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Summary: 

The generation of functional structures during development requires tight spatial 

regulation of signaling pathways. Thus, in Drosophila legs, where Notch pathway 

activity is required to specify joints, only cells distal to ligand-producing cells are 

capable of responding. Here we show that the asymmetric distribution of planar cell 

polarity (PCP) proteins correlates with this spatial restriction of Notch activation. 

Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at 

the interface with ligand-expressing cells in the non-responding cells. Elimination of 

PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate 

the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations 

that compromise a direct interaction between Dishevelled and Notch reduce the efficacy 

of repression. Likewise, increased Rab5 levels or dominant negative Deltex can 

suppress the ectopic joints. Together results suggest that PCP co-ordinates the spatial 

activity of Notch pathway by regulating endocytic trafficking of the receptor. 
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INTRODUCTION. 

The development and physiology of all multicellular organisms requires cell 

communication through well-defined signaling pathways that each consist of distinct 

canonical components. Cross-talk between pathways is required for the relatively 

limited number of pathways to match the anatomical and functional complexity that cell 

signaling has to regulate. The mechanisms that enable the pathway cross-talk are thus of 

major importance for generation and maintenance of complex structures. 

One highly conserved signaling pathway important for coordinating many 

developmental processes is mediated by Notch transmembrane receptors (Fiuza and 

Arias, 2007; Fortini, 2009). Besides Notch (N), core members of this pathway in 

Drosophila include two transmembrane ligands, Serrate (Ser, Jagged in vertebrates) and 

Delta (Dl). Upon ligand binding, N suffers two consecutive proteolytic cleavages and 

releases its cytoplasmic portion, which enters the nucleus and mediates a transcriptional 

response by binding to CSL transcription factors. Behind this apparent simplicity, a 

wide variety of biological functions and modes of action are made possible by context-

dependent accessory mechanisms that help regulate the activation of N (Andersson et 

al., 2011; Bray, 2006). These include posttranslational modifications, such as 

glycosylation and ubiquitinylation, that affect endocytic sorting of both N and its 

ligands.  

N activity is also modulated by key aspects of tissue organization, including planar cell 

polarity (PCP). PCP was first characterized in Drosophila epithelial cells, where it 

establishes a polarity axis in the tissue plane, orthogonal to the apical-basal axis 

(Goodrich and Strutt, 2011; Vladar et al., 2009). Its relevance is evident in the 

orientation of cell projections, such as hairs or microvilli, and it is also important in 
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coordinating behavior in fields of cells, ensuring that they respond in a homogeneous 

directional fashion, including convergent extension in vertebrate embryos and 

ommatidial rotation in insect eyes. The latter is one example where PCP and N are 

known to converge (Cooper and Bray, 1999; Fanto and Mlodzik, 1999; Tomlinson and 

Struhl, 1999). 

The proteins of one of the main PCP pathways (the core, Fz or Stan system) associate in 

complexes at the cell membrane. They include the transmembrane proteins Van 

Gogh/Strabismus (Vang/Stbm) (Taylor et al., 1998; Wolff and Rubin, 1998), Frizzled 

(Fz) (Vinson et al., 1989) and Flamingo/Starry Night (Fmi/Stan) (Chae et al., 1999; 

Usui et al., 1999) as well as the cytoplasmic proteins Prickle (Pk) (Gubb et al., 1999), 

Dishevelled (Dsh) (Klingensmith et al., 1994; Theisen et al., 1994) and Diego (Dgo) 

(Feiguin et al., 2001). In the wing epithelium, PCP protein complexes acquire an 

asymmetric proximal-distal localisation (Strutt and Strutt, 2009). A Fz-Dsh complex 

localises to the distal side of cells, together with Dgo, while a Stbm-Pk complex is 

localized to the proximal domain. These two complexes repel each other within the cell 

and both require Fmi and other proteins for their correct localisation. Most of these core 

PCP proteins function in other planar polarised systems in Drosophila and in 

vertebrates, although the details of their localisation or cellular actions may differ 

(Seifert and Mlodzik, 2007). Besides this role in PCP, a non-canonical Wnt pathway, Fz 

and Dsh are also required in canonical Wnt signalling, where they trigger nuclear 

accumulation of β-catenin upon Wnt activation (MacDonald et al., 2009). Most 

mutations in Fz affect its role in both PCP and Wnt signalling (Povelones et al., 2005), 

whereas PCP-specific mutations of Dsh exist and affect protein localisation (Axelrod et 

al., 1998). In addition, the interaction partners also influence the outcome since the 
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association with Dgo produces a bias towards PCP in detriment of Wnt (Wu et al., 

2008). 

A striking feature of flies mutant for core PCP members is that they have 

supernumerary joints in the tarsal region of the leg (Held et al., 1986). Normally 

composed of five segments (T1 to T5) separated by joints with a ball and socket 

structure, tarsi mutant for core PCP genes contain ectopic joints in segments T2, T3 and 

T4, and less frequently T1. Joints are determined at the end of larval development, when 

a stripe of Ser-expressing cells is specified within each segment and activates the 

receptor in distal cells triggering transcription of several N targets that control different 

aspects of joint differentiation (Bishop et al., 1999; de Celis et al., 1998; Rauskolb and 

Irvine, 1999). Ser appears to be the functional N-ligand in this process, since joints are 

absent in Ser mutants although other aspects of leg morphology appear normal, and in 

PCP mutant legs the ectopic joints correlate with ectopic Notch activity although the 

mechanism is unknown (Bishop et al., 1999). 

