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In the search for smaller, faster, more selective and efficient products and processes, the 

engineering of spatial nano- and micro-arrangements of pure and composite materials is of 

vital importance for the creation of new devices. A very representative example of versatility 

and potentiality arises from the field of molecular magnetism since it provides a privileged 

way to synthesize magnetic nanomaterials with a variety of physical properties, in 

macroscopic amounts and of homogenous size.[1] Exploiting the functionality of, so-called, 

molecular nanomagnets has led to their potential use as magnetic refrigerants for liquid-
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helium temperatures.[2] At the basis is the Magneto-Caloric Effect (MCE), according to which 

the cooling proceeds following the removal of an applied magnetic field under adiabatic 

conditions.[3] By chemically engineering the molecules as such to optimize characteristics like 

magnetic anisotropy, type of exchange interactions and metal:non-metal ratio, the MCE can 

be notably enhanced to much larger values than that encountered for conventional magnetic 

refrigerants made of lanthanide-alloys or magnetic nanoparticles.[2] Concurrently, research on 

surface-deposited molecular aggregates has been evolving with the aim of assembling and 

integrating molecules into on-chip functional devices.[4] In this regard, sub-kelvin 

microrefrigeration will allow reducing large quantities of refrigerants and simplifying the use 

of sophisticated equipment. These mesoscopic devices will then find application as cooling 

platforms for all those instruments where local refrigeration down to very low temperatures is 

needed, such as high-resolution X-ray and gamma-ray detectors for astronomy, materials 

science, and security instrumentation. Furthermore, this technique could open new markets by 

making available cheap (3He-free) cooling. The idea of employing molecular nanomagnets for 

this purpose is innovative and markedly in contrast with the electronic schemes which are 

currently explored.[5] Obviously for this approach to become a reality, a relatively strong 

binding of the molecules to the surface and the preservation of their functionalities once 

deposited are sine-qua-non conditions. 

The magnetothermal investigations on molecular nanomagnets have so far been 

carried out exclusively for bulk materials, whereas their transposition to surfaces is 

challenging, both for the low temperatures required and, specially, for the very weak strength 

of the magnetic signal arising from the surface. In this Communication we focus on 

[Gd2(CH3COO)6(H2O)4]·4H2O, hereafter shortened as Gd2-ac (see Figure 1), i.e., a 

previously studied ferromagnetic molecular dimer showing one of the largest MCEs reported 

to date for liquid-helium temperatures.[6] As a step towards the interfacing of this molecular 

nanomagnet with Si-based thermal sensors designed to function as microrefrigerators, and to 
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address their magnetothermal properties at the nanometric scale, we selectively deposit Gd2-

ac molecules on a silicon surface via a tip-assisted technique, i.e., Dip-Pen Nanolithography 

(DPN). A detailed investigation of the magnetic stray field generated by the as-deposited 

molecules was then carried out by Magnetic Force Microscopy (MFM) near liquid-helium 

temperatures and in moderate/high applied fields. We shall see below that a quantitative 

analysis of the MFM images permits us to conclude that the molecules hold intact their 

magnetic properties, and therefore their MCE and cooling functionality, after their deposition 

on the Si substrate. 

 Previous to surface magnetic measurements, structuration of Gd2-ac molecules on Si 

substrate is needed to ensure a proper contrast between magnetic and non-magnetic areas as 

needed to estimate the magnetic stray field generated by the deposits. For this, DPN is a 

suitable technique since it has already been shown to precisely place drops of a controlled size 

according to predefined patterns with sub-micrometer precision.[7] For the substrate we make 

use of Si wafers that are p-doped with boron to improve its conductivity (ρ ≈ 0.1 Ω/cm) and 

to permit its grounding, particularly important for preventing the accumulation of electric 

charges during MFM measurements. Furthermore, we pattern a (75 x 75) µm2 grid by means 

of Focused Ion Beam (FIB) to help locate the final molecular arrays for the AFM/MFM 

experiments. As a last step before the deposition of the molecular nanomagnets, we clean the 

wafers using ultrasound in acetonitrile, ethanol and deionized water to provide a clean writing 

surface. Besides providing a clean surface, this last step also ensures the presence of a thin 

layer of native oxide,[8] which in turns enables the adsorption of molecular species through 

hydrogen bonding with hydroxyl groups naturally present at the surface of oxides, even 

without specific pre-treatment.[9] With its four terminal coordinated water molecules and 

acetate groups in various coordination modes, the neutral Gd2-ac molecule may form a range 

of hydrogen bonds, either as donor or acceptor, with surface hydroxyls or adsorbed water, as 

it indeed does in its crystalline form with lattice water molecules (Figure 1).[6] Gd2-ac is thus 
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a good candidate to be efficiently attached to hydrophilic surfaces without pre-

functionalization, although with no control over the orientation of the molecule.  

