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Abstract 24 

 25 

Aims Root tissue density (RTD, the ratio of root dry mass to root volume) is a fundamental trait in 26 

comparative root ecology, being increasingly used as an indicator of plant species’ resource use strategy. 27 

However, the lack of standardized method to measure this trait makes comparisons tricky. This study aims to 28 

compare three methods commonly used for determining fine RTD and to test whether root dry matter content 29 

(RDMC, the ratio between root dry mass and root fresh mass) could be used as a surrogate of fine root tissue 30 

density. 31 

Methods RTD of 163 fine root samples was determined using (i) Archimedes’ method, (ii) image 32 

analysis (WinRHIZO software), and (iii) using the root dry matter content as a proxy. Root samples belonged to 33 

different herbaceous species grown in different conditions. 34 

Results RTD measured with Archimedes’ method was positively correlated with RTD estimated with 35 

image analysis and with RDMC. However we demonstrated that RTD measured with Archimedes’ method was 36 

better predicted by RDMC (R² = 0.90) than by RTD measured with image analysis (R² = 0.56). The performance 37 

and limitations of each method were discussed. 38 

Conclusion RDMC is a quick, cheap and relatively easy measurable root attribute; we thus 39 

recommended its measurement as a proxy of fine root tissue density. 40 

 41 

Keywords: Archimedes’ principle, herbaceous plants, image analysis, method, root dry matter content (RDMC), 42 

root volume. 43 

44 
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Introduction 45 

 46 

Tissue density, defined as the amount of structural material invested by unit of volume (ratio between 47 

dry mass and volume), has been traditionally regarded as a key functional trait in comparative functional 48 

ecology. It is considered as an important predictor of plant strategies (Westoby 1998; Wilson et al. 1999; Craine 49 

et al. 2001) since it is commonly associated with many critical aspects of plant growth and survival. Low-density 50 

tissues enable a fast relative growth rate and a rapid resource acquisition as the plant can rapidly expand leaf, 51 

stem or root system with a low investment on dry matter (Garnier 1992; Poorter and Bergkotte 1992; Ryser 52 

1995; Ryser and Lambers 1995; Wahl and Ryser 2000; Hummel et al. 2007). However, the produced watered 53 

tissue tends to have a shorter life span and is usually more vulnerable to herbivory and pathogens than the high-54 

density tissues typical of slow-growing species (Eissenstat 1991; Craine et al. 2002; Craine et al. 2005; Tjoelker 55 

et al. 2005). Because of its high ecological importance, tissue density is now measured routinely in many world-56 

wide meta-analyses comparing species from contrasted growth forms and environmental conditions (Wright et 57 

al. 2006; Swenson and Enquist 2008; Chave et al. 2009; Fortunel et al. 2012; Kembel and Cahill 2012). One 58 

prerequisite for comparing tissue density from different studies, species and/or environmental conditions is the 59 

use of standardized protocols. Methodologies employed to measure tissue density had however not received 60 

enough attention (Williamson and Wiemann 2010). This is particularly evident in the case of roots, since there is 61 

no standardized method to measure root tissue density; for example this trait is not included in the handbook of 62 

methods for measuring functional traits (Cornelissen et al. 2003). In addition, there is even no consensus on the 63 

terminology used to refer to the ratio between root dry mass and root volume. A variety of terms have been used 64 

interchangeably to mean the same trait. The most common name used is root tissue density, but it has also been 65 

called as root dry matter concentration (Shipley and Vu 2002), root dry matter density, root tissue mass density 66 

(Wahl and Ryser 2000), root mass density (Ryser 2006), or root specific gravity (Fortunel et al. 2012). 67 

 The determination of root tissue density is complex mainly due to the measurement of volume of fresh 68 

roots, the denominator of the ratio that defines this trait. The volume of fresh roots is particularly difficult to 69 

measure since roots are usually very flexible and light, have an irregular shape and the amount of sampled roots 70 

is often very low. Different methods have been used in the literature for quantifying root volume. The most 71 

direct, based on Archimedes’ principle, consists in measuring the weight or the volume of water displaced by 72 

immersion of the roots. A literature survey conducted on 40 articles measuring root tissue density in non storage 73 

roots and published between 2000 and 2012 (Appendix 1) showed that the Archimedes’ method was only used 74 
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in 7% of cases. In the other 93%, root tissue density was assessed using either (i) image analysis using flatbed 75 

scanner and dedicated software (62% of cases), (ii) root dry matter content (RDMC, root dry mass per unit of 76 

root fresh mass) as a proxy for root tissue density (17% of cases), or (iii) the line-intercept method (Tennant 77 

1975) based on manual microscopic observations (14% of cases). When image analysis softwares were used, 78 

roots were digitalized at a given resolution (400 dpi in 33% of cases) and root volume was generally calculated 79 

as the product of root length times the square of root diameter/2, assuming a cylindrical shape of roots; diameter 80 

being itself calculated by the ratio between projected area and length. When RDMC was used, it was assumed 81 

that root fresh mass is a good estimator of volume. This has been demonstrated at the leaf level in many studies 82 

(Garnier et al. 1999; Roderick et al. 1999b; Vile et al. 2005) but only once at the root level (Shipley and Vu 83 

