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Abstract—Chemokine signaling has been implicated in the pathogenesis of diabetic neuropathy; however, the
role of chemokine CC motif receptor 4 (CCR4) remains unknown. The goal was to examine the function of
CCR4 in hypersensitivity development and opioid effectiveness in diabetic neuropathy. Streptozotocin (STZ;
200 mg/kg, intraperitoneally administered)-induced mouse model of diabetic neuropathy were used. An analy-
sis of the mRNA/protein expression of CCR4 and its ligands was performed by qRT-PCR, microarray and/or
Western blot methods. C021 (CCR4 antagonist), morphine and buprenorphine were injected intrathecally or
intraperitoneally, and pain-related behavior was evaluated by the von Frey, cold plate and rotarod tests. We
observed that on day 7 after STZ administration, the blood glucose level was increased, and as a conse-
quence, hypersensitivity to tactile and thermal stimuli developed. In addition, we observed an increase in
the mRNA level of CCL2 but not CCL17/CCL22. The microarray technique showed that the CCL2 protein level
was also upregulated. In naive mice, the pronociceptive effect of intrathecally injected CCL2 was blocked by
C021, suggesting that this chemokine acts through CCR4. Importantly, our results provide the first evidence
that in a mouse model of diabetic neuropathy, single intrathecal and intraperitoneal injections of C021 dimin-
ished neuropathic pain-related behavior in a dose-dependent manner and improved motor functions. More-
over, both single intrathecal and intraperitoneal injections of C021 enhanced morphine and buprenorphine
effectiveness. These results reveal that pharmacological modulation of CCR4 may be a good potential thera-
peutic target for the treatment of diabetic neuropathy and may enhance the effectiveness of opioids. � 2020
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INTRODUCTION

Diabetes mellitus is an epidemic of the 21st century, and

a recent report from the World Health Organization has

shown that since 1980, the number of adults living with

diabetes has nearly quadrupled to 422 million people

(WHO, 2017). One of the most common complications

is nerve impairment, which causes the development of

neuropathic pain (Feldman et al., 2017). The molecular

mechanisms involved in diabetic neuropathy are very

complex (Zychowska et al., 2013b; Feldman et al.,

2017); however, according to the latest research, cytokine
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participation in this phenomenon is extremely important

(Zychowska et al., 2013b, 2015; Ji et al., 2014; Pop-

Busui et al., 2016; Rojewska et al., 2018). Recently, some

chemokines from the large cytokine family have been rec-

ognized as important factors that contribute to diabetic

neuropathy. It has already been suggested that chemoki-

nes belonging to three different subfamilies – XC: XCL1

(Zychowska et al., 2016), CC: CCL2 and CCL5 (Panee,

2012; Chou et al., 2016) and CXC: CXCL1, CXCL5,

CXCL9, and CXCL12 (Zychowska et al., 2015) – play

an important role in the development of diabetic neuro-

pathic pain. Additionally, among the CC subfamily,

CCL17 and CCL22 are also known to have pronociceptive

properties (Bogacka et al. 2020); however, their spinal

expression in nociception during diabetes has not been

studied thus far. The main target of CCL17 and CCL22

is chemokine CC motif receptor 4 (CCR4) (Yoshie and

Matsushima, 2015; Scheu et al., 2017); however,

according to the literature, this receptor probably has an

additional ligand with well-known pronociceptive proper-
/licenses/by/4.0/).
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ties - CCL2 (Graves et al., 1999; McMillin et al., 2014).

Therefore, the role of CCR4 in nociceptive transmission

needs to be studied, especially since current references

suggest chemokine receptors as promising targets for

neuropathic pain management. For example, some stud-

ies, including ours, have indicated that blockade of CC-

chemokine receptors, CCR1 (Pawlik et al., 2020), CCR2

(Kwiatkowski et al., 2017) and CCR5 (Matsushita et al.,

2014; Kwiatkowski et al., 2016; Piotrowska et al.,

2016a), attenuates the neuropathic pain symptoms

evoked by chronic constriction injury of the sciatic nerve

in rats. Moreover, in this model, CCR1, CCR2 and

CCR5 antagonists also enhance morphine effectiveness

(Kwiatkowski et al., 2016, 2017; Pawlik et al., 2020). How-

ever, to date, few pharmacological studies on the use of

chemokine antagonists have been performed in diabetic

neuropathy. In streptozotocin-induced diabetic neuropa-

thy, antagonists of CCR1 (Rojewska et al., 2018) and

CCR2 (Aye-Mon et al., 2018) diminish pain-related

behavior, in contrast to antagonists of CCR5 (Rojewska

et al., 2018).

