Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Available online at www.inia.es/sjar

Spanish Journal of Agricultural Research 2010 8(4), 1084-1097 ISSN: 1695-971-X eISSN: 2171-9292

Selection of Trichoderma spp. isolates antagonistic to Rosellinia necatrix

D. Ruano-Rosa*, L. del Moral-Navarrete and C. J. Lopez-Herrera

Instituto de Agricultura Sostenible. CSIC. C/Alameda del Obispo, s/n. Apartado de correos 4084. 14080 Córdoba. Spain

Abstract

Fifty-six bulk isolates of Trichoderma spp. from avocado (Persea americana Mill.), carnation (Dianthus caryophyllus L.), litchi (Litchi chinensis Sonn), rice (Oryza sativa L.) and sugar beet (Beta vulgaris L.) crops located in southern Spain were evaluated for antagonism against one isolate of Rosellinia necatrix Prill. Isolates of both types of fungi were tested in dual and cellophane culture. The origin, cultural characteristics, overgrowth sporulation and staining of growth medium were recorded. As a result, 21 Trichoderma bulk isolates were selected and their corresponding monoconidial isolates were evaluated as above. Next eight monoconidial Trichoderma isolates with the largest in vitro antagonism were selected, and they were additionally tested against nine representative isolates of R. necatrix from nine virulence groups. These were established after pathogenicity tests on 57 isolates of R. necatrix from diseased avocado orchards in southern Spain. These monoconidial Trichoderma isolates were considered as potential biological control agents with a high potential for effective control of white root rot of avocado.

Additional key words: avocado white root rot; biocontrol; cellophane culture; dual culture.

Resumen

Selección de aislados de Trichoderma spp. antagonistas a Rosellinia necatrix

Se analizó el antagonismo de cincuenta y seis aislados masales de Trichoderma spp. procedentes de cultivos de aguacate (Persea americana Mill.), clavel (Dianthus caryophyllus L.), litchi (Litchi chinensis Sonn), arroz (Oryza sativa L.) y remolacha (Beta vulgaris L.) del Sur de España frente a un aislado de Rosellinia necatrix Prill. Los aislados de ambos hongos se analizaron in vitro en cultivos duales y de celofán, valorándose la procedencia, características culturales, sobrecrecimiento, esporulación y tinción del medio de cultivo. Se seleccionaron 21 aislados masales y se evaluaron sus correspondientes monoconídicos mediante los análisis in vitro citados. Posteriormente se seleccionaron los 8 aislados monoconídicos de Trichoderma que presentaron el mayor antagonismo in vitro. Estos 8 aislados se evaluaron adicionalmente mediante análisis frente a nueve aislados representativos de R. necatrix, procedentes de nueve grupos de virulencia. Estos se obtuvieron mediante análisis de patogenicidad de 57 aislados de R. necatrix procedentes de fincas de aguacate enfermas del Sur de España. Aquellos aislados monoconídicos de Trichoderma podrían considerarse como agentes de control biológico con un alto potencial para un efectivo control de la podredumbre blanca del aguacate.

Palabras clave adicionales: control biológico; cultivo dual; cultivo en celofán; podredumbre blanca radical del aguacate.

Introduction

White root rot (WRR; Rosellinia necatrix Prill.) is one of the most serious diseases affecting avocado (Persea americana Mill.) orchards in southern Spain (López Herrera, 1998). R. necatrix occurs worldwide and has a host range of 170 plant species in 63 genera (Ten Hoopen and Krauss, 2006). Disease control

^{*} Corresponding author: b52rurod@uco.es Received: 02-02-10; Accepted: 05-11-10.

strategies include cultural practices, soil disinfestation (Guillaumin, 1986), soil solarisation (Freeman et al., 1990; López Herrera et al., 1998, 1999) and fluazinam fungicide (López Herrera and Zea Bonilla, 2007). Concerns about environmental pollution have necessitated the development of alternative methods of disease control. Biological control strategies have been proposed for the control of WRR of avocado and apple crops using *Trichoderma* (Freeman et al., 1986; Sztejnberg et al., 1987). Trichoderma has been proposed as a potentially viable biological control agent for WRR because of its antagonism i.e. growth inhibition by antibiosis, competition, mycoparasitism, plant growth promotion and induced resistance (Benítez et al., 2004) to plant pathogenic fungi such as Fusarium (Segarra et al., 2010), Pythium (Naseby et al., 2000), Pyrenophora tritici-repentis (Perelló et al., 2003), Rhizoctonia (Hajieghrari et al., 2008) and Sclerotium cepivorum (Clarkson et al., 2004).

Antibiotics produced by *Trichoderma* species have been shown to inhibit fungal pathogens. *Trichoderma* species are often able to suppress the growth of endogenous fungi on an agar medium, and this mechanism has been observed in *T. virens* suppressing *Macrophomina phaseolina*, which causes charcoal rot in a range of crops (Howell, 2003). Various authors have demonstrated that mycoparasitism is not the main mechanism by which *Trichoderma* controls fungal pathogens.

The aim of this study was to identify isolates of *Trichoderma* with efficient *in vitro* antagonism to isolates of *R. necatrix* obtained from diseased avocado orchards in southern Spain, and select these isolates as biological control agents (BCAs) against WRR.

Material and methods

The experiments of this work were carried out in the period 2001-2006.

In vitro evaluation of Trichoderma spp. against R. necatrix

A total of 56 bulk *Trichoderma* isolates were collected from avocado, carnation, garlic, litchi, rice and sugar beet crops in southern Spain (Table 1), and evaluated for *in vitro* antagonistic activity to *R. necatrix* isolate Rn 400.

Antagonism of *Trichoderma* spp. bulk isolates in dual culture

Experiment 1

Forty-eight bulks isolates of Trichoderma spp. were evaluated for in vitro antagonism to Rn 400 in dual cultures (Royse and Ries, 1978). Petri dishes (90-mm diam.) containing 20 mL of potato dextrose agar (PDA; Difco Laboratories, Detroit, MI, USA) were each inoculated with a 5-mm diam. mycelial disc of a 7-dayold culture of R. necatrix grown under chamber conditions (25°C in darkness). Three days later, Petri dishes were co-inoculated with a 5-mm diam. mycelial disc of a three-day-old culture of *Trichoderma* spp. isolate at a distance of 5 cm from the R. necatrix mycelial disc. R. necatrix colony growth was measured along two radii: R1 (between the sowing point and farthest point of the colony) and R2 (between the sowing point and the edge of the colony) from where R. necatrix and Trichoderma mycelia came into contact. Percentage of radial growth inhibition (%RGI) was calculated as %RGI = [(R1-R2)/R1]*100 (Royse and Ries, 1978). Controls comprised R. necatrix cultures without Trichoderma; and were conducted in duplicate. The profusion of growth over opposite microorganisms (i.e., overgrowth) such as R. necatrix growth over Trichoderma or vice versa) was examined, as were sporulation and staining of growth medium. Thus, 25 bulk Trichoderma isolates with efficient antagonistic properties to R. necatrix were selected for further evaluation.

Experiment 2

The 25 selected *Trichoderma* isolates plus 7 new isolates were re-evaluated using the same dual culture techniques as used in experiment 1, except that the cultural characteristics were not recorded. Isolates were replicated 10 times. The 7 new isolates of *Trichoderma* from escape trees (*i.e.* healthy trees in an orchard affected by WRR) were included based on promising results from preliminary experiments in our laboratory.

