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ABSTRACT

This paper contributes to a better knowledge of the be-

haviour of conventional CMOS and CPL full-adder cir-

cuits when low voltage, low power or small power-delay

products are of concern. It completes and overcomes lim-

itations of previous studies as optimal power-delay

curves, for CPL and CMOS full adders, have been built up

using an automatic sizing tool based on statistical optimi-

zation. Supply voltages of 3.3V and 1.5V have been con-

sidered. This study shows that full adders with minimum

power consumption are accessible by using the conven-

tional CMOS design style. As a counterpart, minimum de-

lay full adders are obtained with CPL.

1. INTRODUCTION

Requirements of portability and reliability for electron-

ic circuits lead to an increasing importance of the power

consumption issues. If these requirements are addressed at

the circuit design level, the selection of a proper design

style is of capital importance. That is because the logic

style strongly influences parameters such as switching ca-

pacitance, transition activity, and short-circuit currents,

which are the parameters governing power dissipation.

Conventional CMOS logic style presents robustness

against voltage scaling and high noise margins, so allow-

ing a reliable operation at low voltages. Pass-transistor

logic styles have emerged as an attractive replacement for

conventional CMOS logic. In particular, Complementary

Pass-Transistor Logic (CPL) is a well known low-power

logic style. Pass-transistor logic is attractive as fewer tran-

sistors are needed to implement important logic functions,

uses smaller transistors and smaller capacitances than con-

ventional CMOS.
The specialized literature [1-8] reflects the amount of

work performed on proper choice of the best logic style

for the implementation of specific circuits, namely full-

adders. One of the main reasons for this is that full-adders

are circuits widely used in arithmetic circuits, for example

in multipliers, where they are key macrocells. Recently,

there has been some controversy concerning the best low-

power logic style for building full-adder circuits [9].

Comparisons of full-adder circuits have used the best so-

lution (in transistor count) for CPL solutions but a subop-

timal one for the CMOS counterpart. So, these compari-

sons are not representative enough. In addition, the key is-

sue of transistor sizing is, in general, not addressed. A

single full-adder of each type are compared without any

mention to the criteria for transistor sizing. Thus, a more

refined study is needed.

This paper aims to fulfil this gap by contributing to a

better knowledge of the behaviour of conventional CMOS

and CPL full-adder circuits when low voltage, low power

or small power-delay products are of concern. The meth-

odology we have used to perform this study is based on

the building of the optimal power-delay curves for both

approaches. It sizes the circuit transistors in order to ob-

tain optimal circuits, that is, circuits placed on the optimal

power-delay curve. That search has been done using

FRIDGE [10], an automatic sizing tool based on statistical

optimization. The tool allows to obtain transistor sizes

through a constrained optimization problem solved fol-

lowing an iterative procedure built around an electrical

simulator. Resulting transistor sizes provide the closest

solution found covering all the specifications.

The paper is organized as follows. Section II reviews

basic concepts on full-adders and shows the schematics

for the two full-adders studied. Section III describes how

the optimal power-delay curves have been obtained. In

Section IV, the results of this study are discussed and fi-

nally, some conclusions are given.
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Figure 1: Conventional CMOS full-adder
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Figure 2: CPL full-adder
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2. FULL ADDERS

A full-adder (FA) is a logic circuit which takes three

binary inputs, and provides two binary out-

puts, , the Sum bit and the Carry-out bit. Binary

number is the binary representation of the arith-

metic sum of the inputs. Basic logic equations for outputs

 can be easily obtained:

(1)

There are many different realizations for the static

CMOS one-bit FA. The two design style alternatives to be

considered in this study are the conventional CMOS logic

style and the CPL logic style. The schematics used as in-

puts to the automatic sizing tool are shown in Figures 1

and 2. The conventional CMOS circuit shown in Figure 1

uses the 28-transistor version [2] (instead the often-used

40-transistor version). This circuit presents some logic op-

timization because it uses variable in the calculation

of the Sum bit. The CPL version [2] is shown in Figure 2.

The conventional CMOS FA:

A closer study of the schematic in Figure 1 reveals

three relevant blocks whose transistors must be sized care-

fully: the Carry block, the Sum block and the Inverter

block. The transistor sizing parameters which must be op-

timized by the automatic sizing tool are:

Lengths are fixed at 0.8µm.
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The CPL FA:

Schematic in Figure 2 also reveals three relevant

blocks: the Matrix block, the Pull-up block and the Invert-

er block. Also, all the transistor lengths have been fixed at

0.8µm. Now, the transistor sizing parameters are:

Next, we describe the process followed to obtain the

optimal power-delay curves.

3. OPTIMAL POWER-DELAY CURVES

The question about the best low-power logic style (con-

ventional CMOS or CPL) for FA circuits can be answered

by building the optimal power-delay curves for both of

them. For that, transistor sizes that provide the minimum

power consumption for a given delay must be obtained.