The ectopic joint phenotype in PCP mutant flies implies that the PCP system has a role 

in regulating N signaling (Bishop et al., 1999). The likely scenario is that, when PCP is 

disrupted, N becomes activated in cells proximal to Ser-expressing cells, as well as 

those distal. How this regulation occurs is however unknown. In the eye, where the 

R3/R4 photoreceptor fate choice is critical for ommatidial polarity, Fz activity in the 

presumptive R3 is essential for polarizing N activity (Cooper and Bray, 1999; Fanto and 

Mlodzik, 1999; Tomlinson and Struhl, 1999). It does so via a combination of 

mechanisms including effects on Dl transcription and activation as well as on endocytic 

regulation of N (Cho and Fischer, 2011; del Alamo and Mlodzik, 2006; Strutt et al., 

2002) that may be amplified via Fmi up-regulation (Das et al., 2002). Whether these 
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mechanisms operate during other processes, such as joint development, remains to be 

established. Given the prevalence of PCP in many tissues, understanding how it can 

influence the ability of a cell to send or receive signals is of widespread relevance. 
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MATERIALS AND METHODS 

Fly stocks 

The following mutant alleles were used, either homozygous or in mitotic clones: pksple1, 

dsh1, dshv26, fmi192, fzJ22, Drok2 (described in FlyBase, http://flybase.org). To monitor N 

activation we used the following reporter lines: bib-lacZ, disco-lacZ, E(spl)mβ1.5-CD2 

and E(spl)mβ1.5-lacZ. Sub-cellular localization of proteins was analyzed using GFP 

fusions: Ac5-Vang-GFP (Strutt et al., 2002), arm-fz-GFP (Strutt, 2001), dsh-GFP 

(Axelrod, 2001). For directed expression ap-Gal4 or the flp-out cassette Ac>CD2>Gal4 

were used to drive the expression from UAS constructs: UAS-GFP, UAS-dsh-myc, UAS-

Rab5, UAS-Rab7, UAS-Rab11 (http://flybase.org), UAS-dx, UAS-dxΔPRM, UAS-dxmRZF, 

UAS-dxΔNBS (Matsuno et al., 2002). 

The FLP/FRT technique was used to generate mutant clones (Xu and Rubin, 1993) with 

appropriate recombinant chromosomes. To induce the FLPase, 48-72 h AEL (second 

instar) larvae were heat-shocked at 37°C in a water bath for one hour. 

 

Histology, immunofluorescence, and microscopy 

Prepupal leg discs were dissected in PBS and fixed in 4% paraformaldehyde in PBS. 

Primary antibodies were: rabbit α-β-galactosidase (Life Technologies, Grand Island, 

NY), mouse α-β-galactosidase (Promega, Madison, WI), rabbit α-GFP (Rockland, 

Gilbertsville, PA), mouse α-CD2 (AbD Serotec, Kidlington, UK), rabbit α-Serrate (gift 

of Ken Irvine, Waksman Institute of Microbiology, NJ), rabbit anti-Rab5 (Abcam, 

Cambridge, UK) mouse α-Arm and mouse α-Fmi (both from Developmental Studies 

Hybridoma Bank, University of Iowa). For detection we used fluorophore-conjugated 
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secondary antibodies (Jackson Immunoresearch Laboratories Inc, West Grove, PA). 

Actin cytoskeleton was labelled with Phalloidin-TRITC (Sigma, St. Louis, MO). 

Samples were examined using a Leica DM RXA2 microscope and Leica TCS SP 

Confocal system (Leica Microsystems, Wetzlar, Germany). Images were processed and 

analyzed with the Leica Confocal Software, the ImageJ suite, and Adobe Photoshop. 

 

dsh genomic constructs. 

Specific mutations were introduced into the coding sequence of the dsh-GFP genomic 

fragment (Axelrod, 2001) using site directed mutagenesis. In brief, a 1.4kb fragment 

containing part of the promoter and the coding region for the DIX and PDZ domains 

was subcloned into pKS for mutagenesis using the QuikChange site-directed 

mutagenesis kit (Agilent Technologies, Santa Clara, CA) to introduce the K46V and 

Q47A mutations. The mutated region was then substituted into the full length dsh-GFP, 

by replacing the 400bp MluI-KpnI fragment encompassing the DIX domain. The entire 

dsh-GFP mutant genomic fragment was introduced into the transformation vector 

pWhiteRabbit. Single copy insertions of the resulting plasmid were generated using 

conventional P-element mediated transformation and multiple insertion lines were 

mapped to chromosomes and analyzed for expression. Suitable lines were then crossed 

into dsh1 and dshv26 backgrounds to generate w114 dsh[x] / FM7; dshmut6 (w+) / dshmut6 

(w+) and the phenotypes analyzed in dsh[x] / Y males. Over 100 legs were scored for 

ectopic joint phenotype for each one of the independent constructs. 

 

Biochemistry 
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To map the domains of Dsh interacting with NICD, GST pull-down experiments were 

performed as described (Djiane et al., 2005); by incubating GST-NICD fusion with 35S-

labeled Dsh fragments (details of primers used available on request). Specific amino 

acids were mutated by site directed mutagenesis with the QuikChange kit (Agilent 

Technologies, Santa Clara, CA). The relative intensity of the bands was calculated using 

the gel analysis application of the ImageJ suite, by plotting of the lane profile and 

calculation of the resulting peak areas. Two gels were analysed for each pair of bands. 
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RESULTS 

The double joint planar cell polarity phenotype correlates with ectopic N activity. 

Mutations affecting core PCP genes result in supernumerary joints in the tarsal region, 

most commonly in tarsal segments 2-4 (Bishop et al., 1999; Held et al., 1986). Ectopic 

joints are located proximal to the normal joint and have reversed polarity (Fig. 1A, B). 