The experiments were complete randomised designs and an analysis of variance (ANOVA) was applied to the average of arcsin-transformed data of 3 and 10 replicates per isolate for experiment 1 and 2, respectively. The isolate means were compared by Fisher's Least Significant Difference (LSD) test (p < 0.05) to separate the means (Steel and Torrie, 1985). All statistical

Table 1. *Trichoderma* bulk isolates collected in Spain (1992-2001)

Isolate	Genus/Species	Host	Year	Origin
CH 76	T. harzianum	Sugar beet	1992	Córdoba
CH 77	T. harzianum	Sugar beet	1992	Córdoba
CH 78	Trichoderma spp.	Garlic	1992	Córdoba
CH 80	Trichoderma spp.	Garlic	1992	Córdoba
CH 81	Trichoderma spp.	_	1992	Córdoba
CH 101	T. atroviride	Avocado	1993	Málaga
CH 214	Trichoderma spp.	Avocado	1998	Málaga
CH 215	Trichoderma spp.	Avocado	1998	Málaga
CH 216	Trichoderma spp.	Avocado	1998	Málaga
CH 217	Trichoderma spp.	Avocado	1998	Málaga
CH 218	Trichoderma spp.	Avocado	1998	Málaga
CH 219	Trichoderma spp.	Avocado	1998	Málaga
CH 220	Trichoderma spp.	Avocado	1998	Málaga
CH 221	T. longibrachiatum	_	1998	Salamanca
CH 222	T. auroviride	_	1998	Salamanca
CH 223	T. longibrachiatum	_	1998	Salamanca
CH 224	T. harzianum	_	1998	Salamanca
CH 226	Trichoderma spp.	Avocado	1999	
CH 227	Trichoderma spp.	Avocado	1999	
CH 228	Trichoderma spp.	Avocado	1999	Málaga
CH 230	Trichoderma spp.	Avocado	1999	Málaga
CH 231	Trichoderma spp.	Avocado	1999	Granada
CH 232	Trichoderma spp.	Carnation	1999	Sevilla
CH 233	Trichoderma spp.	Carnation	1999	Sevilla
CH 234	Trichoderma spp.	Carnation	1999	Sevilla
CH 235	Trichoderma spp.	Carnation	1999	Sevilla
CH 236	Trichoderma spp.	Carnation	1999	Sevilla
CH 237	Trichoderma spp. Trichoderma spp.	Carnation	1999	Sevilla
CH 238	Trichoderma spp. Trichoderma spp.	Rice	1999	Sevilla
CH 239	Trichoderma spp.	Rice	1999	Sevilla
CH 240	Trichoderma spp.	Rice	1999	Sevilla
CH 240	Trichoderma spp. Trichoderma spp.	Avocado	2000	Málaga
CH 242	Trichoderma spp. Trichoderma spp.	Avocado	2000	Málaga
CH 250	Trichoderma spp. Trichoderma spp.	Carnation	2000	Wiaiaga
CH 251	Trichoderma spp. Trichoderma spp.	Carnation	2000	
CH 251	T. harzianum	Carnation	2000	_
CH 252 CH 253	Trichoderma spp.	Carnation	2000	_
CH 253		Avocado	2000	— Málaga
CH 255	Trichoderma spp.	Avocado	2000	
	Trichoderma spp.		2000	Málaga
CH 256	Trichoderma spp.	Avocado		Málaga
CH 262	Trichoderma spp.	Litchi	2000	Málaga
CH 273	T. atroviride	Avocado*	2001	Granada
CH 276	Trichoderma spp.	Avocado*	2001	Granada
CH 278	Trichoderma spp.	Avocado*	2001	Granada
CH 294	Trichoderma spp.	Avocado*	2001	Granada
CH 295	Trichoderma spp.	Avocado*	2001	Granada
CH 296	T. cerinum	Avocado*	2001	Granada
CH 298	Trichoderma spp.	Avocado*	2001	Granada
CH 299	Trichoderma spp.	Avocado*	2001	Granada
CH 300	Trichoderma spp.	Avocado*	2001	Granada
CH 303	T. virens	Avocado*	2001	Málaga
CH 304	T. atroviride	Avocado*	2001	Granada
CH 314	T. atroviride	Avocado*	2001	Granada
CH 316	T. atroviride	Avocado*	2001	Granada
CH 390	Trichoderma spp.	Avocado	2001	_
CH 391	Trichoderma spp.	Avocado	2001	

^{*} Isolate from roots of healthy avocado tree with diseased neighbours trees («escape trees»).

analyses used the software package, Statistix 9 (Analytical Software, Version 9.0, Tallahassee, FL, USA).

transfer of bulk mycelium on PDA and stored at 4°C for future study.

Antagonism of bulk *Trichoderma* isolates in cellophane culture

Bulk Trichoderma spp. isolates (32 in total = 25 from Experiment 1+7 new isolates from Experiment 2) with an additional isolate previously tested in our laboratory were evaluated in cellophane culture (Dennis and Webster, 1971) against one isolate of Rn 400. Sterile cellophane film was transferred to Petri dishes containing 20 mL PDA. Each Petri dish was inoculated with a 5-mm diam. mycelial disc from different isolates of *Trichoderma*, one isolate per Petri dish in the centre of the dishes and incubated in chamber conditions for 2 days. The cellophane film was removed, and a 5-mm diam. mycelial disc of Rn 400 transferred to the growth medium at a rate of 1 disc per Petri dish. When control mycelia of R. necatrix (no previous Trichoderma exposure) covered the Petri dish, two colony diameters of all treatments were measured; isolates were replicated five times. Thus, 21 isolates with efficient antagonism in vitro to R. necatrix were finally selected for additional evaluation.

The experiment was a complete randomised design and an ANOVA was applied to the average data from five dishes per isolate. Isolate means were compared by Fisher's LSD test (p < 0.05) (Steel and Torrie, 1985).

Preparation of *Trichoderma* monoconidial isolates

In order to minimise variability in the antagonistic response observed with bulk isolates of *Trichoderma*, monoconidial isolates were obtained for evaluation in dual and cellophane culture. Selected *Trichoderma* bulk isolates were grown on PDA for 7 days in chamber conditions. Spores were then removed by scraping the colony surface with 5 mL of sterile deionised water, and 0.1 mL of the spore preparation transferred to Petri dishes containing water agar and was incubated for 1 day at room temperature (RT = 24°C). A single conidium per isolate was recovered using an optical microscope, and transferred to dishes containing PDA, except for isolate CH 304 for which two conidia were recovered (described as CH 304·1-mc and CH 304·2-mc). Monoconidial cultures were maintained by serial

Selection of monoconidial isolates of *Trichoderma* in dual and cellophane culture

In two experiments, 22 monoconidial isolates of *Trichoderma* were evaluated against Rn 400 in dual and cellophane culture as described previously; there were five replicates per isolate. Eight *Trichoderma* isolates were then selected based on the degree of antagonism to Rn 400 as measured in the same way as *«Antagonism of Trichoderma spp. bulk isolates in dual culture»* section for dual culture and *«Antagonism of bulk Trichoderma isolates in cellophane culture»* section for cellophane culture.

Experiments were complete randomised designs and an ANOVA was applied to the average of arcsintransformed data (dual culture) and data of five replicates per isolate (cellophane culture). Isolate means were compared by Fisher's LSD test (p < 0.05) to separate the means.

