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 2	
  

Abstract 24	
  

By moving between habitats, mobile link organisms serve as vectors of material and 25	
  

energy transport between ecosystems. Additionally, if these mobile species are key 26	
  

organisms, their movement patterns can have profound consequences on the functioning 27	
  

of the ecosystems they link. The Mediterranean herbivorous fish, Sarpa salpa, has been 28	
  

defined as a key organism in seagrass and rocky macroalgal habitats. Our objective in 29	
  

this study was to evaluate the potential of this species to be considered a mobile link by 30	
  

(1) assessing its capacity to connect different habitats, the strength of these connections, 31	
  

and the habitat use; and by (2) determining whether the patterns observed were 32	
  

consistent on a diel basis and over an annual period. We used the recently developed 33	
  

Brownian bridge movement models (BBMM) framework to analyse the movement 34	
  

patterns of 18 fish tracked with passive acoustic telemetry (mean tracking duration 103 35	
  

± 22 days) and a time-frequency analysis to assess their temporal patterns. Our results 36	
  

showed that S. salpa performed trips between different and distant habitats (on the order 37	
  

of km) with large home ranges (overall mean 134 ± 10 ha). Despite its high mobility, S. 38	
  

salpa used seagrass more intensively rather than rocky habitats. In addition, our results 39	
  

confirm the existence of diel patterns for this species, mostly observed in the seagrass 40	
  

habitat, with fishes moving from shallow areas during the day to deeper areas at night. 41	
  

These patterns were visible for most of the year. Taken together, these results suggest 42	
  

that S. salpa may act as a mobile link by connecting shallow and deep areas of the 43	
  

meadow on a daily basis and linking different and distant habitats over longer temporal 44	
  

scales. 45	
  

 46	
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 3	
  

Introduction 49	
  

Mobile links are organisms able to move between habitats and ecosystems that support 50	
  

essential functions by connecting areas and contributing to ecosystem resilience (Gilbert 51	
  

1980, Nyström & Folke 2001). Connections may be achieved by organisms passively 52	
  

drifting from one habitat to another (e.g. larvae in seawater, anemochorous seeds) or by 53	
  

their active movement. Active mobile links are animals that provide a multitude of 54	
  

different functions such as pollination, seed dispersal and translocation of nutrients 55	
  

(Ogden & Ehrlich 1977, Meyer et al. 1983, García et al. 2013), which can have 56	
  

substantial effects on ecosystem functioning and structure (Lundberg & Moberg 2003). 57	
  

Additionally, if these mobile species are key organisms, as is the case of some 58	
  

herbivores, their movement patterns can have profound consequences on the 59	
  

functioning of the ecosystems they link. Indeed, herbivores play a central role in the 60	
  

organization of communities and ecosystems (Burkepile & Hay 2006, Gruner et al. 61	
  

2008) and often they do not distribute their impacts uniformly among the habitats they 62	
  

travel across (e.g. McCook 1997, Knapp et al. 1999). Foraging theory predicts habitat 63	
  

selection on the basis of resource quality and abundance (Charnov 1976), but other 64	
  

factors such as predation risk (Brown & Kotler 2004, Hoey & Bellwood 2011), animal 65	
  

state (Schuck-Paim et al. 2004) or landscape spatial configuration (Haynes & Cronin 66	
  

2003, Fortin et al. 2005, Hoey & Bellwood 2011) also influence animal foraging 67	
  

decisions and movement patterns. Therefore, to fully assess whether an organism can 68	
  

effectively function as an active mobile link between habitats or ecosystems, two key 69	
  

issues should be addressed: the spatial arrangement of habitats and the movement 70	
  

patterns of the animal.  71	
  

 72	
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Marine landscapes (i.e. seascapes, Pittman et al. 2011) are assumed to have a higher 73	
  

level of connectivity than terrestrial ones (Tanner 2006), which reinforces the 74	
  

possibility of generalist mobile fish herbivores to serve as mobile links. In seascapes, 75	
  

where GPS positioning is not possible, acoustic telemetry has become increasingly used 76	
  

to track animals in space and time. Descriptive analyses (frequency distribution of 77	
  

detections) and or space utilisation methods (minimum convex polygons and kernel 78	
  

utilisation distributions) have been widely applied, providing key information on animal 79	
  

space use. However, the temporal component between successive locations, which is 80	
  

crucial to assess the connection between habitats, is often overlooked (Jacoby et al. 81	
  

2012). Brownian bridge movement models (BBMM, Horne et al. 2007, Kranstauber et 82	
  

al. 2012) consider both the spatial and the temporal component of movement. BBMMs 83	
  

explicitly address the problem of connections (i.e. bridges) between successive 84	
  

locations, and thus, are useful to determine whether or not highly mobile species act as 85	
  

links between habitats. 86	
  

 87	
  

In the Western Mediterranean the herbivorous fish Sarpa salpa (L.) exerts a profound 88	
  

impact in different coastal habitats that include the consumption of a great proportion of 89	
  

seagrass annual primary production (Prado et al. 2007), drastic reductions on seagrass 90	
  

canopy structure that can foster predation on seagrass-dwelling organisms (Pagès et al. 91	
  

2012), or its influence on the vertical distribution of canopy-forming algae (Vergés et al. 92	
  

2009), among others (e.g. Sala & Boudouresque 1997). S. salpa are diurnal browsers 93	
  

and generalist herbivores, allocating most of their daytime to foraging (ca. 65% of their 94	
  

time) in both seagrass (Ferrari 2006, Jadot et al. 2006, Abecasis et al. 2012) and  rocky 95	
  

habitats (Tomas et al. 2011). Nevertheless, it remains unclear whether individuals are 96	
  

systematically capable of connecting different habitats or if, on the contrary, individuals 97	
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found in rocky habitats belong to different populations from those in seagrass beds (as 98	
  

seen by Fox & Bellwood 2011 with rabbitfishes in coral reefs). Given that seagrass beds 99	
  

and rocky habitats are usually found forming a mosaic, it seems reasonable to assume 100	
  

individual commuting among habitats. If these trips were frequent and enough time was 101	
  

spent in each habitat to imply a translocation of materials and energy, the ecological 102	
  

implications would be sound. 103	
  

 104	
  

Our study aims were (1) to determine whether the herbivorous fish S. salpa commutes 105	
  

between different habitats in a seascape mosaic, characterise the strength and variability 106	
  

of these connections and the habitat use in each of these systems; and (2) to determine if 107	
  

the patterns observed are consistent on a diel basis and over an annual period. To 108	
  

address objective (1) we analysed the movement data recorded by passive acoustic 109	
  

telemetry with the BBMM framework, and we used a time-frequency analysis 110	
  

(Continuous Wavelet Transform, CWT) to evaluate the temporal patterns for this 111	
  

species along the tracking period (objective 2). If S. salpa uses and commutes between 112	
  

different habitats, and these patterns are sustained on time, we will be able to discuss the 113	
  

potentiality of this species to be considered an active mobile link.  114	
  

 115	
  

 116	
  

117	
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Materials and Methods 118	
  