Derivation of optimal power-delay curves is a very

time-consuming task, and generally requires a deep

knowledge of the electrical behaviour of the circuit. We

have eased this task by resorting to FRIDGE [10], an au-

tomatic sizing tool based on statistical optimization which

is able to start from an arbitrary initial point. FRIDGE is

built on top of the electrical simulator HSPICE and it is

able to accept constraints on different design objectives.

The procedure we have followed begins calculating

the power consumption and the delay of the circuit when

minimum size transistors are assumed. This point in the

power-delay curve is called minimum-size point (the MS

point placed at the right end of the curve) and its delay is

used as the initial point for subsequent optimizations.

Next, a FRIDGE loop is started. At each iteration, a delay

constraint (a vertical line in a power-delay curve) less than

the previous one, is fixed. This constraint separates the

feasible region (on the left) from the infeasible one (on the

right). FRIDGE tries to obtain the optimal circuit, i.e., the

transistor sizes which minimize the power consumption

and meet the delay constraint. Case of obtaining a solu-

tion, a new point in the optimal power-delay curve is add-

ed. In other case, the loop is broken. So, the procedure

ends when the automatic tool is not able to provide a solu-

tion for the given delay. The point of minimum delay (the

MD point placed at the left end of the curve) has been

reached and no further solution is possible. As FRIDGE is

based on HSPICE, power dissipation and delay are accu-

rately assessed. 20 MHz input waveforms containing all

possible transition of input combinations are simulated

and the worst case delay and the RMS power dissipation

obtained from this simulation. Both circuits have been

loaded in a similar way, a typical load for full-adder appli-

cations.

The procedure above described has been applied to the

circuits in Figures 1 and 2 with supply voltages of 3.3V

and 1.5V and an standard 0.8 mm CMOS process technol-

ogy. Figures 3 and 4 show the power-delay curves ob-

tained (solid line curves) for 3.3 and 1.5, respectively. It is

also interesting to study how these curves are modified if

the layout of the circuits is taken into account. Each opti-

mal power-delay circuit has been laid out. Layouts for the

conventional CMOS circuits have been automatically gen-

erated in CADENCE. However, we have resorted to a full-

custom layout style for the CPL circuits as it has been doc-

umented [9] the high sensitivity to parasitics that this logic

style exhibits. The dashed-line curves in the Figures come

from post-layout simulations.

4. RESULTS AND COMPARISONS

From the solid line curves in Figure 3 and Figure 4,

some important facts can be derived. First, the wide range

where conventional CMOS solutions can be found. By an

adequate sizing of transistors, delays between 1.6ns and

3.2ns for 3.3V, and delays between 7.5ns and 19.9ns for

1.5V can be obtained for this design style. When CPL so-

lutions are considered, the interval is much smaller, be-

tween 1.3ns and 2.2ns for 3.3V and between 6.5ns and

10.1ns for 1.5V. Power consumption for conventional

CMOS style ranges also in a wider interval, from 130µw

to 872µw for 3.3V and from 11µw to 91µw for 1.5V, when

compared to CPL solutions ([276µw, 523µw] for 3.3V and

[22µw, 44µw] for 1.5V).

Secondly, solutions with a power consumption below

276µw for 3.3V and 22µw for 1.5V are accessible only by

using the conventional CMOS design style. There are no

CPL solutions. As a counterpart, there are no conventional

CMOS solutions if a delay below 1.6ns for 3.3V and 7.5ns

for 1.5V is required. There are only CPL solutions.

Finally, there is a crosspoint between CPL and conven-

tional CMOS curves both for 3.3V and 1.5V. They are

placed at CP3.3V, (2ns, 282µw), for the 3.3V curve and at

CP1.5V, (9.8ns, 22µw), for the 1.5V one. This means that

in the region where both solutions are possible, for a given

nMOS pMOS

Matrix block (wn)M —

Pull-up block — (wp)P

Inverter block (wn)I (wp)I



power consumption above the corresponding to the cross-

point, CPL solutions exhibit less delay than conventional

CMOS solutions. Also, if the power consumption is below

the corresponding crosspoint, the conventional CMOS so-

lutions have less delay than CPL ones. A similar analysis

is applicable to the delay. In consequence, the best option

for building full adders uses CPL logic style for circuits

placed at the left of the crosspoint and conventional

CMOS solutions for points at the left of the crosspoint.

5. CONCLUSION

Optimal power-delay curves for CPL and CMOS full

adders for supply voltages of 3.3V and 1.5V have been built

up. These curves show that both logic styles can exhibit per-

formance advantages depending on the constraints imposed

by each particular application. CMOS produces the more

power efficient solutions while CPL generates the shortest

delay designs.
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Figure 3: Power-delay curves for VDD=3.3V

Figure 4: Power-delay curves for VDD=1.5V
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