in
Figure 35. This is to prevent the users from having to
scroll a lot every time they want to check all the actions
being applied to the animal.

This component is the same used to select the template action types. However, it is
configured to this scenario, showing the reusability of the components.

<« br_000461

Total: 67 | Selected: 4 o
By deselecting the “show selected” option, the user
is presented with all the actions, as shown in Figure 36.
If the user wants to apply new actions to the animal, he Show all
can deselect the option and add the new ones or remove
. . . AT_1 | Action Type 1
previously selected ones (by checking and un-checking fisense 1 Disease 1
the checkboxes). Changing the actions being applied to .
an animal will not affect the template. O AT_2]Action Type 2
disease_2 | Disease 2
The user can use the search feature to search for
specific actions to facilitate finding them. On the top, the [AT-3|Action Type 3

user can save the actions being applied to the animal or dlense.d | Dikeaged

check the animal’s details (via the “...” menu). The
AT_4 | Action Type 4

animal’s details are like the ones presented previously. U ,
isease_4 | Disease 4

AT_5| Action Type 5
disease_5 | Disease 5

AT_6 | Action Type 6

disease_6 | Disease 6

Figure 36 - Actions available to
apply to an aninal

69

Livestock Identification and Traceability System

By selecting the middle option, the user is redirected

5.6.5.Non-intervened animals

Non Intervened Animals
Total: 5 | Selected: 0

to the non-intervened animals, that holds the animals of

that group and holding, that are yet to be intervened in
that service, as shown in Figure 37.

The user can also create a new animal using the

br_000461
Q 2 | Pequenos Ruminantes
2| Caprinos

bottom right button. The animal is automatically assigned

the service’s holding and group. This animal will not be
automatically intervened, but will be associated with the

elec_004214
2 | Pequenos Ruminantes
2 | Caprinos

service, which means that if the service is deleted (for

whatever reason), so is the animal, since it was created in Q

its context.

Non Intervened Animals

Total: 5| Selected: 2

s
d
Q
?

d

br_000461
2 | Pequenos
2 | Caprinos

elec_004214

2 | Pequenos
2 | Caprinos

vis_009992

2 | Pequenos
2 | Caprinos

elect_000052

2 | Pequenos
2 | Caprinos

vis_00092

2 | Pequenos
2 | Caprinos

intervene

Figure 38 - Selecting animals to

vis_009992
2 | Pequenos Ruminantes
2| Caprinos

elect_000052
Q 2 | Pequenos Ruminantes

2 | Caprinos
%

Figure 37 - Non-intervened
animals

vis_00092
6‘ 2 | Pequenos Ruminant

2| Caprinos

To check or edit an animal’s details, the user can click
the animal (while not in multi-selection mode), as shown
in Figure 37. To select one, or more animals, the user
can long click an animal; by doing this, it will enter
multi-selection mode, as shown in Figure 38. By clicking
the bottom right button, which now has a “check” sign,
the user confirms the intervention of the selected
animals, applying to them the template actions
previously selected (he can still change individually the
actions being applied to each animal, as shown
previously). When the user confirms, the selected
animals will no longer be on this list since they are now
intervened.

70

Livestock Identification and Traceability System

5.6.6. Connecting to devices

By selecting the top option (the one with a & Do s
device’s icon) in Figure 34, the user is redirected to
the devices page, where he is presented with SRS2 9149
pag p 88:6B:0F:BE:AE:22 C
multiple devices, either Bluetooth, BLE or Wi-Fj,
that he can connect to, as shown in Figure 39. 63:58:7F-75:A7.E5 ®
. . g . GGL HR3
When entering this page, it immediately starts i)
scanning for devices. A scan can also be manually
. . ‘ XRS2 1004
triggered, either via the top “Scan” button or by 00:07:80:CE:37:90
swiping down, which is the custom Android A 1
:

behavior to refresh the content of a list. LIEIAA

ID5000 N
Each device displays, in a custom layout, its 50:33.8B:DB:EA:2A
name (if any), address (depending on the device’s W810 Weigh Scale & Data Recorder X
. 00:07:80:25:89:7F
type), and state: connecting, represented by a
circular bar, as shown in the first device; not GGL HR3
00:07:80:3E:B5:8B
connect, as a red crossed symbol; connected, as a
TracKing-1 COM43206118 N
green symbol. 00:07:80:16:65:C7

Figure 39 - Devices available to connect

Clicking a disconnected device’s state symbol (shown as green) will attempt to
connect it to the application. Clicking the red symbol will disconnect the device from the

application.

This view is directly connected to the Devices Library: the devices available, the scan,
connecting and disconnecting devices, are all functionalities provided by the library

developed.

The application can be connected to more than one device, depending on the device
type. After connecting to the desired devices, the user can go back to the service, and start
using the devices. If the user has already previously connected with the desired devices, he

does not need to connect to them again.

71

Livestock Identification and Traceability System

5.6.7.Reading identifications

Once the user returns to the service, he can start reading animals’ identifications using

the RFID readers (another functionality provided by the Devices Library). When the user

reads an animal’s identification, three scenarios might happen:

The animal does not exist:

If no animal of the service’s group and
holding has the identification read, the
application asks the user if he wants to
create the animal, as shown in Figure 40. If
the user confirms, the applications starts
the creation of the animal, the electronic

identification automatically assigned as the

D vis_009275 not found

Do you want to create it?

identification read. The animal’s group and
holding are also automatically assigned as
the service’s. Once the user confirms the
animal data, he must select the actions
being applied to the animal (at least one).
After the successful creation of the animal,
it is now being intervened and associated

with the service.

Figure 40 - Asking to create an animal
from reading

72

Livestock Identification and Traceability System

e The animal is not being intervened:
If an animal of the service’s group and holding has the identification read, and
the animal is yet to be intervened, it is automatically assigned the template
actions, and will now be present in the list of intervened animals. The user is
notified that the animal is now being intervened.

e The animal is already intervened:
If an animal of the service’s group and holding has the identification read, but
that animal is already being intervened, the user is redirected to the animal’s

details, where he can change its actions and data (as shown previously).

After the user is satisfied with the service, he can finish it, via the top right menu at the
service’s main page. The service must have at least one animal to be finished. If the user

leaves the service without intervening at least one animal, the service will not be created.

5.7. Summaries

In Summaries the user can see what he has € Summaries

performed in the current session, as shown in Figure 41.
So far, it is only possible to check the services
performed. Further ahead, the user will be able to see

created/edit holdings, owners, keepers, and animals t00.

SERVICES PERFORMED

Figure 41 - Summaries
< Services performed
When listing the services performed, the user sees the

WOIFs Tarris [Welf & Walf ksims services grouped by holding, as shown in Figure 42. Each
Services performed 3

14/06/2020

1| Pequenos Ruminantes 73

14/06/2020

1 | Orandas Diimvainamtas

Livestock Identification and Traceability System

service is represented by the date and group of the
animals intervened. When clicking a service, the user is
redirected to the service and can edit it (if it is yet to be

synchronized) or consult it (if it is already synchronized).

5.8. Synchronization

Even though the user does not interact directly with 5 5 58 W/
the synchronization, since it is automatic, he is notified | 5
when the data is downloaded and uploaded, as shown in
Figure 43. Once the data is successfully
downloaded/uploaded, the user is also notified. Data
will be downloaded/uploaded periodically when the

application sees necessary.

Conflicts of the uploaded data will need to be

@ D-LITS - now
Downloading data 66%

solved in the WebApp, by another user, who must

P Android System

USB debugging connected
Tap to turn off USB debugging

choose which version of the data to keep.