 119	
  

Study area and receiver set up 120	
  

This work was conducted between October 2008 and October 2009 in Medes Islands 121	
  

Marine Protected Area and the adjacent unprotected stretch of coast, located on the 122	
  

north-western Mediterranean. The study area is a mosaic of habitats composed of sandy 123	
  

bottoms, Posidonia oceanica seagrass meadows and macroalgal communities in rocky 124	
  

habitats (Fig. 1a; Hereu et al. 2010, Hereu et al. 2011). Rocky areas (with macroalgal 125	
  

communities) occupy a larger area compared to seagrass communities (for each part of 126	
  

seagrass habitats there are nine parts of rocky habitats, see Fig. 1a). A fixed array of 26 127	
  

single-channel omni-directional hydrophones (VR2 receivers, VEMCO, Nova Scotia, 128	
  

Canada) was deployed around the Medes Islands archipelago and along the coast. 129	
  

Receivers’ detection range was established by mooring tags at different distances from 130	
  

4 receivers for a 24-hour period each. The receivers tested (#3, #4, #5, #6, see Fig. S1a), 131	
  

were among the most used by S. salpa (see results, Fig. S2) and were located on the 132	
  

southwestern side of the islands. Their ranges encompassed varying proportions of each 133	
  

habitat (see Fig. 1a). The average percentage of tag detections was very high (above 134	
  

75%, Fig. S1b) until 100 m away of receivers, and between 100 to 250 m average 135	
  

percentage of detection remained at 35-25%. Tags placed at distances beyond 250 m 136	
  

were generally not detected (Fig. S1b). This distance threshold (250 m) was thus 137	
  

considered the receivers’ detection range. The average spacing between receivers was 138	
  

210 m (detection probability at this distance ca. 25 ± 2 %) in order to prevent the 139	
  

existence of undetectable areas. Receivers were retrieved, data downloaded, cleaned of 140	
  

biofouling, and redeployed 5 times during the study (in November 2008, January 2009, 141	
  

May 2009, August 2009 and October 2009). 142	
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 143	
  

Acoustic tagging procedure 144	
  

S. salpa individuals were fished on the 16th and 17th October 2008. Twenty fishes were 145	
  

captured at four different sites (see Fig. 1a, five fishes per site) during daytime using 146	
  

seine fishing net by circling schools of S. salpa fish. Since there is no evidence of 147	
  

sexual dimorphism on this species, individuals were not assigned a sex. Each fish was 148	
  

measured to the nearest 0.5 cm (Total Length) and tagged following the protocol in 149	
  

Jadot et al. (2006). After recovery, they were returned to their respective sites. We used 150	
  

VEMCO acoustic transmitters (V9P-2L, 9 mm diameter × 47 mm length) with 120 s 151	
  

average repeat rate, a depth accuracy of ± 2.5 m and an estimated battery life of 522 152	
  

days. Previous studies have shown that surgical tag implantation has a very limited 153	
  

impact on the behaviour and physical status of this species (Jadot 2003). It should be 154	
  

noted that four of the most frequently detected five fishes (called residents, see below) 155	
  

were captured in the meadow zone (see Fig. 1a, Table S1). 156	
  

 157	
  

Spatial patterns  158	
  

For each fish, we calculated the total period between its releasing date and its last day of 159	
  

detection (total period of detection or tracking period, TP), as well as the number of 160	
  

days detected (DD), following March et al. (2010). These descriptors were used to 161	
  

calculate the Residence Index (RI) per fish, defined as the quotient between DD and TP 162	
  

for that individual (March et al. 2010). Fishes with a RI > 0.6 (i.e. fishes that were 163	
  

detected within the array of receivers for more than the 60 % of days during their 164	
  

tracking period, and tracked more than 5 days) were considered ‘resident’ as opposed to 165	
  

the ‘non-resident’ ones (RI < 0.6). Utilisation distributions and home ranges were 166	
  

assessed for both resident and non-resident fishes.  For non-residents, these estimations 167	
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should be viewed as minimum areas of utilisation, since their estimates may be biased 168	
  

due to their low number of detections within the array. Further analyses were run only 169	
  

for residents, which accounted for the vast majority of detections (see Results).  170	
  

 171	
  

We used the recently developed Brownian bridge movement model (BBMM) approach 172	
  

(Horne et al. 2007, Kranstauber et al. 2012) to estimate individual fish utilisation 173	
  

distributions (UD). Utilisation distribution estimation provides an objective way to 174	
  

define an animal’s normal activities (Powell 2000). UDs are probability density 175	
  

functions that provide the animal’s probability of use for each cell (i.e. pixel) of a given 176	
  

grid (raster map). We only calculated UDs for those individuals with more than 50 data 177	
  

points (locations) and more than 5 days detected (see Table S1, i.e. 5 resident and 5 178	
  

non-resident fishes). UD estimation through BBMM has several advantages over the 179	
  

classical location-based kernel density estimator (KUD). While KUD method only 180	
  

assesses the spatial arrangement of locations, BBMM considers the time dependence 181	
  

between them. This makes BBMM a particularly useful method to assess the capability 182	
  

of an animal to behave as a mobile link, given that it is especially successful at detecting 183	
  

the connectivity between highly used areas. Moreover, it assumes the animal is moving 184	
  

following a conditional random walk movement model between pairs of locations (i.e. a 185	
  

random walk conditioned by a known starting and ending location); and finally, it 186	
  

allows to take location error into account (see Calenge 2011 for a thorough comparison 187	
  

between KUD and BBMM methods) (biotelemetry error, i.e. 250 m in our case; see 188	
  

supplementary for a complete explanation of BBMM implementation to our data set; 189	
  

see an example of a data set in Table S2). BBMM calculations were performed in R 190	
  

