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Abstract— The de-interlacing of video material converted 

from film  can  be  perfect,  provided  it  is  possible  to  

recognize  the field-pairs  that  originate  from  the  same  film  

image.  Various so-called  film-detectors  have  been  

proposed  for  this  purpose, mainly  in  the  patent-literature.  

Typically,  these  detectors  fail  in cases  where  video  

overlays  are  merged  with  film  material,  or when  non-

standard  repetition  patterns  are  used.  Both problems occur 

frequently in television broadcast. For these hybrid and/or 

irregular  cases,  we  propose  a  detector  that  can  detect  

different picture-repetition  patterns  locally  in  the  image.  

This  detector combines  fuzzy  logic  rules  and  spatio-

temporal  prediction  to arrive  at  a  highly  robust  decision  

signal,  suitable  for  pixel- accurate  de-interlacing  of  

hybrid  and  irregular  video  material. In  addition  to  an  

evaluation  of  the  performance,  the  paper  also provides a 

complexity analysis. 
 

Index Terms— Picture-repetition Mode Detection, Video 

De- interlacing, Pull Down, Video Signal Processing, 

Fuzzy Inference Systems. 

I. INTRODUCTION 

Knowledge of the picture repetition pattern is highly 

relevant for several video signal processing tasks, like video 

compression, picture-rate conversion and de-interlacing. As 

this information is usually not included in the transmission, 

the detection of picture repetition from the video data is 

necessary. We shall focus on the de-interlacing application 

[1], which  is  particularly  relevant,  since  if  the  field-pairs  

that  are originated  from  the  same  image  are  recognized  

then  the  de-interlacing of video material can be perfect.  

As a large percentage, often the majority, of broadcast 

video material has been converted from film, methods to 

realize film- mode detection are currently in demand.  In  this  

conversion picture  repetition  is  required,  since  video  

signals  originating from  a  video  camera  provide  a  picture  

rate  of  50  Hz,  or  60 Hz, whereas if the material was 

registered with a cine-camera the  picture  rate  is  only  24  

images  per  second.  In order to adapt film to both standard 

transmissions, a process called ’pull-down’ is performed.  

Basically, it consists of repeatedly scanning a film image until 

it is time to show the next. For 25 Hz film shown in a 50 Hz  
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broadcast,  every image is shown twice and the conversion is 

referred to as 2:2 pull-down. For 24  Hz  film  shown  on  a  

60  Hz  television,  film  images  are shown alternatingly 2 

and 3 times, which is the so-called 3:2 pull-down process.  

Independent  of  the  type  of  camera  and repetition  pattern,  

interlaced  video  signals  transmit  only  the odd lines of odd 

images and the even lines of even images.  

Different detectors have been proposed to identify the field-

pairs originating from the same film image to enable perfect 

de-interlacing, or proper picture-rate conversion. Among them 

zero-vector matching detectors  have  widely  been  employed 

by  the  majority  of  current  film  detectors  [2].  They try to 

match the zero motion vectors on a previous field. To perform 

it,  they  normally  use  two  kinds  of  signals:  a  first  to  

detect the  frame  similarity  and  a  second  one  to  measure  

the  field similarity.  Based  on  the  analysis  of  both  

similarity  metrics, control  signals  are  generated.  They 

indicate the mode of the video signal, i.e. video or film, and 

the type and phase of the film mode, to determine the image’s 

position in the 3:2 or 2:2 pull-down pattern.  

Other approaches try to identify jagged edges in frames. 

This  undesirable  phenomenon  appears  when  two  fields  

with moving  objects,  sampled  at  different moments  at  

time,  are merged into a single image. Several proposals of 

this kind of detectors have been presented in the literature [3], 

[4]. 

Another detector based on edge-detection was proposed in 

[5].  It  analyzes  the  position  of  edges  in  the  image  since  

if there  is  a  picture  repetition of the fields, edges  should  be  

at the same spatial position. 

Finally, a motion vector based approach has been proposed 

in [6]. The sum of the length of the motion vectors is 

evaluated to decide if two fields are identical or not. 

Recent advances in the area of film-detection can be 

divided into two categories.  The  first  ones  report  on  the  

increased robustness of the algorithms, whereas the second 

ones focus on  the  detection  of  the  local  video  mode  in  

hybrid  video sequences. 

An  improved  robustness  is  especially relevant,  as an in- 

correct  mode  decision  produces  highly  annoying  artefacts  

in the  de-interlaced  video  signal.  The  approach  described  

in [7]  reduces  the  number  of  wrong  decisions  due  to  

vertical details  using  a  new  difference  metric,  whereas  the  

proposed method in [8] uses a layered structure to achieve a 

robustness improvement. 