Such ectopic joints appear to be a bona fide PCP phenotype, as the defect occurs with 

mutations affecting any core PCP gene: phenotypes of pk, fz, dsh, Vang, fmi, and dgo 

are consistent and differ from other mutant conditions affecting joint development (Held 

et al., 1986; Wolff and Rubin, 1998) (http://flybase.org and our unpublished data).  

The implication of this phenotype is that PCP controls the directionality of cell 

signaling mediated by the N pathway, the main agent in joint determination (Bishop et 

al., 1999; de Celis et al., 1998; Rauskolb and Irvine, 1999). To ascertain whether this 

interpretation is correct, we have analyzed expression of three reporters of N activation 

in different viable mutants of core PCP genes. Reporter expression is fully established 

by 2-6 hours after puparium formation (APF) when the leg disc starts to evert. The best 

characterized direct N targets are the E(spl) genes. An E(spl)mβ1.5-lacZ reporter has 

previously been shown to respond to N in the leg (Cooper et al., 2000; de Celis Ibeas 

and Bray, 2003) where it is expressed in a stripe distal to, and partially overlapping, the 

Ser-expressing cells. In prepupal legs of dsh1, a PCP specific allele, an ectopic domain 

appeared, confirming that disruptions in core PCP gene activity result in ectopic N 

activity (Fig. 1C, D). Equivalent ectopic domains of E(spl)mβ1.5-lacZ were seen with 

alleles affecting other core PCP genes (see below). 
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Similar results were obtained with a lac-Z insertion into big brain (bib-lacZ), whose 

expression is also regulated by N (de Celis et al., 1998; Pueyo and Couso, 2011). bib-

lacZ is expressed in a narrow band one or two cells wide just distal to the domain of Ser 

expression (Fig. 1E, I). In prepupal legs of pksple1, a strong hypomorphic allele of pk 

(Gubb et al., 1999) there was an ectopic bib-lacZ stripe proximal to the Ser-expressing 

cells (Fig. 1F, J). In addition, the levels of bib-lacZ were sometimes reduced or 

discontinuous (see also below). A further marker of leg joints (although not a known 

direct target of N) is disco-lacZ (Bishop et al., 1999), an insertion into disconnected, 

which is expressed in a broader domain spanning three or four cell diameters (Fig. 1G). 

In a pksple1 mutant, the disco-lacZ domain was duplicated and, due to its larger territory, 

the ectopic domain merged with the endogenous one from the preceding segment 

resulting in a continuous domain of expression in most of the tarsal region (Fig 1H).  

Despite the evidence for ectopic N activity, there was no change in expression of the Ser 

ligand in pksple1 legs or in mitotic clones of fzJ22 (a strong fz hypomorph; Fig. 1I-K) or of 

Dl present at later stages (Bishop et al., 1999). Neither was there a clear alteration in the 

expression-profile of the N receptor itself (Fig. S1). Therefore, the extra stripes of N 

activation are a general feature of mutations affecting PCP but are unlikely the result of 

simple change in the expression of N or its ligands.  

 

Cell autonomous effects of PCP alleles suggest a requirement in the signal-receiving 

cell. 

In order to know whether the mechanism of action of PCP on N is direct or indirect, or 

whether it is likely to act in ligand sending or signal receiving cells, we analyzed defects 
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caused by clones of mutant cells. If the effects are directly in signal-receiving cells, 

activation of N targets should only be detected autonomously within mutant cells in 

clones located proximal to the site of ligand expression. Conversely, if PCP regulation 

affects the ligand some non-autonomous defects would be seen. It is important to note 

that not all mutant alleles would be useful for this analysis, since several of them show a 

directional domineering non-autonomy due to reorganization in PCP over neighboring 

cells. Therefore, we used only alleles reported to show autonomous polarization 

phenotypes: pksple1, fmi192, dsh1, and fzJ22 (Chae et al., 1999; Jones et al., 1996; Lee and 

Adler, 2002; Strutt and Strutt, 2007). 

We first examined effects on the E(spl)mβ1.5-CD2 reporter (containing the same 

regulatory element as E(spl)mβ1.5-lacZ) a direct target of N pathway. In clones of fzJ22, 

expression of E(spl)mβ1.5-CD2 is de-repressed autonomously within the mutant cells 

(Fig. 2A). Furthermore, in several examples the mutant cells were juxtaposed with 

putative ligand producing cells that were wild type. These results argue that the effect of 

fzJ22 on N pathway is autonomous and is most likely to occur in the signal-receiving 

cells. E(spl)mβ1.5-CD2 is also autonomously de-repressed in dsh1mutant clones (not 

shown). 

The behavior of disco-lacZ in pksple1 and fmi192 clones was identical to that of 

E(spl)mβ1.5-CD2. In both genotypes disco-lacZ was de-repressed in a completely 

autonomous manner (Fig. 2B, C). Again, expression of lacZ in cells at clone edges 

suggested a requirement for polarization in the signal receiving cell rather than on the 

ligand. 

The effects of mutations on bib-lacZ were however slightly different. In all 3 of the 

mutants tested (dsh1, pksple1, fmi192) de-repression of the reporter was detected only in 
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mutant cells and not in adjacent wild-type cells (Fig. 2D, E and Fig. S2). However, 

unlike E(spl)mβ1.5-CD2 and disco-lacZ, ectopic activation of bib-lacZ was variable in 

intensity (weak to similar to endogenous bib-lacZ) and in extent. In some clones only a 

few cells showed ectopic expression while in others it filled the whole width of the 

mutant clone. Nevertheless, the fact that bib-lacZ can be de-repressed at the clone 

boundaries is consistent with a requirement for PCP in signal receiving cells, rather than 

through effects on Ser. We note also in some fmi and pk clones the endogenous domain 

of bib-lacZ is weakened within the clone (Fig. 2E). This observation also correlates with 

the fact that in whole legs mutant for core PCP genes, normal bib-lacZ expression can 

be weakened compared to the ectopic (Fig 1F and Fig. S2). 