(RDevelopmentCoreTeam 2012) using the package BBMM (Nelson et al. 2011). 191	
  

 192	
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Home ranges: Individual fish UDs obtained from the BBMM were used to calculate 193	
  

individual home range areas. The smallest area accounting for the 95 % of the total 194	
  

probability of use is usually defined as the animal home range (Powell 2000). Thus, for 195	
  

each individual UD we calculated the home range area as the 95% volume isopleth of 196	
  

the UD and the core areas of usage were also calculated as the 50% volume isopleth of 197	
  

the UD. These calculations were performed in ARCGIS10® (ESRI, Redlands, CA, 198	
  

USA) and GME (Beyer 2011). 199	
  

 200	
  

Space use: On the other hand, the individual UDs obtained from the BBMM were also 201	
  

used to assess population-level space use. We summed the cell values for all resident 202	
  

fish UDs (n = 5) and the cell values of non-residents UDs (n = 5) respectively and then 203	
  

re-scaled their cumulative cell values to sum to 1 (since UDs are probability density 204	
  

functions, Powell 2000). In this way we obtained the population-level UD for residents 205	
  

and non-residents respectively. This is equivalent to projecting each individual UD onto 206	
  

a grid, and allows for the spatial assessment of the overall most used areas of that 207	
  

population (see e.g. Horne et al. 2007, Sawyer et al. 2009). 208	
  

 209	
  

Occasional excursions from each habitat: For resident fishes, we assessed the 210	
  

importance of occasional movements by calculating the probabilities of a fish making 211	
  

an excursion of a given duration departing from a given habitat (meadow or no-meadow 212	
  

areas). First, receivers were grouped according to the presence or absence of P. 213	
  

oceanica in their range of detection. We labelled the receivers in the seagrass habitat as 214	
  

‘meadow’ (the 4 receivers with seagrass within their detection range, see Fig. 1a) and 215	
  

‘no-meadow’ (the rest of the receivers). We define excursion time as any time interval 216	
  

between two consecutive locations on the same receiver. We represented the excursion 217	
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times in each habitat in a log-log scale. This is an adequate way to visualize fat tail 218	
  

distributions, that is, distributions where extreme values show non-negligible 219	
  

probabilities (Pueyo 2006, Sims et al. 2007). 220	
  

 221	
  

Receiver-based descriptors: In order to determine whether receivers are located in 222	
  

travelling zones or in intensively used areas within the habitat, we computed, for the 223	
  

resident fishes, the percentage of consecutive revisits to the same receiver as the ratio 224	
  

between consecutive revisits and the sum of consecutive with non-consecutive revisits. 225	
  

Non-consecutive revisits are those that reach a particular receiver after having been 226	
  

detected previously in another receiver.  Low ratios of consecutive visits suggest the 227	
  

receivers are located in a travelling zone, whereas high ratios suggest the receivers are 228	
  

in intensively used areas. We complemented this information with the mean excursion 229	
  

duration from each receiver (time interval between consecutive detections on that 230	
  

receiver) and the number of detections in each receiver (see results). 231	
  

 232	
  

Temporal patterns 233	
  

To study fish behaviour on the depth axis, we assessed day and night depth distribution 234	
  

for resident fish in meadow and no-meadow habitats. Data were split into periods of day 235	
  

and night, according to the sunset-sunrise time calendar obtained from the U.S. Naval 236	
  

Observatory (Astronomical Applications Department, accessed 1st June 2011 237	
  

http://aa.usno.navy.mil). We calculated the mean depth per day and night for the whole 238	
  

data set for each fish. Then, the dependent variable fish mean depth was analysed with a 239	
  

2-way ANOVA to test the effects of the fixed factors habitat (2 levels: meadow, no-240	
  

meadow) and phase of the day (2 levels: day, night). Normality and homoscedasticity 241	
  

were tested and fulfilled.  242	
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 243	
  

We also tested whether there were differences in the frequency of detections according 244	
  

to the fixed factors phase of the day (2 levels: day and night), habitat (2 levels: meadow, 245	
  

no-meadow) and season (just 2 levels: autumn, winter, because we did not have enough 246	
  

fish individuals [replicates] for the rest of seasons). Detection frequencies were fit to a 247	
  

linear model and the variance structure of heteroscedastic variables (season and habitat) 248	
  

was included as weights within the linear model. The best weighted model was selected 249	
  

using Akaike’s Information Criterion (AIC) (Zuur et al. 2009). Normality was tested 250	
  

and fulfilled. Data were analysed with the package nlme in the statistical software R 251	
  

(Bates et al. 2011, Pinheiro et al. 2011, RDevelopmentCoreTeam 2012). 252	
  

 253	
  

The temporal patterns of hourly detections were examined by visually inspecting the 254	
  

chronograms for each resident fish. A time-frequency analysis (the Continuous Wavelet 255	
  

Transform – CWT) was then used with the pooled data set of all residents, in order to 256	
  

identify periodic patterns in S. salpa hourly detections (as used in e.g. March et al. 257	
  

2010, Alós et al. 2012). Time-frequency methods are more powerful than frequency 258	
  

ones because they allow us to track periodicity across time (Subbey et al. 2008). Most 259	
  

traditional mathematical methods examine periodicities in the frequency domain, and 260	
  

therefore implicitly assume that the underlying processes are stationary in time. In 261	
  

contrast, wavelet transforms expand time series into time frequency space and can 262	
  

therefore find localized intermittent periodicities (Grinsted et al. 2004). We computed 263	
  

(Matlab) a 2-dimensional wavelet spectrum (i.e. Morlet wavelet) and a point-wise test 264	
  

(95% significance level) on previously normalized data (i.e. log-transformation) 265	
  

(Grinsted et al. 2004).  266	
  

 267	
  

268	
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Results 269	
  

Spatial patterns 270	
  

Five resident fish accounted for the 96% of detections, while non-resident fishes 271	
  

accounted for the remaining 4% (Fig. S2, Table S1). Home range areas for individual S. 272	
  

salpa varied from 87.88 ha to 187.44 ha (Table S1, Fig. S3). The mean home-range area 273	
  

for residents was 143 ± 18 ha, and 124 ± 11 ha for non-residents (averaging the 274	
  

individual home range areas of the 5 residents, and the 5 non-residents respectively). 275	
  

