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4Departamento de F́ısica Teórica, Universidad de Zaragoza, Spain

5Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain
6Fundación Gran Mariscal de Ayacucho (Fundayacucho), La Urbina, Venezuela
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Abstract

You measure the value of a quantity x for a number of systems (cells, molecules,
people, chunks of metal, DNA vectors, etc.). You repeat the whole set of measures
in different occasions or assays, which you try to design as equal to one another as
possible. Despite the effort, you find that the results are too different from one assay
to another. As a consequence, some systems’ averages present standard deviations that
are too large to render the results statistically significant. In this work, we present a
novel correction method of very low mathematical and numerical complexity that can
reduce the standard deviation in your results and increase their statistical significance
as long as two conditions are met: inter-system variations of x matter to you but its
absolute value does not, and the different assays display a similar tendency in the values
of x; in other words, the results corresponding to different assays present high linear
correlation. We demonstrate the improvement that this method brings about on a real
cell biology experiment, but the method can be applied to any problem that conforms
to the described structure and requirements, in any quantitative scientific field that
has to deal with data subject to uncertainty.

Keywords: multiplicative systematic error, reducing standard deviation, multiple as-
says, inter-system variation, linear correlation, statistical significance
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1 Introduction

Imagine you measure in the laboratory a given quantity x for six different systems : system
1, system 2, . . . , and system 6 (they could be cell types, people, proteins or DNA vectors,
even the same system at different times if the quantity x is expected to evolve in some
reproducible manner). You want to be sure that you are making no mistakes, so you repeat
the whole set of six measures three times, say, in different days (you try hard so that the
only thing that changes from one time to the next is the day). We will call each one of these
repeated experiments an assay, in this case, assay 1, assay 2 and assay 3. At the end of the
process, you are in possession of 6× 3 values of the quantity x; six for each assay, three for
each system.

Now imagine you obtain the values in tab. 1 (the strange names for the six systems in
the first column will be explained later). The first thing we can say about the results is that
they do not look good at all. The standard deviation from the average is comparable to the
average itself for most of the systems, and only on a couple of them you are ‘lucky’ enough
so that the former is about half the value of the latter. You check the corresponding chart
in fig. 1.1, and you see the same despairing situation. The error bars are humongous!

assay 1 assay 2 assay 3 µ ± σ
pMAN12 33.88 5.65 15.53 18.36 ± 14.33
pMAN17 17.60 3.61 11.29 10.83 ± 7.01
pMAN18 4.62 0.94 2.72 2.76 ± 1.84
pMAN19 55.35 9.30 14.52 26.39 ± 25.22
pMAN20 11.15 4.78 9.10 8.35 ± 3.52
pMetLuc− 0.00 0.39 0.54 0.31 ± 0.28

Table 1: Activity of the MetLuc protein (x quantity) under the control of six different promoter

sequences (the six systems) measured in three assays. The last two columns correspond to the

average µ of the three assays for each system, and the associated standard deviation (or error) σ.

The units as well as the rest of the experiment’s details are described in sec. 2.2.

Figure 1.1: Bar chart representation of the average values µ (orange bars) and the associated

standard deviation σ (black capped lines) in tab. 1.
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Before throwing in the towel, you realize two characteristics about your experiments that
might save your day:

• The fact is that the absolute value of x for each given system is not really very important
to you. What you are really interested in properly measuring is the variation in x from
one system to another. For example, whether or not you could safely claim that the
value of x corresponding to system 1 is larger than, and approximately the double of,
that associated to system 5.

• Even if you seem to be measuring huge differences in absolute value across the different
assays, it looks as if the ‘tendency’ of the variations is similarly captured in all three
of them. This is even more apparent in the graphical representation in fig. 1.2.

Figure 1.2: Variation of the quantity x (MetLuc activity) in tab. 1 for the six systems (vectors)

studied. Each color corresponds to a different assay, and the lines joining the experimental points

have been added for visual comfort.

In this work, we will argue that you are right if you do not throw in the towel in such a
circumstance. We will interpret the structure of the results as being caused by a multiplicative
systematic error (across the different assays), and we will propose a method to correct
your results in a way such that this systematic error is removed. As a consequence, the
corrected numbers will not tell you anything significant about the ‘true’ absolute value of x
for the different systems, but, in exchange, they will maximally capture the tendency that
you seemed to be correctly measuring. That is, the averages of the corrected results will
present appreciable smaller standard deviations while still following the average tendency of
variation.

In the next section, we will make this precise by introducing the general method of
correction as well as a real experiment in cell biology which suffers from the problems (and the
virtues!) that we have mentioned in this introduction. In sec. 3, we will apply the correction
method to this experiment to show that both the standard deviations and the statistical
significance of the results improves considerably. In sec. 4, we will discuss our interpretation
of the studied situation and the proposed method, we will compare it to a simpler alternative,
and we will try to explain the surprising fact that something so straightforward cannot be
found (as far as we are aware) in the previous literature. Finally, in sec. 5, we will briefly
summarize the main conclusions of this work, and we will outline some open questions and
lines of future research
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2 The method and a real example

2.1 Experimental setup

As we advanced we will have in general N systems, among which a specific one may be called
system j, with j = 1, 2, . . . , N . We now measure a quantity x for each one of the N systems,
and we repeat M times the whole set of N measures. A generic repetition is termed assay
k, with k = 1, 2, . . . ,M , and each one of them is carried out under conditions that we expect
to be the same. It is convenient to use xkj to denote the value of the quantity x measured
for system j in the k-th assay (e.g., in tab. 1, x24 = 4.78).