Both the variability of bib-lacZ de-repression within clones and the weakening of 

endogenous expression in mutant cells may reflect a difference in the threshold of N 

activity required for bib-lacZ activation compared to disco-lacZ and E(spl)mβ1.5-CD2 

(see Discussion). Nevertheless, N reporters were de-repressed autonomously in all the 

core PCP mutant genotypes when mutant cells were located proximal to the Ser domain. 

No ectopic expression of the reporters was observed in wild type tissue adjacent to the 

mutant cells, which argues against an effect of PCP on Ser or on a second signaling 

pathway. These results were replicated in earlier stages (third instar leg discs) and in 

smaller clones (Fig. S3). 

 

Asymmetrical distribution of core PCP proteins in the developing leg 

Core PCP proteins adopt a polarized distribution in Drosophila pupal wing cells, which 

are arranged in a regular hexagonal lattice (between 20 and 24 h APF). Dsh and Fz 
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become localized to the distal edge of each cell, Pk and Vang to the proximal edge 

(Strutt and Strutt, 2009). Some degree of polarization is also evident in prepupal stages 

(Aigouy et al., 2010; Strutt et al., 2011). Cells in the prepupal leg epithelium are mostly 

irregular in shape and size, unlike the wing, making it difficult to detect clear 

organization in cell morphology or protein distribution. To investigate whether there 

was any asymmetry in core PCP protein distribution, we generated patches of cells 

expressing Fz::GFP, Vang::GFP and Dsh::GFP and examined protein distributions at 

clone borders, as was done previously in the wing to investigate protein asymmetries 

(Axelrod, 2001; Strutt et al., 2002; Strutt, 2001). Fz::GFP and Dsh::GFP levels were 

higher at the distal side of cells compared to proximal (Fig. 3A, B). Conversely, 

Vang::GFP levels were highest on the proximal sides of each cell (Fig. 3C). Some 

differences in Fmi localization were also evident: the protein was more enriched at 

proximal-distal boundaries than at dorsal-ventral (Fig. 3D), a characteristic that was 

most obvious in the tarsus-pretarsus boundary where cells have a more regular 

morphology (Fig. 3D’).  

Cells receiving the N signal also exhibited distinct morphology. Detection of β-catenin, 

localized to sub-apical adherens junctions, revealed that the bib-lacZ-expressing cells 

were roughly quadrangular. Their distal edges formed a straight line, most likely 

marking the boundary between adjacent tarsal segments (Fig. 3E). These features were 

also observed in the ectopic domain of bib-lacZ in the PCP mutants (Fig. 3F). In 

addition, the intensity of bib-lacZ expression was correlated with cell morphology, both 

in the normal and ectopic domains of expression. This suggests that high levels of N 

activation result in ordered alignment of the leg epithelial cells. 
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Direct interaction of N and Dsh. 

Drok is one of the main mediators of the cytoskeletal response to PCP: it is important 

for restricting wing hair generation and for ommatidial rotation (Winter et al., 2001). 

We tested whether Drok had any effect on the bib-lacZ and E(spl)mβ1.5-CD2 reporters. 

Although Drok mutant clones showed defects in ommatidial rotation and in tissue 

morphology (data not shown), none resulted in ectopic expression of the bib-lacZ or 

E(spl)mβ1.5-CD2 reporters (Fig. 4A, B). Therefore, this function of the core PCP 

pathway does not seem to be mediated by the actin cytoskeleton. 

Previous studies have shown a physical interaction between Dsh and N, which 

contributes to inhibition of N signaling in the wing margin (Axelrod et al., 1996; 

Munoz-Descalzo et al., 2010). We questioned whether a similar mechanism operates in 

joint regulation. Overexpression of Dsh driven by ap-Gal4 in T4 and proximal T5 had 

two clear effects (Fig. 4C, D). First, there was a disruption of PCP already described for 

Dsh overexpression in the wing (Axelrod et al., 1998). Second, formation of the joint 

between these tarsi was repressed, as would be expected if Dsh was capable of 

repressing N. A possible caveat to this interpretation is that Dsh overexpression could 

produce patterning defects causing a secondary effect on joints. However, the effects 

from expressing Dsh in clones do not support this possibility. For example, a large 

dorsal clone of Dsh-expressing cells produced autonomous repression of bib-lacZ (Fig 

4E, E’). Although this clone contained two small putative axis duplications (ectopic leg 

tips in the form of circular domains of bib-lacZ expression in tarsi 2 and 5, arrowhead in 

Fig. 4C’), segmentation was largely unaltered. 

To test functional relevance of the direct interaction of Dsh and N in leg segmentation 

we set out to find a mutant form of Dsh that had reduced ability to physically interact 
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with N. To map the interacting regions we used glutathione-S-transferase (GST) pull-

down experiments. From a set of deletions spanning different regions of Dsh, only 

constructs with an intact DIX domain were successfully retained by the intracellular 

portion of N (GST-NIC, Fig. 5A, B). Deletion of the N-terminal region of this DIX 

domain was sufficient to abolish this interaction (compare constructs Dsh5 and Dsh6). 

