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ABSTRACT: Quartz obtained from structural materials (bricks, tiles, etc.) is often 

employed as a dosimeter using the thermoluminescence (TL) technique in the field of dating 

and retrospective dosimetry.  As known, the TL response depends on the impurities in quartz 

lattice. For this motive, some members of -quartz series were synthesised using the ceramic 

method from precursor powders -Li2CO3, Al(NO3)3.9H2O, Si(C2H5O)4- with different 

compositions, to create standard materials. The lattice of aluminosilicates consists of chains 

of SiO4 and AlO4 tetrahedra forming spirals or rings. The Al
3+

 ions are replacing Si
4+

 and a 

positive charge is needed (trapped holes or Na
+
, K

+
, Li

+
, etc. cations). The Li

+
 ions are 

placed in void channels inside the spirals of (Si, Al)O4 tetrahedra. Here some characteristic 

features of the TL signal in three of -quartz with different concentrations of lithium-

aluminium were measured in the UV-blue region of the spectrum. Irradiated -quartz 

samples display high linearity - one of the main features of a dosimeter - after additional 

radiation doses (from 0.5 to 5 Gy). 
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1 INTRODUCTION 
 

 

The luminescent properties of quartz, used as the main dosimetric material, have been usually 

employed in retrospective dosimetry [1], archaeological and geological dating [2], detection of food 

irradiation [3], etc. The quartz emission relies on the most important features required for a 

dosimeter, i.e. to be highly sensitive, reproducible, to possesses low fading and good dose linearity 

in the ranges of interest. 

 

However, it is not possible to find pure quartz in natural environments; different concentrations of 

impurities (mainly Li and Al) are displayed in the lattice, modifying some of the typical 

characteristics of the thermoluminescence (TL) emission (such as intensity or position of the TL 

glow peak). If no ion substitutes the Si, the framework is SiO2 and all valence bonds are satisfied. 

Al ions frequently substitute the Si in the tetrahedra and interstitial monovalent or sometimes 

divalent cations (Li
+
, Na

+
, K

+
, Ca

++
) are required to preserve charge balance. The Li

+
 ions are 

placed in void channels within the spirals of (Si, Al)O4 tetrahedra. The role of [AlO4]º centres in the 

blue thermoluminescence of quartz was described by Martini et al. [4] who demonstrated prolonged 

high-temperature annealing of samples reduces the presence of ionic charge compensators and 

creates luminescence traps. This is crucial as in both, dating and retrospective dosimetry, the 

analytical routines used are based on luminescence methods (blue emissions around the 400nm) 

involving thermal treatments. 



 

In this paper, TL differences observed in three different synthetic quartzes grown with different 

content of Li and Al impurities (LiAlSiO4, LiAlSi5O12 and LiAlSi16O22) are studied. Dose response 

of samples was analysed in the UV-blue spectral region (380nm) to determine the suitability of 

these materials as potential dosimeters for environmental dose reconstruction. 

 

 

2 MATERIALS AND METHODS 
 

 

Lithium-aluminium stuffed derivatives of silica polymorphs, mixture of tetragonal -spodumene 

(LiAlSiO4) and hexagonal -eucryptite (LiAlSi16O22) were synthesised by Hamilton and 

Henderson’s gelling method [5]. The elements (Li, Al, Si) were introduced from precursor powders, 

in three steps: i) Lithium from Li2CO3, ii) Silica as TEOS which is tetraethylorthosilicate 

(Si(C2H5O)4) and iii) Aluminium as crystals of Al(NO3)3·9H2O. Al and Li cations were introduced 

in stoichiometric proportions to maintain the electrical neutrality of the quartz lattice (Al
3+

 + Li
+
 = 

Si
4+

). The samples studied were LiAlSiO4, LiAlSi5O12 and LiAlSi16O22.  

 

The structural data of the analysed samples were assessed by a Siemens D-5000 X-ray automated 

diffractometer using the K radiation of Cu with a Ni filter at a setting of 40kV and 200 mA. 

 

These samples were carefully crushed with a pestle in a mortar and sieved to obtain a grain size 

fraction of 50-90 m. TL measurements were made using an automated Risø TL system model TL 

DA-12 manufactured by Risø National Laboratory [6]. This reader is provided with an EMI 9635 

QA photomultiplier. The quartz emission was observed through a Melles-Griot blue filter (FIB002) 

where the wavelength (in nm) is peaked at 320-480 nm, FWHM is 80 ± 16 nm and peak 

transmittance (minimum) is 60%. It is also provided with a 
90

Sr/Y source with a dose rate of 

0.023Gy/s. All the TL measurements were performed using a linear heating rate of 5ºC/s from room 

temperature up to 500ºC in a N2 atmosphere (to avoid spurious TL signals). Four aliquots of 5.0 ± 

0.1 mg each of this synthetic material were used for each measurement. Sample processing and 

measurements were made under red light to avoid the release of the trapped electrons from the 

semistable sites into hole centres (including luminescence centres) due to light sensitivity. 