Residents’ space use (i.e. the spatial projection of the sum of all resident individual 276	
  

UDs) evidenced that the seagrass meadow was intensively used, as shown by their core 277	
  

area that was centred on the meadow. Residents also used rocky habitats from the 278	
  

islands and even from the coast 1.5 km apart from their core area, an evidence of large 279	
  

scale commuting (Fig. 1b,d). Non-residents population space use (i.e. the projection of 280	
  

non-residents’ individual UDs) covered nearly all coastal zones of the study area (Fig. 281	
  

1b). Non-resident population showed different cores of activity (50 % isopleth), on the 282	
  

coast and on the islands, partially located on the seagrass habitat. Both residents and 283	
  

non-residents populations overlapped their core areas on the P. oceanica habitat, in the 284	
  

south-western coast of the islands (Fig. 1a,b).  285	
  

 286	
  

The probability distribution of a resident fish to perform an excursion of a particular 287	
  

duration showed a fat-tailed decay, in particular with a power law like scaling (i.e. a 288	
  

straight-lined decay in Fig. 1c). This held for meadow and no-meadow receivers, 289	
  

showing that regardless of the habitat the vast majority of excursions departing from a 290	
  

receiver were very short in duration, but from time to time very long excursions also 291	
  

occurred. The probability of performing very long excursions was not negligible and 292	
  

depended on the habitat the receiver was located in, excursions departing from no-293	
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meadow receivers being larger than those departing from meadow receivers. For 294	
  

example, the probability of making excursions of 1000 minutes (ca. 17 hours) was low, 295	
  

but it was around two orders of magnitude higher in the no-meadow receivers compared 296	
  

to those in the meadow (Fig. 1c). These results suggest a larger site fidelity to meadow 297	
  

compared to no-meadow areas. More generally, meadow receivers showed a higher 298	
  

number of detections, high consecutive revisits ratio (Fig. 1d), and low mean excursion 299	
  

duration. This should not come as a surprise given that the set of receivers located in the 300	
  

meadow showed the highest space use probability (Fig. 1d). The set of receivers located 301	
  

in no-meadow areas, specially those at the edges of the receiver’s array, showed a lower 302	
  

consecutive revisits ratio, a high variability on excursion durations, and a much lower 303	
  

probability of space use (Fig. 1d). 304	
  

 305	
  

Temporal patterns 306	
  

S. salpa depth preference differed significantly between habitats and phase of the day 307	
  

(Fig. 2, Table 1). In seagrass habitat, the majority of detections during daytime were in 308	
  

shallow depths (mean diurnal depth = 5.2 ± 0.2 m), whereas, at night, detections were 309	
  

significantly deeper (mean nocturnal depth = 8.5 ± 0.9 m, inset Fig. 2a, Fig. S4). In 310	
  

contrast, this cycle was not significant in rocky habitats, where fish remained most of 311	
  

the time at similar depths (p-value > 0.05, inset Fig. 2b, Fig. S4). It is worthy to note 312	
  

that S. salpa depth use in the area of the meadow (Fig. 2a) matches seagrass habitat 313	
  

depth distribution (Fig. 1a). 314	
  

 315	
  

We found a significant effect of habitat type and day phase on the frequency of 316	
  

detections (p-values < 0.05, Table 1), but no direct effects of seasonality (Table 1). 317	
  

Receivers in meadow areas presented a higher amount of detections than receivers in 318	
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no-meadow areas. In the former most detections were nocturnal, whereas in the latter 319	
  

most detections were received during the day (see Fig. S5a). In autumn there was a 320	
  

significantly higher frequency of detections at night compared to daytime, but these 321	
  

differences were not significant in winter (see the significant Phase × Season interaction 322	
  

in Table 1; see also Fig. S5b). 323	
  

 324	
  

Inspecting the chronograms from individual resident fishes (Fig. S6), a diel pattern 325	
  

became evident when considering hourly detection rates. The similarities observed at 326	
  

the individual level (Fig. S7, with some variability), allowed us to aggregate the data for 327	
  

all residents. The diel cycle persisted, with the highest rate of detections per hour at 328	
  

night, while at sunrise and late afternoon there was the minimum number of detections 329	
  

and, during daytime, the detection rate remained low (Fig. 3a, see also individual level 330	
  

data in Fig S7). Wavelet spectrograms of the time series evidenced the existence of a 331	
  

diel cycle on the residents’ hourly detection rate (period = 24 hours, see dashed lines in 332	
  

Fig. 3b; see individual-level wavelet spectrograms, Fig. S8). This pattern was 333	
  

significant (with some non-significant patches) for most of the time series until most 334	
  

fishes stopped transmitting. For periods around 128-256 hours (5-10 days) and 335	
  

especially around 512 hours (21 days) there were also significant patches (Fig 3b). 336	
  

 337	
  

338	
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Discussion 339	
  

The large home ranges of S. salpa, the connection observed between areas with the 340	
  

BBMM models, the trips observed between distant habitats and the consistency of these 341	
  

patterns in time suggest that S. salpa might act as a mobile link. Despite its high 342	
  

mobility, S. salpa used seagrass more intensively rather than rocky habitats, especially 343	
  

resident fishes (i.e. those spending more than 60% of time within the area of detection 344	
  

of the receivers network). In addition, our results confirm the existence of diel patterns 345	
  

for this species, mostly observed in the seagrass habitat, with fishes moving from 346	
  

shallow areas during the day to deeper areas at night. These patterns were visible for 347	
  

most of the year and also highlight the potential link between shallow and deep areas of 348	
  

seagrass meadows. 349	
  

 350	
  

Applying BBMM on passive acoustic telemetry data sets 351	
  

Despite the acknowledged suitability of BBMM to provide insight into the movements 352	
  

of terrestrial tracked animals using GPS data (Horne et al. 2007, Sawyer et al. 2009), 353	
  

this is the first time the method is applied to a marine data set.  The application of 354	
  