In vitro antagonism of eight *Trichoderma* monoconidial isolates to nine isolates of *R. necatrix*

To obtain representative virulent isolates of *R. necatrix*, the pathogenicity of 57 isolates (Table 2) from infested avocado orchards of southern Spain were tested on 12-month-old avocado plants from germinated seeds of cv. Topa-Topa. The plants were grown in 1.15 L pots containing a Laura substrate consisting of peat, coconut fibre, and perlite at a ratio of 6:1:0.6 v/v/v, respectively. Inoculations were as described by Sztejnberg and Madar (1980). Specifically, 3.75 g of wheat seed per L of substrate colonised by *R. necatrix* isolates was added at different depths and distances from the plant stem. The experiment was conducted under greenhouse conditions (18-26°C and relative humidity (RH) of 56-88%).

Five replicate pots per treatment were used. Aerial symptoms were evaluated every three days on the following scale of 1-5: 1=healthy plant; 2=plant with first symptoms of wilt; 3=plant wilted; 4=plant wilted with first symptoms of leaf desiccation; and 5=plant completely desiccated and dead. Data were calculated as the area under the disease progress curve (AUDPC)

R. necatrix isolate	Origin	Year	R. necatrix isolate	Origin	Year	R. necatrix isolate	Origin	Year
Rn 10	La Herradura-Granada	1986	Rn 67	Almuñécar-Granada	1992	Rn 119	Torre del Mar-Málaga	1995
Rn 11	Fuengirola-Málaga	1986	Rn 68	Almuñécar-Granada	1992	Rn 200	Benagalbón-Málaga	1996
Rn 12	Salobreña-Granada	1988	Rn 69	Benamargosa-Málaga	1992	Rn 201	La Viñuela-Málaga	1996
Rn 13	Almuñecar-Granada	1988	Rn 70	Algarrobo-Málaga	1992	Rn 202	Vélez-Málaga	1996
Rn 15	Estepona-Málaga	1989	Rn 71	Fuengirola-Málaga	1992	Rn 203	Coin-Málaga	1996
Rn 16	Vélez-Málaga	1989	Rn 96	Estepona-Málaga	1993	Rn 204	Canillas-Málaga	1996
Rn 17	Almuñécar-Granada	1989	Rn 97	Fuengirola-Málaga	1993	Rn 205	Vélez-Málaga	1996
Rn 18	Almuñécar-Granada	1989	Rn 98	Algarrobo-Málaga	1993	Rn 244	La Mayora-Málaga	1999
Rn 19	Almuñécar-Granada	1989	Rn 99	Coín-Málaga	1993	Rn 245	Veléz-Málaga	1999
Rn 29	Vélez-Málaga	1990	Rn 100	Alhaurín el Grande-Málaga	1993	Rn 246	Coín-Málaga	1999
Rn 30	Almuñécar-Granada	1990	Rn 106	Mijas-Málaga	1994	Rn 247	Vélez-Málaga	1999
Rn 31	Motril-Granada	1990	Rn 107	Coín-Málaga	1994	Rn 268	Motril-Granada	2001
Rn 32	Motril-Granada	1990	Rn 108	Coin-Málaga	1994	Rn 269	Motril-Granada	2001
Rn 33	Jete-Granada	1990	Rn 109	Benagalbón-Málaga	1994	Rn 284	Vélez-Málaga	2001
Rn 48	Almuñécar-Granada	1991	Rn 110	Vélez-Málaga	1994	Rn 285	Churriana-Málaga	2001
Rn 49	Almuñécar-Granada	1991	Rn 111	Estepona-Málaga	1994	Rn 289	Motril-Granada	2001
Rn 50	Almuñécar-Granada	1991	Rn 116	Vélez-Málaga	1995	Rn 290	Vélez-Málaga	2001
Rn 51	Almuñécar-Granada	1991	Rn 117	Vélez-Málaga	1995	Rn 320	Coin-Málaga	2001
Rn 52	Vélez-Málaga	1991	Rn 118	Torre del Mar-Málaga	1995	Rn 400	Almuñécar-Granada	1991

Table 2. Rosellinia necatrix isolates collected in Spain from diseased avocado trees (1986-2001)

(Campbell and Madden, 1990). These AUDPC data were statistically analysed as a complete randomised design comparing the means by Fisher's LSD test (p < 0.05). Nine bulk representative *Rosellinia necatrix* isolates, each from a different virulence group, were selected. The activity of eight isolates of *Trichoderma*, selected for their antagonism to *R. necatrix*, was again tested in cellophane and dual culture over the nine isolates of *R. necatrix*. Data describing *in vitro* antagonisms were statistically analysed using a factorial design where the main factor was the *R. necatrix* isolates and the sub-factors were the *Trichoderma* isolates. The means were compared by Fisher's LSD test (p < 0.05).

Results

Antagonism of *Trichoderma* bulk isolates in dual culture

Experiment 1

Of the 48 bulk isolates of *Trichoderma* spp. tested, the following isolates showed the highest inhibition (%RGI=40.01-26.15%) of Rn 400 in dual culture with statistically similar means not significantly different among them: CH 215, CH 101, CH 314, CH 256, CH 252, CH 316, CH 220, CH 218, CH 262, CH 300, CH

238, CH 255, CH 254, CH 304, CH 230, CH 242, CH 251, CH 237, CH 231, CH 78, CH 216, CH 243, CH 77, CH 76, CH 219, CH 226, CH 234, CH 391, CH 232 and CH 227. The isolates CH 214, CH 81, CH 276, CH 222, CH 240, CH 390, CH 228, CH 221 and CH 253 had medium levels of antagonism (%RGI = 23.78-20.29%). The remaining *Trichoderma* isolates (CH 250, CH 239, CH 217, CH 233, CH 235, CH 223, CH 224, CH 80 and CH 236) gave the least inhibition (%RGI = 19.83-9.28%), although these were still significantly different from controls (Table 3).

Staining of the growth medium, possibly indicative of antibiosis, occurred in 10 isolates. Profuse sporulation of *Trichoderma* and overgrowth of *R. necatrix* by *Trichoderma* was evident in 22 and 48 isolates, respectively. Overgrowth of *R. necatrix* by *Trichoderma* occurred only with *Trichoderma* isolate CH 217.

Twenty five of the 48 isolates of *Trichoderma* spp. were selected for further study. Of these, 19 isolates (CH 215, CH 101, CH 314, CH 256, CH 252, CH 316, CH 220, CH 218, CH 262, CH 300, CH 238, CH 255, CH 254, CH 304, CH 230, CH 242, CH 251, CH 237 and CH 231) were characterised by a combination of high %RGI (40.01%-27.63%), high sporulation and overgrowth. Some selected isolates (CH 300, CH 230, CH 242, CH 251 and CH 231) showed evidence of considerable staining of the growth medium. The remaining *Trichoderma* isolates (CH 221, CH 222, CH

Table 3. Effect of different *Trichoderma* bulk isolates on radial growth inhibition (%RGI) of *R. necatrix* (Rn 400). «Dual» culture technique; Experiment 1