The different systems can be anything, from cities to DNA sequences, from people to
chunks of metal. They can even be the same system at different times if the quantity x is
expected to evolve in some reproducible manner. The differences among the assays could
be due to the experiments being performed by the same researcher on different days, by
different (but in principle equally skilled) researchers using the same equipment, by the
same researcher using different (but in principle equally accurate) equipment, by different
(but in principle equally proficient) laboratories, etc. As long as we expect different assays to
yield the same results, their definition is compatible with what we do here. For example, the
different assays in table II of (Galante et al., 2012), where the production of four isoforms
of Monilophthora perniciosa chitinase is presented, do not qualify as the setup described
here. The reason is simple: they are knowingly carried out at different pH and temperature.
Therefore, they are naturally expected to yield different results.

The experimental setup is thus very general, but we will introduce the correction method
as we apply it to a specific example of a real experiment in cell biology.

2.2 The experiment

The objective of the experiment is to elucidate the regulatory network of the human protein
called mitochondrial carrier homolog 1 (Mtch1), and also presenilin 1-associated protein
(PSAP). Although this protein has been known for almost 15 years to be involved in apoptosis
(Xu et al., 1999) and a number of studies have probed its cellular function (Lamarca et al.,
2007, 2008, Li et al., 2013, Mao et al., 2008, Xu et al., 2002), not all the details are known,
specially concerning its regulation, which is uncharted territory at the moment.

To identify binding sites for transcriptional regulators at the Mtch1 promoter region,
different DNA vectors have been constructed and transfected into Human embryonic kidney
293T (HEK-293T) cells. Each one of the vectors contains a part of the Mtch1 promoter
attached to a Metridia luciferase (MetLuc) reporter gene. When each vector is transfected
into the HEK-293T cells, the MetLuc protein is produced and secreted to the medium, where
its activity has been measured using the Ready-to-Glow Dual Secreted Reporter Assay Kit
(Clontech). Part of this protocol involves co-transfecting each time with a vector containing
the secreted alkaline phosphatase (SEAP) gene under the control of an early SV40 virus
promoter. The SEAP protein is also secreted to the medium, and the measure of its activity
is used to normalize the activity of MetLuc, with the objective of eliminating differences in
the signal due to changes in the transfection efficiency. Hence, the activity of MetLuc is
divided by that of co-transfected SEAP, and the results are reported in relative light units
(RLU), which are the units used in tab. 1 and throughout this section. The complete study
which will be presented elsewhere.

The example we will consider here pertains only to a small part of the data obtained for
the mentioned study since it is enough for us to illustrate the correction method. We will
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use the MetLuc activity values corresponding to five vectors which contain incrementally
deleted parts of the Mtch1 promoter (denoted by pMAN12, pMAN17, pMAN18, pMAN19
and pMAN20) as well as a control vector containing the MetLuc gene but no promoter region
at all (pMetLuc−). The measured MetLuc activity values (the quantity x in this example)
for the six vectors (the systems) in three assays are presented in tab. 1 in sec. 1. This is our
starting point.

2.3 The problem with the results

As we advanced in sec. 1, the problem with the data in tab. 1 begins to emerge when we
compute the average of x for the system j summing the results of all the assays and dividing
by the total number of assays M :

µj =
1

M

M∑
k=1

xkj , j = 1, 2, . . . , N . (2.1)

The corresponding standard deviation is computed as usual through:

σj =

√√√√ 1

M

M∑
k=1

(
xkj − µj

)2
=

√√√√ 1

M

M∑
k=1

(
xkj
)2 −( 1

M

M∑
k=1

xkj

)2

, j = 1, 2, . . . , N . (2.2)

These two values are represented for all systems in the last two columns of tab. 1, and we
can see there that the standard deviations are so large that they render the results almost
useless. The same problem can be appreciated if we look in fig. 1.1 (in sec. 1) at the bar
chart associated to the last two columns of tab. 1.

In a more quantitative way and advancing the requirement that the inter-system variation
of x is what really matters to us, we can calculate the probability that the observed difference
between two average values, µj and µl, corresponding to two different vectors can be produced
by pure chance, i.e., without the need to resort to any supplementary explanation such as the
difference in the sequences of the two promoter regions in the vectors. This probability can
be obtained as the so called p-value associated to a two-sample Student’s t-test with unequal
variances (Daniel, 2009, p. 181), (Le, 2003, p. 253). One typically considers the observed
difference to be statistically significant when p < 0.05, that is, when the probability that
it can be obtained by pure chance is less than 5% (Pignatelli et al., 2003). In tab. 2, we

pMAN12 pMAN17 pMAN18 pMAN19 pMAN20 pMetLuc−
pMAN12 — 0.475 0.198 0.662 0.349 0.161
pMAN17 — — 0.178 0.399 0.618 0.121
pMAN18 — — — 0.246 0.077 0.145
pMAN19 — — — — 0.340 0.215
pMAN20 — — — — — 0.050
pMetLuc− — — — — — —

Table 2: Probabilities (or p-values) that the observed differences between the averages µj and µl
of the measured promoter activity (x quantity) for each pair of systems (vectors) can be produced

by pure chance. Values smaller than 0.05 indicate that the observed difference is statistically

significant.
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present the p-values associated to the activity measures of each pair of vectors in tab. 1, as
computed by Microsoft Excel. We can appreciate that our intuition about the poor quality of
our results is confirmed: Only two out of the fifteen possible pairs come close to the p = 0.05
threshold, none is below it, and several are significantly larger.