Therefore, since diabetic neuropathy is a

neuroinflammatory disorder, in our opinion,

investigations should focus on the still undefined role of

the chemokine system. We hypothesized that CCR4 is

important for nociceptive transmission in diabetic

neuropathy and is as a consequence an interesting

pharmacological target for pain relief. Therefore, the aim

was to investigate changes in the spinal expression of

CCR4 and its ligands (CCL17, CCL22, and CCL2) in a

streptozotocin-induced mouse model of diabetic

neuropathic pain. Moreover, another aim was to

investigate whether C021, a CCR4 antagonist, is able to

block the pronociceptive properties of CCL2. The next

goal was to determine the dose-dependent effect of

single intrathecal and intraperitoneal injections of C021

on tactile and thermal hypersensitivity and motor

coordination in streptozotocin-treated mice.

Furthermore, this study also aimed to evaluate how

single intrathecal and intraperitoneal injections of C021

influence the analgesic effects of morphine and

buprenorphine in this model of diabetic neuropathic pain.
EXPERIMENTAL PROCEDURES

Animals

All the experiments were performed on male Albino-Swiss

mice purchased from Charles River (Germany). The

animals (20–22 g) were housed in cages with sawdust

under a light/dark cycle of 12/12 h. Water and food were

available ad libitum. The experiments were carried out

according to the NIH Guide for the Care and Use of

Laboratory Animals and IASP recommendations

(Zimmermann, 1983). All the procedures were approved

by the II Local Ethics Committee on Animal Testing at

the Maj Institute of Pharmacology, Polish Academy of

Sciences (Krakow, Poland, LKE 75/2017, 1277/2015).

Care was taken to minimize animal suffering and reduce

the number of animals used in the experiments (3R

policy).
Mouse model of diabetic neuropathic pain

Streptozotocin (STZ) is often used in experimental

studies (Kamei et al., 1991; Dogrul et al., 2011; Ohsawa

et al., 2011; Murakami et al., 2013) to induce diabetic neu-

ropathy by the specific necrosis of pancreatic beta cells

(Lenzen, 2008; Bishnoi et al., 2011). In our experiments,

a single intraperitoneal (i.p.) injection of STZ (200 mg/

kg; Tocris, Bristol, United Kingdom), dissolved in water,

was used to generate a model of type 1 diabetes

(Lenzen, 2008; Murakami et al., 2013; Zychowska et al.,

2015). As a control group, we used naive mice, which

were injected with water. Blood was collected from the tail

veins of the mice, and the glucose concentration was

measured with an Accu-Chek Active glucometer (War-

saw, Poland). The mice were considered diabetic when

the serum glucose levels were higher than 300 mg/dl at

day 7 after STZ injection.
Pharmacological study

C021 dihydrochloride (C021, Tocris, Bristol, United

Kingdom); RS504393 (Tocris, Warsaw, Poland),

morphine hydrochloride (M; TEVA, Kutno, Poland);

buprenorphine (B; Polfa S.A., Warsaw, Poland) and

recombinant mouse CCL2 protein (R&D Systems,

Minneapolis, USA) were dissolved in V: water or DMSO

(only for RS504393) for injection. The control groups

were injected with water or DMSO at the same time

points. Substances were administered intrathecally (i.t.)
or intraperitoneally (i.p.). The i.t. injection was performed

using a Hamilton syringe with a thin needle, in

accordance with Hylden and Wilcox (Hylden and Wilcox,

1980) with later modifications (Fairbanks, 2003). The sub-

stances were injected into the lumbar region of the spinal

cord (between the L5-L6 vertebrae) in a volume of 5 ll.
CCL2 administration preceded by C021 injection: V or