BBMM on passive acoustic telemetry data has allowed us to detect which of the highly 355	
  

frequented areas are more likely to be connected. This would not have been possible 356	
  

with the classical KUD approach, which does not account for the actual path the animal 357	
  

has travelled (compare the UD obtained with the BBMM in Fig. 1d with the UDs 358	
  

obtained with the KUD in Fig. S9). However, to correctly interpret the output of 359	
  

BBMM with passive acoustic telemetry data sets one needs to be aware of three specific 360	
  

issues. Firstly, when individuals consecutively revisit the same receiver, the model 361	
  

assumes the existence of a pure diffusive movement (not bridged) around that receiver, 362	
  

which is proportional to the time spent between the two consecutive locations. This 363	
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leads to a circular-shaped utilisation distribution around that receiver. If the time lag 364	
  

between two consecutive locations at the same receiver is very large, then the local UD 365	
  

(around the receiver) could be overestimated because it might well be the case that the 366	
  

animal departed the area out of the network receivers and returned to the same area later 367	
  

on. Thus, the BBMM method is very suitable for species that move throughout the 368	
  

receivers’ network area, while it is less appropriate for species that display permanent 369	
  

site-fidelity with low mobility, or that display movements much broader than the 370	
  

receivers network area of detection. Secondly, the presence of acoustic shadows, i.e. 371	
  

areas within the receiver detection range where the transmitter cannot be located (e.g. in 372	
  

crevices, holes, behind big boulders, etc.) may result in non-realistic bridges. As an 373	
  

example, if an animal went from receiver A to receiver C, without being detected at the 374	
  

intermediate receiver B, then a non-realistic bridge would be modelled. Thus, it is 375	
  

important to check that no gaps without transmitter detection exist between receivers. 376	
  

Thirdly, the amount of uncertainty of utility distribution and home range area estimation 377	
  

through BBMM is dependent on the amount of location error. In acoustic telemetry, 378	
  

location errors are dependent on receivers’ detection ranges. In our case, we used a 379	
  

single location error to calculate BBMM (the average of the 4 receivers most used by S. 380	
  

salpa and encompassing varying proportions of each habitat, see Fig S1a), but 381	
  

according to Horne et al. (2007), if researchers have reasons to believe that each 382	
  

location (i.e. in acoustic telemetry, each receiver) has a unique error, this can be 383	
  

incorporated into the BBMM. For example, if receivers within different habitat types 384	
  

consistently displayed differential detection ranges, as it has been observed in coral 385	
  

reefs (Welsh et al. 2012), one could perform the BBMM with a location error for each 386	
  

habitat. Nevertheless, the method is resilient to small differences on location error (see 387	
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Fig S10, which shows the output of BBMM with our data set using different location 388	
  

errors). 389	
  

 390	
  

Spatial patterns 391	
  

Demersal fishes have been generally found to display restricted home ranges and high 392	
  

site fidelity (e.g. Chapman & Kramer 2000, Topping et al. 2005, March et al. 2010, 393	
  

Alós et al. 2012). These small home range sizes do not prevent fishes to connect 394	
  

habitats that are close enough one to each other. For example, habitat connection has 395	
  

been thoroughly demonstrated for Haemulidae fishes in back-reef habitats (Meyer et al. 396	
  

1983, Verweij & Nagelkerken 2007). However, we found that S. salpa displayed large 397	
  

home range areas (overall mean of individual home ranges = 134 ± 10 ha) that 398	
  

encompassed different kinds of habitats and ecosystems, with high variability among 399	
  

individuals. This was true for resident and for non-resident fishes (Table S1). Inter-400	
  

individual variability in home range size has been generally found, both for S. salpa 401	
  

(Jadot et al. 2002), as well as for other species (e.g. Marshell et al. 2011). In addition, 402	
  

we found that S. salpa fishes conducted long trips (on the order of some km) between 403	
  

distant habitats. Indeed, they even often crossed the sand channel that separates Medes 404	
  

Islands from the coast (see the bridge between the islands and the coast in Fig. 1b,d, see 405	
  

also Table S1), although several studies have shown that species usually avoid crossing 406	
  

habitat edges, especially among those that are highly contrasting (known as hard edges), 407	
  

such as seagrass-sand edges (Chapman & Kramer 2000, Haynes & Cronin 2003, 2006). 408	
  

 409	
  

Despite its large mobility, resident S. salpa fishes showed a clear and long-term (i.e. one 410	
  

year) preference for the seagrass meadow evidenced by the high utilisation of this 411	
  

habitat, where they spent more than 88% of time on average. They allocated a low 412	
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proportion of time to rocky compared to seagrass systems, but the connection between 413	
  

both types of habitats was non-negligible. In contrast, non-resident fish (75% of the 414	
  

tracked individuals) were characterised by frequent excursions out of the receiver array 415	
  

and by a very short tracking period that resulted in a much lower number of detections. 416	
  

Hence, it is difficult to fully assert whether this group could have a major role in 417	
  

connecting the habitats within the network of receivers to other distant habitats or 418	
  

whether they were simply residents in seagrass habitats out of the network of receivers 419	
  

only sporadically visiting the area of study. Because of that, non-resident estimates of 420	
  

space use and home ranges should be viewed as minimum areas of utilisation, since 421	
  

these could be biased due to their low number of detections within the array.  422	
  

 423	
  

Temporal patterns 424	
  

Temporal trends within each habitat were also observed. S. salpa was more often 425	
  

detected in the seagrass at night than during the day; this cycle was consistent despite 426	
  

the fact that S. salpa is a diurnal feeder that increases its activity during daytime 427	
  

(Verlaque 1990, Ferrari 2006). There is some controversy on how cycles on the rate of 428	
  

detections may arise. It has been suggested that detection frequency and movement rate 429	
  

may be negatively correlated (Topping et al. 2005), or even that cycles may arise as a 430	
  

result of the environmental noise (Payne et al. 2010), but a growing number of studies 431	
  

have related changes in habitat use with diel cycles (March et al. 2010, Alós et al. 2011, 432	
  

Alós et al. 2012). In our case, the generating mechanism is very likely to be related to 433	
  

the loss of acoustic transmission inside the canopy of seagrass meadows, already 434	
  

described by other authors (which can decrease the number of detections by up to 80%, 435	
  