2002, hydroponic conditions). The only two published studies comparing root volume measured simultaneously 84 

by the Archimedes’ and the image analysis methods revealed inconsistent results (Ortiz-Ribbing and Eastburn 85 

2003; Pang et al. 2011). Methodological studies comparing the effectiveness of the three main methods 86 

commonly used for quantifying root tissue density are therefore necessary to propose a reliable protocol for 87 

accurately estimating this root attribute, which has been considered a critical trait for understanding many 88 

ecological questions. 89 

 The first objective of this study was to compare three protocols commonly used for assessing fine root 90 

volume: the Archimedes’ method, the image analysis method and the root dry matter content (RDMC) method. 91 

The second objective was to test whether RDMC could be used as a proxy for root tissue density. Fine root 92 

volume and tissue density were measured on root samples from three contrasted data sets in order to cover a 93 

wide range of root tissue density values. The first data set came from species belonging to contrasted taxonomic 94 

groups and life forms grown under controlled conditions; the second one was constituted by species harvested in 95 

the field; and the third one was composed of roots collected at the community level (using soil cores harvested at 96 

different depths) along a soil resource gradient. 97 
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Material and methods 98 

Root material: the three data sets 99 

Pot-grown species: root material came from eighteen herbaceous species selected among the most dominant ones 100 

occurring in Mediterranean old-field successions of southern France (Appendix 2). Species were grown from 101 

seeds or ramets (according to species) in 2 L pots filled with soil and maintained in a greenhouse at the Centre 102 

d’Ecologie Fonctionnelle et Evolutive (CEFE) in Montpellier, France (43°59′N, 3°51′E). Species were harvested 103 

six to eight months later, at the peak of vegetative growth; individuals of the same species were pooled. More 104 

details are available in Birouste et al. (2012). 105 

 106 

Field-grown species: roots from seven herbaceous species were harvested in May at the vegetative peak growth 107 

in two Mediterranean rangelands, located at the CEFE experimental garden (43°59′N, 3°51′E) and at the INRA 108 

La Fage experimental station (43°55’N, 3°05’E) (Appendix 2). Several individuals were carefully dug up with a 109 

pick to a soil depth of 15 cm and pooled together. Atypically large or small individuals were avoided.  110 

 111 

Field-community roots: root samples were collected in the field in three contrasted plant communities from a 112 

Mediterranean rangeland located at the INRA La Fage experimental station (43°55’N, 3°05’E) (Appendix 2). 113 

Plant communities differed in species composition and abundance as well as in rooting depth. As examples, the 114 

perennial grass Bromus erectus was dominant in deeper soil communities (≈ 90cm depth) and represented 60 to 115 

80% of the aboveground community biomass while the perennial grass Festuca christiani-bernardii was the 116 

dominant species in shallower soil (≈ 20cm depth) representing 25 to 42% of the biomass of the plant 117 

community. In July 2008 (end of the growing season), two randomly distributed soil cores (5 cm diameter) per 118 

plant community were collected to maximum rooting depth. Cores were divided into 10 cm sections obtaining a 119 

total of 30 community root samples, composed of a mixture of roots from the different species occurring in the 120 

vicinity of cores. More details are available in Pérez-Ramos et al. (2012) and Bernard-Verdier et al. (2012). 121 

 122 

Root processing 123 

Roots were carefully washed with water to remove adhered soil. Using a digital caliper, the finest roots (< 2 mm) 124 

were sorted and excised excluding main tap and adventious roots. For each species or core, representative 125 

subsamples of fine roots ranging from 0.02 to 0.90 g fresh mass were selected (Appendix 2; Fig.2). The 126 

subsample size was determined so that it could be: i) comparable among the three data sets and including a 127 
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continuous variation of biomass and volume within each of them; ii) placed in the sample holder (4 cm diameter) 128 

used to determine root volume with Archimedes’ method; and iii) spread on one A4 sheet without exceeding the 129 

recommended scanning density (Himmelbauer et al. 2004). A total of 163 subsamples were studied, the number 130 

of subsamples per species ranged from 3 to 5 for pot-grown plants and from 8 to 10 for field-grown plants 131 

(Appendix 2). For field community roots, the fine root biomass contained in each core (5 cm diameter x 10 cm 132 

length) was especially low in deep cores and did not allow us to collect more than one subsample per core. As a 133 

consequence, the amount of fine roots in subsamples accounted for a highly variable proportion of total root 134 

biomass sampled. For each subsample, fine roots fully rehydrated were gently dried between two filter papers to 135 

remove surface water until no more water tracks remained on papers; they were then immediately weighed with 136 

a hydrostatic balance to obtain root fresh mass both in air (RFM) and in ethanol (RFMeth). Pure ethanol was used 137 

to avoid root flotation; further details are provided below. Root subsample was stained by immersion in 138 

methylene blue (5 g L-1) for 5 min to increase contrast during scanning, then rinsed with distilled water and 139 

carefully spread out on a transparent acetate sheet in order to avoid root overlap. The root density per area 140 

scanned ranged from 0.1 to 2.8 cm cm-2. Roots were then scanned as greyscale images at a resolution of 400 dpi 141 