The ink used for the Gd2-ac deposits consists of a 5 mg/ml solution of Gd2-ac in a 

mixture of dimethylformamide (DMF) and glycerol, at 95% and 5% by volume, respectively. 

To support that the molecules in solution, and most importantly in the final deposits, preserve 

a similar structure as those in bulk Gd2-ac, we follow through Attenuated Total Reflectance 

(ATR) Infra-Red (IR) spectroscopy the evaporation of a macroscopic drop of the exact same 

solution, until it forms a sticky white thin film on the ATR crystal. While the IR spectra of 

concentrated solutions only show hints of bands of Gd2-ac, the spectra of the final sticky film 

match well that of crystalline Gd2-ac plus bands due to traces of DMF and glycerol (Figure 

S1). Because slight modifications of the bridging geometry of the acetate ion would not result 

in significantly different spectra, this does not imply that deposited molecules have the exact 

same structure as in bulk Gd2-ac, but it does corroborate our initial assumption. Direct 

spectroscopic characterization of the deposits is not feasible because of the limited amount of 

material. Under these experimental conditions and controlling the temperature and humidity, 

maintained constant at 25ºC and 40%, respectively, we make use of DPN to obtain structures 

which are reproducible and uniform in size. Among possible patterning geometries there are 

circles with a diameter of up to 30 µm, a representative portion of which is in the in-air AFM 

image of Figure 2.a, which shows a (11 x 11) µm2 area of the deposited sample. It can be 

seen that the molecular aggregates form slightly oval-shaped drops, the elongation being 

caused by a drift of the AFM tip during DPN deposition. A mean drop size can be estimated 

from the profile reported in Figure 2.b, which provides ≈ 10 nm height, while the length of 

the two oval axes is ≈ 1.7 and 1.4 µm, respectively. Molecules of Gd2-ac in such multilayer 

deposits will likely form hydrogen bonds among them, in a similar manner as in their 

crystalline state, resulting in a dense packing within each drop. Therefore, from the estimate 

of the drop size and from the density of Gd2-ac, we estimate that each single drop should have 
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a maximum magnetization ≈ 2 x 108 µB at the saturation (see Supporting Information and 

Figure S2 for further details). 

Next, we present the low-temperature MFM experiments which are performed by 

focusing our microscope on a single representative Gd2-ac drop. We here remind that this 

molecular dinuclear complex is characterized by an intramolecular ferromagnetic exchange 

interaction of relatively weak strength (J/kB < 0.07 K for a Hamiltonian of type H = −J S⋅S).[6] 

We will safely neglect this coupling in analyzing the in-field MFM images below, since the 

latter are collected for fields |B| ≥ 0.5 T, i.e., sufficiently large to magnetically decouple the 

Gd3+ spins. In Figure 3 we report MFM images collected in the frequency shift (∆f) mode, 

together with the corresponding profiles for different applied fields at T = 5 K. For 

comparison, in Figure S3 we report a similar set of data, though collected at T = 9 K. All 

images are taken on the same scan area of (2.3 x 2.3) µm2, with a resolution of 500 lines. The 

amplitude of the cantilever oscillation is 10 nm, while the tip resonance frequency is f0 ≈ 71 

kHz for all images. For B = 0, we expect no magnetic stray field from the Gd2-ac drop. 

Therefore in order to minimize the van der Waals contribution, we set the tip-to-sample 

distance as such to barely see any topography for zero-applied field, which we accomplish 

when the tip is higher than h ≈ 150 nm. The area external to the drop is the non-magnetic 

contribution of the substrate which constitutes our reference background, ∆fbg (dashed lines in 

Figure 3). Before collecting each image, we withdraw the tip to a safe distance, set the new 

applied magnetic field, retune the resonance frequency, and finally approach the tip until we 

meet the condition ∆f = ∆fbg on top of the non-magnetic area. This procedure guarantees that 

all images are taken at the same h. In addition, electrostatic interactions between the tip and 

the sample are compensated by a bias voltage of 430 mV. 

 All in-field MFM images are collected for applied magnetic fields largely exceeding 

the coercive field of the tip (≈ 500 Oe). Therefore, the magnetization of the tip constantly is at 
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its maximum value, Mt, during the time of each measurement. Confirmation of this 

assumption is obtained by collecting a MFM image for a reverse field B = −1 T, to be 

compared with its identical counterpart for B = 1 T (Figure S4). Indeed, this field strength is 

sufficient to flip and polarize both tip and sample magnetizations; therefore the tip-sample 

interaction does not change by inverting the applied field. 