To reduce the amount of conflicts with the P Android Syst... Charging this device via USB ~
downloaded data, the download will occur frequently,
making sure the user is (most of the time) working with
the most updated data. The upload period is bigger, and Figl&f,iv‘:ﬁ(,—aNd:g iti(f :ﬂ: I;S;I??::‘i:,f ing
only done when necessary, this is, the user has data

changes to upload.

74

Livestock Identification and Traceability System

In the future, the application will also have its own conflict management system to
solve conflicts of the user’s data and the data download. For example, if the user creates a
holding with the unique identifier “holding 0037 (that did not yet exist when he created
it), and when the data is download, a holding with the same unique identifier comes, there
will be a conflict, since two holdings cannot have the same unique identifier. The user will

have to choose which version of the data to keep.

75

Livestock Identification and Traceability System

6. Critical analysis and improvement measures
proposal

The planning and development phases went by smoothly. The fact the mobile
application is to support a previously developed WebApp (which has all the requirements,
functionalities, and data models consolidated) allowed the planning phase to be shorter
than what it would have been otherwise. The company’s experience in this field of work
allowed for lots of usability issues to be caught and solved without the need of testers,

potentially shortening the test phase.

The biggest problem encountered was creating the right architecture as soon as
possible, since the later it would be achieved, the harder it would be to implement in the
entire application. When one architecture seemed to fit the desired goals, some obstacle
would appear which rendered the architecture unviable. With each version created,

complexity was added.

The creation of a generic, flexible, and reactive architecture was achieved. However, it
is not perfect. Each fragment (and their respective ViewModel) can be adapted to multiple
scenarios, allowing their reusability without the need to create an extra, similar component
for each specific usage. Even though this greatly speeds up the development process (the
first usage might take a while, but the consecutive ones take significantly less time), it also
adds complexity to each component. Instead of a component having a specific behavior, it
must adapt to each case, depending on the controlling component. Having multiple, similar
components would make each component easier to develop and change. However, this
change could need to be reproduced through the multiple similar components, depending
on the nature of the change. Each extra adaptation adds complexity and could possibly
bring bugs to the other usages (a change to fit one scenario having unexpected behaviors in
others). There needs to be a balance between creating generic, flexible components, that
can adapt to different scenarios, and creating components so flexible that they take a long
time to develop and adapt. This balance needs to be studied; before developing a
component, it is necessary to try to predict (within reason) the amount of flexibility the
component will need. Although, it was not the main cause for the delays, in the future it is
necessary to not overengineer the generic components that could delay the development

unnecessarily.

76

Livestock Identification and Traceability System

Other difficulty faced in terms of development was handling LiveData. Due to its
nature, when being used, LiveData can become hard to handle, since sometimes events are
unexpectedly triggered, causing the need to carefully handle each possible scenario (the
current state of the component when the event is triggered). This is not really a problem of
the architecture, but rather a difficulty of the framework. The same problem would have
happened with a different architecture (as it has happened with the previous versions of the
architecture) but could have been easier to handle, due to the complexity this architecture

adds.

As mentioned previously, the usability of the application is very important, and to test
this, usability tests are necessary, with people outside the development (ideally real users).
However, due to the late ending of the development phase, the usability tests were delayed.
In junction with the pandemic outbreak, which caused the company to work remotely, the
usability tests were pushed further as the people that would normally perform the tests
were overburden with extra work. This caused the usability tests to have been performed in
lower quantity and by a smaller group of users, which could give a not so accurate
representation of the target group. In the future, it is necessary to perform the usability tests
sooner and with a bigger tester group to allow room for more accurate results and fixes.
Also, each usability test round that is made should be link to a questionnaire, to better

evaluate the usability.

Although the design of the interface was not a huge priority, we tried to create a clean
interface, balancing the amount of information presented to the user while trying to not
saturate the screen. We also tried to give as much feedback as possible to give the under to
the right path. However, there is still room for improvements, some of them might come
from the usability tests, such as prioritizing some information over other, or improving the
feedback given. The input of a designer could greatly improve the interface, both in

making it better looking and more usable.

Even though some parts took longer than expected (such has the initial development
phase), the company’s flexibility allowed to compensate the time “lost”. The frequent
meetings and demos allowed for improvements to be implemented sooner, which would be
more difficult to implement later. The knowledge passed allowed for lots of mistakes to be
avoided, since someone encountered them previously. The good communication allowed

for lots of feedback which resulted in small, regular improvements.

77

Livestock Identification and Traceability System

78

Livestock Identification and Traceability System

7. Conclusion

It was proposed the development of a native Android application with a generic
architecture that could be used to speed up the development of future similar applications.
This goal was achieved, creating an application with a flexible architecture that could, not
only, adapt to new scenarios, but also be reused to new similar applications. The library
developed to abstract the communication with RFID devices can be used separately to this
application, standardizing the communication with devices amongst the company’s

applications.

To achieve the result, a lot of research was made, to assure the application followed
the Android guidelines while being versatile, easy to adapt, both to different scenarios and
to future applications. Multiple versions of the architecture were developed and tested,

until one that better fits the goals was achieved.

The internship allowed the deepening of the knowledge in Android, the recommended
guidelines, and the technologies being released to help developers create better
applications. When paired with this thesis, it allowed the connection between the practical
side, performed during the internship, and the theoretical side, learned both during the first

year of the masters and during the internship.

The initial weeks of the internship were somewhat troublesome, trying to figure out
the right architecture, which took longer than expected. After that, the development went
by smoothly, with the company taking a great part in it, primarily in knowledge sharing.
The fact that there already was a remote API to support the WebApp, previously
developed, also helped reduce the development time, as it would take a good amount of
time to setup the remote API. Since it was already created, it was just necessary adapt it to
the application’s necessities. The main problems encountered were in finding the right
architecture; when one architecture seemed to be good, something would show up (usually
related to the GUI, communication between fragments and activities, amongst others),
which the architecture failed to support. This would make the architecture design process
restart. Each iteration would cause the changes to be applied to the entire application,
delaying the development. Despite the time spent on developing multiple architecture

iterations, the fact that I was already in the company before the internship knowing all the

79

Livestock Identification and Traceability System

business logic associated with the project, avoided the usual time spent on the initial

adaptation phase, which in turn eased the development process.

A generic architecture could greatly improve the development of future similar
applications. Developers will spend less time creating the base of the project and more
time on what makes it unique, adapting it to the client’s wishes. If the base architecture
keeps getting improved with each new application, the benefits will be even greater. The
improvement of the Devices Library will also improve each application that uses it,

making the effort much more beneficial.

As the next steps to take, it is important to focus on the usability tests; wait for the
results on the ones being performed, evaluated, and improve the application accordingly.
This is something that will be done multiple times throughout the development of the
application since there is always room from improvement. As for features, a conflict
management system within the application will be implemented, to allow the users to,
when a conflict appears, keep their data, or use the one coming from the remote API. The
Devices Library will also be further developed, to allow more and more devices which

require specific implementations.

80

Livestock Identification and Traceability System

[1]

[2]

[3]

[4]

[3]

[6]

[7]

(8]
[9]

[10]

[11]

Bibliography

“Digidelta-Software.” [Online]. Available: https://www.digidelta-software.com/.
[Accessed: 26-Dec-2019].

“Digidelta-Software | Projetos.” [Online]. Available: https://www.digidelta-
software.com/projetos/identificacao-e-rastreabilidade-animal/pisa-net. [Accessed:

26-Dec-2019].

“Home - Datamars.” [Online]. Available: https://datamars.com/. [Accessed: 24-

May-2020].

“Digidelta-Software | Equipamentos.” [Online]. Available: https://www.digidelta-
software.com/equipamentos/brincos-/brincos-brincos-eletronicos. [Accessed: 25-

May-2020].

“Digidelta-Software | Equipamentos.” [Online]. Available: https://www.digidelta-
software.com/equipamentos/leitores-e-balancas-rfid/leitores-e-balancas-rfid-leitor-

ges3s. [Accessed: 25-May-2020].