C021 (30 lg/5 ll) were administered intrathecally. Then,

after 15 min, V or CCL2 (10 ng/5 ll) were injected i.t.
The behavioral tests were conducted 1 h after chemokine

injection. C021 or RS504393 injection in the STZ-induced

mouse model of diabetic neuropathic pain: V, CCR4

antagonist or CCR2 antagonist were administered

intrathecally (10, 20, or 30 lg/5 ll for C021 and 30 lg/5 ll
for RS504393) and intraperitoneally (1, 5, 10, or 20 mg/kg

for C021 and 30 lg/5 ll for RS504393) on day 7after STZ

treatment. The behavioral tests were conducted 1, 4 and

24 h after these injections. Coadministration of C021 with

opioids: V or CCR4 antagonist were administered i.t.
(30 lg/5 ll) and i.p. (10 mg/kg) on day 7 after STZ injec-

tion. Then, after 30 min, the V- and C021-treated mice

received a single injection of V, morphine or buprenor-

phine using the following doses: morphine: i.t.: 1 lg/5 ll;
i.p.: 5 mg/kg; buprenorphine: i.t.: 1 lg/5 ll; i.p.: 5 mg/kg.

The behavioral tests were conducted 30 min after the

administration of the opioids.
Behavioral tests
Measurement of blood glucose levels and body
weight. The blood glucose concentrations and the body
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weight measurements were performed on day 7 after STZ

administration using an Accu-Chek Active glucometer

(Warsaw, Poland).

Tactile hypersensitivity (von Frey test). Tactile

hypersensitivity was evaluated using calibrated nylon

monofilaments of increasing strength (from 0.6 to 6 g)

(Stoelting, Wood Dale, USA). The mice were placed in

plastic cages with a wire net floor 5 min before the

experiment. The filaments were applied to the

midplantar surface of the hind paws until withdrawal

responses were observed (Zychowska et al., 2016;

Rojewska et al., 2018). Both hind paws were tested in

the same way in STZ-treated and naive mice.

Thermal hypersensitivity (cold plate test). The

reactions to thermal hypersensitivity were assessed

using the cold plate test (Ugo Basile, Gemonio, Italy).

The mice were placed on a cold plate with a

temperature of 2 �C, and the latency to the elevation of

the hind paw was recorded (the cut-off latency was

30 s) (Zychowska et al., 2016; Rojewska et al., 2018). In

STZ-treated and naive mice, both hind paws were

observed simultaneously.

Motor coordination (rotarod test). The rotarod test is a

commonly used method to evaluate motor coordination in

animals by assessing their ability to move efficiently as

previously described (Starnowska et al., 2017). The mice

were placed in a separate compartment on a horizontal

rod that rotated at accelerating speed, starting at 2 rpm

and reaching 40 rpm within 300 s. The animals were accli-

mated to the apparatus and trained on the rotating rod.

The main experiment was performed after the training

sessions, which lasted 300 s each. The time until the mice

fell off the rod was recorded. A rotarod test was conducted

1 h after drug administration. The cut-off latency was

300 s.

mRNA and protein level analysis

The lumbar (L4–L6) regions of the spinal cord were

collected after the decapitation of naive mice and mice

with STZ-induced neuropathy on day 7.

Analysis of mRNA level (RT-qPCR). Total RNA was

extracted with TRIzol reagent (Invitrogen, Carlsbad,

USA) as previously described (Chomczynski and

Sacchi, 2006). The concentration and quality of the

RNA were measured byaDeNovixDS-11 Spectropho-

tometer (DeNovix Inc., Wilmington, USA). The Omniscript

RT Kit (Qiagen Inc., Hilden, Germany), oligo (dT16) pri-

mer (Qiagen Inc., Hilden, Germany) and RNAse inhibitor

(rRNasin, Promega, Mannheim, Germany) were used for

reverse transcription, which was performed using 1 lg of

total RNA. The obtained cDNA was diluted 1:10 with

RNase-/DNase-free H2O. RT-qPCR was conducted with

�50 ng of cDNA from each sample using Assay-On-

Demand TaqMan probes (Applied Biosystems, Foster

City, USA) and was performed in an iCycler device

(Bio-Rad, Hercules, Warsaw, Poland). The following

TaqMan primers were used: Mm03024075_m1 (HPRT,
hypoxanthine–guanine phosphoribosyl transferase);