Unfortunately, as the DIX domain is also required for Axin recruitment (Julius et al., 

2000; Kishida et al., 1999), these deletions also prevented Axin binding (Fig. 5B). It 

was therefore important to identify mutations that would affect binding of NIC but not 

Axin. We first tested effects of mutations in residues that are conserved between Dsh 

and the mammalian Dvl proteins. Of the 3 mutations tested, only V43E present in mut1 

and mut4 abolished interaction with NIC and this also affected Axin binding (Fig. 5C-E 

and data not shown). Substitution of two adjacent hydrophilic residues that are specific 

of Drosophila Dsh, K46V+Q47A, showed some specificity for NIC. Quantitative 

analysis of the band intensities revealed that the mutation (mut6) reduced binding to 

NIC by 95 %, but interaction with Axin was reduced only 65%. This mutation was 

therefore a candidate to test relevance for N regulation. 

To investigate whether the mut6 form of Dsh was compromised for N regulation in the 

leg, we introduced the K46V+Q47A mutation into a dsh genomic rescue construct that 

had been used previously (Axelrod, 2001). Multiple insertions of the mutant protein 

were tested for their ability to rescue dsh1 and dshv26 mutant phenotype. The former only 

affects PCP function; the latter is a null allele affecting both PCP and Wnt signaling. All 

three constructs could rescue the embryonic lethality of dshv26, so they can function in 

the canonical Wnt pathway. As expected, the PCP ectopic leg joint phenotype was 

rescued by wild type dsh construct but not by dsh1 (Fig6A). Importantly the mut6 
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constructs showed a reduced ability to rescue the ectopic leg joint phenotype (Fig 6A, 

B), although the proximal-distal and dorsal-ventral patterns were wild type, including 

the distal tip, which is the most sensitive part of the leg for alterations in Wnt signaling 

(Galindo et al., 2002). In addition, when combined with dshv26, the resulting adult flies 

had largely wild-type wings and both leg bristles and wing hairs exhibited normal 

planar polarization (Fig 6B-E). Expression levels of the GFP-tagged Dsh proteins 

produced by mut6 were similar to that from wild-type dsh construct (Fig- 6B, C). These 

results therefore are consistent with the hypothesis that a direct interaction between Dsh 

and N is important for suppressing N activity in the domain proximal to Ser stripe.  

However, we cannot fully rule out the alternate possibility that the inability of mut6 to 

rescue leg joints reflects a difference in the threshold levels of Dsh activity required for 

this process compared to others. 

Antagonistic effect of Dsh on N signaling has been described previously in the wing, 

where N is also important for patterning sensory organs at the wing margin. However, 

although overexpression of known N repressors such as Numb (Nb) and Hairless (H) 

(Frise et al., 1996; Nagel et al., 2005) produced nicks in the wing margin and repression 

of the Notch-target Cut (Fig S4), ectopic Dsh was neither sufficient to produce nicks in 

the adult wing nor to repress Cut at larval stages (Fig. S4). Although the interpretation 

of these results may be confounded by the fact that overexpression of Dsh at the margin 

can also lead to expression of N ligands, and N activation, possibly explaining the 

ectopic bristles observed in the wing blade (Fig S4), the differences with the wild type 

wing are nevertheless relatively minor compared to the overexpression of Nb and H. 

The results suggest therefore that the ability of Dsh to suppress N is restricted to certain 

contexts, making it less likely that it antagonizes the cleaved, active form of N (Nicd). 
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To further test whether Dsh could antagonize Nicd, we assayed the consequences on a 

N responsive reporter (NRE-luciferase) of co-expressing Dsh and Nicd in transient 

transfection assays. Expression of Nicd alone resulted in strong induction of NRE-

luciferase that was little altered by co-expression with Dsh (Fig. S4). Therefore, 

although Dsh binds to the intracellular domain of N, it does not inhibit Nicd trans-

activation function, suggesting it is likely to regulate the receptor prior to cleavage. 

 

Role of endocytic regulators 

It has been suggested that Dsh influences endocytic trafficking of proteins including N 

(Chen et al., 2003; Munoz-Descalzo et al., 2010; Yu et al., 2007). One model therefore 

is that recruitment of Dsh to the distal edge of the cells would result in down-regulation 

of N by endocytosis. To investigate this we tested the consequences of expressing 

several different endocytic regulators in the T4 segment with ap-Gal4 (Fig 4C) to 

determine their effect on the ectopic joint present in dsh1 mutants. 

First we tested consequences of expressing 3 different Rab GTPases, Rab5, Rab7 and 

Rab11, which regulate vesicle trafficking to early endosome, late endosome and 

recycling endosome compartments respectively (Stenmark, 2009). In previous studies, 

overexpression of Rab5-GFP and Rab7-GFP were able to suppress the ectopic N 

activation seen in lethal giant discs (lgd) mutants (Jaekel and Klein, 2006). Over-

expression of Rab5 in a wild type background had no effect (Fig. 7A, C), but in a dsh1 

mutant background it was able to modify the ectopic joint phenotype in 80% of the legs 

examined, resulting in a partial suppression (Fig. 7B, D). In contrast neither Rab11 nor 

Rab7 had any effect in this assay (data not shown) suggesting that the defect is linked to 
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transit to early endosomes. The implication is that dsh1 leads to a defect in endocytic 

transport of N from the plasma membrane preventing its activation by Ser, and that this 

can be compensated by increasing the levels of Rab5. To test this hypothesis, we 

examined whether over-expression of Dsh::myc, which resulted in lack of joints and 

down-regulation of bib-lacZ (Figure 4C-E), had any impact on N protein distribution. In 

ap-Gal4, UAS-dsh-myc legs there was reduced N at the apical membrane and a large 

fraction of N co-localised with Dsh in intracellular puncta (Fig. 8A). Many of the N-

containing puncta appeared to correspond to early endosomes based on their co-

localization with Rab5 (Fig 8B). Furthermore, N depletion from the cell surface and 

accumulation in puncta was evident using antibodies against either the extracellular or 

the intracellular portion of N (Figure 8 C, D). This implies that a significant fraction of 

the endocytosed N is uncleaved and therefore that the Dsh-mediated change in 

localization occurs independent of ligand binding or γ-secretase cleavage. 