(pixel size = 0.063 mm) using a scanner (EPSON Expression 1680) equipped with a transmitted light source to 142 

avoid shadows (Roumet et al. 2006; Birouste et al. 2012). All roots were then recovered from the acetate sheet, 143 

oven-dried at 60 °C for 48h and reweighed to obtain the root dry mass (RDM). 144 

 145 

Measurements of root volume (V) and root tissue density (RTD) 146 

Each root sample was analyzed following the three methods described below. 147 

Method based on Archimedes’ principle (Arch) 148 

This method is the most direct of the three methods since it is based on physical principle to measure sample 149 

volume. For each subsample, root saturated volume was measured using the Sartorius density determination kit 150 

(Sartorius YDK01LP, Gottingen, Germany; precision 10-4 g), which is based on Archimedes’ principle 151 

(Buoyancy method). The weighing pan from the balance was replaced by the kit density pan stand, on which a 152 

density pan, constituted by two sample holders was hang. One sample holder (the upper one) was used to 153 

measure sample fresh mass in air (RFM); the second (lower sample holder) was immersed in a beaker filled with 154 

absolute ethanol and used to measured sample fresh mass in ethanol (RFMeth), i.e. the mass as reduced by the 155 

Buoyancy force. We first tare the balance, placed the sample on the upper holder and weigh (RFM), tare the 156 
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balance again with the sample on the upper holder, then place the sample in the lower sample holder and 157 

recorded the absolute readout of the buoyancy force G = RFM – RFMeth which is displayed with a negative sign. 158 

 According to the Archimedes’ principle, a sample (here roots) completely immersed in fluid (here ethanol) is 159 

exposed to the force of buoyancy (G), equals to the mass of ethanol displaced (Meth) by roots. The volume of the 160 

displaced ethanol (Veth) equals the volume of roots (VArch).  161 

eth
Arch eth

eth eth

M GV V
 

                                                                                     [Equation 1]       162 

where ρeth is the density of ethanol at the temperature recorded during the measurement. Meth was not directly 163 

measured but obtained as proposed in Sartorius AG (2001): 164 

eth ethM G RFM RFM                                                                                                                                                          [Equation 2]  165 

Combining equation 1 and 2, VArch and root tissue density (RTDArch) were calculated as: 166 

eth
Arch

eth

RFM RFMV



                                                                             [Equation 3]  167 

                 168 

Arch
Arch

RDMRTD
V

                                       [Equation 4]   169 

 170 

Method based on root image analysis (IA) 171 

The WinRHIZO software (WR, version 2003b, Regent Instrument, Quebec, Canada) was used to determine root 172 

length and volume in 10 diameter classes (from 0 to 2 mm, with a class width of 0.2 mm). The software is based 173 

on a skeletonization method which transforms the greyscale images into binary (i.e. black and white) and 174 

skeleton images. We selected the automatic thresholding option (recommended by Bouma et al. 2000) in order to 175 

optimize the threshold which separated grey levels in two distinct groups, root and background. For each pixel of 176 

the skeleton, the punctual diameter was measured as the smallest distance between two opposite boundary pixels 177 

in all directions at this point. The root volume was computed with the punctual diameter at the pixel position and 178 

added to the proper diameter class to obtain the root volume per diameter class (V IA; Régent Instruments Inc. 179 

2003). Total root volume (VIA) and root tissue density (RTDIA) were calculated as:  180 
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1

j
IA IAii

V V


                                                                                                                       [Equation 5]   181 

where j represented the number of diameter classes. The number and width of the diameter classes did not affect 182 

the VIA (data not shown) because VIAi was measured at each pixel independently of diameter classes. 183 

IA
IA

RDMRTD
V

                                       [Equation 6]   184 

 185 

Method based on root dry matter content (RDMC)  186 

The root dry matter content (RDMC) is defined as the ratio between root dry mass (RDM) and root fresh mass 187 

(RFM). In this method, it was assumed that root volume could be indirectly estimated by RFM after full 188 

rehydration (i.e., V = RFM) and that root dry matter content could be used as a proxy for root tissue density 189 

(RTD): 190 

RDM RDMRDMC RTD
RFM V

          [Equation 7] 191 

Root volume and fresh mass (RFM) are linked by root density (ρ) 192 

RFM
V

         [Equation 8] 193 

Root volume (V) and fresh mass (RFM) would be equivalent only if root density ρ  1. Root density (ρ) 194 

considers the fresh masses and volumes of the three phases contained in roots: solid (i.e., tissues), liquid and air 195 

(Roderick et al. 1999a). It differs from root tissue density (RTD) in that this latter only considers dry mass (the 196 

tissue phase). For leaves, an average leaf density of 1 had been reported for many species (i.e., Sims et al. 1998; 197 

Garnier et al. 1999; Vile et al. 2005), and the leaf dry matter content is thus commonly used as a proxy of leaf 198 

tissue density. By contrast, this relationship has been rarely studied for roots. 199 

 200 

Statistical analyses 201 

All analyses were performed on single root replicates. Differences in root volume and root tissue density 202 

between methods were tested for each data set using a one-way analysis of variance (ANOVA) with “method” as 203 

main factor. A post hoc test (Student-Newman-Keuls comparisons) was further applied. Major axis (MA) 204 

analyses were performed for pair-wise comparisons between the three methods since MA is particularly well 205 

adapted for testing if two methods of measurement agree, and in particular for testing whether methods scale 206 
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isometrically (Warton et al. 2006). Differences between methods were evaluated using the root mean square 207 

deviation (RMSD):  208 

2
1 2( )X X

RMSD
n



        [Equation 9] 209 

where X1 and X1 were the volumes (or RTD) measured with method 1 and 2 respectively and n the number of 210 

samples. Analyses were carried out using R 2.13.0 (R Development Core Team 2011). 211 
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Results 212 