Mm01244826_g1 (CCL17); Mm00436439_m1 (CCL22);
and Mm00441243_g1 (CCL2). As in our previous study,

HPRT was used as an endogenous control and an ade-

quate housekeeping gene (Kwiatkowski et al., 2019;

Pawlik et al., 2020). HPRT did not exhibit any significant

changes across groups.
Analysis of protein level (Western blot). The samples

were homogenized in RIPA buffer containing a protease

inhibitor cocktail (Sigma-Aldrich, St. Louis, USA) and

were cleared via centrifugation (30 min, 14,000 rpm, and

4 �C). The total protein concentrations were measured

using the bicinchoninic acid (BCA) method. The

samples (10 lg of protein) were heated in loading buffer

(4� Laemmli buffer, Bio-Rad, Warsaw, Poland) for

5 min at 98 �C. Electrophoresis was performed on

4–15% TGX precast polyacrylamide gels (Bio-Rad,

Warsaw, Poland). The proteins were transferred from

the gels (semidry transfer, 30 min, and 25 V) to Immun-

Blot PVDF membranes (Bio-Rad, Warsaw, Poland), and

the membranes were blocked for 1 h at room

temperature using 5% nonfat dry milk (Bio-Rad,

Warsaw, Poland) in Tris-buffered saline with 0.1%

Tween-20 (TBST). Next, the membranes were washed

in TBST buffer and incubated overnight at 4 �C with the

following primary antibodies: rabbit anti-CCR4 (1:750,

Invitrogen, California, USA) and mouse anti-GAPDH

(1:5000, Millipore, Darmstadt, Germany). Then, the

membranes were washed with TBST buffer and

incubated for 1 h at room temperature with HRP-

conjugated secondary antibodies (Vector Laboratories,

Burlingame, USA) at a dilution of 1:5000. To dilute the

primary and secondary antibodies, the SignalBoostTM

Immunoreaction Enhancer Kit (Millipore, Darmstadt,

Germany) solution was used. The detection of the

selected proteins was performed using ClarityTM Western

ECL Substrate (Bio-Rad, Warsaw, Poland) and

visualized by Fujifilm LAS-4000 FluorImager system.

The relative levels of immunoreactivity were quantified

using Fujifilm MultiGauge software.
Analysis of the protein level (RayBio mouse inflamma-
tion antibody array). The samples were homogenized in

1x Cell Lysis Buffer (RayBio, Peachtree Corners, GA,

USA) with a Protease Inhibitor Cocktail (Sigma-Aldrich,

St. Louis, USA) and were cleared by centrifugation

(30 min, 14,000g, and 4 �C). The protein concentration

in the supernatant was determined using the BCA

Protein Assay Kit (Sigma-Aldrich, St. Louis, USA). Then,

the samples were diluted with 1� Blocking Buffer to a

final concentration of 250 lg protein per sample. The

RayBio membranes (Table 1) were blocked at room

temperature and incubated with 1 mL of sample

overnight at 4 �C. Next, the samples were decanted,

and the membranes were washed three times with 2 mL

of 1� Wash Buffer I (RayBio, Peachtree Corners, GA,

USA) and two times with 2 mL of 1� Wash Buffer II

(RayBio, Peachtree Corners, GA, USA) at room

temperature. To each membrane, 1 mL of diluted biotin-

conjugated anti-cytokine antibodies (RayBio, Peachtree
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Corners, Georgia) were added and incubated at room

temperature for 90 min. Then, the primary antibodies

were decanted, and the membranes were washed. The

membranes were incubated for 2 h at room temperature

with 2 mL of 1000-fold diluted HRP-conjugated

streptavidin (RayBio, Peachtree Corners, GA, USA).

The HRP-conjugated streptavidin was decanted, and

the membranes were washed. The immunocomplexes

were detected using detection buffer (RayBio, Peachtree

Corners, GA, USA) and visualized using a Fujifilm LAS-

4000 FluorImager system. The relative levels of

immunoreactivity were quantified using Fujifilm Image

Gauge software.