Trichoderma isolate	%RGI ^a	Cul	ture cha	racteris	sticsb	Trichoderma isolate	%RGI ^a	Cul	ture cha	racteri	sticsb
CH 215	40.01 ^a	S	OT	_	_	CH 226	26.44 ^{abcdefg}	_	_	_	_
CH 101	36.49ab	S	OT	_	_	CH 234	26.41 abcdefg		OT	_	
CH 314	33.63abc	S	OT	_	_	CH 391	$26.38^{abcdefg}$		_	A	_
CH 256	33.33 ^{abc}	S	OT	_	_	CH 232	$26.27^{\rm abcdefg}$		_	_	_
CH 252	32.91 abcd	S	OT		_	CH 227	$26.15^{abcdefg}$		OT		
CH 316	30.58^{abcde}	S	OT	_	_	CH 214	$23.78^{bcdefgh}$		OT	_	
CH 220	$30.53^{\rm abcde}$	S	OT	_	_	CH 81	21.67 ^{bcdefghi}	S		_	
CH 218	30.27^{abcde}	S	OT	_	_	CH 276	21.13 ^{cdefghi}	S	OT	A	
CH 262	29.72abcde	S	OT	_	_	CH 222	20.97 ^{cdefghi}	_	OT	_	_
CH 300	29.56^{abcde}	S	OT	Α	_	CH 240	$20.87^{cdefghi}$	_	OT		_
CH 238	29.54^{abcde}	S	OT	_	_	CH 390	$20.67^{cdefghi}$	S		_	
CH 255	29.15^{abcde}	S	OT	_	_	CH 228	$20.62^{cdefghi}$	S		A	
CH 254	28.89abcdef	S	OT	_	_	CH 221	$20.40^{cdefghi}$			A	
CH 304	28.74^{abcdef}	S	OT	_	_	CH 253	$20.29^{cdefghi}$	S	OT	_	
CH 230	28.69abcdef	S	OT	A	_	CH 250	19.83 ^{defghij}	S		_	
CH 242	28.17^{abcdef}	S	OT	A	_	CH 239	18.75^{ghij}	S		_	
CH 251	27.99abcdef	S	OT	A	_	CH 217	18.72^{defghij}			_	OR
CH 237	27.65abcdef	S	OT	_	_	CH 233	16.73^{fghij}		OT	_	
CH 231	27.63abcdef	_	OT	A	_	CH 235	16.68 ^{efghij}			_	
CH 78	27.43abcdef	S		_	_	CH 223	13.55ghij		OT	A	
CH 216	27.11 abcdef	_	OT	_	_	CH 224	13.32^{hij}	S	_	_	
CH 243	26.60^{abcdef}	_	OT	_	_	CH 80	10.99^{ij}	_	OT	_	_
CH 77	26.56^{abcdef}	S	OT		_	CH 236	9.28^{j}	S		_	
CH 76	26.45^{abcdef}	S	OT		_						
CH 219	$26.44^{abcdefg}$		OT		_	Control	1.88^{k}			_	

^a Least significant difference (LSD) (p < 0.05) = 9.79; Multiple comparisons between means are based on arcsin-transformed values. However, mean percentages are shown. The data were means of three replicates, which were compared by Fisher's protected LSD test (p < 0.05). In each column, numbers followed by the same letter are not significantly different according to the LSD test. ^b S: profuse sporulation. OT: overgrown of *Trichoderma* spp. with sporulation over *R. necatrix*. A: staining of growth medium, possible antibiosis. OR: overgrowth of *R. necatrix* over Trichoderma. —: without important characteristic.

223, CH 224, CH 228 and CH 276) were selected based on the cultural characteristics of interest, including a very high marked staining of growth medium, sporulation and overgrowth over *R. necatrix*, even though inhibition did not increase.

Experiment 2

Of the 32 *Trichoderma* isolates evaluated, the following isolates showed the highest inhibition (%RGI = 39.28-26.86%) of Rn 400 in dual culture: CH 300, CH 224, CH 262, CH 303, CH 255, CH 218, CH 238, CH 223, CH 316, CH 314, CH 222, CH 256, CH 304, CH 254 and CH 295. The following *Trichoderma* isolates remaining showed the least inhibition in their antagonism to Rn 400 (Table 4), although statistically diffe-

rent (p < 0.05) from controls: CH 231, CH 278, CH 242, CH 220, CH 237, CH 276, CH 101, CH 251, CH 296, CH 299, CH 252, CH 228, CH 298, CH 294, CH 230, CH 221 and CH 215.

In contrast to Experiment 1, the lowest inhibition occurred with isolate CH 215 in Experiment 2, and many of the *Trichoderma* isolates studied in the two experiments showed considerable variation in %RGI (*e.g.*, CH 101, CH 215, CH 222, CH 223, CH 224, CH 230, CH 252, CH 262 and CH 300).

Antagonism of bulk *Trichoderma* isolates in cellophane culture

Of the 33 *Trichoderma* bulk isolates tested, 16 showed an antagonistic effect significantly different (p<0.05)

Table 4. Effect of different *Trichoderma* bulk isolates on radial growth inhibition (%RGI) of *R. necatrix* (Rn 400). «Dual» culture technique; Experiment 2

Trichoderma isolates %RGI^a CH 300 39.28a CH 224 35.96abCH 262 35.61ab 34.47^{abc} CH 303 32.68^{abcdef} CH 255 $32.37^{abcd}\\$ CH 218 CH 238 31.93 abcdefg 31.75^{abcd} CH 223 31.32^{abcd} CH 316 31.20^{abcde} CH 314 30.82^{abcde} CH 222 $29.24^{abcdefg}$ CH 256 29.23 abcdefg CH 304 CH 254 28.88abcdefg CH 295 26.86 abcdefgh CH 231 $26.47^{bcdefgh}$ $26.36^{bcdefgh}$ CH 278 26.26^{bcdefgh} CH 242 26.07^{bcdefgh} CH 220 25.65^{defghi} CH 237 25.48cdefgh CH 276 24.97^{bcdefgh} CH 101 24.82^{bcdefgh} CH 251 24.16^{cdefgh} CH 296 $24.13^{\rm defghi}$ CH 299 23.91^{cdefgh} CH 252 $23.57^{\rm efghi}$ CH 228 $23.43^{\rm defghi}$ CH 298 20.89ghi CH 294 CH 230 20.45^{fghi} 16.84^{hi} CH 221 CH 215 14.90^{i} Control 2.02^{j}

to controls. Four isolates (CH 252, CH 273, CH 316 and CH 303) were totally effective over Rn 400 (Table 5). Of the remaining isolates (CH 298, CH 230, CH 242, CH 256, CH 254, CH 299, CH 220, CH 314, CH 215, CH 295, CH 294, CH 223, CH 224, CH 221, CH 222, CH 238 and CH 300) did not differ significantly from controls. However, isolates CH 238 and CH 300 demonstrated high inhibition in dual culture but not in cellophane culture. Variability in isolate responses was high but less so than in dual culture.

Table 5. Effect on growth of *R. necatrix* (Rn 400) of different *Trichoderma* spp bulk isolates in cellophane culture

Trichoderma isolate	Average of diam. (cm) Rn 400ª
CH 252	0.00^{i}
CH 273	0.00^{i}
CH 316	0.00^{i}
CH 303	0.71^{i}
CH 262	$3.74^{\rm h}$
CH 296	$4.02^{\rm h}$
CH 231	$4.70^{ m gh}$
CH 251	4.81gh
CH 255	$5.06^{ m fgh}$
CH 237	$5.10^{ m fgh}$
CH 218	5.16^{fgh}
CH 101	5.22^{efgh}
CH 276	5.71^{defg}
CH 228	6.45^{cdef}
CH 278	6.57 ^{cdef}
CH 304	6.80^{bcde}
CH 298	6.88^{abcd}
CH 300	8.50^{a}
CH 230	7.15 ^{abcd}
CH 242	7.44 ^{abc}
CH 256	7.45 ^{abc}
CH 254	7.68 ^{abc}
CH 299	7.71 ^{abc}
CH 220	7.99 ^{abc}
CH 314	8.21 ^{ab}
CH 215	8.33ab
CH 295	8.35 ^{ab}
CH 294	8.40^{ab}
CH 223	8.44 ^{ab}
CH 224	8.44 ^{ab}
Control	8.50ª
CH 221	8.50 ^a
CH 222	8.50 ^a
CH 238	8.50 ^a

^a LSD (p < 0.05) = 1.63. The data were means of five replicates, which were compared by Fisher's protected LSD test (p < 0.05). In each column, numbers followed by the same letter are not significantly different according to the LSD test.