It is at this point when we are tempted to think that everything is lost and just throw in
the towel. Our results are bad. We have to dump them and perform the experiments again.
Period.

However, as we advanced in sec. 1, there are two characteristics about the problem we
are considering here that, when combined, can save our day.

2.4 Requirements to apply the correction method

The first one is related to the type of questions we are interested in making and answering:

We are not interested in the absolute value of x for each given system (the MetLuc
activity for each vector). What really matters to us is the variation in x from
one system to another.

For example, whether or not we could safely claim that the activity corresponding to
pMAN12 is larger than, and approximately the double of, that associated to pMAN20.
Indeed, if we are interested in the absolute value of MetLuc activity in RLU, the results in
tab. 1 are just beyond rescue and the discussion ends here.

The second characteristic that, together with the one we just discussed, will allow us
to correct the bad looking results in tab. 1 has to do with the properties of the observed
measures themselves:

Even if large differences in absolute value are observed across the different as-
says, the ‘tendency’ of the variations is similarly captured in all three of them.
Technically, the different assays present high linear correlation with one another.

This is even more apparent in the graphical representation in fig. 1.2 (in sec. 1), and
without this kind of behavior in our data the correction method we will introduce next
would not yield satisfactory results.

In fig. 2.1, we have represented two scatter plots: both using the values of assay 2 in
the x-axis, one of them using the values of assay 1 as the y-coordinate (blue squares), the
other using the values of assay 3 (green triangles). We have performed the two corresponding
linear fits and we have depicted the corresponding tendency lines using the same color as the
respective points. We also show the y = x line in red for reference. For the reason behind
the choice of these two concrete pairs of assays, see sec. 2.

Several points are worth remarking about this graph:

• As we guessed, the linear correlation between the values in the different pairs of assays
is high, with Pearson’s correlation coefficient r = 0.947 for assays 2 vs. 1, r = 0.881 for
assays 2 vs. 3. This is the mathematical property that embodies the intuitive property
that ‘the different assays similarly capture the tendency in the measured data’. Also,
as we mentioned before, this high correlation is one of the two requirements for the
method we introduce here to be applicable.
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Figure 2.1: Scatter plots comparing the x quantity (MetLuc activity) of the six systems (vectors)

in tab. 1 for different pairs of assays. Using blue squares, MetLuc activity in assay 2 vs. the same

quantity in assay 1. Using green triangles, assay 2 vs. assay 3. The least-squares fit lines are

depicted using the same color as the respective points, and we also show the y = x line in red for

reference.

• The fact that the fit lines have non-unit slope is telling us that, although the tendency
is similar across the assays, the absolute value is not. The two things together mean
that there is a multiplicative systematic error between the pairs of assays which is
possible to remove.

• The fact that the fit lines have non-zero intercept is telling us that we also have an
additive multiplicative systematic error. Our method will eliminate it as well, as we
shall see.

2.5 The method

To quantitatively assess the possibility that the data in tab. 1 (or the analogous one in
any experiment with the structure described in sec. 2.1) satisfies the second requirement in
sec. 2.4) and can therefore be corrected, we begin by performing all least-squares linear fits
between all possible pairs of assays k and l [see, e.g., (Kirkup and Frenkel, 2006, p. 70)].
For each pair, we use the values of the first assay as the x coordinate and those of the second
one as the coordinate y. The result of such a fit is a tendency line of the form:

y = bklx+ akl , (2.3)

where bkl is called the slope and akl the intercept (or y-intercept). They are computed using
the following formulas:

bkl =
Cov(k, l)

S2
k

, (2.4a)

akl = Al − bklAk , (2.4b)

where Ak is the average of the measured quantity across systems and in the one single assay
k [not to be confused with the averages across assays for one single system computed using
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eq. (2.1), and presented in tab. 1 and fig. 1.1]:

Ak =
1

N

N∑
j=1

xkj . (2.5)

Of course, Al is obtained just changing k by l in this expression.
The quantity Sk is the standard deviation in Ak, given by [compare now with eq. (2.2)]:

Sk =

√√√√ 1

N

N∑
j=1

(
xkj − Ak

)2
=

√√√√ 1

N

N∑
j=1

(
xkj
)2 −( 1

N

N∑
j=1

xkj

)2

, (2.6)

and Cov(k, l) is the covariance between the values in assay k and those in assay l:

Cov(k, l) =
1

N

N∑
j=1

(
xkj − Ak

) (
xlj − Al

)
. (2.7)

With these quantities in hand, we are prepared to compute the Pearson correlation
coefficient rkl associated to the goodness of the linear fit between each pair of assays k and
l, which is given by (Kirkup and Frenkel, 2006, eq. (5.62)):

rkl =
Cov(k, l)

SkSl

. (2.8)

In the first three columns of tab. 3, we present the Pearson correlation coefficients cor-
responding to each pair of assays in the example experiment whose results can be read in
tab. 1. We can see that rkl is close to 1.0 for all pairs, and we can therefore suspect that our
correction method will produce sizable improvements in the data.

assay 1 assay 2 assay 3 rk
assay 1 0.000 0.947 0.852 0.900
assay 2 — 0.00 0.881 0.914
assay 3 — — 0.000 0.867

Table 3: Pearson’s correlation coefficient rlk between each pair of assays in the experiment described

in sec. 2.2. The last column displays the average rk of each assay with respect to all the rest of

them.