Rab5 has also been found to inhibit the ectopic N signaling caused by increased levels 

of the Deltex (Dx) E3 ubiquitin ligase (Hori et al., 2004; Matsuno et al., 2002). The 

effect of Dx is complex, since it can result in ligand-independent activation or in 

downregulation of N signaling depending on the context (Mukherjee et al., 2005; 

Wilkin et al., 2008; Yamada et al., 2011). Both modes of regulation require Rab5-

mediated endocytosis of N to early endosomes. To test whether the dsh1 phenotype in 

T4 could be modified by expression of Dx and derivatives, we assayed full length Dx 

and mutations affecting some of its functional domains (Matsuno et al., 2002): proline-

rich region (DxΔpro), ring-H2 domain (DxmRZF) and N-binding region (DxΔNBS). 

Expression of Dx and DxΔpro phenocopied the defects caused by PCP mutations (Fig. 

7E), arguing that N activity at these ectopic sites may involve modifications to its 
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trafficking, and neither was able to modify the dsh1 phenotype (Fig. 7F). DxmRZF had no 

effect in wild type or in dsh1 (not shown). In contrast, expression of DxΔNBS resulted in a 

striking phenotype of joint fusion (Fig. 7 G, H), in both wild-type and dsh1, resembling 

consequences of dx null alleles in certain conditions of altered N activity (Gorman and 

Girton, 1992). DxΔNBS thus appears to have a dominant negative effect, blocking the 

endogenous T4-T5 joint as well as the ectopic joint in dsh1. This contrasts with the 

wing, where DxΔNBS exhibits little residual activity (Matsuno et al., 2002) and suggests 

that the Dx context-dependent effects (Wilkin et al., 2008), are likely to rely on other 

factors which could be titrated by DxΔNBS. 

Our results reveal that two endocytic regulators, Rab5 and Dx, can alter N activation at 

the site of ectopic joint formation, although there are mechanistic differences between 

them. Over-expression of Rab5 had no effect on wild type tarsus but could rescue the 

mutant phenotype of dsh1. This suggests that ectopic N activity in PCP mutants is 

associated with a change in N trafficking that can be suppressed by Rab5. In contrast, 

over-expression of Dx induced ectopic joints even in the wild type background arguing 

that it is sufficient to overcome repression of N mediated by PCP. 
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DISCUSSION 

Spatially co-ordinated regulation of signaling pathways is essential to generate correct 

anatomical and functional structures, as exemplified by the Drosophila leg where 

activity of the N pathway is required to specify leg joints (Bishop et al., 1999; de Celis 

et al., 1998; Rauskolb and Irvine, 1999). In this case, only cells distal to the stripe of Ser 

expression appear capable of responding to the ligand. Here we show that activity of the 

core PCP pathway is required in those cells proximal to the domain of Ser expression to 

prevent them from responding to this N ligand. This regulation correlates with the 

asymmetric distribution of the core PCP proteins, as we show that Fz/Dsh are enriched 

at the distal side of each cell, which in the non-responding cells faces the neighboring 

Ser-expressing cells. Conversely in those cells distal to Ser, Fz/Dsh are depleted from 

the proximal side, leaving N free to interact with its ligand to promote joint formation. It 

appears that elimination of core PCP gene function in cells proximal to the Ser-

expressing cells, is sufficient to alleviate the repression resulting in ectopic N activity 

and ectopic joint formation. Such regulation of the membrane availability of Notch 

could equally affect Dl mediated activation, although Ser appears the major ligand 

responsible in the joints (Bishop et al., 1999). Other factors are likely to influence 

proximal repression of N since ectopic joints are also observed in alterations of the 

EGFR pathway (Galindo et al., 2005) and mutants of defective proventriculus (Shirai et 

al., 2007). 

We note also that the domains of N activation (both normal and ectopic) extend beyond 

the cells at the interface with Ser. We have not sought to investigate this additional level 

of regulation here, but our results indicate that it is unlikely due to a secondary signal 

emanating from the Ser-interfacing cells because the loss of function clones show 
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complete autonomy, without any “shadow” of activation adjacent to the clone. An 

alternative possibility is that the cells make more extensive contacts, as has been seen in 

other tissues (Cohen et al., 2010; De Joussineau et al., 2003; Demontis and Dahmann, 

2007).  

PCP regulation of N has been observed in other developmental processes, most notably 

in photoreceptor fate choice in the Drosophila eye (Cooper and Bray, 1999; del Alamo 

and Mlodzik, 2006; Fanto and Mlodzik, 1999; Strutt et al., 2002). There, much of the 

regulation is via effects on levels and activity of the ligand. However, we detected no 

change in the pattern of N or Ser expression in PCP mutants. Instead our evidence 

suggests that regulation involves direct interaction between Dsh and N and that this 

interaction has consequences on the endocytic trafficking of N, resulting in its 

inactivation. The interaction requires the amino-terminal portion of the Dsh DIX 

domain, which is also required for Axin-binding in the canonical Wnt pathway (Julius 

et al., 2000; Kishida et al., 1999), making it difficult to dissect its role in the PCP-

mediated N inhibition. Nevertheless, we were able to generate one mutation that 

reduced interactions with N with minor consequences on Axin binding. Rescue 

experiments with this mutant form of Dsh indicated that it was less effective in PCP 

function in the leg joints compared to others (e.g. polarity of leg bristles). These results 

support the model that a direct interaction between Dsh and N is relevant in the context 

of joint determination. However, we cannot fully rule out the possibility that the 

mutation has more generalized effects on Dsh, if the joints are particularly sensitive to 

the levels of Dsh activity. 