Thus, 21 bulk isolates of *Trichoderm*a were selected based on high or medium %RGI in dual culture or cellophane culture, in combination with culture characteristics of overgrowth, staining and sporulation (Table 6).

Evaluation of monoconidial *Trichoderma* isolates in dual culture

Trichoderma isolate CH 296 resulted in the maximum growth inhibition of Rn 400 followed by isolates

 $^{^{\}rm a}$ LSD (p<0.05)=7.19. Multiple comparisons means are based on arcsin-transformed values. However, mean percentages are shown. The data were means of ten replicates, which values were compared by Fisher's protected LSD test (p<0.05). In each column, numbers followed by the same letter are not significantly different according to LSD test.

Inhibition Inhibition Culture Trichoderma in dual in cellophane Source isolate characteristics^a culture culture CH 303 High High Avocado «escape» CH 316 High High Avocado «escape» CH 255 High Avocado High CH 218 High Avocado CH 314 High Avocado «escape» CH 222 High Unknown CH 231 Medium Medium Avocado «escape» S-OT-A CH 251 Medium Medium Carnation CH 252 High^b Medium Carnation CH 296 Medium Medium Avocado «escape» CH 304 Medium Medium Avocado «escape» Medium^b S-OT CH 101 Avocado CH 220 Medium^b S-OT Avocado CH 254 Medium Avocado CH 215 High^b Avocado Α CH 221 Unknown S-OT-A CH 230 Avocado CH 242 S-OT-A Avocado CH 276 S-OT-A Avocado «escape» CH 256 High^b Avocado

Table 6. Level of antagonism to R. necatrix and cultural characteristics of selected Trichoderma bulk isolates

High

CH 314, CH 101, CH 273, CH 304·1, CH 304·2 and CH 303 showing statistically similar results (p < 0.05) (Table 7). Variability was lower in this experiment with isolates CH 304·1 and CH 304·2 from the same bulk isolate giving similar results (Table 7).

Evaluation of monoconidal isolates of *Trichoderma* in cellophane culture

CH 273

Total inhibition of Rn 400 growth occurred with *Trichoderma* isolates CH 252, CH 273, CH 303 and CH 316; inhibition was less with CH 296 although the difference was not significant (p<0.05) (Table 7). *Trichoderma* isolates CH 256, CH 230, CH 242, CH 220, CH 222, CH 254, CH 251 and CH 215 had little effect on the growth of Rn 400. Isolates CH 304·1 and CH 304·2, from a same bulk isolate, had different effects in cellophane culture and variability was similar to that of the bulk isolates.

Hence, isolates CH 273, CH 296 and CH 303 were selected on the basis of high or total inhibition of Rn 400 growth in both cellophane and dual culture (Ta-

ble 6). In addition, isolates CH 101, CH 304·1 and CH 314 were selected for a high %RGI in dual culture, and isolates CH 252 and CH 316 were selected for their inhibition in cellophane culture (Table 7).

Avocado

In vitro evaluation of eight monoconidial Trichoderma isolates to nine R. necatrix isolates in different virulence groups

The study of pathogenicity of 57 isolates of *R. necatrix* was finished 24 days after inoculation when all control plants were dead. During the experiment, plants inoculated with the isolates Rn 12 and Rn 29 did not show symptoms of wilt, while all the remaining inoculated plants showed symptoms of wilt or were dead. Nine significantly different groups of virulence were established and the isolates Rn 320, Rn 400, Rn 10, Rn 17, Rn 50, Rn 33, Rn 30, Rn 49 and Rn 12 selected (Table 8).

The average effect of each monoconidial isolate of *Trichoderma* over the nine isolates of *R. necatrix* is shown in Table 9. No positive correlation was detected

^a A: staining of growth medium, possible antibiosis; S: profuse sporulation; OT: overgrown of *Trichoderma* spp. with sporulation over *R. necatrix*; —: without important characteristics Avocado «escape»: healthy avocado tree with diseased neighbours. ^b In Experiment 1 only.

Table 7. Effect of different *Trichoderma* monoconidial isolates on radial growth inhibition (%RGI) of *R. necatrix* (Rn 400) in dual and cellophane culture

Trichoderma isolate	Dual culture ^a (%RGI)	Trichoderma isolate	Cellophane culture ^t Mean colony diam. (cm) Rn 400
CH 101	27.41 ^{ab}	CH 101	2.61 ⁱ
CH 215	$13.11^{\rm gh}$	CH 215	8.32^{ab}
CH 218	9.78^{hi}	CH 218	5.50^{defg}
CH 220	10.45^{hi}	CH 220	7.56^{abc}
CH 221	20.40^{def}	CH 221	3.74^{ghi}
CH 222	20.96^{bcdef}	CH 222	7.90^{ab}
CH 230	11.90^{hi}	CH 230	7.22abcd
CH 231	12.87^{gh}	CH 231	4.94^{efgh}
CH 242	20.39^{cdef}	CH 242	7.55abc
CH 251	18.48^{fg}	CH 251	8.02^{ab}
CH 252	1.00^{j}	CH 252	0.00^{j}
CH 254	18.89ef	CH 254	7.96^{ab}
CH 255	18.54^{fg}	CH 255	4.90^{fgh}
CH 256	19.24^{def}	CH 256	6.95 ^{abcde}
CH 273	27.03 ^{abc}	CH 273	0.00^{j}
CH 276	1.02^{jk}	CH 276	6.36^{bcdef}
CH 296	29.17ª	CH 296	1.88 ^{ij}
CH 303	23.47^{abcdef}	CH 303	0.00^{j}
CH 304·1	25.38 ^{abcd}	CH 304·1	3.34^{hi}
CH 304·2	25.29 ^{abcde}	CH 304·2	$5.59^{\rm cdefg}$
CH 314	28.64ª	CH 314	3.28^{hi}
CH 316	7.30^{i}	CH 316	0.00^{j}
Control	0.00^{k}	Control	8.50a

^a LSD (p < 0.05) = 4.51. Multiple comparisons means are based on arcsin-transformed values. However, mean percentages values are shown. ^b LSD (p < 0.05) = 2.04. The data were means of five replicates, which values were compared by Fisher's protected LSD test (p < 0.05). In each column, numbers followed by the same letter are not significantly different according to the LSD test.

between inhibition in dual and cellophane cultures. In dual culture, isolates CH 101, CH 273, CH 304·1 and CH 303 demonstrated the highest inhibition to all *R. necatrix* isolates (%RGI = 29.2-21.8%). In contrast, isolates CH 296, CH 316, CH 252, CH 303 and CH 273 had the highest inhibition to all *R. necatrix* isolates in cellophane culture.