Local detection has been motivated by the increase of TV    

material that combines images from different origins in a 

single field. None of the techniques previously cited can 

locally detect different modes in a single field, as their output 

is a single flag for the entire field. They usually compare the 

sum of absolute values of frame and field differences over the 

entire field with a threshold value [2], [7].  This strategy  is far  
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single field. None of the techniques previously cited can 

locally detect different modes in a single field, as their output 

is a single flag for the entire field. They usually compare the  

sum of absolute values of frame and field differences over the 

entire field with a threshold value [2], [7]. This strategy is far 

from optimal, since the best threshold value strongly depends 

on the amount of motion and the level of noise in the picture. 

Moreover, it leaves no options to distinguish the different 

modes in a single field that occur in hybrid material. To solve 

this problem, a method for detecting the film mode of 

individually moving objects within fields is described in [9]. 

The identification of these objects is performed using 

segmentation. 

Our proposal combines fuzzy logic and spatio-temporal 

prediction to increase the robustness of the final decision, and 

also to take a decision locally on a pixel-by-pixel basis. Due to  

the  capacity  of  the  fuzzy  logic-based  models  to  perform a  

non-linear  mapping  between  the  input  and  output  space, 

they are well-known as good interpolators [10]. One example 

is  the  method  developed  in  [11],  which  uses  an  adaptive 

de-interlacing  process  by  weighting  between  ’field  

insertion’ and ’a spatial interpolation algorithm’. The  

weighting  factors  are obtained  analyzing,  as  inputs  of  the  

fuzzy  system,  the  intra and  inter-field  signal  differences  

of  the  current  pixel along  a set of pre-determined directions.  

In this paper, we propose a set of fuzzy IF-THEN rules to 

take a decision instead of realizing a weighted interpolation. 

In this novel approach, each rule models heuristic knowledge 

to  identify  one  of  the  possible  picture-repetition  modes  

on a pixel-by-pixel basis. To make this pixel-accurate detector 

robust, a set of proposals are presented. Among them, the 

main novelty is the inclusion of a  spatio-temporal prediction 

scheme inspired on recursive motion estimation [12].  Here,  

prediction  implies  that  the  final  decision  not only  

corresponds  to  the  current  pixel,  but  also  the  decisions in  

a  spatio-temporal neighborhood  of  the current  pixel  are 

considered. 

Since  the  decision  is  made  on  a  pixel-by-pixel  basis,  

our method  can  deal  successfully  with  hybrid  video  

material. Moreover, our proposal is not limited to the 

recognition of the standard repetitions patterns, like the 

popular 2:2 or 3:2 pull-down patterns for film. This extends its 

applicability to any irregular, picture-repetition sequence.  

This paper is organized as follows. The proposed algorithm is 

described in Section II. We present several proposals from a basic 

one to a more sophisticated one in the different subsections of 

Section II. The performance of the approach is proven by extensive 

simulations of video sequences applying the mode detection to 

perform   different   de-interlacing   techniques.   These   results   are  

 

applicability to any picture-repetition sequence. 

This paper is organized as follows. The proposed algorithm 

is described in Section II. We present several proposals from a 

basic one to a more sophisticated one in the different 

subsections of Section II. The performance of the approach is 

proven by extensive simulations of video sequences applying 

the mode detection to perform   different   de-interlacing   

techniques.   These   results   are presented in Section III. This 

section also includes a complexity analysis of the algorithm. 

Finally, we draw our conclusions in Section IV. 

II. LOCAL PICTURE-REPETITION MODE DETECTOR  

The  proposed  mode  detector  is  a  decision-making  

system based  on  a  set  of  rules.  Each single rule models 

heuristic knowledge to identify locally different modes. As 

mentioned in the  introduction,  our  proposal,  for  de-

interlacing,  offers more  than  just  the  functionality  of  a  

film-detector,  as  its rules deal with all possible picture-

repetition patterns. To help appreciate  the  background  of  the  

rules,  we  shall  first  briefly describe  the  conversion  

between  film  and  video,  which  is still the most common 

cause of picture-repetition in broadcast video. 

The  3:2  pull-down  process  is  common  to  transfer  24  

Hz film to 60 Hz video. To achieve this, every odd film image 

is scanned twice, while every even film image is scanned three 

times as shown in Fig. 1(a). Thereafter, the signal is interlaced.  

The  2:2  pull-down  process  is  common  to  transfer  24  

Hz film  to  50  Hz  video.  Initially,  the  picture-rate  of  the  

film  is increased  to  25  images  per  second  by  running  the  

film  4% faster. Then, each film image is scanned twice and 

interlaced, generating two video fields as shown in Fig. 1(b).  