Several studies indicate that endocytic sorting of N is involved in its regulation, with 

either positive or negative effects depending on the particular context (Fortini and 
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Bilder, 2009; Furthauer and Gonzalez-Gaitan, 2009). Our findings suggest that 

regulation of N by PCP in the leg is mediated by interaction with Dsh, and probably 

involves the control of N endocytic trafficking. This suggests a model whereby the 

interaction between Dsh and N results in increased endocytosis of the N receptor, so 

reducing its capability to interact with ligands on neighbouring cell. Removal of Fz or 

Dsh compromises this endocytic trafficking, allowing N to be activated. The interaction 

between Dsh and N is thus only likely to be relevant under circumstances where there is 

a strong localization of Dsh co-incident with an interface between N and ligand 

expressing cells.  

Previous studies have also suggested a role for Dsh in regulating N and on promoting its 

endocytosis (Axelrod et al., 1996; Munoz-Descalzo et al., 2010). In both instances these 

effects were linked to Wg signaling, rather than core PCP pathway as here. Nevertheless 

several aspects are consistent with our results, most notably the direct binding between 

Dsh and N. Additionally it has been argued that Dsh specifically antagonizes Dx 

mediated effects of N (Ramain et al., 2001), which is compatible with their 

complementary effects on joint formation. However, it is also evident that the ability of 

Dsh to inhibit N depends on the developmental context. For example, while over 

expression of Dsh in the leg is sufficient to inhibit N activation at presumptive joints, 

overexpression of Dsh at the wing margin is not sufficient to repress N signaling: there 

are no nicks and cut expression is not inhibited. Interestingly, differences in Dx 

behaviour are also evident in these two contexts. At the wing margin (Matsuno et al., 

2002), DxΔpro acts as a dominant negative form of Dx, while DxΔNBS is inactive. In 

contrast, in the leg joints DxΔpro behaves as wild type Dx, while DxΔNBS is a dominant 
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negative. We postulate therefore that the subcellular localization of Dsh and the 

availability of Dx are important for determining the regulation of N trafficking at joints.  

The autonomous effect of core PCP mutants was clear when we used the E(spl)mβ1.5-

CD2 N reporter and disco-lacZ. However, the consequences on bib-lacZ were more 

complex. Although larger clones of mutant cells always exhibited autonomous ectopic 

expression, similar to E(spl)mβ1.5-CD2, some narrow clones exhibited no ectopic 

expression. We suggest that this may be due to bib-lacZ having a higher threshold of 

response, so it would need stronger N activation. The domain of bib-lacZ is narrower 

than that of the other known reporters in agreement with this model. Furthermore, we 

found some cases where there was a reduction of the normal bib-lacZ expression in the 

mutant cells, in addition to ectopic expression. This suggests that PCP mediated distal 

localization of Dsh would be required not only for inhibition of N in proximal cells, but 

also for efficient activation of N in distal ones. 
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FIGURE LEGENDS. 

Figure 1. N is ectopically activated in PCP mutants. 

(A) Wild type leg with normal joints (arrowhead) and (B) pksple1 leg with ectopic joints 

with inverted polarity. In these and subsequent panels arrowheads indicate normal joints 

terminating tarsal segments 2, 3 and 4, and the corresponding domains of expression. 

(C, D) E(spl)mβ1.5-lacZ expression (X-gal, blue) in wild type prepupal leg (C) and dsh1 

mutant (D) with ectopic stripes. (E, F) bib-lacZ expression (green) in a single row of 

cells (anti-β-Catenin, purple, cell contours) at the segment boundary in wild-type (E) is 

duplicated in a pksple1 (F). (G, H) disco-lacZ (green) is expressed in a wider domain in 

wild-type (G), normal and duplicated domains merge in a single broad territory in pksple1 

(H). (I) bib-lacZ (green) is expressed distally adjacent to Ser (purple), and (J) in pksple1 

the ectopic stripe appears proximally adjacent to Ser; a sub-apical confocal section is 

shown to capture the nuclear β-galactosidase. (K) Large fzJ22 clone marked by absence 

of GFP (green); expression of Ser (purple) is not altered. 

 

Figure 2. Proximal de-repression of N in PCP mutants is cell-autonomous. 

In all panels mutant clones are revealed by absence of GFP (green); ectopic expression 

of reporters (purple, single channel on the right) is indicated by arrowheads. (A) Mutant 

fzJ22 clone; ectopic expression of E(spl)mβ1.5-CD2 coincides with clone border despite 

presence of adjacent wild type (ligand-expressing) cells. (B) Mutant fmi192 clones, 

autonomous expression of disco-lacZ in cells adjacent to wild-type GFP-positive cells. 

(C) Mutant clones of pksple1, several ectopic domains of disco-lacZ occur autonomously 

within the mutant clones. (D) Large clone of cells mutant for dsh1, some ectopic 
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expression of bib-lacZ appears in tarsal segment 3, but not in segment 2. (E) Elongated 

clones of cells mutant for pksple1, ectopic activation of bib-lacZ that can occupy the full 

width of the clone. Occasional down-regulation of the normal stripe of bib-lacZ is also 

detected (arrows). 