Discussion

The presence of *Trichoderma* spp. in the root systems of plants that survive disease may be evidence of biological control. The best method for obtaining potential BCAs might be where candidate *Trichoderma* are isolated from plants and soils in situations where they are thought to function in disease control (Howell, 1998). It is often recommended that potential BCAs should be sought from healthy plants in fields of di-

seased plants of the same species (Linderman et al., 1983). The antagonistic organisms would be expected to be able to function in the same environmental niche as the target pathogen (Knudsen et al., 1997). Therefore, isolates of *Trichoderma* with high antagonistic activity but from different crops might not be expected to be as effective in the rhizosphere of avocado trees. For our selection process, the origin of isolates from avocado was considered and the majority of the Trichoderma isolates selected were from the rhizosphere of healthy avocado trees adjacent to diseased avocado trees. In addition, some Trichoderma isolates were obtained from different hosts (i.e., carnation) where they had been proven effective in our laboratory for controlling other soil-borne fungi (i.e., Fusarium opxysporum f. sp. dianthi) (López Herrera et al., 2008).

Elad *et al.* (1982), established a positive correlation between *in vitro* degradation of cell wall lytic activity

Table 8. Pathogenicity and virulence group of 57 bulk isolates of *R. necatrix* on 12 months old avocado plants from germinated seeds under greenhouse conditions (18-26°C and relative humidity= 56-88%).

R. necatrix isolate	AUDPCsa	Virulence Group	R. necatrix isolate	AUDPCsa	Virulence Group
Rn 10	2.8 ^{cde}	3	Rn 106	2.8 ^{cde}	3
Rn 11	3.2^{abc}	1	Rn 107	$3.2^{\rm abc}$	1
Rn 12	1.0^{i}	9	Rn 108	$3.0^{\rm bcd}$	2
Rn 13	3.4^{ab}	1	Rn 109	$3.0^{\rm bcd}$	2
Rn 15	$3.0^{\rm bcd}$	2	Rn 110	$3.0^{\rm bcd}$	2
Rn 16	$3.0^{\rm bcd}$	2	Rn 111	3.2^{abc}	1
Rn 17	2.6^{de}	4	Rn 116	3.0^{bcd}	2
Rn 18	$2.8^{\rm cde}$	3	Rn 117	3.2^{abc}	1
Rn 19	$2.8^{\rm cde}$	3	Rn 118	3.0^{bcd}	2
Rn 29	1.0^{i}	9	Rn 119	3.4^{ab}	1
Rn 30	1.8gh	7	Rn 200	3.4^{ab}	1
Rn 31	2.6^{de}	4	Rn 201	3.2^{abc}	1
Rn 32	$3.0^{\rm bcd}$	2	Rn 202	$3.0^{\rm bcd}$	2
Rn 33	2.0^{fg}	6	Rn 203	3.2^{abc}	1
Rn 48	2.6^{de}	4	Rn 204	3.6^{a}	1
Rn 49	1.4 ^{hi}	8	Rn 205	3.2^{abc}	1
Rn 50	$2.4^{\rm ef}$	5	Rn 244	3.0^{bcd}	2
Rn 51	$2.8^{\rm cde}$	3	Rn 245	3.2^{abc}	1
Rn 52	2.6^{de}	4	Rn 246	3.4^{ab}	1
Rn 67	3.0^{bcd}	2	Rn 247	3.0^{bcd}	2
Rn 68	3.0^{bcd}	2	Rn 268	3.0^{bcd}	2
Rn 69	3.0^{bcd}	2	Rn 269	3.2^{abc}	1
Rn 70	3.4^{ab}	1	Rn 284	3.2^{abc}	1
Rn 71	$2.8^{\rm cde}$	3	Rn 285	3.0^{bcd}	2
Rn 96	$2.8^{\rm cde}$	3	Rn 289	$3.2^{\rm abc}$	1
Rn 97	$2.4^{\rm ef}$	5	Rn 290	3.4^{ab}	1
Rn 98	3.0^{bcd}	2	Rn 320	3.6^{a}	1
Rn 99	3.0^{bcd}	2	Rn 400	3.0^{bcd}	2
Rn 100	3.0^{bcd}	2			

^a The area under the disease progress curve (AUDPC), obtained from data of aerial symptoms, was evaluated every 3 days on the following scale of 1-5: 1: plant healthy; 2: plant with first symptoms of wilt; 3: plant wilted; 4: plant wilted with first symptoms of leaf desiccation; 5: plant completely desiccated and dead. Data were standardised means of five replicates, which values were compared by Fisher's protected LSD test (p < 0.05). LSD value = 0.489. In each column, numbers followed by the same letter are not significantly different according to the LSD test.

due to large number of *T. harzianum* isolates and the degree of biological control against the pathogens *Sclerotium rolfsii*, *Rhizoctonia solani* and *Pythium aphanidermatum in vivo*. Knudsen *et al.* (1997) also reported a positive correlation between fungi antagonistic isolates *in vitro* and biological control of *Drechslera teres* and *Tilletia caries* on cereals fields.

The high variability observed within data in dual culture and cellophane experiments with the same bulk isolates of *Trichoderma* and *R. necatrix*, and also among replicates in the same experiment, was possibly associated with the bulk origin of the fungal isolates

used. Bulk isolates constituted a pool of several genotypes with differing activity levels in essential aspects such as growth or sporulation, as well as in more specific factors, such as biocontrol. This high diversity may be related to activity of the different genotypes giving rise to synergisms between different isolates with variable genotypes and coexisting in bulk *Trichoderma* isolates (Harman *et al.*, 1998).

Variability within strains may be due to differences in the degree of genetic variation within the genus *Trichoderma* (Hjeljord and Tronsmo, 1998). This may give strains within the genus *Trichoderma* a high

<i>Trichoderma</i> isolate	Mean of inhibition radial growth (%) of nine representative <i>Rosellinia necatrix</i> ^a in dual culture ^b	Mean diam. (cm) colony of nine representative <i>Rosellinia necatrix</i> in cellophane culture ^c		
CH 101	29.16ª	6.92 ^b		
CH 252	19.66^{cd}	2.15e		
CH 273	27.22ab	3.13^{de}		
CH 296	20.67^{cd}	1.80°		
CH 303	21.83 ^{abc}	2.91 ^{de}		
CH 304·1	25.26^{abc}	4.58°		
CH 314	22.46 ^{bc}	4.21 ^{cd}		
CH 316	13.95 ^d	1.82e		
Control	3.34°	8.50a		

Table 9. Mean effect of monoconidial *Trichoderma* isolates on nine representative *R. necatrix* isolates of virulence groups

degree of ecological adaptability as reflected in its worldwide presence in soils under a range of differing environmental conditions (Harman *et al.*, 1998). There is also intra- and inter-specific variability in the intensity of *Trichoderma* response against other microorganisms (Hjeljord and Tronsmo, 1998; Clarkson *et al.*, 2004).

Thalli of wild or successively transferred strains of Trichoderma are likely to comprise complex heterokaryons (i.e., individual nuclei may differ). Therefore, the thallus of the genus *Trichoderma* may be considered a complex community of nuclei, some differing subtly and others differing markedly from their neighbours (Harman et al., 1998). To reduce such variability, we prepared monoconidial isolates of *Trichoderma* with conidia receiving a single nucleus from the phiallide and hence being homokaryotic. The monoconidial generation comprises individuals that each possess a single genotype that may differ to a greater or lesser extent from that of other individuals of the same population (Harman et al., 1998). This variation may explain differences in the responses between bulk and the corresponding monoconidial isolates. Nevertheless, Worasatit et al. (1994) observed considerable variation among single spore isolates of T. koningii and their capacity to inhibit R. solani growth on agar. A similar variation occurred with isolates of T. harzianum inhibiting the growth of Gaeumannomices graminis var. triciti (Ghisalberti et al., 1990). Variability observed in our experiments did not disappear with monoconidial isolates of *Trichoderma*, perhaps because *R. necatrix* is a dikaryotic homokaryon (Kanda *et al.*, 2003) and a bulk isolate providing a new source of variation.