March et al. 2010). The aforesaid technical restriction could, in fact, be used as a proxy 436	
  

for S. salpa activity in the meadow. For this species it is well established that diurnal 437	
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time is allocated to foraging in the seagrass (Verlaque 1990, Ferrari 2006), thus, the low 438	
  

detection rates observed during the day may mean the animal is feeding in the meadow, 439	
  

in close contact with the canopy, which is known to produce high acoustic losses. 440	
  

Conversely, at night the higher number of detections might suggest the animal is outside 441	
  

the canopy. This day-night cycle on the number of detections per hour was sustained for 442	
  

at least 6 months, as shown by the CWT analysis, and no effects of seasonality were 443	
  

evident despite both seagrass and macroalgal biomass and production have a seasonal 444	
  

pattern in the study area (Alcoverro et al. 1995, Hereu et al. 2008). Diel cycles had 445	
  

already been identified for this species on the short-term (i.e. one month, Jadot et al. 446	
  

2006), but it was unclear whether these were maintained for the whole year, since it had 447	
  

been suggested that S. salpa fishes conducted a migration from shallow waters to deeper 448	
  

ones (i.e. below 30 m) in autumn-winter in order to spawn (Verlaque 1990). Our results 449	
  

challenge this migration hypothesis, in spite of the low number of fishes studied. 450	
  

 451	
  

Additionally to the cycle on hourly detection rates, a diel cycle on depth use was also 452	
  

observed in the seagrass habitat, with mean depths moving from 4-5 m at daytime to 9-453	
  

10 m at night (see inset Fig. 2a). These results match with the results discussed in the 454	
  

previous paragraph and with the higher herbivory rates generally observed on shallow 455	
  

areas compared to deeper ones (Vergés et al. 2012). Indeed, in the studied seagrass 456	
  

meadow it may be optimal to restrict feeding activity to the shallow waters, where 457	
  

seagrass is 2.7 times denser and with 3 times more cover compared to the deeper part of 458	
  

the meadow (Romero et al. 2012). High detection rate in deeper grounds at night give us 459	
  

a clue on the behaviour of this species that has been described to rest at night at the 460	
  

seagrass-sand edge (Ferrari 2006, Jadot et al. 2006) (see that the seagrass-sand edge is at 461	
  

ca. 10m in Fig. 1a). Thus, S. salpa fishes could be exporting organic matter from their 462	
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feeding grounds (shallower parts of the meadow) to their resting sites (seagrass-sand 463	
  

edge), as has been observed for other mobile fishes (Meyer et al. 1983, Verweij & 464	
  

Nagelkerken 2007). Conversely these diel patterns on depth preference were not 465	
  

observed in rocky habitats. 466	
  

 467	
  

Conclusions 468	
  

The integration of the spatial and temporal habitat use with both fish mobility and the 469	
  

proportion of area occupied by each habitat in the seascape mosaic identifies the fish S. 470	
  

salpa as a potential mobile link. While previous studies pointed out that S. salpa acted 471	
  

as a key herbivore in seagrass and rocky macroalgal habitats independently (e.g. Prado 472	
  

et al. 2007, Vergés et al. 2009), our study connects the use of both habitats by the same 473	
  

individuals. On the one hand, mobile links can potentially transfer energy, matter and 474	
  

other functions (Nyström & Folke 2001, Lundberg & Moberg 2003). Energy and matter 475	
  

transfer might be provided by S. salpa, since fishes foraging in seagrasses have been 476	
  

observed to defecate pellets with algal traces from nearby rocky reefs and vice versa 477	
  

(Tomas et al. 2010). The long gut transit times (ca. 5 gut lengths per body length; 478	
  

Havelange et al. 1997) observed in S. salpa could facilitate this transfer. However, since 479	
  

the studied fishes spent most of the time on seagrass habitat, the main transfer of energy 480	
  

would be between shallow and deep areas of the meadow at a daily basis (see previous 481	
  

paragraph). On the other hand, S. salpa is also a voracious herbivore, substantially 482	
  

shaping seagrass and macroalgal habitats. Even though the proportion of seagrass 483	
  

habitats in the studied area was clearly lower than macroalgal-dominated rocky areas 484	
  

(Fig. 1a), the fishes spent more time on seagrass habitat, and thus, seagrasses would be 485	
  

more susceptible to grazing by S. salpa than macroalgal communities from rocky areas. 486	
  

In this work we did not directly assess the relationship between S. salpa movement 487	
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patterns and their functional consequences in the ecosystem. However, works in the 488	
  

same geographic area suggest that the movement patterns we have found resonate with 489	
  

grazing intensity spatial patterns. In Medes Islands area, S. salpa has been observed to 490	
  

intensively defoliate seagrass plants in summer (Tomas et al. 2005, Prado et al. 2007) 491	
  

compared to a more limited fish grazing effect in macroalgal communities (Hereu et al. 492	
  

2008). Thus to understand the seascape-dependent distribution of fish herbivory impacts 493	
  

it becomes important not merely to know the consumption rates, diets and preferences 494	
  

of these species within the system, but also herbivore movements across time and space, 495	
  

along with the spatial configuration of the seascape mosaic. 496	
  

497	
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Table 1. Analyses of variance performed. d.f. degrees of freedom. Significance codes: 689	
  

P-value < 0.001***, < 0.01**, ≤ 0.05* 690	
  

 691	
  

Response variable Effect    Df  F-value    P-value 692	
  

Fish depth   Phase             1  12.6608 0.0026 ** 693	
  

Habitat           1  5.0128  0.0397 *  694	
  

Phase × Habitat  1   2.0811  0.1684 695	
  

Residuals        16   696	
  

 697	
  

Frequency of   Habitat    1 96.87955 <.0001 *** 698	
  

detections  Season    1 1.00469 0.3262 699	
  

Phase    1 55.51481 <.0001 *** 700	
  

Habitat × Season  1 0.73442 0.3999 701	
  

Habitat × Phase  1 112.90516 <.0001 *** 702	
  

Season × Phase  1 9.12524 0.0059 ** 703	
  

Habitat × Season × Phase 1 2.35231 0.1382 704	
  

 705	
  

706	
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Fig. 1. Spatial patterns. (a) Study site’s map of habitats with isobaths. Numbers (1-4) 707	
  

represent the fishing-releasing sites (see methods). (b) BBMM space use estimation for 708	
  

resident and non-resident populations. Note a higher intensity of use on the area with 709	
  

seagrass (specially for residents). (c) Log–log plot of the probability of making 710	
  

excursions of time ‘x’ in ‘Meadow’ and ‘No-meadow’ habitats. Note the higher 711	
  

probability of conducting very long excursions in ‘No-meadow’ habitats compared to 712	
  