“Amfratech — making life simpler.” [Online]. Available: https://amfratech.com/.
[Accessed: 17-Jun-2020].

“Home | Food and Agriculture Organization of the United Nations.” [Online].

Available: http://www.fao.org’/home/en/. [Accessed: 17-Jun-2020].
“ ICAR.” [Online]. Available: https://www.icar.org/. [Accessed: 17-Jun-2020].

“Windows Forms | Microsoft Docs.” [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/framework/winforms/. [Accessed: 01-Apr-

2020].

“wezoot — zootechnics expertise — Wezoot — Gestdo da Producdo Animal. Maximize
a sua produgdo!” [Online]. Available: https://wezoot.com/. [Accessed: 12-Apr-
2020].

“Yagro — Aplicagdes no Google Play.” [Online]. Available:

81

Livestock Identification and Traceability System

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

https://play.google.com/store/apps/details?id=com.yagro.yagroandroidapp&pcampai
gnid=MKT-Other-global-all-co-prtnr-py-PartBadge-Mar2515-1. [Accessed: 25-
May-2020].

“Herdwatch Farm & Herd App | Simplifying Farming — Aplica¢des no Google
Play.” [Online]. Available:
https://play.google.com/store/apps/details?id=com.frs.hwprodie. [Accessed: 25-
May-2020].

“FarmWizard — Aplica¢des no Google Play.” [Online]. Available:
https://play.google.com/store/apps/details?id=com.farmwizard. FarmWizard.

[Accessed: 25-May-2020].

“Guide to app architecture | Android Developers.” [Online]. Available:
https://developer.android.com/jetpack/guide. [Accessed: 29-Jun-2020].

“Activity | Android Developers.” [Online]. Available:
https://developer.android.com/reference/android/app/Activity. [Accessed: 14-Dec-
2019].

“Fragments | Android Developers.” [Online]. Available:
https://developer.android.com/guide/components/fragments. [Accessed: 14-Dec-

2019].

“LiveData Overview | Android Developers.” [Online]. Available:
https://developer.android.com/topic/libraries/architecture/livedata. [Accessed: 23-

Nov-2019].

“ViewModel Overview | Android Developers.” [Online]. Available:
https://developer.android.com/topic/libraries/architecture/viewmodel. [Accessed:

06-Feb-2020].

“Data Binding Library | Android Developers.” [Online]. Available:
https://developer.android.com/topic/libraries/data-binding. [Accessed: 08-Feb-
2020].

“Two-way data binding | Android Developers.” [Online]. Available:
https://developer.android.com/topic/libraries/data-binding/two-way. [Accessed: 11-

82

Livestock Identification and Traceability System

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Jun-2020].

“Homepage - Material Design.” [Online]. Available: https://material.io/. [Accessed:
16-Dec-2019].

“Develop for Android - Material Design.” [Online]. Available:
https://material.io/develop/android/. [Accessed: 16-Dec-2019].

“Navigation | Android Developers.” [Online]. Available:
https://developer.android.com/guide/navigation#top of page. [Accessed: 29-Apr-
2020].

“Principles of navigation | Android Developers.” [Online]. Available:
https://developer.android.com/guide/navigation/navigation-principles. [Accessed:

29-Apr-2020].
“Dagger.” [Online]. Available: https://dagger.dev/. [Accessed: 16-Dec-2019].

“Bluetooth® Technology Website.” [Online]. Available:
https://www.bluetooth.com/. [Accessed: 12-Jun-2020].

“Wi-Fi Alliance.” [Online]. Available: https://www.wi-fi.org/. [Accessed: 12-Jun-
2020].

“ReactiveX.” [Online]. Available: http://reactivex.io/. [Accessed: 23-Nov-2019].

“GitHub - ReactiveX/RxJava: RxJava — Reactive Extensions for the JVM — a library
for composing asynchronous and event-based programs using observable sequences
for the Java VM.” [Online]. Available: https://github.com/ReactiveX/RxJava.
[Accessed: 23-Nov-2019].

“GitHub - ReactiveX/RxKotlin: RxJava bindings for Kotlin.” [Online]. Available:
https://github.com/ReactiveX/RxKotlin. [Accessed: 23-Nov-2019].

“TypeConverter | Android Developers.” [Online]. Available:
https://developer.android.com/reference/android/arch/persistence/room/TypeConver

ter. [Accessed: 01-Dec-2019].

“Run-Time Text Generation with T4 Text Templates - Visual Studio | Microsoft

Docs.” [Online]. Available: https://docs.microsoft.com/en-

83

Livestock Identification and Traceability System

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

us/visualstudio/modeling/run-time-text-generation-with-t4-text-templates?view=vs-

2019. [Accessed: 14-Dec-2019].

“Dao | Android Developers.” [Online]. Available:
https://developer.android.com/reference/androidx/room/Dao. [Accessed: 16-Mar-

2020].

“Coroutines Overview - Kotlin Programming Language.” [Online]. Available:
https://kotlinlang.org/docs/reference/coroutines-overview.html. [Accessed: 19-Feb-

2020].

“Improve app performance with Kotlin coroutines | Android Developers.”
[Online]. Available: https://developer.android.com/kotlin/coroutines#main-safety.

[Accessed: 19-Feb-2020].

“Retrofit.” [Online]. Available: https://square.github.io/retrofit/. [Accessed: 06-Feb-
2020].

“Square Open Source.” [Online]. Available: https://square.github.io/. [Accessed: 16-
Dec-2019].

“OkHttp.” [Online]. Available: https://square.github.io/okhttp/. [Accessed: 10-Jun-
2020].

“HTTP | MDN.” [Online]. Available: https://developer.mozilla.org/pt-
PT/docs/Web/HTTP. [Accessed: 10-Jun-2020].

“GitHub - google/gson: A Java serialization/deserialization library to convert Java
Objects into JSON and back.” [Online]. Available: https://github.com/google/gson.
[Accessed: 15-Mar-2020].

“Schedule tasks with WorkManager | Android Developers.” [Online]. Available:
https://developer.android.com/topic/libraries/architecture/workmanager. [Accessed:

11-May-2020].

“Instagram.” [Online]. Available: https://www.instagram.com/. [Accessed: 12-Jun-

2020].

“GitHub - leandroBorgesFerreira/LoadingButtonAndroid: A button to substitute the

84

Livestock Identification and Traceability System

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

ProgressDialog.” [Online]. Available:
https://github.com/leandroBorgesFerreira/LoadingButtonAndroid. [Accessed: 30-
Jun-2020].

“Auth0: Secure access for everyone. But not just anyone.” [Online]. Available:

https://authO.com/. [Accessed: 30-Jun-2020].

“ExpandableListView | Android Developers.” [Online]. Available:
https://developer.android.com/reference/android/widget/ExpandableListView.
[Accessed: 30-Jun-2020].

“Snackbar | Android Developers.” [Online]. Available:
https://developer.android.com/reference/com/google/android/material/snackbar/Snac

kbar. [Accessed: 30-Jun-2020].

“ProgressBar | Android Developers.” [Online]. Available:
https://developer.android.com/reference/android/widget/ProgressBar. [Accessed:

30-Jun-2020].

“Icons - Material Design.” [Online]. Available:

https://material.io/resources/icons/?style=baseline. [Accessed: 02-Jul-2020].

“Android icons - Material Design.” [Online]. Available:
https://material.io/design/platform-guidance/android-icons.html#usage. [Accessed:

02-Jul-2020].

“Buttons: floating action button - Material Design.” [Online]. Available:
https://material.io/components/buttons-floating-action-button. [Accessed: 30-Jun-

2020].

“Dialogs - Material Design.” [Online]. Available:
https://material.io/components/dialogs#usage. [Accessed: 30-Jun-2020].