To arrive at picture-repetition detection, we calculate three 

difference signals, the frame difference signal (δframe) between 

the next and previous field at the same spatial position (x, y), 

and the two field differences of the current pixel: with the 

previous field (δfield1) and with the next field (δfield2). In order to 

increase robustness against noise the median value of each 

difference at three vertical positions is used (see Fig. 2). They 

are defined by the following expressions: 

δf rame (x, y, n) =med (δf rame(−2) , δf rame(0) , δf rame(2) )      (1)  

δf ield1 (x, y, n) =med (δf ield1(−1) , δf ield1(0) , δf ield1(1) )         (2) 

δf ield2 (x, y, n)  =med (δf ield2(−1) , δf ield2(0) , δf ield2(1) )          (3) 

where n denotes the field number in the sequence order: 

δf rame(i) (x, y, n) = |F (x, y + i, n + 1) − F (x, y + i, n − 1)|  

δf ield1(i)  (x, y, n) = |Fd (x, y + i, n) − F (x, y + i, n − 1)|  

δf ield2(i)  (x, y, n) = |Fd (x, y + i, n) − F (x, y + i, n + 1)|  
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Fig.  1.     Standard conversion between video and film formats:  (a) 3:2 

Pull- down. (b) 2:2 Pull-down.  

Fig. 2.    Picture-repetition mode detector aperture. The shown pixels are 

used to calculate the local differences. 
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Fig. 3.    Temporal difference patterns of standard conversions. 

δframe (x, y, n) =med (δframe(−2) , δframe(0) , δframe(2) )             (1)  

δfield1 (x, y, n) =med (δfield1(−1) , δfield1(0) , δfield1(1) )              (2) 

δfield2 (x, y, n)  =med (δfield2(−1) , δfield2(0) , δfield2(1) )                 (3) 

where n denotes the field number in the sequence order: 

δframe(i) (x, y, n) = |F (x, y + i, n + 1) − F (x, y + i, n − 1)|  

δfield1(i)  (x, y, n) = |Fd (x, y + i, n) − F (x, y + i, n − 1)|  

δfield2(i)  (x, y, n) = |Fd (x, y + i, n) − F (x, y + i, n + 1)|  

 

To  calculate  the  differences, a simple initial de-interlacing 

algorithm  is  used  to  generate  progressive  frames (Fd).  

Typically, a vertical-temporal median or a vertical-temporal 

linear filter is proposed [1]. If the initial de-interlacing process 

would be perfect, the difference between fields from the same 

source image, as it occurs with film, should be equal to zero. 

With a simple  and  realistic  initial  de-interlacing  algorithm  

alias  and vertical  details  in  the  field  may  introduce  false  

detections  of motion.  In  order  to  reduce  this  problem,  the  

field  differences shown  in  expressions  (2)  and  (3)  are  

normalized  by  vertical intra-fields differences.  

The different types of temporal differences patterns are 

shown in  Fig. 3(a)  and  3(b)  for  the  pull-down  3:2  and  2:2 

process,  where  ’L’  means  a  large  difference  and  ’S’  a  

small difference. Considering these temporal difference 

patterns, the following knowledge can be applied to detect the 

different modes: 

 
 
 

 

1) If the frame difference is large and both field 

differences are large too, then the pixel corresponds 

to a moving object in a video sequence, where all 

fields are different. 

2) If the frame difference is small and both field 

differences are  also  small,  then  the  pixel  

corresponds  to  an  area without  motion  during  

these  two  field-periods.  There- fore,  it  must  be,  

either  a  stationary  area,  or  a  moving area  if  the  

3  fields  originate  from  a  3  times  repeated image, 

e.g. as it occurs with 3:2 pull-down. 

3) If  the  frame  difference  is  large,  but  one  of  the  

field differences is small while the other is large, then 

the current pixel belongs to a sequence with picture-

repetition, where at least one field is repeated, as it 

occurs e.g. in 2:2 pull-down mode. 

4) Otherwise, none of the modes is identified. This the 

may occur when the initial de-interlacing process, 

then necessary to  calculate  the  field  differences,  

suffers,  from  alias, because  the  signals  are  

corrupted  by  noise,  or because the image has a flat 

area.    
 

This heuristic knowledge can be modelled using a system 

with fuzzy IF-THEN rules, since the concepts large and small 

are understood as fuzzy definitions instead of threshold values. 

Using  fuzzy  logic,  the  concepts  of  ’SMALL’  and  

’LARGE’ are represented by fuzzy sets, the membership 

values of which change continuously between 0 and 1, as 

shown Fig. 4(a) and Fig. 4(b). 

Each  fuzzy  IF-THEN  rule  in  our  system  has  

antecedent
1
   linguistic  values  and  a  single  consequent  

mode  as  shown in  Table I. The minimum/maximum
2
 

operators are selected as connectives ’and’/’or’ of the 

antecedents, respectively. 