The first step to actually apply the method consists of selecting a reference assay. Since
we do not know the ‘true’ values of the x quantity (MetLuc activity) for the different systems,
we will compare all the assays to the reference one and we will correct them against it.

In order to perform the selection of the reference assay with the least bias possible, we
measure ‘how different’ each assay is to the rest and we choose the one that is the least
different; in a sense, the most representative one. To quantify this ‘difference’ we use in
fact the Pearson correlation coefficient, since it presents a property which makes it very
convenient for our purposes: It discounts (is insensitive to) the possible existence of both
additive and multiplicative systematic errors between the compared assays, thus measuring
the difference in the variation tendency only (Alonso and Echenique, 2006); which is exactly
what we need. Also notice that, as a simple consequence of its definition in eq. (2.8), rkl is
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symmetric under the permutation of the indices k and l. This is intuitive, since it means
that ‘the difference between assays k and l’ is the same as ‘the difference between assays l
and k’.

The step that remains to be able to select the reference assay is simple: Just compute
the average correlation coefficient rk of the k-th assay with respect to all the rest of them:

rk =
1

M − 1

∑
l 6=k

rkl , (2.9)

and pick the one with the largest rk.
In the last column of tab. 3, we show the average correlation coefficient rk associated to

each assay. We can see that it is the largest for assay 2. Therefore, we select assay 2 as our
reference assay in the example we are discussing (which, by the way, explains the particular
fits portrayed in fig. 2.1).

Now that the reference assay has been chosen and all the linear fits have been computed,
we are ready to apply the correction to the rest of assays. If we denote by f the value of the
index k that corresponds to the reference assay (f = 2 in our example) and we use x̃lj for
the corrected value associated to the original quantity xlj (system j, assay l), the correction
formula reads like this:

x̃lj =
xlj − Al

bfl
+ Af . (2.10)

In order to produce the whole set of corrected results, we should apply this for all assays
l 6= f , with l = 1, . . . ,M , and for all systems with the index j = 1, . . . , N .

In order to understand the reason behind this formula, it is convenient to write the inverse
transformation by solving for xlj:

xlj = bfl
(
x̃lj − Af

)
+ Al , (2.11)

and also to notice that the systems-average of x̃lj is given by:

Ãl =
1

N

N∑
j=1

x̃lj =
(1/N)

∑N
j=1 x

l
j − Al

bfl
+ Af =

Al − Al

bfl
+ Af = Af , (2.12)

i.e., all the averages of the corrected assays are equal to the average of the reference one.
Now, if we take eq. (2.11) to the covariance in eq. (2.7) with k = f , we obtain:

Cov(f, l) =
1

N

N∑
j=1

(
xfj − Af

) (
xlj − Al

)
=

1

N

N∑
j=1

(
xfj − Af

)(
bfl
[
x̃lj − Af

]
+ Al − Al

)
= bfl

1

N

N∑
j=1

(
xfj − Af

) (
x̃lj − Af

)
= bfl

1

N

N∑
j=1

(
x̃fj − Ãf

)(
x̃lj − Ãl

)
= bflCov(f̃ , l̃) , (2.13)

where, in the last step of the second line, we have used that Af = Ãl [as we proved in
eq. (2.12)], but also that the correction in eq. (2.10) is obviously the identity for the reference
assay f (it suffices to notice that bff = 1), which makes xfj = x̃fj , as well as all the derived

quantities, such as Af = Ãf . In the last line of eq. (2.13), we have simply used the natural
notation Cov(f̃ , l̃) to indicate the covariance between the corrected assays f̃ and l̃. Finally,
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if we use eq. (2.13) together with the definition of the slope in eq. (2.4a) (with k = f), we
obtain:

b̃fl =
Cov(f̃ , l̃)

S̃2
f

=
1

bfl

Cov(f, l)

S2
f

=
bfl
bfl

= 1 , (2.14)

where we have denoted by b̃fl the slope associated to the fit between the corrected assays f̃
and l̃, and we have used that S̃f = Sf . Also, it is easy to prove that:

ãfl = Ãl − b̃flÃf = Ãl − Ãf = Ãf − Ãf = 0 . (2.15)

That is, the slope of the fits among the corrected assays is 1 and the intercept is 0.
Since we argued that the first can be interpreted as a multiplicative systematic error and the
second as an additive one, we have just proved that our proposed correction in eq. (2.10) has
the promised effect of eliminating both errors. To see that this also has the effect of reducing
the standard deviations and improving the statistical significance of our results, we turn to
the next section.

But before, let us mention a final consistency property of the correction method: In
mathematical jargon, it is idempotent. In plain words, applying it twice is the same as
applying it once, i.e., if we apply the whole correction process to the corrected results, we
find that nothing changes. The corrected-corrected results are just the corrected results.

All the formulae needed to compute the linear fits, the inter-assay correlation coefficients,
as well as the correction in eq. (2.10) are provided in this section and they are very simple.
The reader can choose to implement them in any spreadsheet of her liking, or she can use the
Perl scripts we have written for the occasion and which can be found in the supplementary
material. Also in the supplementary material, we provide a cheat sheet with the bare steps
of our method, conveniently organized, briefly stated, and stripped off of all the explanatory
text that surrounds the steps in this article.