“JavaScript | MDN.” [Online]. Available: https://developer.mozilla.org/pt-
PT/docs/Web/JavaScript. [Accessed: 28-Mar-2020].

“HTML: Linguagem de Marcagao de Hipertexto | MDN.” [Online]. Available:
https://developer.mozilla.org/pt-PT/docs/Web/HTML. [Accessed: 28-Mar-2020].

85

Livestock Identification and Traceability System

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

“CSS: Folhas de Estilo em Cascata | MDN.” [Online]. Available:
https://developer.mozilla.org/pt-PT/docs/Web/CSS. [Accessed: 28-Mar-2020].

“React Native - A framework for building native apps using React.” [Online].

Available: https://reactnative.dev/. [Accessed: 28-Mar-2020].

“React — A JavaScript library for building user interfaces.” [Online]. Available:

https://reactjs.org/. [Accessed: 28-Mar-2020].

“Ionic - Cross-Platform Mobile App Development.” [Online]. Available:
https://ionicframework.com/. [Accessed: 28-Mar-2020].

“Native mobile apps with Angular, Vue.js, TypeScript, JavaScript - NativeScript.”
[Online]. Available: https://www.nativescript.org/. [Accessed: 28-Mar-2020].

“Android Developers.” [Online]. Available: https://developer.android.com/design.
[Accessed: 29-Mar-2020].

“Themes - i0S - Human Interface Guidelines - Apple Developer.” [Online].
Available: https://developer.apple.com/design/human-interface-

guidelines/ios/overview/themes/. [Accessed: 29-Mar-2020].

S. Xanthopoulos and S. Xinogalos, “A comparative analysis of cross-platform
development approaches for mobile applications,” in ACM International Conference

Proceeding Series, 2013, pp. 213-220.

“Mobile Operating System Market Share Worldwide | StatCounter Global Stats.”
[Online]. Available: https://gs.statcounter.com/os-market-share/mobile/worldwide.

[Accessed: 29-Mar-2020].

“Mobile Operating System Market Share Portugal | StatCounter Global Stats.”

[Online]. Available: https://gs.statcounter.com/os-market-share/mobile/portugal.

[Accessed: 29-Mar-2020].

“Mobile Operating System Market Share United States Of America | StatCounter
Global Stats.” [Online]. Available: https://gs.statcounter.com/os-market-

share/mobile/united-states-of-america. [Accessed: 29-Mar-2020].

“JetBrains: Developer Tools for Professionals and Teams.” [Online]. Available:

86

Livestock Identification and Traceability System

https://www jetbrains.com/. [Accessed: 08-Mar-2020].

[66] “O que ¢ oJava?” [Online]. Available:
https://www.java.com/pt BR/about/whatis java.jsp. [Accessed: 10-Jun-2020].

[67] “Comparison to Java - Kotlin Programming Language.” [Online]. Available:
https://kotlinlang.org/docs/reference/comparison-to-java.html. [Accessed: 25-Feb-

2020].

[68] “Google Play.” [Online]. Available: https://play.google.com/store?hl=pt-PT.
[Accessed: 10-Jun-2020].

[69] “Exceptions: try, catch, finally, throw, Nothing - Kotlin Programming Language.”
[Online]. Available: https://kotlinlang.org/docs/reference/exceptions.html.
[Accessed: 25-Feb-2020].

[70] “Effective Java.” [Online]. Available:
https://www.oracle.com/technetwork/java/effectivejava-136174.html. [Accessed:
25-Feb-2020].

[71] “Basic Types: Numbers, Strings, Arrays - Kotlin Programming Language.”
[Online]. Available: https://kotlinlang.org/docs/reference/basic-types.html.
[Accessed: 25-Feb-2020].

87

Livestock Identification and Traceability System

88

Livestock Identification and Traceability System

Appendices

Appendix A - Technology Selection

There are multiple languages, platforms, and frameworks to get to different solutions.
Each one has their pros and cons; it is the developer’s job to decide which one better fits its

needs.

There are a lot of frameworks for mobile app development. If the developer is new to
mobile development and has a good web development background, there are a lot of
frameworks that use web technologies, such as JavaScript, HTML and CSS, to develop
mobile apps [52], [53], [54].

e React Native [55]
React Native is a framework created by Facebook in 2015. It uses React, which is a
JavaScript library used to builder user interfaces [56]. React Native is cross-platform,
which means it is possible to compile the same application for both Android, 10S and
web. This means that the developers only need to develop one application for
multiple devices.

e Jonic [57]
The Ionic Framework is an open-source Ul toolkit for building mobile and desktop
applications using web technologies. Like React Native, lonic is a cross-platform
framework.

e NativeScript [58]
NativeScript is a cross-platform framework for building iOS and Android
applications using JavaScript and CSS. Its views are rendered using the native
platform’s rendering engine instead of using WebViews, resulting in native-like
performance and UX. The fact that NativeScript is cross-platform and its rendering
engine means only one code base is used for both Android and i0S, while still

having the native behaviour and performance, the best of both worlds.

Cross-platform apps have the great upside of only one code base being necessary for
both operating systems. When the company wants the app for both Android and iOS, this

can greatly reduce the time-to-market, the amount of personnel needed to develop and

89

Livestock Identification and Traceability System

maintain it, and the set of skills needed (JavaScript, HTML and CSS for both versions vs

the technologies associated with each native version).

Even though that when using a cross-platform framework only one application needs
to be developed to run on both OSs, it has the downside of having twice as many problems
to deal with. Considering that both Android and i0S have their guidelines, the same
application would have to follow both their guidelines, adapting its interface for either
Android or i0S, depending on the device [59] [60]. Also, not always the same exact code
can be used for both OSs, sometimes it needs adaptation to fit either one [61]. These
differences can lead to unexpected problems that happen on one OS and not on the other
and finding these problems becomes harder. In addition, because extra code is needed to fit
both OSs, the code can become complex, especially in bigger applications. Although cross-
platforms frameworks are becoming better at preventing extra code necessities, they are
not perfect yet. However, if it is required to have the same application on both OSs, unless
the company has many resources to spend on developing and maintain both versions of the

app (for the two OSs), cross-platform might be a good idea.

Cross-platform applications have their upsides, but so do native ones. Native
applications usually have a better performance, both in speed and in resource usage. This
comes from their specificity; while cross-platform ones are developed in a one-fits-all
basis, native apps are specific for their OS. Native apps also have greater access to the
device’s APIs (Application Programming Interface), whether its storage, camera,
communication technologies or GPS, and the ability to use them offline, which might not
always be possible in non-native apps. Depending on the necessary resources that the app

needs, this might be a deciding factor.

Other very important factor when deciding which platform to develop the app in, is the
company’s previous experience. Although native applications usually provide a better
usability and performance, a good cross-platform app will most likely out-perform a poor
native application, both in performance and in usability. If the company has no previous
experience with native development, but has good background on web development, a
cross-platform application might be a better choice. However, in this specific case,
although the company has experience in web development, it also has experience in mobile

development, especially in Android, which makes this a not so important factor.

90

Livestock Identification and Traceability System

Time-to-market is also very important. Native applications tend to take longer to
develop compared to cross-platform ones, especially if it is necessary to develop two
native ones (one for each OS) versus a single cross-platform one that runs on both
operating systems. However, when the target is only one OS it might be better to develop a

native application, whether for Android or iOS.

When choosing which one is the best OS it is important to know the purpose of the
application, the target market, and most of the user’s OS in the target country (assuming
it’s an application for a certain country). When seen from a global perspective, according
to [62], 73.3% of the world’s devices run Android, while only 25.9% run 10S. If we look at
the same stats in Portugal, we can see they are relatively similar, with Android having a
79.7% presence while i0S having only 20.1% [63]. However, when we look at United
States of America, we can see that these stats show a very different reality, with Android
having only 41.3% presence while iOS has the majority with 58.4% [64]. Even though that
Android has the majority worldwide, when developing an app for a specific country, it is
relevant to check both OS’s presence in that country, to help us decide which is the best

OS to develop the app in.