The evolution of magnetic contrast between the Gd2-ac drop and the non-magnetic 

substrate is well visible in Figure 3, as a function of the applied magnetic field. Specifically, 

the inner area of the drop becomes darker, while the border brighter and thicker, by increasing 

the field. The bright border is an evidence of the inversion of the stray-field flux lines from 

Gd2-ac in proximity of the border of the drop. The profile lines reported in Figure 3 for each 

corresponding MFM image provide further evidence of the dependence of the magnetic 

contrast on the applied field. All profiles refer to the straight line vertically bisecting the drop 

and are obtained by making use of WSXM software analysis.[10] Following the same 

procedure, we perform MFM measurements vs. B at T = 9 K, and the results are reported in 

Figure S3. An analogous trend is nicely visible.  

In order to quantitatively analyze the collected MFM images, we consider the 

dependence on B and T of the maximum frequency shift, −∆fmax, i.e., the height of the profiles 

in Figures 3 and S3. We first note that the relatively large and varying applied field induces 

fluctuations in the sample magnetization solely, while no other experimental parameter is 

perturbed, viz., the magnetization tip is constantly saturated. Therefore in this limit of 

independent sample and tip, the frequency shift, which measures the gradient of the force 

acting on the tip, has to be directly proportional to the stray field generated by the drop, thus 

to the Gd2-ac magnetization. We denote −∆fmax = M · c−1, where M is the Gd2-ac molar 

magnetization and c is a proportionality constant – a similar approach has recently been used 

for the direct measurement of the magnetic moment of individual nanoparticles.[11] In Figure 

4, −∆fmax (T,B) is then compared with the isothermal magnetization curves of Gd2-ac, as 
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obtained both from magnetization experiments on a massive bulk sample (empty circles) and 

from calculating it as the sum of two paramagnetic Gd3+ (s = 7/2, g = 2.0) spin centers (solid 

lines), at the corresponding temperatures. The (T,B)-dependence of the MFM signal 

beautifully follows the same trend of the isothermal magnetization curves of Gd2-ac bulk 

material, providing c ≈ 7 NµBHz−1, and undoubtedly demonstrating that the magnetic 

properties of Gd2-ac are preserved in the deposited drops.  

To further facilitate the interpretation of our experimental results we elaborate a model 

within the point dipole approximation,[12] according to which the tip is reduced to a magnetic 

dipole – see Supporting Information for full details. The tip is let to interact with the Gd2-ac 

molecules positioned within each drop via dipolar interactions. The ∆f is then computed for 

the same applied fields and temperatures we employ in our experiments. Figures 3, 4 and S3 

show the so-obtained simulations which nicely compare with the behavior experimentally 

observed. In addition to the verification of the anticipated paramagnetic-compatible 

dependence of −∆fmax (Figure 4), one can notice that the units of all simulated curves scale 

with the corresponding experimental values by a factor which remarkably is well below one 

order of magnitude. Even though this factor is determined by multiple parameters (e.g., 

encompassing the tip size, shape, height and magnetic moment, and similarly the sample 

position and magnetization), we stress that these parameters’ values are set in close agreement 

with our experiments – see Supporting Information. 

Finally, the sensitivity of our MFM measurements is determined according to the 

following procedure. The sample magnetization at saturation (≈ 2 x 108 µB for an individual 

drop – see S. I.) corresponds to a detected ∆f = 2.0 Hz (Figure 3). On the other end, frequency 

shifts below ≈ 0.25 Hz (for B = 0.5 T and T = 5 K, in Figure 3) are hardly detectable in our 

experimental conditions because of the thermal noise on the cantilever. Therefore for h ≈ 150 
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nm, we obtain the MFM sensitivity ≈ 0.25 / 2.0 · 2 x 108 µB ≈ 2.5 x 107 µB, corresponding to ≈ 

3 x 10-16 A m2.  