 

 

3 RESULTS AND DISCUSSION 
 

3.1 Morphological Study 

X-ray diffraction of the samples LiAlSiO4, LiAlSi5O12 and LiAlSi16O22, shows large presence of -

eucryptite with traces of -spodumene phase. Samples poorer in aluminium and lithium elements 

(LiAlSi16O22) display -quartz structure; samples with higher Li-Al content (LiAlSiO4) show -

quartz lattices and samples with intermediate Li content produce -spodumene that is detectable by 

the existence of the XRD peak at 21 2 KCu. The synthesised Al-Li-Si mixtures are basically Li-

Al rich -quartz, i.e., -eucryptite. Figure 1 shows a clear evolution trend in the main XRD peak 

(23 2) as it shifts to right with a decreasing amount of Li-Al in the lattice while maintaining the -

quartz structure. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: X-ray diffractograms of the studied materials. (Range 20-26º 2θ) 

 

3.2 UV-blue thermoluminescence 

To characterise a material as a dosimeter, its response to ionising radiation (the sensitivity to the 

dose) is needed. The TL glow curves of the three quartz crystals, doped progressively by Li and Al 

and beta irradiated with the same dose (5Gy) are displayed in figure 2. 

 

All samples are sensitive to radiation and display an intense emission at 90ºC.The group of 

components producing this peak is also detected in the TL glow curves obtained for different 

irradiated natural quartz [1] and aluminosilicates (e.g. microcline, a K-rich feldspar [7]), and are 

intrinsically associated with the Si-O bonds in the lattice, regardless of impurities and structural 

state. They do, however, show different behaviours depending on the degree of doping. The sample 

with the lowest Li-Al concentration clearly displays two more maxima at 130ºC and 200ºC besides 

the 90ºC peak (fig 2a). At temperatures of over 300ºC, no emission is appreciated. When the dopant 

level is increased (LiAlSi5O12), the 90ºC TL emission decrease intensity (by more than 50%) and 

the peaks at 130ºC and 200ºC change shape, position and intensity. Thus, the 130ºC peak is harder 

to detect and the 200ºC peak shifts to about 240ºC (fig 2b). The sample with the highest Li-Al 

concentration (LiAlSiO4) has a 130ºC peak that is not directly observed, and the emission is less 

intense than the other samples (a ratio of 7:2 respect to LiAlSi16O22 and 3:2 respect to LiAlSi5O12). 

At higher temperatures, a wide broad maximum peaking at 350ºC, in a position corresponding to 

the 'empty' zone of the others samples, can be appreciated (fig 2c). These changes in the intensity of 

the TL emission lead to the conclusion that the Li-Al dopants act as powerful TL inhibitors and 

show the dependence of the TL signal, measured at the maximum of the main peak, on the dopant 

concentration.  

 

Therefore, the material doped with the lower concentration of Li-Al is more suitable for radiation 

dosimetry purposes. The intensity and the shift toward high temperature in the position observed for 

the 200ºC peak with increasing Li-Al concentration should be highlighted. This indicates high 

dopant levels involve a progressive generation of deeper energy traps that are emptied at higher 

temperatures. 
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Figure 2: Thermoluminescence prompt curves of 5Gy -irradiated synthetic quartz with different 

Li/Al dopant concentration. The dose rate of the 
90

Sr/Y -source was 0.023Gy/s. 
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Some measurements were made to determine the response of materials to the radiation dose 

varying in a range of one order of magnitude (0,5 to 5Gy). The results, expressed as an integrated 

TL signal (area between 50-200ºC) are shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Dose dependence of the TL signal in the range of 0.5-5Gy for different doped synthetic 

quartz. 

 

The points corresponding to the lowest dopant concentration specie (figure 3), are well fitted by a 

second order polynomial expression with a negative quadratic term. Thus, the dose dependence 

follows a saturating exponential behaviour (of which the quadratic expression is an approximation 

of second order) but, probably, with total saturation at doses over 5Gy (out of the range of interest 

for our purposes). The other two specimens not only show very good linear fitting for both, 

LiAlSi5O12 and LiAlSiO4 involving the potential validity as dosimeters in the whole investigated 

range of doses, but also a lower dispersion in the TL signal for the samples analysed. The 

dispersions observed for LiAlSi16O22 were never lower than 12%, while values were always below 

5% for other samples. 

 

Table 1. Equation coefficients of fitting corresponding to the data of figure 3. 

 

Sample a b c 

LiAlSiO4 -2114±2085 10954±785 --- 

LiAlSi5O12 -44±1126 15189±424 --- 

LiAlSi16O22 1891±2639 54920±3289 -4317±637 

 

Some experiments are being carried out in our laboratory to characterise the optical and thermal 

fading; in the preliminary results for one week of storage, the fading behaviour is similar to that 

observed for other materials, i.e. a initial rapid decay and stability of the signal. Further work is still 

necessary to determine the evolution of the TL emission after increased periods of storage. 
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4 CONCLUSIONS 
 

 

As in a previous work for the sample (Li0.73Al0.73Si1.27O4) [8], the three silica samples studied here 

(LiAlSi16O22, LiAlSi5O12 and LiAlSiO4) are sensitive to radiation. Although LiAlSi16O22 dose 

dependence is explained by a saturating exponential equation, no saturation effect has been detected 

in the studied range (0.5-5Gy). All the experiments carried out confirm both samples with higher 

content of Li/Al could potentially be used as dosimeters in the aforementioned range as they are 

sensitive enough, are highly reproducible and possess good dose linearity.  

 

In contrast, the Li-Al dopants act as powerful TL inhibitors showing the dependence of the TL 

signal measured at the maximum of the main peak, on the dopant concentration. Moreover, high 

dopant levels involve a generation of deeper energy traps emptied at higher temperatures. 
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