Root volume 213 

Significant differences were detected in root volume when the three methods were compared (Fig. 1). Root 214 

volume measured by Archimedes’ method (VArch) did not differ significantly from the root fresh mass (RFM), 215 

used as a proxy of root volume, overall and for the three datasets. Volume measured using image analysis (VIA) 216 

was on average 70% higher than VArch  and RFM (Fig. 1a). The effect of image analysis method varied between 217 

data sets; it was larger for pot-grown species (Fig. 1b) as compared to field-grown species (Fig. 1c) while it was 218 

not significant for field-community roots (Fig. 1d). Scatter plots with all root samples showed that VIA was 219 

significantly and positively correlated with VArch (Table 1; Fig. 2a). The slopes however differed among data sets 220 

being steeper in more complex environments (0.60 for pot-grown species, 0.73 for field-grown species and 0.96 221 

for field-community roots; Table 1). A positive relationship was also found between VIA and RFM (Table 1; Fig. 222 

2b). VIA was always higher than VArch and RFM with the exception of two samples from the field-community 223 

root. The RMSD between VIA and VArch, and between VIA and RFM averaged over 0.040 and 0.046 respectively 224 

and tended to decrease with increasing VArch. RFM was closely correlated to VArch either for the whole data set or 225 

separately for any of the three data sets (Table 1; Fig. 2c). The correlation coefficients obtained were very high 226 

regardless of the data set considered (R2 > 0.95). The RMSD between RFM and VArch averaged over 0.002. 227 

 228 

Consequences on root tissue density 229 

Root tissue density (RTD) differed significantly between data sets (F = 73.2; P < 0.001) and methods (F = 74.16; 230 

P < 0.001). RTD measured using the Archimedes’ method (RTDArch) showed a 4.5-fold variation among samples 231 

ranging from 0.153 to 0.682 g cm-3 (Fig. 3a). As expected, roots from pot-grown species had a lower tissue 232 

density than field-community roots and field-grown species (0.221 ± 0.005, 0.366 ± 0.017 and 0.312 ± 0.014 g 233 

cm-3 respectively). Root tissue density determined with the image analysis method (RTDIA) presented a 10.8-fold 234 

variation, a much wider value than the range of variation observed for RTDArch (Fig. 3a) and for RDMC (Fig. 235 

3b). Overall, RTDIA was significantly correlated to RTDArch and RDMC (Table 1; Figs. 3a,b). This pattern was 236 

confirmed within each data sets except for pot-grown species (Table 1; Figs. 3a,b). RTDIA was always lower 237 

than RTDArch and RDMC with the exception of the two same samples mentioned before (volume comparison). 238 

RMSD averaged 0.021 between RTDIA and RTDArch and 0.022 between RTDIA and RDMC. The root dry matter 239 



 11 

content (RDMC) was highly correlated to root tissue density measured by Archimedes’ method (RTDArch) (Table 240 

1; Fig. 3c). The three data sets showed significant correlations between both variables (Table 1; Fig. 3b). RMSD 241 

between RDMC and RTDArch is much lower than RMSD found between RDMC and RTDIA since it averaged 242 

over 0.002 and ranged from 0.001 to 0.002 among datasets. RDMC tended to be slightly higher than RTDArch in 243 

pot-grown species while the opposite was observed for field-community roots). 244 
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Discussion  245 

This study demonstrates that the three methods used to determine fine root tissue density were positively 246 

correlated with each other. The strongest correlation was found between Archimedes’ method, the most direct 247 

and physical method, and the ratio between root dry mass to root fresh mass (i.e. root dry matter content), the 248 

most indirect method where root fresh mass was used as a proxy of root volume.  249 

 250 

Estimating fine root tissue density from image analysis software 251 

The fine root volume obtained from image analysis method was approximately 70% greater than that determined 252 

by the Archimedes’ method and RDMC; leading to an average 43% decrease of RTDIA as compared to RTDArch 253 

and RDMC. The only two published studies we know that compared methods reported opposite results (Ortiz-254 

Ribbing and Eastburn 2003; Pang et al. 2011). In Ortiz-Ribbing and Eastburn (2003), root volumes of soybeans 255 

grown either in greenhouse or in the field, were respectively 2 to 3.6 times lower when measured with image 256 

analysis method (using WinRHIZO as software) as compared with those measured by Archimedes’ method. In 257 

contrast, Pang et al. (2011) did not detect any significant differences between the two methods for Cynodon sp. 258 

grown in greenhouse. It is uncertain why these contrasted results occurred and the lack of precise information on 259 

how roots were scanned and how volume was calculated complicate data interpretation. Results obtained by 260 

image analysis are extremely sensitive  to the scanning procedure (resolution and light sourced used) and to the 261 

image analysis protocol, i.e. root staining, sample density, software, thresholding and filtering of images (Bouma 262 

et al. 2000; Costa et al. 2001; Zobel et al. 2003; Himmelbauer et al. 2004; Pierret et al. 2013). In our study, 263 

although we used the protocol recommended by Bouma et al. (2000) and the volume by diameter classes 264 

suggested by Ryser (2006), the volume calculated by image analysis method was consistently higher than VArch. 265 