The  use  of  the  operator  ’and’  forces  the  system  to  

analyze the  field  differences  signals  only  if  the  

corresponding  frame difference signal is large. This strategy 

increases the robustness of  the  detection,  since  the  frame  

difference  signal  is  more reliable than the other differences that 

are based on imperfect initial de-interlacing results. The main 

advantage of the fuzzy- logic based approach  is  the  capacity  of  

modelling  uncertain information,  which  is  realized  with  the  last  

rule.  Besides,  it provides a smooth transition between one decision 

1 

 
 
 
 

 
0 

Membership degree 

of δ to LARGE 

µ(δ) 
Membership degree          
of δ to SMALL 

 

 
 
 
 
 

0 

D0 D1 δ D2 D3 δ 1 Antecedent is the common term for a  condition in the fuzzy logic domain [13] 
(a)                                                (b) 

 

Fig. 4.    Membership functions for the fuzzy sets (a) LARGE, (b) SMALL. 
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operators in the fuzzy logic domain respectively [13] 
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TABLE I 

FU Z Z Y  RU L E  SE T 

if                                                                               antecedent                                                                        then                consequent 

1)                δf rame (x,y,n) is LARGE and δf ield1 (x,y,n) is LARGE and δf ield2 (x,y,n) is LARGE                                        MODE is video 

2)                δf rame (x,y,n) is SMALL and δf ield1 (x,y,n) is SMALL and δf ield2 (x,y,n) is SMALL                                    MODE is stationary 

3)            (δf rame (x,y,n) is LARGE and δf ield1 (x,y,n) is SMALL and δf ield2 (x,y,n) is LARGE) or                                  MODE is repetition 

(δf rame (x,y,n) is LARGE and δf ield1 (x,y,n) is LARGE and δf ield2 (x,y,n) is SMALL) 

4)                                                                               otherwise                                                                                       MODE is undetermined 

The  use  of  the  operator  ’and’  forces  the  system  to  

analyze the  field  differences  signals  only  if  the  

corresponding  frame difference signal is large. This strategy 

increases the robustness of the detection, since the frame 

difference signal is more reliable than the other differences 

that are based on imperfect initial de-interlacing results (Fd).   

The main advantage of the fuzzy-logic based approach  is  that 

it provides a smooth transition between one decision and 

another. The activation degree of a rule (αi) indicates the 

compatibility grade of the (i
th

) IF-THEN rule, which is 

calculated by computing the membership values of the 

antecedents: 

1 (x, y, n)= min(µLARGE(frame ),µLARGE (field1 ),µLARGE (field2))   (4) 

2 (x, y, n)= min(µSMALL(frame ),µSMALL (field1 ),µSMALL (field2))   (5) 

3 (x, y, n)= max((α3a , α3b ))                                                  (6) 

4 (x, y, n)= 1-1 -2 -3                                                                                                 (7) 

where: 

3a (x, y, n)= min(µLARGE(frame ),µLARGE (field1 ),µSMALL (field2))  (8) 

3b (x, y, n)= min(µLARGE(frame ),µSMALL (field1 ),µLARGE (field2))  (9) 
 

For each pixel, the values α{1,2,3,4}  are the output signals of 

the  fuzzy  system.  Each  signal  corresponds  to  the  

activation degree  of  an  individual  rule  and  ranges  from  0  

to  1.  Since our proposed detector aims at a pixel-by-pixel 

mode decision, alternative robustness measures are necessary.  

These are described in the following subsections. 

A.  Increase of the robustness of the fuzzy system decision  

The   proposed   reasoning   method   is   based   on   a   

single winner rule.  The winner  is  the  fuzzy  IF-THEN  rule  

that has the maximum activation degree, that is, the  

maximum compatibility grade with one of the patterns 

desvery low. 
 
 
Missing line 

Transmitted line 

 
 
 
 
 
 

3x3 Spatial- 

described by the antecedents. However if multiple activation 

degrees of contrary rules are activated, choosing the 

maximally activated mode easily results in wrong decisions. 

To improve this, a decision is  adopted  when  its  

corresponding  rule  is  the  most  activated and also the 

activation degree of the contrary rule is very low. 

B.  Spatio-temporal Prediction 

In our proposal, the final decision for the current pixel is 

not only based on the decision of the system for the current 

pixel,  but  applies  ’spatio-temporal’  predictions,  taking  into 

account  also  the  decisions  of  the  pixels  in  a  3x3 

neighborhood.  

The  idea  is  to  make  a  decision  only  when  one  mode  

is actually  clear,  and  propagate  the  decision  until  a  new  

clear decision is taken. To reduce error propagation a 

meandered scanning is proposed (see Fig. 5). The detector 

processes the even fields in a streaming fashion, that is, from 

the  top-left  pixel  to  the  bottom-right  pixel,  whereas  the  

odd fields  are  processed  from  the  bottom-right  pixel  to  

the  top- left  pixel . Four pixels in the 3x3 window are spatial 

neighbors and belong to the current field, and four are 

temporal neighbors of the previous field as shown Fig. 5. 