 

Figure 3. Cell biology of PCP in the prepupal leg. 

(A-D’) Localization of PCP proteins, proximal-distal orientation is top left to bottom 

right; cells outlined with anti-E-cadherin (A-C, purple) (A) Cells at the border of 

Fz::GFP-expressing clones reveal that the fusion protein is enriched at the distal side 

(arrowhead, compare with arrow marking proximal cell boundaries); (B) Expression of 

Dsh::GFP is comparatively weak, but also accumulates distally (arrowhead). (C) 

Vang::GFP localizes to the proximal side of cells (arrow). (D, D’) Fmi is absent from 

cell borders oriented along the dorsal-ventral axis in t2 (D) and in the tarsus-pretarsus 

boundary (D’). (E) Late prepupal leg, cells expressing bib-lacZ (green, dotted) have a 

larger sub-apical diameter (β-catenin, purple; single channel on the right), more regular 

shape and their borders align to form a straight line. (F) Late prepupal pksple1 leg, ectopic 

rows of bib-lacZ expression have the same features; intensity of bib-lacZ appears to 

correlate with cell size, shape and alignment both in normal and ectopic domains. 

 

Figure 4. N down-regulation by Dsh. 

(A, A’) Clone of cells homozygous for Drok2 (marked by the absence of GFP, green), 

no ectopic expression of bib-lacZ is detected (purple, single channel in A’). (B, B´) In 

clones of the same genotype expression of E(spl)mβ1.5-CD2 is also unaffected. (C) Ap-
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Gal4 expression domain revealed with UAS-GFP (green), includes t4 and proximal part 

of t5 (anti-E-cadherin, purple). (D) ap-Gal4, UAS-dsh causes defects in planar polarity 

and the joint between t4 and t5 is absent (brackets indicate ap-Gal4 territory). (E, E’) 

Large dorsal clone expressing Dsh::myc (anti-myc, green) results in autonomous 

repression of bib-lacZ (purple, separate channel in E’), and putative axis duplications 

(ectopic leg tips, arrowheads). All tarsal segments are present with segmental grooves 

detected as normal. 

 

Figure 5. Direct interaction of Dsh and N. 

(A) Domain structure of Dsh protein, with the different deletion constructs employed in 

the GST pull-down assays depicted below: constructs retained by GST::NIC are ticked. 

(B) Autoradiograph of 35S labeled Dsh constructs pulled down with GST::NIC and 

GST::Axin. Input proteins and a negative control pull-down using an unrelated GST 

construct (-) are also shown. (C) Alignment of the N- and Axin-interacting region of 

Drosophila Dsh with two human Dishevelled (Dvl) proteins and Drosophila and human 

Axin. Residues mutated are in bold: D39 and V43 are conserved in all Dsh proteins but 

not in Axins, and K46 and Q47 are present only in Drosophila Dsh. (D) Six different 

site-directed mutants were generated with single or double mutations. (E) GST pull-

down assays with the different 35S labeled Dsh mutants. V43E prevents interaction with 

NIC and Axin, K46V + Q47A (mut6) hinders the interaction with NIC but retains some 

interaction with Axin. As a control, GST::Grh fails to bind to any Dsh derivatives. 

 

Figure 6. Rescue with genomic constructs. 
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(A) Presence of ectopic joints in tarsal segments 2,3 and 4 in dsh1 and dshv26 mutant 

backgrounds rescued with genomic constructs encoding different forms of dsh: dsh1 (1 

insertion) wild type dsh (5 different insertions), and dsh mut6 (3 insertions); yw is used as 

a wild type control. (B, C) Representative legs of dshv26 rescued with the genomic 

constructs for wild type dsh (B) and for dshmut6 (C), arrowheads point to partial ectopic 

joints, the insets show similar expression levels of Dsh::GFP and Dshmut6::GFP in leg 

imaginal discs. (D, E) Wings of dshv26; dshmut6 (D, trichomes are forked) and dsh1; 

dshmut6 (E) rescued flies with largely normal wing margin and PCP. 

 

Figure 7. Endocytic control of N signaling in the leg. 

Endogenous (black) or ectopic (white) joints in the tarsus 4/5 region detected in wild 

type (A,C,E,G) and dsh1 (B,D,F,H) backgrounds, after expression of different endocytic 

regulators driven by ap-Gal4. Arrows are complete joints, arrowheads partial joints 

(A,B) Normal and ectopic joints in t4/t5 region. (C,D) Expression of Rab5 has no effect 

on wild type (C) but partially suppresses ectopic joints in dsh1 (D, white arrowhead; 

note only legs with ectopic t3 joint were scored for rescue of ectopic t4 joint). (E,F) 

Expression of Dx elicits ectopic joint in wild type resembling dsh1 (E) and fails to 

modify dsh1 (F). In contrast, expression of DxNBS partially inhibits normal joints in wild 

type (G) and partially suppresses normal and ectopic joint in dsh1 (H). 

 

Figure 8. Ectopic expression of dsh-myc in the ap territory. 

(A) Over-expressed Dsh::myc (anti-myc, purple) appears in a vesicular pattern and co-

localises with N (anti-Necd, green). (B) Some N vesicles (Nicd, green), coincide with 
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Rab5-positive puncta (anti-Rab5, purple; e.g. arrows). (C,D) Sub-cellular localization of 

N (green) is altered in Dsh-expressing cells (purple). Immunofluorescence associated 

with apical cell membrane is decreased, internal puncta are increased. Similar results are 

obtained with antibodies against extracellular (C) or intracellular (D) portions of N. 


