This might be a consequence of the resolution used. In the literature survey that we conducted (see Introduction 266 

section), 50% of the studies using image analysis method for volume estimation did not mention the resolution 267 

used. When resolution was specified 60% of these studies used a resolution of 400 dpi as we did. However, this 268 

commonly used resolution could be inadequate for quantifying the volume of very small diameter roots. Zobel 269 

(2013) recently demonstrated that commercial scanners did not have enough resolution to accurately measure 270 

fine root diameters (< 0.09 mm). According to Richner et al. (2000), the diameter of the thinnest roots should be 271 

at least three times the pixel size (i.e. 0.19 mm diameter for a 400 dpi resolution) to ensure an accurate 272 

measurement of root diameter. This was not completely followed in our study, where the proportion of very fine 273 
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roots was relatively frequent, especially in pot-grown species (60% of root length < 0.2 mm). At a resolution of 274 

400 dpi, roots with diameter lower than one pixel (0.063 mm) were estimated using at least one pixel, leading to 275 

an overestimation of diameter and thus volume. We cannot rescanned our root samples at a highest resolution, 276 

however using another set of 16 very fine root samples (diameter ranging from 0.13 to 0.42 mm) we scanned 277 

each root sample at 400 and 1200 dpi. Our results (data not shown) demonstrated that volumes estimated at 400 278 

dpi were 61 % higher than volumes measured at 1200 dpi, suggesting that the scanning resolution used in this 279 

study was certainly insufficient to measure accurately root volume and thereby RTDIA. The resolution of 400 dpi 280 

was recommended in the years 2000 when scanners and computers performance were limited as compared with 281 

those available presently. We thus recommend using a higher resolution even if the time required for scanning 282 

and analyzing images is also higher. A new update standard protocol needs to be established to measure 283 

accurately root volume and tissue density using image analysis method. 284 

Another potential source of error could be the automatic threshold used. A sensitive analysis reported that 285 

measurements of root length could change up to a factor of 8 according to selected values of the threshold 286 

(Bouma et al. 2000; Tajima and Kato 2011), with probable dramatic consequences on total volume and RTD 287 

estimation. This was recently confirmed by Pierret et al. (2013) who compared the performance of two image 288 

analysis packages measuring length and diameter of roots scanned at 400 dpi. Correlation between average root 289 

diameter produced by these two packages was weaker than those obtained for length due the sensitivity of 290 

diameter to thresholding.  291 

 292 

Estimating fine root tissue density from measurement of root dry matter content 293 

Our results showed that fine root fresh mass (RFM) did not differed significantly from root volume (VArch) 294 

measured using the Archimedes’ method. Fresh mass and volume are equivalent only if the density (ρ = RFM / 295 

V) of the root is equal to 1. This was corroborated in our study, where root fresh mass scaled 1:1 with root 296 

volume VArch, and density (RFM/V) average was close to 1 (0.993 ± 0,009 g cm-3, with values ranging from 0.77 297 

to 1.56 g cm-3). These estimations of fine root density are consistent with those previously reported for roots 298 

(Ryser et al. 2011) and leaves (Sims et al. 1998; Garnier et al. 1999; Vile et al. 2005). As suggested by Roderick 299 

et al. (1999a), variation of leaf density could reflect different relative proportions of the three phases that 300 

composed leaves: air, water and solid. High water content (with ρ ≈1) leads to density near unity (Roderick et al. 301 

1999b) and prevent formation of large internal air spaces. At low water content, density varied depending on the 302 

allocation of dry matter and the fractional air space. For roots, these hypotheses need to be confirmed by 303 
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anatomical studies. Despite small variation of root density, our study demonstrates for the first time that fine root 304 

fresh mass scaled 1:1 with fine root volume and validates the use of fine root fresh mass as a surrogate of fine 305 

root volume in herbaceous species. As a consequence, we also validated the use of root dry matter content 306 

(RDMC) as a surrogate of fine root tissue density (RTD). This result confirmed those found by Shipley and Vu 307 

(2002) on young roots of 17 species grown in hydroponic conditions. Here, we demonstrated for the first time 308 

that the tight relationship between RDMC and RTD measured by Archimedes’ method holds for a broad range of 309 

plant species of different ages and growing under very contrasted conditions (in situ or in pots). RDMC slightly 310 

overestimated RTDArch in pot-grown species as a consequence of the underestimation of root volume, likely due 311 

to a higher proportion of air spaces. At the opposite side, RDMC is slightly lower than RTDArch in field-312 

community roots likely as a consequence of a greater presence of dense materials within the roots, which led to 313 

thicker cell walls (usually associated with older root systems or field constraints). 314 