C. Temporal forward prediction process  

The temporal predictions are more complex than the spatial 

prediction.   To   illustrate   the   problem,   let   us   consider   

the temporal difference pattern of pull-down 3:2 process 

shown in Fig. 3(a).  Analysis  of  this  pattern  shows  that  not  

only  the third  rule  is  activated  but  also  the  second  one.  

To  be  exact, the  second  rule  is  activated  every  five  fields  

of  the  video sequence. This means that the MODE of a pixel 

with the  same  spatial  coordinates  in  the  previous  field  not  

always has  to  agree  with  the  current  one.  For any picture 

repetition pattern, decisions from the previous field can be 

transformed into new predictions as shown in Fig. 6. The 

values of difference signals are represented using the notation 

’LSL’,  which  means  a  LARGE  difference  of  δfield1  and  a 

SMALL difference of δfield2  and a LARGE value of δframe . For 

each value of the difference signals in the previous field, the  

different  alternatives  for  a  pixel  in  the  current  field  are 

shown  in  Fig.  6.  From the knowledge of the previous mode, 

only the value of δfield1 can be assigned. For instance, a pixel 

from the previous field where video mode is detected implies 

a large value of difference signals, that is ’LLL’. In this case, 

the value of δfield1 will be surely ’L’ in the next field and then, 

δframe will be also ’LARGE’. However, there is no information 

to predict the value of δfield2. Analyzing each possibility the 

following temporal predictions are discussed: 

field, the  different  alternatives  for  a  pixel  in  the  current  

field  are shown  in  Fig.  6.  From  the  knowledge  of  the  

previous  mode, only the value of δf ield1  can be assigned. 

For instance, a pixel from the previous field where video mode 

Previous field (odd) Current field (even) temporal aperture 

 Spatial neighbours             Current pixel          Temporal neighbours 

Fig.  5.     The  decisions  at  9  positions  in  a  3x3-aperture  are  
involved  in  the decision-making process. 
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Fig. 6.  Temporal predictions for the MODE in the previous field. 

temporal predictions for the modes are shown in Fig. 6. The 

multiple modes of the temporal predictions have an equal bias. 

D. Reinforcement of the final decision  

The flowchart of the process is shown in Fig. 7. The input 

signal is the MODE of the pixels in the 3x3 neighborhood. 

Only if the occurrence of modes exceeds a set of values 

C{1,2,3,4} and  there  are  no  undetermined  decisions,  a  

control  signal called PATTERN is activated. If not, i.e. the 

majority of decisions are undetermined, the control signal will 

be generated to code the PATTERN signal for ’undetermined’ 

decisions. Finally, in pixels where none of the rules is 

sufficiently activated, the decision of the previous pixel in the 

scanning directions is assigned. 

Some erroneous mode decisions are more critical than 

others.  For  our  de-interlacing  application,  repetition  mode 

leads to perfect results through merging the lines of fields that 

belong  to  the  same  film  image.  However,  when  this  

mode  is erroneously detected, e.g. in video camera material, 

annoying feathering  artefacts  appear  in  the  de-interlaced  

picture,  as shown in Fig. 8. The consequences of the video 

mode decision is  less  critical,  since  in  this  case  a  robust  

de-interlacing technique  is  employed  that  performs  sub-

optimal  on  film material,  but  gives  not  very  objectionable  

artefacts.  Given this asymmetrical behaviour, priority is given 

to the video-mode, i.e. the mode for which we assume there is 

no picture repetition. Therefore,  this  mode  is  corroborated  

firstly  and  it  requires  a lower  number  of  modes  in  the  

aperture  to  take  a  decision: C1 <C2≈C3≈C4  (see Fig. 7). 
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aperture  to  take  a  decision: C1 <C2≈C3≈C4  (see Fig. 7). 

Through analysis of the two parts of the third rule, a second 

control signal is generated named ‘PHASE’ to identify 

which two of the three fields are  identical in the case 

that a picture repetition, e.g. a repetition mode, is 

detected. Fig. 9 shows the placement of the fuzzy mode 

detector in the video processing chain for our de-

interlacing application. Both signals generated by the 

fuzzy system are used as control signals to determine the 

de-interlacing strategy. In case that a repetition mode is 

detected, the de-interlacing process becomes perfect by 

weaving two fields together. This is also valid in the case 

that the pixel is classified as belonging to a stationary 

area. However, if the first or the fourth rule are the most 

activated, a conventional video de-interlacing approach 

[1] has to be used.   