To summarize, MFM is used near liquid-helium temperature and up to B = 9 T for 

measuring the stray field generated by Gd2-ac molecular aggregates in the form of drops, 

deposited on Si surface. The (T,B)-dependence of the stray field measurements is akin to that 

of the magnetization of the bulk equivalent magnetocaloric material, thus enabling us to 

conclude that the as-deposited Gd2-ac molecules hold intact their magnetic characteristics. We 

finally note that the collective behavior found in the bulk equivalent material, i.e., a magnetic 

phase transition at T ≈ 0.2 K driven by dipolar interactions,[6] should likely be affected by the 

reduced thickness of the drops (≈ 10 nm), favorably pushing the magnetic ordering to even 

lower temperatures. The lowest temperature which can be attained in a process of adiabatic 

demagnetization should therefore be lowered likewise.[13] Transferring a known, excellent 

cryogenic magnetocaloric material, such as the Gd2-ac molecular nanomagnet, from bulk 

crystal to Si substrate without deterioration of its properties, paves the way towards the 

realization of a molecule-based microrefrigerating device for very low temperatures. 

 

Experimental Section 

Material. All commercial reagents and solvents are of analytical grade and used without 

further purification. Gd2-ac is synthesized as described previously[6,14] and initially obtained 

as single-crystals. Purity is checked by single-crystal and powder X-ray diffraction. Solutions 

are made by dissolving a powdered bulk sample in a mixture of dimethylformamide (DMF) 

and glycerol, at 95% and 5% by volume.  

Substrate. We employ polished (100)-oriented Si wafers with boron doping (type p). The 

relatively low electrical resistivity (ρ ≈ 0.1 Ω/cm) assures good grounding. To help locate the 
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molecular aggregates, we pattern (75 x 75) µm2 grids of indexed trenches etched with a Dual-

Beam (SEM/FIB) Helios 600 by FEI.  

DPN. DPN experiments are performed with a NScryptor DPN System (from NanoInk, Inc.). 

All DPN patterning processes are carried out under constant conditions, room temperature and 

~40% of relative humidity, using an integrated environmental chamber as part of the 

NScryptor DPN System. Commercially silicon nitride Type A Single pens, with a spring 

constant of 0.1 N·m-1, are used in all DPN experiments. Tips were coated using a microfluidic 

ink delivery chip-based system (Inkwell, from NanoInk, Inc.). The inkwells contain several 

reservoirs that are filled with the desired solution and transferred to the microwells. Here, the 

tip is coated with the Gd2-ac solution by dipping. Gd2-ac nanoarrays are generated by 

traversing the tip over the surface in the form of the desired pattern, after removing the excess 

of material from the tip in order to achieve uniform dots. 

AFM. We use a Ntegra Aura AFM by NT-MDT working in air, at room temperature and in 

semi-contact mode. 

MFM. We use a Nanoscan high-resolution cryo-AFM/MFM for variable magnetic fields, 

which can be operated in a PPMS Quantum Design. The high-resolution MFM images are 

collected in non-contact mode. The recorded magnetic contrasts result from the change in the 

frequency resonance of the cantilever: an attractive tip-sample interaction, increasing on 

sample approaching, shifts the resonance to lower frequency (darker), while a repulsive 

interaction shifts the resonance to higher frequency (brighter).[15] We employ a high-

resolution MFM tip by Team Nanotec GmbH with Co alloy coating, radius < 25 nm, spring 

constant k ≈ 0.7 N/m, resonance frequency f0 ≈ 71 kHz and coercive field ≈ 500 Oe. Before 

collecting the zero-applied-field image, the tip was pre-magnetized along the tip axis, normal 

to the sample. 
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Figure 1. a) Molecular structure of the dinuclear neutral complex in Gd2-ac. Dashed blue 

lines highlight the intramolecular hydrogen bonds, increasing the stability of the molecule. b) 

Schematic hypothetical representation of Gd2-ac deposited on a Si wafer showing some of the 

many possible interaction paths through hydrogen bonding involving the surface silanol 

groups, adsorbed water and the Gd2-ac water and carboxylic groups.  
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Figure 2. Room-temperature topography AFM image of the Gd2-ac drops deposited on 

silicon wafer by DPN. Height and width of the drops are obtained from the profile relative to 

the straight line 1, reported in the bottom panel. 
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Figure 3. MFM frequency shift, ∆f, images of a single Gd2-ac drop taken at different 

magnetic fields, as labeled, and T = 5 K. The images are represented in the same contrast 

scale, namely −3.4÷1.5 Hz. Magnetic profiles are presented below each corresponding image, 

with the background level -see text- being represented by a dashed line. Bottom-right panel is 

the simulated ∆f within the point dipole model for T = 5 K and selected magnetic fields, as 

labeled. 
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Figure 4. Maximum frequency shift, −∆fmax (T,B), obtained from Figures 3 and S3, for as-

deposited Gd2-ac, together with experimental[6] and calculated (solid lines) isothermal 

magnetization curves for the bulk equivalent material, as labeled. Inset: Calculation of −∆fmax 

within the point dipole model. 
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