3 Results

If we apply the correction in eq. (2.10) to our original results in tab. 1, we find the corrected
values in the second table of tab. 4 (where we have repeated the uncorrected data to facilitate
the comparison).

At first sight, the corrected standard deviations σ̃ seem much better when compared to
their associated averages µ̃ for each system. This impression is reinforced if we take a look
at the corresponding bar charts in fig. 3.1.

If we want to be more quantitative, and recalling that the inter-system variation of
MetLuc activity is what really matters to us, we can repeat the p-values calculation in
sec. 2.3, this time for the corrected data. In tab. 5, we present both the original p-values
obtained from the uncorrected results as well as the new ones. We remind the reader that the
p-value’s meaning is that it quantifies the probability that the observed difference between
two average values, µj and µl, corresponding to two different vectors can be produced by
pure chance, i.e., without the need to resort to any supplementary explanation such as
the difference in the sequences of the two promoter regions in the vectors. One typically
considers the observed difference to be statistically significant when p < 0.05, that is, when
the probability that it can be obtained by pure chance is less than 5%. As we can see in
tab. 5, while the original situation was despairing, with two out of the fifteen possible pairs
close to the p = 0.05 threshold, none below it, and several significantly larger, the corrected
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Before

assay 1 assay 2 assay 3 µ ± σ
pMAN12 33.88 5.65 15.53 18.36 ± 14.33
pMAN17 17.60 3.61 11.29 10.83 ± 7.01
pMAN18 4.62 0.94 2.72 2.76 ± 1.84
pMAN19 55.35 9.30 14.52 26.39 ± 25.22
pMAN20 11.15 4.78 9.10 8.35 ± 3.52
pMetLuc− 0.00 0.39 0.54 0.31 ± 0.28

After

assay 1 assay 2 assay 3 µ̃ ± σ̃
pMAN12 6.35 5.65 8.10 6.70 ± 1.26
pMAN17 3.64 3.61 5.52 4.26 ± 1.10
pMAN18 1.48 0.94 0.34 0.92 ± 0.57
pMAN19 9.93 9.30 7.48 8.91 ± 1.27
pMAN20 2.56 4.78 4.20 3.85 ± 1.15
pMetLuc− 0.71 0.39 −0.98 0.04 ± 0.90

Table 4: Activity of the MetLuc protein under the control of six different promoter sequences

measured in three assays, before and after the correction described in sec. 2.5. The last two

columns correspond to the average µ of the three assays for each vector, and the associated standard

deviation (or error) σ. The units as well as the rest of the experiment’s details are described in the

text.

Figure 3.1: Bar chart representation of the average values µ (orange bars) and the associated

standard deviation σ (black capped lines) in tab. 4, before and after the correction described in

sec. 2.5.

p-values show a much better behavior. For the corrected data, eleven out of the fifteen
possible comparisons are below the p = 0.05 threshold, two of them are close to it, and only
two are significantly larger. This means that most of the observed differences in MetLuc
activity are now statistically significant.

In order to enrich our picture of what is going on here, we can also take a look at the
corrected version of the tendency plot that we presented before in fig. 1.2 and which we now
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Before

pMAN12 pMAN17 pMAN18 pMAN19 pMAN20 pMetLuc−
pMAN12 — 0.475 0.198 0.662 0.349 0.161
pMAN17 — — 0.178 0.399 0.618 0.121
pMAN18 — — — 0.246 0.077 0.145
pMAN19 — — — — 0.340 0.215
pMAN20 — — — — — 0.050
pMetLuc− — — — — — —

After

pMAN12 pMAN17 pMAN18 pMAN19 pMAN20 pMetLuc−
pMAN12 — 0.066 0.007 0.100 0.045 0.003
pMAN17 — — 0.018 0.009 0.679 0.007
pMAN18 — — — 0.003 0.030 0.236
pMAN19 — — — — 0.007 0.001
pMAN20 — — — — — 0.012
pMetLuc− — — — — — —

Table 5: Probabilities (or p-values) that the observed differences between the averages µj and µl
of the measured promoter activity for each pair of vectors can be produced by pure chance. The

two tables correspond to the data before and after the correction described in sec. 2.5. Values

smaller than 0.05 indicate that the observed difference is statistically significant in both cases, and

the entries satisfying this condition have been highlighted using boldface fonts.

Figure 3.2: Variation of the quantity x (MetLuc activity) in tab. 1 for the six systems (vectors)

studied, before and after the correction described in sec. 2.5. Each color corresponds to a different

assay, and the lines joining the experimental points have been added for visual comfort.

repeat here on the left of fig. 3.2. As we can see in the corrected tendency plot on the right,
the fact that all three assays correctly captured the overall variation tendency of the data has
been maximally leveraged by the correction in eq. (2.10). Without altering the legitimate
random noise in the original results, the additive and multiplicative systematic errors have
been eliminated, and the corrected tendency lines are now optimally superimposed.

Similarly, we can compare the original and corrected scatter plots in fig. 3.3. In the
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second one, the best fit lines corresponding to assays 2 vs. 1 and assays 2 vs. 3 have been
omitted because they coincide with the zero-intercept unit-slope y = x line. This is the
precise mathematical embodiment of the fact that the correction in eq. (2.10) ‘eliminates the
additive and multiplicative errors’: it transforms all the fits against the reference assay from
non-zero intercept and non-unit slope to zero intercept and unit slope. The fact that the
random error is unmodified can be appreciated by the remaining dispersion of the scatter
plot points with respect to the y = x line in the second graph in fig. 3.3.