E. Improving the performance of the fuzzy system by 

membership function learning  

From heuristic knowledge, there is no restriction to fix the 

parameters of membership functions. However, some values 

will provide better results than other ones. Our idea is to select 

the most suitable values using a set of input/output training 

patterns of image sequences where the mode decision is 

known by the designer. Five fields of two different sequences 

were used.  Originally both sequences are video material but 

the 3:2 and 2:2 pull-down cadences were generated and used 

as training patterns. These sequences are called Kielp and 

Bicycle in Section III. Simulation results in Section III prove 

that the method is robust for a wide number of test sequences. 
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TABLE II 

MEMBERSHIP FUNCTION PARAMETERS AFTER THE LERANING PROCESS 

Input                                     Mode              Mode                 Mode                  Mode                   Initial 

  variable       Parameters          video        ‘ stationary’       ‘repetition’      ‘undetermined’      parameters 

                     LSL     SLL 

  D0                   1                    0                 0.5         0                  0                         0 

  δframe              D1                   8                    8                 1.5         8                  8                         8 

  D2                   0                    0                  0           0                  0                         0 

  D3                   8                    8                  8           8                  8                         8 

  D0                   0                    0                  0           0                  0                         0 

δfield2                 D1                   2                    2                  2           2                  2                         2 

  D2                   0                    0                  0           0                  0                         0 

  D3                   2                    2                  2           2                  2                         2 

  D0                   0                    0                  0           0                  0                         0 

δfield1                 D1                 0.25                 2                 0.5         2                  2                         2 

  D2                   0                    1                  0           1                  0                         0 

  D3                   2                   8.5                2           9                  2                         2 

that the method is robust for a wide number of test sequences. 

For  the  tuning  process,  we  used  the  development  

environment  Xfuzzy3.0  [14].  This is an environment for 

designing fuzzy sets that is composed of a set of CAD tools 

covering the different stages of description, verification, 

simplification and synthesis of inference systems based on 

fuzzy logic. Xfuzzy3.0 integrates a CAD tool, named xfsl 

[15], to tune fuzzy systems described in the environment. 

We further applied a set of training video sequences. Only 

the  values  D0,  D1,  D2  and  D3  that  define  the  

membership  functions  have  been  adjusted  in  the  learning  

stage.  The Levenberg-Marquardt  algorithm  has  been  

selected  as  supervised  learning  algorithm  and  the  results  

of  the  process  are shown in Table II. This table shows the 

tuned parameters for each one of the modes, and also the 

initial parameters of the membership functions that were fixed 

manually. For  the  first  field  of  the  video  sequence,  the  

initial  parameters  are  used.  For  the  rest  of  the  fields,  the 

tuned parameters for each mode is taken. 

F. Mode filtering to improve robustness  

Since an erroneous video detection in the repetition area is 

less serious than an erroneous repetition mode decision, a 

simple spatial filtering is performed to spread the video mode 

decision. Fig. 10 shows the shape of the spatial aperture. As it 

can be seen, it contains more pixels in the vertical direction 

than in the horizontal. The reason is that the image is 

processed 

processed in a streaming direction, so mistakes are transmitted 

along horizontal direction. To avoid this, a higher number of 

pixels in vertical direction are considered. The final structural 

overview of the proposed detector is shown in Fig. 11. 

III. PERFORMANCE OF THE PROPOSED ALGORITHM  

The performance of the proposed algorithm has been 

evaluated in the de-interlacing application.  We  investigated  

the image  quality  and  calculated  the  computational  cost  of  

the detector.  Subsection A   describes the cost calculations.  A 

brief description of the video test sequences can be found in 

Subsection B and finally, the overall performance is given in 

Subsection C. 

A.  Algorithm Cost 

The  algorithmic  cost  is  measured  using  the  number  of 

floating  point  operations  (FLOPS)  as  a(n  inverse)  figure  

of merit.  The  algorithm  requires  543.7  Megas  floating  

point operations  to  analyze  one  field  of  a  video  sequence  

with  a resolution of 720x576. We have considered this 

measurement instead  of  computational  time  as  it  is  

strongly  depends  on the  platform  on  which  the  algorithm  

is  implemented  and  the efficiency of the programming. 
 
 
 
 
 

Fig. 10.    3x9-aperture for the spatial filtering. Fig. 11. Structural overview of the film detector. 
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(a) TMF sequence                                                   (b) Fire-rose sequence                                            (c) Renata hybrid sequence 

Fig. 12.  Snapshots of real sequences used to prove the performance of the proposed algorithm. 

measurement instead  of  computational  time  as  it  strongly  

depends on the platform on which the algorithm is  

implemented  and  the efficiency of the programming. 

B. Description of the Sequences 

Subsection C contains results from the analysis of several 

sequences. Some of them are real sequences from TV 

channels or  movies,  and  others  are  test  video  material.  

Forty  fields  of each sequence have been processed. Three of 

these sequences have been especially analyzed: 

- TMF. This is an original sequence captured from a Dutch 

broadcast channel called TMF. The sequence is an interlaced 

video  clip  (2:2  pull-down  mode)  with  an  overlay  

containing a  ticker-tape  video  text  as  can  be  seen  in  Fig.  

12(a).  It also contains stationary areas (around the clock and 

the TMF-logo). 