Data analysis

For statistical analyses F test to compare variances was

performed. The behavioral and biochemical results on

Fig. 1 were statistically evaluated using a t-test or

Welch t-test (for single comparisons) depending on the

F test result. Moreover, one-way analysis of variance

(ANOVA) followed by Bonferroni’s post hoc test (for

multiple comparisons) were used to analyze the results

on Figs. 2–7. Obtained data are presented as means

± standard error of measurement (SEM). The total

number of mice for all experiments was 355 – a detailed

number of used animals is presented in figure legends.

All graphs were prepared using GraphPad Prism 7

software.

RESULTS

The influence of streptozotocin administration on
plasma glucose concentrations, neuropathic pain-
related behaviors, spinal CCL17, CCL22 and CCL2
mRNA levels and CCL2 and CCR4 protein levels
measured on day 7 after STZ treatment

An increase in the plasma glucose concentration was

observed on day 7 following a single STZ (200 mg/kg, i.

p.) injection compared with the plasma glucose

concentration in naive animals (t14.37 = 7.68,

p< 0.0001) (Fig. 1A). In addition, we observed the

development of tactile and thermal hypersensitivity, as

measured by the von Frey (t15.78 = 7.49, p< 0.0001)

and cold plate (t22.00 = 22.09, p< 0.0001) tests,

respectively (Fig. 1B, C). Moreover, we observed

significant changes in the CCL2 mRNA level

(t11.51 = 2.54, p= 0.0266) (Fig. 1D), but not in the
CCL17 (Fig. 1E) and CCL22 (Fig. 1F) mRNA levels,

compared to those in naive mice. Additionally,

microarray analysis showed the upregulation of the

CCL2 protein level in the spinal cord (t15.57 = 3.56,

p= 0.0027) (Fig. 1G). Moreover, we demonstrated that

there were no changes in the levels of CCR4 in STZ-

treated animals compared to this in naive mice, as

measured by Western blot analysis (Fig. 1H).
The effect of a single intrathecal administration of
recombinant CCL2 protein preceded by the injection
of C021 in naive mice.

Our results indicated that a single intrathecal injection of

C021 (30 lg/5 ll; Fig. 2A) had no effect on tactile and

thermal hypersensitivity, as measured by the von Frey

(Fig. 2B) and cold plate (Fig. 2C) tests, 1 h after

administration. We observed strong tactile and thermal

hypersensitivity 1 h after the injection of CCL2, as

measured by the von Frey (F3,20 = 19.27, p< 0.0001)

(Fig. 2B) and cold plate (F3,20 = 20.67, p< 0.0001)

(Fig. 2C) tests, respectively. The injection of C021

(30 lg/5 ll) 15 min before the intrathecal injection of

recombinant CCL2 protein prevented the chemokine-

induced hypersensitivity observed in the von Frey and

cold plate tests (Fig. 2B, C).
The influence of a single intrathecal injection of C021
or RS504393on the neuropathic pain-related behavior
measured on day 7 after STZ administration

We observed in the von Frey test that C021 administered

intrathecally (10, 20, or 30 lg/5 ll; Fig. 3A) diminished the

tactile hypersensitivity measured 1 h (F3,27 = 12.77,

p< 0.0001) and 4 h (F3,28 = 4.60, p< 0.0097) after

injection compared with that in the V-treated group

(Fig. 3A). This effect was still observed 24 h after the

administration of a dose of 30 lg/5 ll. In the cold plate

test, the intrathecal administration of C021 significantly

reduced the thermal hypersensitivity 1 h (F3,27 = 12.77,

p< 0.0001) and 4 h (F3,28 = 4.60, p< 0.0097) after

injection compared with that in the V-treated group

(Fig. 3B). The effect lasted 24 h for doses of 20 and

30 lg/5 ll. We observed that RS504393 administered

intrathecally (30 lg/5 ll) did not influence tactile and

thermal hypersensitivity, as measured 1, 4 and 24 h

after injection, compared with that in the V-treated group

(Fig. 3C D).