Figure 3.3: Scatter plots comparing the x quantity (MetLuc activity) of the six systems (vectors)

in tab. 4 for different pairs of assays, before and after the correction described in sec. 2.5. Using

blue squares: MetLuc activity in assay 2 vs. the same quantity in assay 1. Using green triangles:

assay 2 vs. assay 3. The least-squares fit lines are depicted using the same color as the respective

points, and we also show the y = x line in red for reference.

4 Discussion

We have just introduced a simple method for correcting the results of multi-assay experi-
ments which, under two very basic conditions (that only inter-system variations matter to
us, and that the different assays present high linear correlation with one another), allows us
to considerably reduce the standard deviation of the systems’ averages across assays, conse-
quently increasing the statistical significance of the results. We have applied the correction
method to a real experiment in cell biology where we have appreciated a great improvement.

Our interpretation of the situation is as follows: Uncontrolled differences (errors) appear
when a given experiment is repeated. Some of them are random (i.e., we see no pattern in
them) and cannot be eliminated. Some others are systematic and can be. If we represent
a scatter plot in which the results of one assay are placed on the x-axis, the results of a
different one are placed on the y-axis, and we perform a linear fit, we can expect to observe
two different situations:

• The best fit line has zero y-intercept and unit slope. We interpret this as all the error
being random, and no correcting action can be taken here. The data must be used ‘as
is’.
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• The best fit line has non-zero intercept or non-unit slope or both. We interpret this as
some of the error being systematic, some of it random. The non-zero intercept signals
an additive systematic error; the non-unit slope a multiplicative systematic one; and
the dispersion of the scatter plot points from the fit line signals the part of the error that
is random. In such a case, we can apply the correction in eq. (2.10), thus eliminating
both systematic components and reducing the situation to the one described in the
previous point.

As it is always the case with systematic errors, one might or might not know the actual
reasons behind them (we left the apparatus on too much time, the cell number was larger
than usual, we inadvertently used the wrong pipette, etc.), but we do not really need to know
the reasons to confidently assert that a systematic error is indeed there. If the difference
between two assays is (mostly) captured by multiplying the results of one of them by a
number b 6= 1 and adding a number a 6= 0, we are entitled to entertain the strong suspicion
that some very real causes are behind this predictable pattern. Hence, even if we do not know
these causes, it would be a wasted opportunity not to apply the correction in eq. (2.10). If
you do know the causes, good for you. So much the better. In fact, by applying the reasoning
associated to the method described here, the presence of a non-zero intercept or a non-unit
slope in the fits of the different pairs of assays (plus a high linear correlation among them)
may suggest to the experimenter that some additive or multiplicative systematic error is
being made from assay to assay. With this clue, she can then proceed to look for the actual
experimental causes behind them (in the case that they were previously unknown).

Also notice that systematic errors might not end at the linear order. The relation between
the results of two different assays could be well described for example by a quadratic relation
y = cx2 + bx+ a plus some random error; or even by higher order polynomials. No a priori
reason can reject this possibility, however, a treatment of these more complicated cases is
outside the scope of this work.

An important part of the method introduced here is that, since we do not know the
‘real’ absolute value of the measured quantities (and in fact it does not matter to us), we
have to choose a reference assay to fit all the rest of assays to. The most reasonable way to
perform this choice in an unbiased manner is to select the most representative assay in the
experiment, the one that is ‘most similar to all the others’. We make this condition precise
by measuring the difference of every assay to all the rest of them and choosing the one that
is the least different to all the others. To this end, we use the Pearson correlation coefficient
associated to the goodness of the linear fit because it correctly discounts the additive and
multiplicative systematic errors.

Also, it is worth mentioning that the use of the word ‘error’ for the differences between
one specific assay and the rest of them might seem unorthodox at first sight. After all, the
‘error’ is ideally defined as the difference between the measured quantities and their ‘real’
values. However, we think that this apparent overuse of the term is just that: apparent. Since
the ‘real’ values are never actually known, the ideal definition of ‘error’ is philosophically
appealing but practically inapplicable. What researchers always do is to compare one set
of measures to some more accurate ones (but not ‘real’ yet), to some theoretical prediction
(not ‘real’ either), etc. In this sense, and given that the ‘real’ values of the quantity x are
unknown in our experimental setup in sec. 2.1 (as in all setups!), the ‘best’ guess we a priori
have (before the proposed correction) of the most accurate set of measures is precisely the
most representative of our assays, i.e., the one that is the least different from the rest. This
is why we choose it as the reference to which all the rest of the assays are compared, and
this is why the observed differences deserve to be intuitively called ‘errors’.
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assay 1 assay 2 assay 3 µ ± σ
pMAN12 7.33 6.01 5.71 6.35 ± 0.86
pMAN17 3.81 3.84 4.15 3.93 ± 0.19
pMAN18 1.00 1.00 1.00 1.00 ± 0.00
pMAN19 11.98 9.89 5.34 9.07 ± 3.40
pMAN20 2.41 5.09 3.35 3.62 ± 1.36
pMetLuc− 0.00 0.41 0.20 0.20 ± 0.21

Table 6: Fold change in activity of the MetLuc protein under the control of six different promoter

sequences measured in three assays. The numbers in this table have been obtained from the activity

data in tab. 1 through division by the value for pMAN18.