- Fire-rose.  This is an interlaced 2:2 film sequence.  The 

detection of repetition mode is difficult due to the fine details 

in the man’s beard as shown in Fig. 12(b).  Moreover this 

sequence contains a very low level of motion. 

- Renata. This  sequence  has  been  used  to  show  the  

improvements introduced by the individual robustness 

measures explained  in  Section  II.  It is originally a video 

scene.  However,  it  has  been  artificially  transformed  into  

an interlaced  2:2  repetition  mode.  The  sequence  has  then  

been converting  into  a  hybrid  sequence,  by  adding  a  

horizontally horizontally moving  video text in  the middle of 

the fields, as  shown  in Fig. 12(c). 

C.  Simulation Results 

To  prove  the  performance  of  the  proposed  detector,  the 

three-fields VT filtering approach [16] is used if the ’video’ or  

’undetermined’ mode is detected. On the other hand, if one of 

the ’repetition’ mode is detected, the de-interlacing process is 

implemented by weaving.  Comparing  the  de-interlaced  with 

the  original  progressive  picture  of  Renata,  a  Mean  

Squared Error can be calculated. Fig. 13 shows the relative 

MSE-score as a percentage of the MSE-score obtained with 

the VT filtering [16]. As can be seen, our final proposal 

reduces the total MSE error with almost 60 %.  It includes the 

improvements that are described in subsections {A, B, C, D, 

E, F} of Section II. The results achieved by the proposal with 

 

 

reduces the total MSE error with almost 60 %.  It includes the 

improvements that are described in subsections {A, B, C, D, 

E, F} of Section II. The results achieved by the proposal with 

a modification of membership function parameters are slightly 

better (column P4 in Fig. 13) than the obtained with fixed 

parameters (column P3 in Fig. 13). 

The  detector  has  also  been  used  to  de-interlace  the  

real sequences  shown  in  Tables  III  and  IV.  It  decreases  

the  total MSE  score  by  a  high  factor  in  percentage  

(almost  100%)  in the  majority  of  film  sequences  (see  

Table  III).  This not only produces a perfectly de-interlaced 

image, but also considerably reduces the complexity as 

weaving is the method with the lowest computational cost. 

Due to the presence of low motion and/or  a  high  number  of  

the details,  repetition  mode  is  not  well detected in some of 

the film sequences and the MSE only falls to 40%. This is not 

crucial for de-interlacing applications because conventional 

de-interlacing is applied when actual repetition is 

misinterpreted as video.   

  Finally, the total MSE is slightly reduced when the 

detector is used for video sequences (see Table IV). This is 

due to the improved de-interlacing of the few static areas. 

Although the modification of membership function parameters 

does not introduce many advantages for the Renata hybrid 

Tables III and IV. 
 

 

 

      RENATA  HYBRID  SEQUENCE 
 

                                        200 

                                        180 

                                        160 

                                        140 

                                        120 

               MSE %   100 

                                          80 

                                          60 

                                          40 

                                          20 

0 
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P1: Simple Fuzzy System(SFS)   P2: SFS+ {A}  P3: SFS+ {A, B, C, D} 

P4: SFS+ {A, B, C, D, E}               P5: SFS+ {A, B, C, D, E, F} 

Fig. 13.    MSE percentage of each one of the proposals. 



 

    TABLE III                          

 SIMULATION RESULTS OF FILM SEQUENCES   

Sequence           Shrek          Gladiator      Stairs       Fargo       Fargo          Matze1      Matze2        Fire        Chop       Fargo          Vanessa        Chop      Flight 

office       repair                                            rose         hunt                                             land 

               Total MSE 

          Detector off          327.607          62.72            93.96       208.54        327.31       745.74       682.17       204.61       52.01       364.13        217.53         220.69     231.65 

          Detector on             1.52              0.098             0           124.77         0.143        419.78           0               0           0.077        0.74           0.21            2.83           0 

         Reduction(%)         99.53            99.84            100          40.16          99.95        43.708         100           100         99.85        99.79         99.901         98.71        100 

 

TABLE IV      

 SIMULATION RESULTS OF VIDEO 

SEQUENCES 
Sequence         Animatrix-a      Animatrix-b      Dieanotherday       Bicycle         Kielp        Girlgate      Wman       Renata         Xmen2      Newsreader 

Total MSE 

Detector off           139.71                 712.46                   446.38             1517.03        5321.83       156.109         71.56        450.425       266.52          1027.992 

Detector on            52.06                  711.91                   371.29             1503.52        5319.12        154.71          71.45        449.79         250.81          1027.93 

Reduction(%)         62.74                   0.03                      16.83                  0.9              0.05             0.8             0.19           0.01             5.89               0.01 

 

sequence, it is necessary to achieve good results for some 

sequences in Tables III and IV. 