 315 

Comparison among methods used for estimating root tissue density 316 

In this study there is no way to know which technique is the more accurate and each method presents advantages 317 

and disadvantages. The Archimedes’ method is the most direct method considering the three dimensions of 318 

roots. However, it is time-consuming and requires specific equipment (hydrostatic balance, pycnometer, digital 319 

micrometer). Another disadvantage concerns the difficulty to achieve full immersion of roots in the liquid. Since 320 

root density is very similar to that of distilled water, roots need to be immersed in a liquid of lower density such 321 

as ethanol (density ≈ 0.8 g cm-3) and this might affect root volume. Air bubbles clamping within the root sample 322 

might cause additional errors. Image analysis is the most widely used method for root studies; it is an essential 323 

and powerful tool to determine simultaneously many root attributes (e.g. length, area, volume, mean diameter, 324 

diameter class length distributions and topology). Measurements are however strongly sensitive to the scanning 325 

resolution and transformation threshold (Bouma et al. 2000; Costa et al. 2001; Himmelbauer et al. 2004; Pierret 326 

et al. 2013; Zobel 2013). The measurement of RDMC is the most indirect method since it assumes a tight 327 

relationship between root volume and fresh mass, which had never been demonstrated for roots at the 328 

interspecific level before this study. It is easy, quick and cheap to measure; RDMC determination only requires 329 

two rapid measurements with a precision balance (fresh mass and dry mass after 48h at 60°C). Fresh mass 330 

determination, however, is not a very accurate measure since it depends on the degree of water saturation of root 331 

tissues, the process of root drying for removing surface water and the dehydration rate in air during the 332 
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weighing. Because most of the roots are not protected against desiccation and lose water rather quickly, it is 333 

recommended to standardize the blotting procedure and to weigh roots as quickly as possible after the blotting 334 

up. Compared with the image analysis method it provides only one trait, the RDMC. Despite these inevitable 335 

disadvantages, our study demonstrates that the use of RDMC provides reliable results to estimate fine RTD, as 336 

recently demonstrated for plant residues (Iqbal et al. 2012). The choice of using a particular methodology 337 

strongly depends on the objectives of the study and materials under investigation; for studies interested in 338 

variation of fine root tissue density among species or environmental conditions, we suggest the use of RDMC to 339 

estimate root tissue density. For studies interested in variation of more morphological traits, image analysis 340 

method remained essential. These results obtained for fine roots of herbaceous species need however to be 341 

confirmed on bigger samples, using coarse roots and woody species as well as with a higher scanning resolution. 342 

Despite RDMC is by far the easiest method, it is rarely used as a proxy of root tissue density. This is in contrast 343 

with its leaf analogue, the leaf dry matter content (LDMC, the ratio of leaf dry mass to fresh mass), which is 344 

increasingly used as an indicator of plant species' resource use strategy (Wilson et al. 1999; Garnier et al. 2001; 345 

Díaz et al. 2004), leaf decomposability (Garnier et al. 2001; Fortunel et al. 2009; Kazakou et al. 2009) or soil 346 

fertility (Hodgson et al. 2011). Results from this study support the high predictive potential of RDMC for 347 

estimating fine RTD, and offer promising perspectives for root comparative ecology since RDMC enables the 348 

estimation of a key root trait from an easily measurable root attribute. 349 

 350 

From an ecological point of view, a lot of studies have supported clear evidences that root tissue density (RTD) 351 

affects several processes of root functioning such as respiration (Makita et al. 2012; Picon-Cochard et al. 2012), 352 

growth rate (Walh and Ryser 2000; Hummel et al. 2007) and longevity (Useche and Shipley 2010). Such 353 

evidence is scarce for RDMC. Recent studies have however revealed the interest of using RDMC as an indicator 354 

of differential functional strategies. As examples, RDMC has been identified as a consistent response trait to 355 

nitrogen limitation (Pérez-Ramos et al. 2012) or soil drought (Poorter and Markesteijn 2007). Here, we 356 

demonstrated that RDMC is a good, reliable and cheap proxy of fine root tissue density. The next step is to test 357 

its importance for the prediction of ecological patterns. We strongly recommended its measurement in 358 

comparative root ecology studies, in order to strengthen the role of RDMC as a predictor of root functions and 359 

ecosystem properties and to heighten the use of this key root trait in ecological studies. 360 
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Table 1 Major axis regressions between fine root volume and root tissue density measured using three different 498 

methods for the different data sets.  499 

 500 

 Data sets Equation R2 P RMSD 

VArch vs VIA     

 All  VArch = 0.70 VIA- 0.04 0.77 *** 0.0399 

 Pot-grown species   VArch = 0.60 VIA- 0.03 0.77 *** 0.0362 

 Field-grown species VArch = 0.73 VIA - 0.05 0.73 *** 0.0611 

 Field-community roots VArch = 0.96 VIA - 0.04 0.80 *** 0.0060 

      

VIA vs RFM     

All VIA = 0.75 RFM - 0.06 0.64 *** 0.0461 

Pot-grown species VIA = 0.52 RFM - 0.02 0.72 *** 0.0428 

Field-grown species VIA = 0.81 RFM - 0.09 0.56 *** 0.0706 

Field-community roots VIA = 1.12 RFM - 0.05 0.84 *** 0.0045 

     

VArch vs RFM     

 All VArch = 0.92 RFM + 0.02 0.96 *** 0.0016 

 Pot-grown species  VArch = 1.12 RFM - 0.04 0.99 *** 0.0004 

 Field-grown species VArch = 0.89 RFM + 0.03 0.95 *** 0.0032 

 Field-community roots VArch = 0.87 RFM + 0.004 0.97 *** 0.0012 

     