When looking specifically at this application’s case, the choice was clear. Although
the app is not only for domestic use, Portugal’s target market can be used as an example of
what would be like in other countries. This application’s target are the veterinarians and
their assistants that form a brigade. Brigades work in the field performing actions to
animals. Since the field is usually dirty, wet, and generally not the best environment for a
delicate device, they usually prefer rugged smartphones. These devices are normal
smartphones, except they are made to withstand unfavorable conditions, like the ones
mentioned above. These smartphones usually have stronger screens and bodies, and low
level of permeability to dust and water. They are also more expensive than a similar, not
rugged device. Although there are hard covers for i10S devices, the offer for rugged i10S
devices is lower and much more expensive, making Android devices the favorites.
Considering the time-window to develop the app as well as the previous experience and the
need only for an Android version, amongst other factors, it was decided that native

Android would be the best option for the application.

For native Android, there are two possible languages: Java and Kotlin. Although Java

has been around for longer, Kotlin has been gaining significant visibility in the market in

91

Livestock Identification and Traceability System

the past few years. A study was made to decide between the two languages. Kotlin was the

choice; in Appendix B — Kotlin vs Java, the study can be read in further detail.

92

Livestock Identification and Traceability System

Appendix B - Kotlin vs Java

Kotlin is a programming language for Java Virtual Machine (JVM) and Android
created in 2011 by JetBrains [65][66]. Although Kotlin’s syntax is not similar to Java’s,
Kotlin is fully interoperable with Java, which means that an application can use both Java
and Kotlin classes, and they can interact with each other. Although Kotlin is not a new
version of Java, it can be seen as an improvement when related to Android, since both are
used to develop native Android applications. Overall, both support the same libraries (even
if the library is in one language, since they are interoperable, both languages can use it).

Some libraries are optimized for Kotlin.

When deciding between Kotlin and Java, there are some points that the developers

should take in question. Kotlin vs Java[67]

Java is a class based object-oriented programming language. Java has been for years
the main language for Android development. It was not until 2017 that Google announced
the support for Android app development with Kotlin. Even though Kotlin is the focus of a
lot of attention lately, the Google Play (Android’s app store) is still largely consistent of
apps using Java [68].

One of the main differences between the two languages is the syntax. Java’s syntax is
very verbose, which means that its code could almost be read like a text. Although this
makes the code very readable, it means a lot of writing to get something done, needing a

lot of boiler-plate code (a lot of code to accomplish small functionalities).
e C(Class declaration

In Figure 44, we have a Java class named Person, with four member properties, the
constructor, and all their getters and setters. All this is necessary to manage this class.

Although most of this can be generated via the IDE, it is still necessary to generate it.

plass Name

public class|Pesrscn

'pu.blic: Feracn{int id, String name, boolean isiictive, Date birthDate) |
this.id = ids
this.name = name; onstructor
this.ishctive = ishctiwve;
this.birthDate = birthDate;
1

private boolean ishctiwe;

private int id;
private String name; roperties
private Date birthDate:

[public int getId() 1 | Getters and Setters
return id;

i

publie woid setId{imt id) |
this.id = id;
; 93

public String getName() {
return name;

Livestock Identification and Traceability System

In Figure 45, we have the same class Person, but now written in Kotlin.

...}{var id: Int, var name: S5tring, wvar isActiwve: Boolean, var birthDate: Date)

— N a

X
Propéﬂies

Class Name

Constructor

Getters and’Setters

Figure 45 - A class in Kotlin

As we can see, the same class that took many lines to write in Java, takes only 1 line to
write in Kotlin. In case we wanted fewer getters or setters, it would take less code to write
the class in Java, but the class in Kotlin would not change much in terms of extension.

In Kotlin, the type of the variable comes after the variable’s name, which comes after
the mutability of the variable. A “var” is a variable that can be reassigned, while a “val” is
a read-only variable. Therefore, when we say a variable is a “var”, the compiler creates the
getter and setter for it (because it can be reassigned). However, if we say it is a “val”, it
only creates the getter (because it cannot be reassigned). If we want to make the variable

private, just put “private” before the mutability identifier (example: “private var id: Int”). If

94

Livestock Identification and Traceability System

we do not want a variable to be a member property of the class, do not put the mutability
identifier (for example, “id: Int” without “var” or “val”); this way, the property will not be

accessible outside the class’s constructor.

By writing that single line, we are creating a class Person with a single constructor that

takes 4 arguments, with getters and setters for all its member properties.
¢ Initializing an object

In Java, to create an object of the type Person, we must write the code present in

Timara AR

Person person = new Person(id: 1, name: "Person 1", isAcive: true, new Date());

Figure 46 - Initialization of Person using Java

1. Define the type of the object: Person
2. Define the name of the object (person)

3. (all its constructor preceding with “new” with the arguments in the right

order.

In Kotlin, we write the code present in Figure 45.

val persocn = Person(id: 1, name "Person 1", isActive: true, Date())

Figure 47 - Initialization of Person using Kotlin

1. Define the object’s mutability; in this case, it is “val”, which means it

cannot be reassigned.
2. Define the name of the object (person).

3. (all its constructor; the arguments can be in the right order or not. If not,
just say which argument it is by writing its name first (check birthDate and
isActive). In Kotlin, there is no need to call “new” when creating a new
object.

Although we did not specifically say the type of the object, the compiler can
infer its type by the assignment. If we wanted to specifically assign the type,

b

write (in this case) “val person: Person = ...”.

e Multiple constructors

Both Kotlin and Java allow multiple constructors.

95

Livestock Identification and Traceability System

In Java, constructors are declared the same way, as long as their signature do not
match, this is, two constructors cannot have the same number of parameters with

the same type in the same order. This is shown in Figure 48.

public class Persocndv |
private int id; As
private String name; we
public PersonJV{int id, String name) [can
this.id = id;
: see
this.name = name;
1 n
public PerscnJdv({int id, boolean isActive) { the
this.id = id;
thiz.name = "Person";
Log.d(tag "Persondv", mig: "isActiwe -> " + isRectiwve):

Figure 48 - Constructors in a Java class

figure above, the first constructor initializes both member properties (id and
name) with the inputs from the constructor, but the second constructor only does
this with the id and initializes the name manually. We could not initialize any of
the member properties, and they would hold the default value of its type.

In Kotlin, there are the concepts of primary constructor and secondary
constructors. Each class can only have one primary constructor, but multiple
secondary constructors. Like Java, two constructors cannot have the signature,

this is, same parameters in the same order.

class PersonKI (var id: Int, var name: String) |

constructor (id: Int) = this(id, name: "Person") |
Log.d({ 13ag: "PersonKT", ms3 "Person initialized")

1

constructor (id: Int, isActive: Boolean) = this(id, name "Person") |
Log.d(tag: "PersonKT", msd: "isActiwve -> $ishctiwve")

Figure 49 - Constructors in a Kotlin class

As we can see in Figure 49, the first constructor (preceded by “PersonKT”) is the
primary constructor. The constructors below are called secondary constructors.
There can be as many secondary constructors as we want. Every secondary 9

constructor must call the primary constructor (represented by “: this(...)”) because

. - N - - e e e e .

Livestock Identification and Traceability System

e Accessing resources from the GUI layout
In Java, in order to access a resource from the GUI layout, we must first find it
using “findViewByld(id_of object)”. If we are accessing the object multiple
times, should put it in a variable to prevent searching it every time we want to use

it, like in Figure 50.