The response of the detector was also analyzed for the TMF 

and Fire-rose sequences.  The output modes when processing 

the snapshot in Fig. 12(a) can be visually corroborated in Fig. 

14(a). In this figure, white color means repetition mode, light 

g grey means stationary areas, dark grey corresponds to video 

mode and black color shows zones where the decision is not 

clear. As can be seen, the critical areas of the field are 

correctly detected.  The MSE value for the TMF sequence 

could not be included in Table III since the original 

progressive material is not available.  

The performance of the original Fire-rose (film material) 

sequence is perfect as shown in Table III. If this sequence is 

transformed into video by eliminating the repeated fields, 

video mode is also correctly detected despite the low level of 

motion as shown in Fig. 14(b). 

Finally, a test is proposed to prove the advantages of using 

fuzzy definitions of the concepts SMALL and LARGE instead 

of crisp definitions. The results show a more critical 

distinction among the different mode areas of the field if crisp 

definitions are used.  This produces serious mistakes as it can 

 

slightly better (column P4 in Fig. 13) than the obtained with 

fixed parameters (column P3 in Fig. 13). 

The  detector  has  also  been  used  to  de-interlace  the  real 

sequences  shown  in  Tables  III  and  IV.  It  decreases  the  total MSE  

score  by  a  high  factor  in  percentage  (almost  100%)  in the  

majority  of  film  sequences  (see  Table  III).  This  not  only 

produces  a  perfect  de-interlacing  process,  but  also  reduces error  

with  almost  60  %.  It  includes  the  improvements that are 

described in subsections {A, B, C, D, E, F} of Section II . The 

results achieved by the proposal with a modification of 

membership function parameters are slightly better (column P4 in 

Fig. 13) than the obtained with fixed parameters (column P3 in Fig. 

13). 

The  detector  has  also  been  used  to  de-interlace  the  real 

sequences  shown  in  Tables  III  and  IV.  It  decreases  the  total MSE  

score  by  a  high  factor  in  percentage  (almost  100%)  in the  

majority  of  film  sequences  (see  Table  III).  This  not  only 

produces  a  perfect  de-interlacing  process,  but  also  reduces 

considerably the complexity as weaving is the method with a 

lowest computational cost. Due to the presence of low motion and/or  

a  high  number  of  details,  repetition  mode  is  not  well detected in 

some of the film 

video mode is also correctly detected despite the low level of 

motion as shown Fig. 14(b). 

Finally, a test is proposed to prove the advantages of using 

fuzzy definitions of the concepts SMALL and LARGE instead 

of crisp definitions. The results show a more critical 

distinction among the different mode areas of the field if crisp 

definitions are used.  This produces serious mistakes as it can 

be seen in Fig. 15(a) for Renata hybrid sequence and in Fig. 

15(b) for TMF sequence.  

Unfortunately, there is no competitive detector that 

performs a local picture repetition mode detection in current 

scientific literature. This is why comparisons with other 

proposals of similar characteristics are not included in this 

section. 

IV. CONCLUSIONS 

The  de-interlacing  of  video  material  converted  from  film 

can  be  perfect,  provided  it  is  detected  correctly.  

Typically, however, available detectors fail in cases where 

video overlays are merged with film material, or when non-

standard repetition patterns are used. Both problems occur 

frequently in television broadcast. For  these  hybrid  and/or  

irregular  cases,  we  have  proposed a  detector  that is 

capable to  detect  locally  in  the  image different picture-

repetition patterns. By distinguishing only the following cases: 

- Stationary, i.e. all 3 fields show object at same position 

- No identical fields, i.e. all 3 fields show object at different 

position 

- Paired identical fields case A, first two fields show object 

at same position, third field at different position 

- Paired identical fields case B, last two fields show object 

at same position, first field at different position 

 

 

Fig.  14.     Mode  decisions  taken  by  the  system  for  (a)  TMF  and  (b)  

Renata sequences.  White  indicates  repetition,  light  grey  stationary,  

dark  grey  video and black are unclear areas. 

(a) Renata sequence                           (b) TMF sequence 
 

Fig. 15.    Simulation results using crisp definitions of LARGE and SMALL. 



  

   at same position, third field at different position 

- Paired identical fields case B, last two fields show object 

at same position, first field at different position 

- Unclear, i.e. the local data is ambiguous we designed a 

picture repetition detector, suitable for all possible patterns 

without limitation to the common patterns, like 2:2 and 3:2 

pull-down.  

For instance, a long arbitrary cadence such  as  3:2:2:3  can  

be  detected  since  the  rules  antecedents only  compute  

absolute  differences  among  three  consecutive fields. The  

detector  combines  fuzzy  logic  rules,  to  deal  with 

uncertain  cases,  and  uses  spatio-temporal  prediction  to  get  

a robust  decision  signal  even  in  unclear  areas.  Our 

evaluation shows a very favourable performance and an 

attractive low computational complexity. 
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