RTDArch vs RTDIA     

 All RTDArch = 1.03 RTDIA + 0.12 0.56 *** 0.0211 

 Pot-grown species  RTDArch = 4.44 RTDIA - 0.24 0.03 ns 0.0155 

 Field-grown species RTDArch = 0.93 RTDIA + 0.16 0.53 *** 0.0307 

 Field-community roots RTDArch = 0.85 RTDIA + 0.13 0.15 * 0.0153 

     

RTDIA vs RDMC     

All RTDIA = 0.74 * RDMC - 0.17 0.41 *** 0.0219 

Pot-grown species RTDIA = 5.44 * RDMC - 0.33 0.03 ns 0.0207 

Field-grown species RTDIA = 0.65 * RDMC - 0.21 0.39 *** 0.0295 

Field-community roots RTDIA = 0.35 * RDMC - 0.20 0.12 ns 0.0093 

     

RTDArch vs RDMC     

All All RTDArch = 1.3 * RDMC - 0.08 0.90 *** 0.0015 

 Pot-grown species  RTDArch = 0.94 * RDMC - 0.06 0.97 *** 0.0005 

 Field-grown species RTDArch = 1.3 * RDMC - 0.08 0.90 *** 0.0022 

 Field-community roots RTDArch = 1.5 * RDMC - 0.10 0.79 *** 0.0024 
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 501 

Equations, R2, the significance levels and the root-mean-square deviation (RMSD) are given. Abbreviations: root 502 

volume measured using Archimedes’ method (VArch,) or the image analysis software (VIA,); root fresh mass 503 

(RFM); root dry matter content (RDMC); root tissue density determined using Archimedes’ method (RTDArch) or 504 

the image analysis software (RTDIA). Number of root samples: n=163 for all data sets, n=72 for pot-grown 505 

species, n=61 field-grown species and n=30 field-community roots. *P < 0.05; ***P < 0.001; ns, non-significant 506 

  507 
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 Fig. 1 Mean and standard error of root volume for all data sets (a), pot grown species (b), field grown species 508 

(c), field-community roots (d) determined using three methods: Archimedes’ method (open bars), image analysis 509 

method (grey bars), and fresh mass used here as a proxy of root volume (black bars). Root volume was measured 510 

on root samples (n=163) belonging to three data sets: pot-grown species (n = 72), field-grown species (n = 61) 511 

and field-community roots (n=30). F-value and significance level are indicated inside the plot. * P < 0.05, ** P < 512 

0.01, *** P < 0.001. Different letters indicate significant differences among methods 513 

 514 

Fig. 2 Relationships between the fine root volume measured by (a) Archimedes’ method (VArch) and the image 515 

analysis method (VIA); (b) the fine root fresh mass (RFM) and image analysis method (VIA) and (c) Archimedes’ 516 

method (VArch) and the fine root fresh mass (RFM). Triangles represent pot-grown species, open circles field-517 

grown species and closed circles field-community samples. R2 of the major-axis regressions are given using the 518 

whole data as well as for each of the three data sets analyzed in this study. A log-scale is used to represent VArch, 519 

VIA and RFM. For comparative purposes, the 1:1 ratio has been represented by a dotted line. ***P < 0.001 520 

 521 
Fig. 3 Relationships between the fine root tissue density measured by (a) Archimedes’ method (RTDArch) and the 522 

image analysis method (RTDIA),(b) the fine root dry matter content (RDMC) and image analysis method 523 

(RTDIA) and (c) Archimedes’ method (RTDArch) and the fine root dry matter content (RDMC). Triangles 524 

represent pot-grown species; open circles field-grown species and closed circles field-community root samples. 525 

R2 of the major-axis regressions are given using the whole data as well as for each of the three data sets analyzed 526 

in this study. A log-scale is used to represent RTDArch, RTDIA and RDMC. For comparative purposes, the 1:1 527 

ratio has been represented by a dotted line. The level of significance is indicates as follows: •P < 0.1; *P < 0.05; 528 

***P < 0.001; ns, non-significant 529 
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Appendix 1: List of the 40 references consulted to review methods used to assess root tissue density. Most 1 

references were found using Web of Science (Thomson Reuters) with the following combinations of words 'root 2 

tissue density', 'root dry matter content', 'root dry matter concentration' or 'root dry mass density'. The literature 3 

survey concerned only papers published between 2000 and 2012. 4 

1. Aulen, M. & Shipley, B. (2012) Non-destructive estimation of root mass using electrical capacitance on 5 
ten herbaceous species. Plant and Soil, 355, 41–49. 6 

2. Brunner, I., Pannatier, E.G., Frey, B., Rigling, A., Landolt, W., Zimmermann, S. & Dobbertin, M. 7 
(2009) Morphological and physiological responses of Scots pine fine roots to water supply in a dry 8 
climatic region in Switzerland. Tree Physiology, 29, 541–550. 9 

3. Building, T., Withington, J., Reich, P.B., Oleksyn, J. & Eissenstat, D.M. (2006) Comparisons of 10 
structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381–11 
397. 12 

4. Comas, L.H., Bouma, T.J. & Eissenstat, D.M. (2002) Linking root traits to potential growth rate in six 13 
temperate tree species. Oecologia, 132, 34–43. 14 

5. Comas, L.H. & Eissenstat, D.M. (2004) Linking fine root traits to maximum potential growth rate 15 
among 11 mature temperate tree species. Functional Ecology, 18, 388–397. 16 