Button button = findViewById({R.id.butiaon);

button.setOnClickListener (new View.{nClickListener() {

A g Ae
Erriae

public woid onClick{View v) |

s

Figure 50 - Accessing a resource from the GUI layout using Java

In Kotlin, we can access GUI resources without needing to use the previously
displayed method. By writing the id of the object, it will use the object on the
respective view of the component we are using. For example, if we are in
MainActivity and its view has a button with the id “button”, when we write
“button” it will import the GUI resource and can be access as if it was found using
findViewByld(button). This can be seen in Figure 51. The first line of the image

is importing all GUI resources (including the “button”).

import kotlinx.android.synthetic.main.activity main.¥

class MainBctivity : Applompatihctivity() |
The

override fun onCreate (savedInstanceState: Bundle?) |
super.onCreate (savedInstanceState)
setContentView (R. layout.activily main)

button.setOnClickListener [it View!

Figure 51 - Accessing a resource from the UI layout using Kotlin

same way we access “button”, we can access every other GUI resource in this

view, if they have an id to be accessed.

Livestock Identification and Traceability System

e Passing objects that implement interfaces
In Java, when we want to set, for example, a click listener in a button, we must
use “button.setOnClickListener()” and pass a View.OnClickListener object. This
object must implement an interface that has a “onClick” method that is fired when

the button is clicked, as represented in Figure 52.

button.setOnClickListener (new View.OnClickListener() {

public void onClick{View v) |
System.out.println ("Button clicked!");

Bz

Figure 52 - Catching a click event in Java

Later versions of Java offer a more compact way of doing this, shown in Figure
53.

Butten button = findViewById(R.id.button);
button.setOnClicklistener(v -> {

1s
Figure 53- Catching a click event in later versions of Java
This way is much closer to the Kotlin’s way, present in Figure 54.
button.setOnClickListener [it View!
printiln{"Button clicked!")

Figure 54- Catching a click event in Kotlin

These small differences make Kotlin’s syntax less readable (as in being harder to
interpret, due to not being so verbose), but much cleaner, concise and faster to

write.

Since Kotlin was created later, it was able to avoid some problems that Java has,
and fix others. Some of the problems Java has that were addressed in Kotlin

include:

98

Livestock Identification and Traceability System

e Null references are controlled by the type system

All non-primitive Java types (represented with an uppercase first letter, e.g.,
“Integer”) are naturally nullable, which means they can hold a null value. Only
primitive types (represented with a lowercase first letter, e.g. “int”) are unable to
hold a null value. This can be a problem, since when accessing a method or
property of a non-primitive object (for example, the length of a String), we must
check previously that the object is not null. If we try to access a method or
property of a null object, a NullPointerException is thrown, notifying the
developer that he is accessing a null object, which is invalid.
NullPointerException is one of the most thrown exceptions since it is easy to
forget to check the value of an object previously. To solve this, Kotlin

implemented nullable and non-nullable types.

In Kotlin, all the types start with an uppercase letter, even the primitive ones.
However, even primitive types can be nullable (unlike in Java). To mark an object
as nullable (whether it is primitive or not), simply declare it with a “?” after the
type. For example, an object of type “Int” is non-nullable, however, an object of
type “Int?” can hold a null value. When we access a nullable object’s properties or
methods we must check if it is null or not. However, when we want to prevent the
object from holding null values, just declare it without the “?”, and we never have
to check its nullability, reducing the amount of validations necessary and prevent
NullPointerExceptions. This means that in Kotlin, an object’s ability to hold a null

reference is controlled by its type.
e No checked exceptions [69]

In Java, when performing an operation that can throw an exception, the exception
must be caught, otherwise an error will be thrown notifying the developer that an
exception was left un-handled. When a method can throw an exception, but does
not handle it, the exception must be added to method’s signature, such as in

Figure 55.
public static int tolUpperlase (String valus) throws Exception {
throw new Exception({"random exception™):

1

Figure 55- Java method that throws an exception

Adding the exception to the method’s signature means that when we use that

method, we must catch the exception, otherwise it will give an error, like in 99

Timen KK

Crwimmr marellrroryroos = [T 1 Tatrs ."n?'Frmpr('l;u-:r.:-Fn:ump'l "

Livestock Identification and Traceability System

This would cause the application to be full of try-catches. According to Effective
Java, exception should not be ignored [70]. However, it is said that in large
projects, exceptions decrease productivity and have little to no increase in code

quality [69].

To avoid this extra work, Kotlin does not required exceptions to be caught.
However, there is the risk of an uncaught exception being thrown and the

application crashing, so the developers should use them with caution.
There are also some features Java has that Kotlin does not have, such has:
e Primitive types that are not classes [71]

Kotlin, like Java, has primitive types. However, even primitive types in Kotlin are
classes (in Java, primitive types are not classes), which means that we can call
member functions and properties on any variable. In Java, there are primitive
types that are not classes, and, therefore, do not have member functions and

properties.
e Ternary operator

The ternary operator is a simplified “if else”; it is composed by the condition, and
the two possible results, the first, if the condition is true, and the second, if it is
false. Although very compact, it can be sometimes hard to read, especially in
more complex cases.

String title = igMale 7 "Mr" : "Mrs'";

Figure 57 - Ternary operator in Java

In Figure 57, the variable “title” is being set conditionally according to the value

of a Boolean (“isMale”), representing whether the person is male or not.

Kotlin does not have ternary operator, but a regular “if else” can be used to
replace it. The “if” can return a value that will be assigned to the variable. Figure

58 represents Kotlin’s version of the ternary operator.
val title = if (isMale) "Mr" else "Mrs"

Figure 58- Kotlin's equivalent of a ternary operator using "if
else"

100

Livestock Identification and Traceability System

Since what matters is the value the if returns (the last variable of each branch, in
this cases, “Mr” and “Mrs”), extra operations can be performed, as can be seen
Figure 59.

val title = if (isMale) |
printin{"Its a male")
"M

} else |
println{"Its a female")
"Mrs"

Figure 59- If else with extra operations

Kotlin also has some features that Java does not have; such has:

e Extension functions
Extensions consist in extending a certain type’s properties and members. Without
changing the original class, we can add functionalities to it. This is particularly

useful on classes that belong to the system or outside libraries.

For example, we can add a function to String, to uppercase the last letter, as

shown in Figure 60.

fun String.lastToUpper({): String {
return substring(d, lastIndex -1) + get{lastIndex).tolUpperCase()

Figure 60- An extension in Kotlin

Since String is a system’s object, we cannot change it. We can, however, add
functions to it, called extensions. To use an extension, simply use it as if it was

a normal String method.

val value = "random sentence"

val wvalusCapitalized = value.capitalize() result =
wval valueLastToUpper = walue.lastTolUpper() result

Livestock Identification and Traceability System

In Figure 61, we have a String. We are using “capitalize()”, a String class

function, and “lastToUpper()”, an extension created by us.

Even though Java does not have extensions, we can simulate it using the
delegation pattern. Delegation consists in wrapping the class we want to
“extend” in a class created by us and having an instance of said class in it,

shown in Figure 62.