We observed that isolates with high %RGI in dual culture did not show the same response in cellophane culture (e.g., isolates CH 238 and CH 300). This may be attributable to the lack of evidence of stimulation of control activity due to a lack of direct contact between pathogen and antagonist in cellophane cultures. Kubicek et al. (2001) reported high-levels of induction of extracellular chitinolytic enzymes when Trichoderma was grown on purified chitin, fungal cell walls or mycelia as the exclusive source of carbon. Similar behaviour was reported by Inbar and Chet (1995) who studied the role of recognition in the induction of specific chitinases during mycoparasitism by T. harzianum of Sclerotium rolfsii.

In our dual culture experiments, RGI did not exceed 40%, which is in contrast to an RGI of 70% reported by Dubey et al. (2007) for Trichoderma spp. against Fusarium oxysporum f. sp. ciceris and by Royse and Ries (1978) for Cytospora cincta against Alternaria alternata, Epicoccum purpurascens, Coniothyrium olivaceum and Aureobasidium pullulans. This analysis of inhibition is based mainly on the competition for space in Petri dishes. For this reason, when two fungi with very different growth rates (e.g., R. necatrix and Trichoderma) are confronted, the %RGI is not high, but is still

^a Nine significantly different groups of virulence: Rn 320, Rn 400, Rn 10, Rn 17, Rn 50, Rn 33, Rn 30, Rn 49 and Rn 12. ^b LSD (p < 0.05) = 5.01 Multiple comparisons means are based on arcsintransformed values. However, mean percentages values are shown. ^c LSD (p < 0.05) = 1.34. The data were means of three replicates, which values were compared by Fisher's protected LSD test (p < 0.05). In each column, numbers followed by the same letter are not significantly different according to LSD test.

useful for selecting isolates with the potential for biocontrol.

We have identified isolates with significantly higher rates of sporulation, although high sporulation is a common characteristic of this genus (Gams and Bissett, 1998). High sporulation would favour rapid colonisation of substrate, and hence would be of valuable property as BCA due to high reproductive activity (Benítez *et al.*, 2004).

We selected antagonistic isolates that overgrew the pathogen and rejected isolates that were overgrown by the pathogen. Haran *et al.* (1996) reported dual culture experiments in which *T. harzianum* was overgrown by *R. solani* but hardly overgrown by *S. rolfsii* under the same conditions, thus demonstrating differential chitinolytic activity. Similar results were obtained by Limón *et al.* (2004) for transformed isolates of *T. harzianum* 2413 that overgrew *R. solani* and prevented overgrowth of pathogen-antagonism. Nevertheless, Mukherjee and Raghu (1997) reported a direct relationship between overgrowth and BCA of *Trichoderma* spp. and *S. rolfsii*.

Although there may be a relationship between staining of growth medium and antibiosis (Rey et al., 2001), it was not always observed with our isolates. Isolates CH 300 and CH 221 showed considerable staining of growth medium, which did not correspond with antibiotic activity in cellophane cultures. This lack of corresponding activity may be due to specificity between antagonist and pathogen (Gams and Bissett, 1998), or indicative of its diversity and variability similar to *Streptomyces* spp. (Ndonde and Semu, 2001).

The high variability that exists in the virulence of isolates found in avocado orchards of southern Spain, corresponds with the high genetic diversity observed by Pérez Jiménez et al., (2002) and the existence of a somatic incompatibility system in isolates of R. necatrix of the same origin. The response differences in antagonism observed among the eight monoconidial Trichoderma isolates to nine R. necatrix isolates representative of different virulence groups in dual and cellophane cultures, suggests the existence of different antagonistic modes of action to pathogens.

In conclusion, nine groups of virulence were established for a collection of 57 isolates of *R. necatrix*, which demonstrates high variability among isolates of the pathogen infesting avocado orchards in southern Spain. The *in vitro* experiments with a high number of bulk isolates of *Trichoderma* from different hosts lead to the final selection of eight *Trichoderma* monoconidial

isolates being tested over nine isolates of *R. necatrix*. These eight *Trichoderma* monoconidial isolates can be considered as BCAs with high potential for effective control of *R. necatrix*. These eight monoconidial isolates have been later evaluated in new experiments, not included in this study, as biocontrol agents against avocado white root rot, and have provided high levels of WRR control when two of them were tested singly or combined (Ruano-Rosa and López-Herrera, 2009).

Acknowledgment

This research has been supported by the Spanish Plan Nacional I+D+I Grant AGL 2005-06347-CO3-02.

References

- BENÍTEZ T., RINCÓN A.M., LIMÓN M.C., CODÓN A.C., 2004. Biocontrol mechanism of *Trichoderma* strains. Int Microbiol 7, 249-260.
- CAMPBELL C.L., MADDEN L.V., 1990. Temporal analysis of epidemics. I: Descriptions and comparisons of disease progress curve. In: Introduction to plant disease epidemiology (Campbell C.L., Madden L.V., eds). Wiley, NY. pp. 161-202.
- CLARKSON J.P., MEAD A., PAYNE T., WHIPPS J.M., 2004. Effect of environmental factors and *Sclerotium ce-pivorum* isolate on sclerotial degradation and biological control of white rot by *Trichoderma*. Plant Pathol 53, 353-362.
- DENNIS C., WEBSTER J., 1971. Antagonistic properties of species-group of *Trichoderma*. I. Production of nonvolatile antibiotics. Trans Br Mycol Soc 57, 25-39.
- DUBEY S.C., SURESH M., SINGH B., 2007. Evaluation of *Trichoderma* species against *Fusarium oxysporum* f. sp. *ciceris* for integrated management of chickpea wilt. Biol Control 40, 118-127.
- ELAD Y., CHET I., HENIS Y., 1982. Degradation of plant pathogenic fungi by *Trichoderma harzianum*. Can J Microbiolog 28, 719-725.
- FREEMAN S., SZTEJNBERG A., CHET I., 1986. Evaluation of *Trichoderma* as a biocontrol agent for *Rosellinia necatrix*. Plant Soil 94, 163-170.
- FREEMAN S., SZTEJNBERG A., SHABI E., KATAN J., 1990. Long-term effect of soil solarization for the control of *Rosellinia necatrix* in apple. Crop Prot 9, 312-316.
- GAMS W., BISSETT J., 1998. Morphology and identification of *Trichoderma*. In: *Trichoderma* and *Gliocladium*. Vol. 1. Basic biology, taxonomy and genetics (Kubicek C.P., Harman G.E., eds). Taylor and Francis Ltd. pp. 3-34.
- GHISALBERTI E.L., NARBEY M.J., DEWAN M.M., SIVASITHAMPARAM K., 1990. Variability among strains of *Trichoderma harzianum* in their ability to reduce take-all and to produce pyrones. Plant Soil 121, 287-291.