‘Meadow’ ones. (d) Residents’ mean excursion duration and percentage of consecutive 713	
  

revisits for each receiver. The shaded area corresponds to the result of the space use 714	
  

estimation through BBMM for residents (same legend as Fig. 1b). 715	
  

Fig. 2. Depth patterns. Number of diurnal and nocturnal detections classified by depth 716	
  

in (a) seagrass and (b) rocky systems. The insets show the mean depth along the 24 717	
  

hours of the day. Note that a 24-hour depth cycle is evident in the seagrass (inset (a)) 718	
  

whereas this is not the case in rocky systems (inset (b)). 719	
  

Fig. 3. Temporal patterns of the frequency of hourly detections pooling all residents. (a) 720	
  

The mean number of detections per hour (pooling all residents) evidences a diel cycle, 721	
  

with higher detection rate at night compared to daytime. (b) Wavelet spectrum for the 722	
  

number of hourly detections of resident fishes pooled together. Significant cycles were 723	
  

detected for a 24 h period (horizontal dashed line) and for periods around 512 hours (21 724	
  

days). The thick contour designates the 95% confidence level. The cone of influence 725	
  

where edge effects might distort the picture is shown as a lighter shade. The scale bar 726	
  

represents the intensity of the time-frequency space over time.  727	
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 Fig. 3.  751	
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BBMM implementation 19	
  

To implement BBMM, the data set of each animal should contain a column of coordinate locations and 20	
  

a column with the time each location was reached. In passive acoustic telemetry, location coordinates 21	
  

are those of the receiver that is detecting a given transmitter. However, since the BBMM allows for 22	
  

uncertainty around the starting and ending locations (i.e. location error), the real location is not a 23	
  

constant position, but a Gaussian probability density function around that point (with a mean, i.e. the 24	
  

receiver coordinates; and a variance around that mean, i.e. receiver’s detection range, in our case 250 25	
  

m) (Horne et al. 2007). The column with the time stamps is used to produce a vector of time lags 26	
  

between locations. Since this is a vector of increments of time, its length is thus a row less than the 27	
  

column of time and coordinates. Care should be taken to remove from the data set simultaneous 28	
  

receptions from the same fish (i.e. leading to time lags equal to zero; e.g. if the fish was detected by 29	
  

two or more overlapping receivers at the same time, or for any other reason). See the first rows of 30	
  

SS91 data set (Table S2) prepared for BBMM estimation of the UD. 31	
  

 32	
  

 33	
  

Calculations were performed in R (RDevelopmentCoreTeam 2012) using the package BBMM (Nelson 34	
  

et al. 2011), which computed the UDs for each fish by assigning a probability to each cell of a grid (in 35	
  

our case the grid = 226 x 226 cells, cell size = 20 m). To avoid assigning a space use probability to 36	
  

land cells, we subtracted all land probabilities ad hoc and renormalized the UD cell matrix sum to 1, 37	
  

given that utilisation distributions are probability density functions (Powell 2000).  38	
  

 39	
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Table S1. Summary of the monitoring data for the 18 successfully tracked fish. ID = fish code; TL = total length; DD = number of days detected; 40	
  

TP = tracking period (total period of detection); TD = total number of detections; RI = residence index; NR = number of receivers that detected 41	
  

each fish; AR = area of release; Rel. Date = date the fish was released (yyyy/mm/dd); HR size = home range size; Connect.I-C = did the fish 42	
  

moved between the islands and the coast? 43	
  

ID TL (cm) DD (days) TP (days) TD RI   NR AR Rel. Date  HR size (ha) Connect.I-C 44	
  

SS70 28  22  28  308 0.79 (resident)  3 4 2008/10/16 87.88   no 45	
  

SS77 25  96  98  15473 0.98 (resident)  10 3 2008/10/16 140.08   yes 46	
  

SS78 27.5  12  184  182 0.07 (non-resident) 9 3 2008/10/16 138.2   yes 47	
  

SS79 27  18  206  250 0.09 (non-resident) 6 3 2008/10/16 124   no 48	
  

SS80 27  20  93  248 0.22   7 1 2008/10/16 -   no 49	
  

SS81 26  26  51  607 0.51 (non-resident) 16 1 2008/10/16 118.64   yes 50	
  

SS82 22.5  3  3  237 1   9 3 2008/10/16 -   no 51	
  

SS83 27  4  216  48 0.02   3 1 2008/10/16 -   no 52	
  

SS84 24  7  95  42 0.07   4 1 2008/10/16 -   no 53	
  

SS85 25  2  5  57 0.40   11 1 2008/10/16 -   yes 54	
  

SS86 23  14  27  86 0.52 (non-resident) 4 2 2008/10/17 88.08   no 55	
  

SS87 23.5  4  84  279 0.05   2 2 2008/10/17 -   no 56	
  

SS88 23  1  1  45 1    1 2 2008/10/17  -   yes 57	
  

SS89 22.5  3  179  227 0.02 (non-resident) 4 2 2008/10/17 153.12   yes 58	
  

SS90 25  8  35  23 0.23   2 3 2008/10/16 -   yes 59	
  

SS91 28  346  372  24330 0.93 (resident)  15 4 2008/10/16 123.92   yes 60	
  

SS92 32  79  112  10764 0.71 (resident)  12 4 2008/10/16 175.64   yes 61	
  

SS93 34  62  71  5557 0.87 (resident)  17 4 2008/10/16 187.44   yes62	
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Table S2. First rows of SS91 data set prepared for BBMM estimation of the UD. The first column 63	
  

corresponds to the time the fish reached each location (in Julian minutes in this case), the second 64	
  

column are the UTM coordinates on the x-axis and the third column the UTM coordinates on y-axis. 65	
  