After that, just initialize a “MyString” object and use the methods as it if was a

regular extension.

e Null safety

class MyString |
private String value;

MyString (String wvalue) {
this.value = value;

}

String lastToUpper() {
return value.substring{0, value.length() -1) + String.wvalueOf{value.charkt{value.length{) - 1)) .toUpperlase();

}

Figure 62- Java delegation

Like it was said before, Kotlin has nullable and non-nullable types. When we
want to access a member-property or function of a nullable-type object, it is
possible that the object is null, causing a NullPointerException. To prevent this,
Kotlin has a mechanism (called safe calls) that prevents the direct access to
member-properties or functions of nullable objects. When accessing a member-
property or function of a nullable object, we must put “?” before accessing the

property of1 wal stringl: String? = "random string"

val stringd: String = "random string"
val resultl = atringl?.tolpperfase()
val result? = string?. tollpperfase()

Figure 63- Safe call in Kotlin
Even though both
“string1” and “string2” have values, string]1 is marked as nullable (by the
“String?”), so it’s possible that when accessing a function (in this case,
“toUpperCase()”), its value is null. To avoid the need to previously verify if the

value is not null, we can access it with a “?”, called a “safe call”. This means that

102

Livestock Identification and Traceability System

if “string1” has a value, it calls the function normally, but if “string1” is null, it
returns null. Since “toUpperCase()” returns a String, a safe call will return a

nullable String.

It is also possible to make non-null asserted calls. Non-null asserted calls are
marked by “!!” and can be interpreted as saying that the object is mandatory to be

non-null, as shown in Figure 64.

val atringl: String? = "random string"

val resultl stringl?. tollpperfase()
val result3 stringl!!.tollpperfase ()

Figure 64- Non-null assertion in Kotlin

However, if we access a member-property or function of a null object using a

non-null asserted call, the application crashes, so caution is advised.

e Smart cast
In Kotlin, when we check that a variable is of a certain type, we can access it as if
it were of that type, without needing to cast it. The same works for nullability
check. This is called smart cast. In the figure above, “getRandomPerson()” returns
an object that implements the interface “Person”. When we check its type, we can
access the functions and member-properties of that type, shown in Figure 65.
“study()” is specific of class “Student”, after we check that the object “person” is

a Student, we can access the method.

val person: Person = getRandomPerson()

when (person) |

is Student -> |
println{™Variable is a Student")
perscn.study ()

}

ig Teacher -> |
println{"Variable is a Teacher")
person.prepareClass()

}

is Doctor -> |
println("Variable is a Doctor")
person.doDoctorStuff)

103

Figure 65- Smart cast in Kotlin

Livestock Identification and Traceability System

If a variable is of a nullable-type, when we check that it is not null (i.e. has a value
different than null), we can access it as if it were of a non-nullable type.
This only works inside the validation (in this case, the “when”), not outside it.

e Lateinit

In Kotlin, we can mark a “var” as “lateinit” by putting “lateinit” before it (e.g.
“lateinit var id: Int”). A lateinit variable is a variable that is not nullable but is not
assigned at the moment of its declaration. This can be helpful on variables

initialized through dependency injection or in the setup method of a unit test.

To check if a lateinit variable is initialized, we can use
“::name_of variable.isInitialized”, that returns a Boolean with true if it’s already

initialized or false otherwise.

104

Livestock Identification and Traceability System

Appendix C - Functional Requirements — User Stories and Acceptance
Criteria

e Login
[Online] As a valid user, I want to be able to login on the application by providing
my credentials. I must be associated with a veterinarian or a veterinarian’s assistant,
and to at least one brigade.
Acceptance criteria: As a user, [know the login is successful when I am presented
with entities and brigades to enter.

e Enter entity/brigade
[Online] As a validated user, I want to be able to enter a brigade to which I, as a
veterinarian or veterinarian’s assistant, am associated to.
Acceptance criteria: [know that I have entered a brigade once I am able to start
registering data in the application and consult data regarding that entity and brigade.
[Offline] As a validated user, I want to be able to enter a brigade of an entity in
which I previously entered.
Acceptance criteria: Same as online, but only with brigades in entities previously
entered.

e Seed the local database
[Online] When I enter a brigade, I want to have the data of its entity seeded into my
local database, so I can use it while offline.
Acceptance criteria: I know that the data was successfully seeded when I can perform
work in the application.

e Logout
[Offline/Online] As an authenticated user, I want to be able to logout of the
application.
Acceptance criteria: I know that I have successfully logged out once I am presented
with the login screen and I must provide my credentials to login.

e Change entity/brigade
[Online] As an authenticated user, | want to be able to change the current
entity/brigade in which I am working on, to another brigade that I am associated
with, without having to logout.
Acceptance criteria: I know I have successfully changed entity/brigade when I am

once again able to register data in the application,

105

Livestock Identification and Traceability System

e Holding CRUD
List holdings: As an authenticated user with permission to consult holdings, I want
to be able to list the holdings of the entity in which I am authenticated in, seeing their
unique identifier, name, and active state. I also want to be able to consult the
holdings’ details, seeing its unique identifier, name, short name, tax number, active
state, default aptitude, responsible brigade, and corresponding country zone.
Acceptance criteria: I should see all the fields listed above present in each holding. I
also want to be notified when no holdings are available to list.
Update holdings: As an authenticated user with permissions to update holdings, I
want to be able to update a holding, changing the fields listed above, except the
responsible brigade.
Acceptance criteria: [know that I have successfully updated a holding when the
holding’s record shows updated with the new data.
Create holdings: As an authenticated user, I want to be able to create a new holding,
filling the fields listed above, except the responsible brigade, which should be locked
as the brigade in which I am working on.
Acceptance criteria: I know that I have successfully created a holding when it can be
found in the list of holdings.

e Owner/Keeper CRUD
List owners/keepers: As an authenticated user with permissions to consult
owners/keepers, [want to be able to list the owners/keepers of a given holding that
belongs to the entity in which I am authenticated in, seeing their unique identifier,
occupational unique identifier, name and active state. [also want to be able to check
their details, seeing their unique identifier, occupational unique identifier, title, name,
birth date, tax number, active state, whether they are a company (if it’s an owner),
and if they are not a company, their gender (always shows gender if it’s a keeper). |
also want to be notified when no owners/keepers are available to be listed.
Acceptance criteria: I should see the fields listed above, with the proper labels.
Update owners/keepers: As an authenticated user with permissions to update
owners/keepers, | want to be able to update an owner/keeper, changing the fields
listed above.
Acceptance criteria: I know that I have successfully updated an owner/keeper when

the owner’s/keeper’s record shows the updated data.

106

Livestock Identification and Traceability System

Create owners/keepers: As an authenticated user, I want to be able to create a new
owner/keeper, filling the fields listed above. The owner/keeper should be
automatically assigned to the holding previously selected.
Acceptance criteria: I know that [have created an owner when the owner is listed in
the owners of the premises previously selected.
Animal CRUD
As an authenticated user, I want to be able to list the animals of any holding that
belongs to the entity in which I am working on, seeing their preferred identification,
group, and species. I also want to be able to check their details, seeing the
o group
o species (must belong to the selected group)
o breed (must belong to the selected species)
o aptitude
o identifications (all the configured in the WebApp; only the visual and
preferred are required)
o preferred identification (one of the filled identifications)
o gender
o birth date
o mother (must be of the same species, required according to the species’
configuration)
o father (must be of the same species, required according to the species’
configuration)
O premises
o owner (must be working on the selected premises)
o keeper (must be working on the selected premises)
o color (optional)
o status

o name (optional)

Acceptance criteria: When listing, I should see the preferred identification of the
animal, along with its group and species. I also want to be notified when no animals
are available to be listed. When checking its details, I want to see the fields listed

above.

107

Livestock Identification and Traceability System

As an authenticated user, | want to be able to register new animals, filling the fields

listed above, making it available to be intervened.

Acceptance criteria: I know that I have successfully created an animal when it is

visible in the list of animals of that holding and is available to be intervened.

As an authenticated user, [want to be able to update an animal so that its information
in the system matches the reality. I must be able to update the fields listed above,
except the identifications (which require a re-identification, that is a different
operation), group, species and current premises (which require a movement, created

in a different operation).

Acceptance criteria: [know that I have successfully updated an animal when its

details show the updated data.

Service
Create service: As an authenticated user, [want to be able to register interventions
in animals, by applying actions to them.