6. Comas, L.H. & Eissenstat, D.M. (2009) Patterns in root trait variation among 25 co-existing North 17 
American forest species. The New phytologist, 182, 919–28. 18 

7. Craine, J.M., Froehle, J., Tilman, D.G., Wedin, D.A. & Chapin, F.S. (2001) The relationships among 19 
root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance 20 
gradients. Oikos, 93, 274–285. 21 

8. Craine, J.M. & Lee, W.G. (2003) Covariation in leaf and root traits for native and non-native grasses 22 
along an altitudinal gradient in New Zealand. Oecologia, 134, 471–8. 23 

9. Craine, J.M., Tilman, D., Wedin, D., Reich, P., Tjoelker, M. & Knops, J. (2002a) Functional traits, 24 
productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16, 563–574. 25 

10. Craine, J., Wedin, D., Chapin III, F. & Reich, P. (2002b) Relationship between the structure of root 26 
systems and resource use for 11 North American grassland plants. Plant Ecology, 165, 85–100. 27 

11. Craine, J.M., Wedin, D.A., Chapin, F.S. & Reich, P.B. (2003) The dependence of root system 28 
properties on root system biomass of 10 North American grassland species. Plant and Soil, 250, 39–47. 29 

12. Eissenstat, D.M., Wells, C.E., Yanai, R.D. & Whitbeck, J.L. (2000) Building roots in a changing 30 
environment: implications for root longevity. New Phytologist, 147, 33–42. 31 
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Appendix 2: List of plant species or communities used to take measurements of root volume and tissue density.  1 
 2 

Plant species or community 
Botanical 

family 

Soil Depth 

(cm) 
n 

RDM 

(g) 

RTDArch 

(g cm
-3

) 

     

Data set 1: Roots from pot-grown species     

 Arenaria serpyllifolia L. Caryophyllaceae 20 4 0.007 – 0.024 0.247 – 0.269 

 Bromus erectus Huds. Poaceae 20 4 0.048 – 0.076 0.169  – 0.221 
 Bromus madritensis L. Poaceae 20 4 0.018 – 0.021 0.211 – 0.284 

 
Brachypodium phoenicoides 
Roem. & Schult. Poaceae 20 4 0.039 – 0.048 0.167 – 0.195 

 Crepis foetida L. Asteraceae 20 4 0.014  – 0.027 0.165 – 0.193 

 Clinopodium nepeta L. Lamiaceae 20 4 0.048 – 0.128 0.213 – 0.375 

 Daucus carota L. Apiaceae 20 4 0.011 –  0.034 0.200 – 0.248 

 Dactylis glomerata L. Poaceae 20 3 0.018 – 0.024 0.213 – 0.246 

 Geranium rotundifolium L. Geraniaceae 20 5 0.029 – 0.039 0.215 – 0.245 

 Inula conyza D.C. Asteraceae 20 3 0.029 – 0.042 0.167 – 0.226 

 Medicago minima L. Fabaceae 20 4 0.021 – 0.050 0.225 – 0.264 

 Bituminaria bituminosa L. Fabaceae 20 4 0.033 – 0.045 0.172 – 0.234 

 Picris hieracioides L. Asteraceae 20 4 0.022 – 0.032 0.182 – 0.213 

 Rubia peregrina L. Rubiaceae 20 4 0.051 – 0.080 0.161 – 0.219 

 Trifolium angustifolium L. Fabaceae 20 4 0.022 – 0.051 0.286 – 0.302 

 Teucrium chamaedrys L. Lamiaceae 20 4 0.045 – 0.054 0.195 – 0.205 

 Tordylium maximum L. Apiaceae 20 4 0.023 – 0.031 0.183 – 0.213 

 Veronica persica Poir. Scrophulariaceae 20 4 0.015 – 0.025 0.201 – 0.250 
 

 
  

Data set 2: Roots from field-grown species 
 

  

 Bromus erectus Huds.* Poaceae 20 10 0.035 –  0.067 0.304 – 0.391 

 Bromus madritensis L.* Poaceae 20 10 0.036 – 0.060 0.153 – 0.210 

 Carex humilis Leyss. Cyperaceae 20 8 0.330 – 0.420 0.547 – 0.682 

 Carex flacca Schreb. Cyperaceae 20 9 0.132 – 0.188 0.282 – 0.385 

 Bromus erectus Huds. Poaceae 20 8 0.047 – 0.098 0.272 – 0.345 
 Potentilla neumanniana Rchb. Rosaceae 20 8 0.184 – 0.303 0.368 – 0.448 

 
Festuca christiani bernardinii 
(Kerguélen) Poaceae 20 8 0.012 – 0.040 0.402 – 0.587 

 
 

  

Data set 3: Roots from field-community  
 

  

 Community from deep soil  several 90 18 0.010 – 0.110 0.220 – 0.418 

 Community from intermediate soil  several 40 7 0.025 – 0.267 0.175 – 0.444 

  Community from shallow soil several 20 5 0.019 – 0.078 0.216 – 0.415 
 3 

Roots from field-grown species were harvested in Mediterranean rangelands at La Fage INRA experimental 4 

station, excepting the two species marked with asterisk that were harvested in Montpellier. The minimal and 5 

maximal sizes of the sample are given by the root dry mass (RDM). The minimal and maximal values of root 6 

tissue density of species or community (RTDArch) are also given. 7 
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