Although all this seems quite straightforward, we have only found in the literature one
related proposal for a correction method that could be compared to the one we introduce in
this work (even if the rationale is never clearly expressed as we do here). This related method
readily comes to mind and it consists of dividing, in each assay, the value of x for all systems
by the value of one of them. For example, we could select pMAN18 as our normalizing
vector, divide the activities of all the vectors in each assay by the activity of pMAN18 in the
same assay, and thus obtain a new set of results now expressed as a normalized fold change
in activity with respect to the pMAN18 value (which now becomes 1.0). This is used for
example in (Alvarez and del Valle Loto, 2012, Matsunoshita et al., 2011, Schagat et al., 2007,
Ysebrant de Lendonck et al., 2013) or (Zhang et al., 2012, fig. S3).

The result of applying this normalization to the original data in tab. 6 is presented
in tab. 6. We see that the standard deviations have been reduced and in fact the overall
improvement is similar to what we obtained when applying the correction method introduced
in this work. However, this normalization procedure presents some drawbacks that, in our
opinion, render it inferior to our method. Namely:

• It demands an arbitrary choice (that of the normalizing system) which seems ad hoc
and prevents automatization in some degree. Related to this, the fact that the corrected
result for the normalizing system has zero standard deviation does not seem easy to
interpret, nor completely legitimate.

• If we recall the general formula for the propagation of errors (Kirkup and Frenkel, 2006,
p. 50),

s2f =
n∑

i=1

(
∂f

∂qi

)2

s2i , (4.1)

where f(q1, . . . , qn) is a function of n random variables with standard deviations (errors)
s1, . . . , sn, we can use it to compute the error in the normalized quantity yj = xj/x

∗,
where xj is the measured result for the system j (in a given assay) and x∗ is the quantity
measured for the system chosen to normalize the results:

s2yj =
1

(x∗)2
s2xj

+
x2j

(x∗)4
s2x∗ = y2j

(
s2xj

x2j
+

s2x∗

(x∗)2

)
⇒

s2yj
y2j

=
s2xj

x2j
+

s2x∗

(x∗)2
. (4.2)

We see that the error in the normalized quantity yj relative to the value of yj itself is
the sum of the relative errors of xj and x∗. Now, if we happen to choose a particular
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normalizing system with high relative error, this could spoil the whole assay when we
divide all the results by x∗, even if the rest of measures were accurate.

• The described normalizing procedure seems fit to eliminate multiplicative systematic
errors, but not additive ones.

Our method suffers from none of these problems:

• No choice of a ‘special’ normalizing system is needed. (There is a choice of a reference
assay, but it is made in a justified way, as we have explained.)

• In a manner of speaking, it distributes the normalization among all the values in a
given assay, thus minimizing the probability that one specially bad apple spoils the
whole basket.

• It eliminates both multiplicative and additive systematic errors.

If we check exhaustive textbooks in biostatistics, such as (Daniel, 2009, Le, 2003, Vit-
tinghoff et al., 2005), or more wide ranging ones, such as (Kutner et al., 2005, Mandel, 1984,
Mickey et al., 2004, Taylor, 1997, Walpole et al., 2012), we do not find any account of a
correcting method that is similar to what we propose here. Some of the texts come close
sometimes, but they never hit the target.

One way in which they often come close is when they discuss repeated measures. See for
example (Mickey et al., 2004, chap. 9), (Kutner et al., 2005, chap. 27), or (Cnaan et al.,
1997), (Vittinghoff et al., 2005, chap. 8), and (Daniel, 2009, p. 346) for detailed discussions
of the concept in biosciences. ‘Repeated measures’ consists of an experimental setup very
similar to the one used here and described in sec. 2.1, i.e., measuring the same quantity on
N systems and repeating the experiment M times, but it contains a fundamental difference:
it tackles measurements that are expected to change from repetition to repetition [e.g., a time
series, or table II of (Galante et al., 2012) discussed in sec. 2.1]. It is a key of our setup
that we expect the results of several repetitions to be the same. This is why it makes sense
for us to correct them, which would be unnatural in the repeated-measures setup. Also, for
repeated measures, it is not a requirement that we are not interested in the absolute value
but only in the inter-system variation. In our case, this is essential.

In (Walpole et al., 2012, p. 539), another similar situation to the one we have considered
here is dealt with, namely blocking, however, they do not discuss what to do if there is an
obvious linear correlation between the blocks (as in their figure 13.6a). Their example in
figure 13.12 also seems ripe to apply our method, but they take no correcting action on it.

One of the reasons that we imagine could be behind the fact that no precedents of our
straightforward method are found in the literature (as far as we have been able to scan it)
has to do with the usual interpretation of the range of application of the least-squares fit
protocol. Typically, fitting some values in the x-axis against those on the y-axis is used to
assess a possible linear relationship between two different quantities (apples and oranges,
say). So much so that x is typically called the independent variable, while y is the dependent
one. In our approach, it is a key conceptual step to realize that it actually makes sense
to investigate the linear correlation of some quantity with itself (measured in two different
assays), and consequently interpret any difference between the two as experimental error (in
the manner we explained before).