- GUILLAUMIN J.J., 1986. Le pourridié. Phytoma 19, 20-23. [In French].
- HAJIEGHRARI B., TORABI-GIGLOU M., MOHAMMADI M.R., DAVARI M., 2008. Biological potential of some Iranian *Trichoderma* isolates in the control of soil borne plant pathogenic fungi. Afr J Biotechnol 7, 967-972.
- HARAN S., SCHICKLER H., OPPENHEIM A., CHET I., 1996. Differential expression of *Trichoderma harzia-num* chitinase during mycoparasitism. Phytopathology 86, 980-985.
- HARMAN G.E., HAYES C.K., ONDIK K.L., 1998. Asexual genetic in *Trichoderma* and *Gliocladium*: mechanisms and implications. In: *Trichoderma* and *Gliocladium*. Vol. 1. Basic biology, taxonomy and genetics (Kubicek C.P., Harman G.E., eds). Taylor and Francis Ltd. pp. 243-270.
- HJELJORD L., TRONSMO A., 1998. *Trichoderma* and *Gliocladium* in biological control: an overview. In: *Trichoderma* and *Gliocladium*. Vol. 2. Enzymes, biological control and commercial applications (Kubicek C.P., Harman G.E., eds). Taylor and Francis Ltd. pp. 131-152.
- HOWELL C.R., 1998. The role of antibiosis in biocontrol. In: *Trichoderma* and *Gliocladium*. Vol. 2. Enzymes, biological control and commercial applications (Kubicek C.P., Harman G.E., eds). Taylor and Francis Ltd. pp. 173-184.
- HOWELL C.R., 2003. Mechanisms employed by *Trichoderma* species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87, 4-10.
- INBAR J., CHET I., 1995. The role of recognition in the induction of specific chitinases during mycoparasitism by *Trichoderma harzianum*. Microbiology 141, 2823-2829.
- KANDA S., ISHIGURO M., KANO S., AIMI T., KITAMOTO Y., MORINAGA T., 2003. Heterothallic life cycle in the white root rot fungus *Rosellinia necatrix*. Mycoscience 44, 389-395.
- KNUDSEN I.M.B., HOCKENHULL J., FUNCK JENSEN D., GERHARDSON B., HÖKEBERG M., TAHVONEN R., TEPERI E., SUNDHEIM L., HENRIKSEN B., 1997. Selection of biological control agents for controlling soil and seed-borne diseases in the field. Eur J Plant Pathol 103, 775-784.
- KUBICEK C.P., MACH R.L., PETERBAUER C.K., LORITO M., 2001. *Trichoderma*: from genes to biocontrol. J Plant Pathol 83, 11-23.
- LIMÓN M.C., CHACÓN M.R., MEJÍAS R., DELGADO JARANA J., RINCÓN A.M., CODÓN A.C., BENÍTEZ T., 2004. Increased antifungal and chitinase specific activities of *Trichoderma harzianum* CECT 2413 in addition of a cellulose binding domain. Appl Gen Mol Biotechnol 64, 675-685.
- LINDERMAN R.G., MOORE L.W., BAKER K.F., COOKSEY D.A., 1983. Strategies for detecting and characterizing systems for biological control of soil-borne plant pathogens. Plant Dis 67, 1058-1064.

- LÓPEZ HERRERA C.J., 1998. Hongos de suelo en el cultivo del aguacate (*Persea americana* Mill.) del litoral andaluz. V Jornadas Andaluzas de Frutos Tropicales. Congresos y Jornadas 47/98. Seville, Spain: CAP. pp.139-152. [In Spanish].
- LÓPEZ HERRERA C.J., PÉREZ JIMÉNEZ R.M., ZEA BONILLA T., BASALLOTE UREBA M.J., MELERO VARA J.M., 1998. Soil solarization in established avocado trees for control of *Dematophora necatrix*. Plant Dis 82, 1088-1092.
- LÓPEZ HERRERA C.J., PÉREZ JIMÉNEZ R.M., BASALLOTE UREBA M.J., ZEA BONILLA T., MELERO VARA J.M., 1999. Loss of viability of *Dematopho*ra necatrix in solarized soils. Eur J Plant Pathol 105, 571-576.
- LÓPEZ HERRERA C.J., ZEA BONILLA T., 2007. Effects of benomyl, carbendazim, fluazinam and thiophanate methyl on white root rot of avocado. Crop Prot 26, 1186-1192.
- LÓPEZ HERRERA C.J., PRADOS LIGERO A.M., RUANO ROSA D., BASALLOTE UREBA M.J., MELERO VARA J.M., 2008. Control of fusarium wilt of carnation by pre-inoculation with fungal antagonists. J Plant Pathol 90(S2), 188.
- MUKHERJEE P.K., RAGHU K., 1997. Effect of temperature on antagonistic and biocontrol potential of *Trichoderma* sp. on *Sclerotium rolfsii*. Mycopathologia 139, 151-155.
- NASEBY D.C., PASCUAL J.A., LYNCH J.M., 2000. Effect of biocontrol strains of *Trichoderma* on plant growth, *Pythium ultimum* populations, soil microbial communities and soil enzyme activities. J Appl Microbiol 88, 161-169.
- NDONDE M.J.M., SEMU E., 2001. Preliminary characterization of some *Streptomyces* species from four Tanzanian soils and their antimicrobial potential against selected plant and animal pathogenic bacteria. World J Microbiol Biotechnol 16, 595-599.
- PERELLÓ A., MÓNACO C., SIMÓN M.R., SISTERNA M., DAL BELLO G., 2003. Biocontrol efficacy of *Trichoderma* isolates for tan spot of wheat in Argentina. Crop Prot 22, 1099-1106.
- PÉREZ JIMÉNEZ R.M., JIMÉNEZ DÍAZ R.M., LÓPEZ HERRERA C.J., 2002. Somatic incompatibility of *Rosellinia necatrix* on avocado plants in southern Spain. Mycol Res 106, 239-244.
- REY M., DELGADO JARANA J., BENÍTEZ T., 2001. Improved antifungal activity of a mutant of *Trichoderma harzianum* CECT 2413 which produces more extracellular proteins. Appl Microbiol Biotechnol 55, 604-608.
- ROYSE D.J., RIES S.M., 1978. The influence of soil fungi isolated from peach twigs on the pathogenicity of *Cytospora cincta*. Phytopathology 68, 603-607.
- RUANO-ROSA D., LÓPEZ-HERRERA C.J., 2009. Evaluation of *Trichoderma* spp. as biocontrol agents against avocado white root rot. Biol Control 51, 66-71.
- SEGARRA G., CASANOVA E., AVILÈS M., TRILLAS I., 2010. *Trichoderma asperellum* strain T34 controls Fusa-

- rium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59, 141-149.
- STEEL R.G.D., TORRIE J.H., 1985. Bioestadística: principios y procedimientos, 1ª ed en español. McGraw-Hill, Interamericana de México. 622 pp. [In Spanish].
- SZTEJNBERG A., MADAR Z., 1980. Host range of *Dematophora necatrix*, the cause of white root rot disease in fruit trees. Plant Dis 64, 662-664.
- SZTEJNBERG A., FREEMAN S., CHET I., KATAN J., 1987. Control of *Rosellinia necatrix* in soil and in apple
- orchard by solarization and *Trichoderma harzianum*. Plant Dis 71, 365-369.
- TEN HOOPEN G.M., KRAUSS U., 2006. Biology and control of *Rosellinia bunodes*, *Rosellinia necatrix* and *Rosellinia pepo*: a review. Crop Prot 25, 89-107.
- WORASATIT N., SIVASITHAMPARAM K., GHISALBERTI E.L., ROWLAND C., 1994. Variation in pyrone production, lytic enzymes and control of Rhizoctonia root rot of wheat among a single-spore isolates of *Trichoderma koningii*. Mycol Res 98, 1357-1363.