To start a service, [must first specify the setup data:

o the holding in which I am working
o the group of animals to which I am intervening
o the date of the intervention

The brigade responsible should be the one I am working on.

If a previously created service matches this data, I should not be able to create

another one with that data.

Acceptance criteria: I know that I have successfully started a service when I am able
to select the default actions for the animals that will be intervened. If I the setup data
matches a previously created service, I should be warned that I cannot create another
one. If the setup data matches a non-synchronized service, I should be given the

option to continue it.

Define template actions: After starting the service, I should be able to select the
default actions to be applied to facilitate the intervention of animals. I should not be

able to progress without selecting at least one action, since no animal can be in the

108

Livestock Identification and Traceability System

service without actions. I should be able to change the default actions at any moment

without affecting the previously intervened animals of that service.

Acceptance criteria: I know that I have successfully defined the default actions when
I am able to select the animals to be intervened, and their actions are the same ones

as the default actions.

List animals intervened: I should be able to list the animals being intervened in a
service, seeing their preferred identification and the unique identifier of the actions
being applied to them. I should also be able to check and update the actions being
applied to them.

Acceptance criteria: The animals being listed here should be the ones where actions

have been applied to in the current service.

List animals not intervened: I should be able to list the animals that are yet to be
intervened in the service, seeing their preferred identification, group, and species.
The animals should be of the selected holding and group. When no animals are

available to be intervened, I should be notified.

Acceptance criteria: The animals mentioned above should be the ones of the selected

group belonging to the selected holding that are yet to be intervened.

Create non-intervened animals in service: I should be able to create animals in the
context of the service without intervening them, filling their fields, so they can be
available to be intervened. Animals created while in a service should be deleted if the

service is deleted.

Acceptance criteria: When creating an animal, the holding and group should be
locked to the previously selected holding and group. When the animal is created, it

should be visible in the list of non-intervened animals of that service.

Update non-intervened animals in service: [should be able to update animal not
being intervened while in the service. If I do not have permission to update them, I

should only be able to check their details.

Acceptance criteria: I know that [have updated an animal if their details show the

updated data.

109

Livestock Identification and Traceability System

Intervene animals manually: I should be able to list the animals of the previously
selected holding so that I can intervene the animals manually by selecting them and

confirming their intervention.

Acceptance criteria: The animals list should be the animals of the holding previously
selected that are yet to be intervened in this service. Once I select the animals and
confirm their intervention, they should no longer be visible in this list, and should be

present in the list of animals intervened on the service.

Read identifications with RFID readers: I should be able to intervene an animal by

reading its RFID tag with an RFID reader connected to the application.

If when reading the identification:

o the animal is yet to be intervened, but is present in the list of non-intervened
animals of the service, it should be intervened

o the animal is already intervened, I should be redirected to its details, seeing
the actions that are being applied to it

o the animal does not exist in the holding, I should be asked if I want to create
it, filling the fields of the normal creation of the animal (except the group that
should be locked to the group of the service, and the electronic identification that
should be locked to the identification read) and selecting the actions being applied
to it. After creating it, it should be visible in the list of intervened animals of the

service.

Acceptance criteria: If the animal was not intervened, it should no longer be present
in the list of non-intervened animals and should be present in the list of animals
intervened in the service. If the animal was created, it should be present in the list of
animals intervened in the service. If the animal was already intervened, it should be

in the same list as it already was.

Change the actions being applied to an animal: [should be able to change the

actions that are being applied to an animal after it already is in the service.

Acceptance criteria: [know that I have successfully changed the actions being
applied to an animal if those actions are displayed correctly in the list of animals

intervened under the correspondent animal.

110

Livestock Identification and Traceability System

Updating an animal being intervened: I should be able to update an animal being

intervened, editing its details as if it were a regular update outside the service.

Acceptance criteria: I know that the animal was updated when its details show the

updated data.

Delete service : As an authenticated user, I want to be able to delete a non-
synchronized service, deleting all the actions applied to animals in it and the animals
created while performing the service.

Acceptance criteria: I know that I have successfully deleted a non-synchronized
service when it no longer shows in the list of services performed.

Summaries

View services made in current session: [must be able to list previously made
services made by my brigade on holdings of the entity in which I am working on,
seeing the date of the service and the corresponding animal group. If the service is
yet to be synchronized, I must be able to change it, otherwise, I must only be able to
check its contents without changing the animals or the actions being applied to them.
Acceptance criteria: | must see the services my brigade has done in the current
session, group by holding, showing the date the service was made and the group of
animals intervened in the service.

Devices Library:

List available devices: I should be able to list available Bluetooth, BLE, and Wi-Fi
devices to connect to them, showing their MAC address and their name.
Acceptance criteria: Devices that have been made available and are in range should
be displayed. Each device should also display its status (not connected, connecting,
and connected). If no devices are available, I must be notified.

Connect with multiple devices: I should be able to connect to certain devices via
Bluetooth, Bluetooth Low Energy (BLE) or Wi-Fi so they can interact with the
application, such as RFID stick readers or printers.

Acceptance criteria: | know that the device was successfully connected when it can
interact with the application.

Synchronization

Work while offline: As a user, I want to be able to work while offline, so that I can

work in areas where internet connection is not possible.

111

Livestock Identification and Traceability System

Acceptance criteria: While offline, I must be able to perform most of the operations
supported by the application, excluding login, and entering an entity not previously
entered (entering an entity that I already entered while online is possible). All my
work should be saved.

Automatic synchronization: As a user with connection to internet, I want to have
my work performed while offline automatically (without my intervention)
synchronized with the remote API, so that all the work is saved and made available
to other users. I also want to have relevant data changes in the remote API to be
synchronized to my application, so that I can use it.

Acceptance criteria: The work I performed should be synchronized without my
interaction. The data should be synchronized in a way to avoid data inconsistency. I
know that the changes made by other users were successfully synchronized to my
application when the data that is displayed to me changes. When the data is

successfully synchronized, I must be notified.

112

Livestock Identification and Traceability System

Appendix D — Usability Tests Questionnaire
In this appendix, we can check the usability questionnaires provided for users for

usability tests.

D-LITS Mobile

D-LITS Mobile usability testing gquesticnnaire

If, for some bug, you can't use a part of the app. comment why on the area at
the end of the section. This area can also be used for suggestions.

Farmiliarity with testing applications of this kind

1 2 3 4 5 6

Never did it O o o o O O Used to it

Easy to login

Couldntdoit O O O O O O Very easy

Easy to select the brigade to work in

Couldn't do it O O O O O O Very easy

Commentaries about login

A sua resposta

Figure 66 — First page of the usability questionnaire

Check the entity in which | am authenticated in

Livestock Identification and Traceability System

Check which holdings are associated with my entity

comiaor Q@ O O O O O veyesy
Create a new holding

coamaar Q@ O O O O O veyessy
Edit a holding/check its details

Couldn't do it O O O O O O Very 2asy l

Commentaries about Holdings

A sua resposta

Figure 68 - Holdings page of the usability questionnaire

Livestock Identification and Traceability System

Start a new sernvice

1 2 3 4 3 1]

Couldn't dao it G D D D '::' G Wary gasy

Pre-select the actions

1 2 3 4 3 [

Couldn't do it D D O O O O Wary sasy

Intervene animals

1 2 3 4 3 [}

Couldn't do it D D D D G D Wary sasy

Create an animal in the service

1 2 3 4 3 L]

Couldn't do it D D D D O D Vary sasy

Change a previously made service

1 2 3 4 3]

Couldn't do it D O O O O O Vary sasy

Finizh a marvice

Check previously created services

1 2 i 4 -5 i

Couldn't do it O O O O O O Very easy

Figure 71 — Services page of the usability questionnaire
115
Commentaries about summaries