Another reason that is possibly behind the absence of precedents is the fact that, de-
spite being quite intuitive to us, systematic errors of the multiplicative kind are very rarely
discussed in the literature. Systematic errors are normally considered to be additive.
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After a thorough search we have only found anecdotal mentions in a paper that discusses
the influence of natural fires on the air pollution of the Moscow area (Konovalov et al., 2011),
in a proceedings paper about anticorrosion coating (Niedostatkiewicz and Zielonko, 2006), in
a recent work concerned with calibration of spectrographs for detecting earth-mass planets
around sun-like stars (Glenday et al., 2012), and in a similar paper focused in the detection
and study of quasars (Johansson et al., 2000). In all these works the authors consider the
possibility of a multiplicative systematic error in their models or measurements, but they
take no action to correct it.

Something very similar happens in (Meloun et al., 1993, p. 3), where the existence of
multiplicative systematic errors is acknowledged in the context of analytical chemistry, as
well as the necessity to eliminate them. In (Doerffel, 1994), the possibility of both additive
and multiplicative systematic errors is discussed, as well as their respective relation with
non-zero y-intercepts and non-unit slopes. Finally, in (Kirkup and Frenkel, 2006, p. 39), the
authors not only discuss multiplicative systematic errors (which they also call gain shifts or
gain errors), but they provide several examples where this multiplicative systematic error
can appear. Although more space is dedicated in these last three works to the discussion
of multiplicative systematic errors, the authors do not provide any method for eliminating
them either.

In addition, it is worth mentioning that, in (Doerffel, 1994) and in (Kirkup and Frenkel,
2006), the authors consider the error to be defined with respect to ‘true’ (or at least more
accurate) results; in the first case to calibrate experimental protocols, in the second one to
calibrate measuring devices. As we explained when discussing the choice of the reference
assay, our perspective on this issue is different, and so it is the approach. For example, if
you want to correct your results against some ‘better’ data, you are presumably interested
not only in the variations of the measured quantity, but also in its absolute value.

We have only found one work, concerned with gas electron diffraction data (Gundersen
et al., 1998), in which the authors both consider the existence of multiplicative systematic
errors and take actions to correct them. However, the proposed correction is particular to
the concrete problem studied, and the experimental setup is different to the one described
in sec. 2.1: The authors refer to systematic errors in experimental data with respect to the
‘true’ values, not to systematic errors between different measures of the same quantity as we
do here.

5 Conclusions

We have introduced a method for correcting the data in experiments in which a single
quantity x is measured for a number of systems in multiple repetitions or assays. If we are
not interested in the absolute value of x but only in the inter-system variations, and the
results in different assays are highly correlated with one another, we can use the proposed
method to eliminate both additive and systematic differences (errors) between each one of
the assays and a suitably chosen reference one. As we have shown using a real example of
a cell biology experiment, this correction can considerably reduce the standard deviation in
the systems’ averages across assays, and consequently improve the statistical significance of
the data.

The method is of very general applicability, not only to experimental results but possibly
also to numerical simulations, as long as the structure of the setup and the requirements on
the data are those just mentioned and carefully discussed in sec. 2.1. This, together with its
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simplicity of application (the only mathematical infrastructure needed to apply it is basically
least-squares linear fits), makes the method of very wide interest in any quantitative scientific
field that deals with data subject to uncertainty.

Some possible lines of future work include the application of the method to a wider variety
of problems, a deeper statistical analysis of its properties and the assumptions behind it, or
the extension to systematic differences of higher-than-linear order that we briefly mentioned
in sec. 4.
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We would like to thank Professors Jesús Peña, Silvano Pino, Juan Puig, Ricardo Rosales
and Javier Sancho for recommending to us the reference statistics and biostatistics textbooks
that we have used in the writing of the manuscript.

This work has been supported by the grants FIS2009-13364-C02-01 (Ministerio de Ciencia
e Innovación, Spain), UZ2012-CIE-06 (Universidad de Zaragoza, Spain), Grupo Consolidado
“Biocomputación y F́ısica de Sistemas Complejos” (DGA, Spain), also by grants BFU2009-
11800 (Ministerio de Ciencia e Innovación, Spain), and UZ2010-BIO-03 and UZ2011-BIO-02
(Universidad de Zaragoza, Spain) to J.A.C.

References

J. L. Alonso and P. Echenique. A physically meaningful method for the comparison of
potential energy functions. J. Comput. Chem., 27:238–252, 2006. http://bit.ly/16mmjBn.

A. Alvarez and F. del Valle Loto. Characterization and biological activity of Bacil-
lus thuringiensis isolates that are potentially useful in insect pest control. In Akeem
Lameed, editor, Biodiversity Enrichment in a Diverse World. InTech, 2012. http:

//bit.ly/1e4qFQm.

A. Cnaan, N. M. Laird, and P. Slasor. Tutorial in biostatistics: Using the general linear
mixed model to analyse unbalanced repeated measures and longitudinal data. Stat. Med.,
16:2349–2380, 1997. http://bit.ly/17KzJYZ.

W. W. Daniel. Biostatistics: A foundation for analysis in the health sciences. John Wiley
& Sons, 9th edition, 2009.

K. Doerffel. Assuring trueness of analytical results. Fresenius J. Anal. Chem., 348:183–187,
1994.

R. S. Galante, A. G. Taranto, M. G. B. Koblitz, A. Góes-Neto, C. P. Pirovani, J. C. M.
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