The time lags between locations are the difference between the time the next location will be reached 66	
  

and present time. 67	
  

Julian  x  y 68	
  

20403030 518238.2 4654958 69	
  

20403040 518238.2 4654958 70	
  

20403043 518238.2 4654958 71	
  

20403059 518238.2 4654958 72	
  

20403074 518499.5 4654690 73	
  

20403077 518238.2 4654958 74	
  

20403082 518238.2 4654958 75	
  

20403088 518238.2 4654958 76	
  

20403093 518238.2 4654958 77	
  

20403097 518238.2 4654958 78	
  

20403102 518238.2 4654958 79	
  

20403107 518238.2 4654958 80	
  

20403121 518238.2 4654958 81	
  

20403127 518238.2 4654958 82	
  

20403136 518238.2 4654958 83	
  

20403142 518238.2 4654958 84	
  

20403146 518238.2 4654958 85	
  

20403150 518238.2 4654958 86	
  

20403154 518238.2 4654958 87	
  

20403159 518238.2 4654958 88	
  

89	
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Fig. S1. (a) Map showing the 4 receivers for which range tests were conducted. (b) Barplot showing 90	
  

the probability of tag detection at increasing distances from acoustic receivers. Note the sharp drop in 91	
  

tag detection for distances beyond 100 m and the undetectability of tags beyond 250 m. 92	
  

 93	
  

94	
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Fig. S2. Raw data distribution. Bar width on the X-axis relates to the number of total detections per 95	
  

fish. Bar length on the Y-axis relates to the number of detections per receiver for that fish. Note that 96	
  

the vast majority of detections (95.5 %) come from only four fishes (SS77, SS91, SS92, SS93). These 97	
  

fishes plus SS70 were considered resident to our receiver network, since they spent within the array 98	
  

more than the 60 % of days of their tracking period (see Table S1). Note also that receivers #3, #4 and 99	
  

#5 accumulate most of detections. These receivers presented seagrass habitat (‘meadow’) within their 100	
  

range. 101	
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Fig. S3. Individual BBMM utility distributions of all fishes. Black colours indicate low probability and 104	
  

colours from grey to white indicate increasing probabilities of finding an individual. The red line 105	
  

encompasses the 95 % probability of use for a given individual. Stars correspond to the respective sites 106	
  

of capture and release. Note that resident fishes used with a high intensity the areas corresponding to 107	
  

seagrass habitat in Fig. 1a (from the main manuscript). In addition, 3 out of 5 non-resident fishes did 108	
  

also use these meadow areas. Note also, that while fish SS78 very frequently connected the islands 109	
  

with the coast, other fishes (e.g. SS89, SS92, SS93) connected both areas regularly (both areas 110	
  

enclosed by the 95 % isopleth [red line]). 111	
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Fig. S4.  Day and night mean depths for the resident population in meadow and no-meadow habitats. 114	
  

Different lower case letters indicate significant statistical differences. There were significant 115	
  

differences in fish mean depth according to the phase of the day in meadow habitat, but not in no-116	
  

meadow habitat. 117	
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Fig. S5.  Day (light grey) and night (dark grey) mean % of detections for the resident population (a) in 122	
  

meadow and no-meadow habitats and (b) in different seasons. Different lower case letters indicate 123	
  

statistical significant differences. 124	
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Fig. S6. Resident fishes’ number of hourly detections for a subset of the time series. Vertical stripes 126	
  

indicate day (white) and night (grey) related to the local sunrise and sunset time. Note the higher 127	
  

number of nocturnal detections for fishes SS77, SS91, SS92 and SS93 and a reversed cycle (i.e. higher 128	
  

number of diurnal detections) for fish SS70.  129	
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Fig. S7. Individual temporal patterns of the mean number of hourly detections for resident fishes along 134	
  

a 24h cycle. Note the different scales on the y-axis. We observe that 4 out of 5 resident fishes behaved 135	
  

very similarly, with only fish SS70 with a reversed cycle, but with a lower contribution to the whole 136	
  

dataset compared to the rest of fishes (see Table S1 and Fig S2). Note this temporal pattern (24 h 137	
  

cycle) remains visible even after taking the average of these 5 resident fishes (see Fig. 3a from the 138	
  

main manuscript). 139	
  

 140	
  

141	
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Fig. S8. Wavelet spectrum for the number of hourly detections of each resident fish individually. 142	
  

Significant patches on the 24 h period were detected for all residents (horizontal dashed line). The 143	
  

pattern was significant (with some non-significant patches) for most of the time series for fish SS77, 144	
  

SS91 and SS92. It was less evident for fish SS93. Fish SS70 had also a significant 24 h cycle but, with 145	
  

a reversal in the phase (see Fig. S6, S7). Since all resident fishes displayed similarities also on these 146	
  

analyses, the wavelet spectrum for the pooled population of resident fishes gave very similar results 147	
  

(see Fig. 3b main manuscript). The thick contour designates the 95% confidence level. The cone of 148	
  

influence where edge effects might distort the picture is shown as a lighter shade. Light rectangles 149	
  

correspond to holes in the time-series without fish detections where assessing periodicity makes no 150	
  

sense. The scale bar represents the intensity of the time-frequency space over time. 151	
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 Fig. S9. Utility distributions of resident fishes obtained with the kernel density estimator (KUD). 155	
  

Differences between panels arise as a result of different smoothing parameters: (a) h = 50, (b) h = 100, 156	
  

(c) h = 250. Solid lines correspond to the 50% and 95% isopleths, and cooler colours indicate higher 157	
  

intensity of use. While the BBMM successfully identified connections between the islands and the 158	
  

coast (see Fig 1b,d in the main manuscript), KUD did not. In addition, the BBMM identified specific 159	
  

connections (bridges) between receivers with a higher intensity of use than others. This is not possible 160	
  

with the KUD, since it only takes location distribution into account. In contrast, the BBMM considers 161	
  

not only the locations but also the time dependence between them (the actual path the animal has 162	
  

followed), assumes the animal has moved following a conditional random walk between pairs of 163	
  

locations and allows for accounting for a location error (in our case we specified a telemetry error of 164	
  

250 m).  165	
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Fig. S10. Comparison of the BBMM output using a location error of 250 m (a) and a location error of 168	
  

150 m (b). Note the BBMM with greater location error (a) concentrates the probability of use on a 169	
  

wider area around each receiver, and that this implies a smaller utility distribution, since the total 170	
  

probability sum must still be equal to 1 (remember a UD is a probability density function).	
  171	
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