Fig. 1. Changes in the pain-related behavior caused by hyperglycemia together with the
changes in the spinal mRNA levels of CCL2, CCL17 and CCL22 and in the protein levels of
CCL2 and CCR4 7 days after STZ treatment in mice. The effects of a single STZ injection on

plasma glucose (A), mechanical (von Frey test; B) and thermal (cold plate test; C) hypersensitivity,
mRNA levels of CCL2 (D), CCL17 (E) and CCL22 (F) (RT-qPCR analysis) and protein levels of CCL2

(G, protein microarray analysis) and CCR4 (H, Western blot analysis). Data are presented as the fold

change relative to control mice (naive) ± SEM, total number of animals: 66 mice: A–F, naive, n= 7–

12 mice per group; STZ, n= 12 mice per group; G, naive, n= 12 mice per group; STZ, n= 12 mice

per group and H, naive, n= 8; STZ, n= 10 mice per group. The results were statistically evaluated

using t-test; #<0.05; ##p< 0.01; ###p< 0.001 indicate changes compared with naive mice.

Abbreviations: N, naive; STZ, streptozotocin.
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The influence of a single intrathecal injection of C021
on the effectiveness of morphine and buprenorphine
measured on the 7th day after STZ treatment

A single intrathecal C021 injection (30 lg/5 ll; Fig. 4A)
significantly attenuated the STZ-induced tactile

hypersensitivity, as measured by the von Frey test

(F3,24 = 52.03, p< 0.0001 Fig. 4B; F3,25 = 59.87,

p< 0.0001 Fig. 4D), compared to that in the V-treated

group. Similarly, in the cold plate test, we observed a

reduction in thermal hypersensitivity in the C021-treated

mice (F3,26 = 144.30, p< 0.0001 Fig. 4C;

F3,26 = 232.90, p< 0.0001 Fig. 4E). Tactile and

thermal hypersensitivity were also significantly reduced

after a single i.t. injection of morphine (1 lg/5 ll) or

buprenorphine (1 lg/5 ll), as measured by the von Frey

(Fig. 4B, D) and cold plate tests (Fig. 4C, E). The

intrathecal injection of C021 enhanced the effectiveness
of both morphine and

buprenorphine in the von Frey

(Fig. 4B, D) and cold plate tests

(Fig. 4C, E).
The influence of single
intraperitoneal injection of C021
or RS504393 on neuropathic
pain-related behavior on the 7th
day after STZ treatment

We observed in the von Frey test

that C021 administered

intraperitoneally (1, 5, 10, or

20 mg/kg; Fig. 5A) diminished

tactile hypersensitivity 1 h

(F4,32 = 30.52, p< 0.0001) after

treatment in a dose-dependent

manner. The effect was not

observed after 4 h. In the cold

plate test, the most effective

intraperitoneal doses were 10 and

20 mg/kg, and these doses led to

the attenuation of thermal

hypersensitivity 1 h (F4,32 =

48.06, p< 0.0001) after injection

(Fig. 5B); however, this effect was

not observed after 24 h for both

doses. We revealed that the

intraperitoneal injection of

RS504393 (10 lg/kg) did not

affect tactile and thermal

hypersensitivity, as measured 1, 4

and 24 h after injection, compared

with that in the V-treated group

(Fig. 5C, D).
The effect of a single
intraperitoneal injection of C021
on the effectiveness of
morphine and buprenorphine
measured on the 7th day after
STZ treatment

A single intraperitoneal injection of

C021 (10 mg/kg; Fig. 6A)
significantly attenuated the STZ-induced tactile

hypersensitivity 1 h after administration, as measured by

the von Frey test (F3,27 = 60.54, p< 0.0001 Fig. 6B;

F3,22 = 71.55, p< 0.0001 Fig. 6D), compared to that in

the V-treated animals. Likewise, we observed a

reduction in thermal hypersensitivity in the cold plate

test (F3,24 = 56.73, p< 0.0001 Fig. 6C; F3,21 = 154.10,

p< 0.0001 Fig. 6E). Hypersensitivity was also

significantly diminished after a single i.p. injection of

morphine (5 mg/kg) or buprenorphine (5 mg/kg), as

measured by the von Frey (Fig. 6B, D) and cold plate

tests (Fig. 6C, E). The intraperitoneal injection of C021

enhanced the effectiveness of both morphine and

buprenorphine in the von Frey (Fig. 6B, D) and cold

plate tests (Fig. 6C, E).



Fig. 2. The pronociceptive effect of a single intrathecal injection of CCL2 diminished by the
previous intrathecal injection of C021 in naive mice. Behavioral tests were performed 1 h 15 min

after V or C021 (30 lg/5 ll) treatment, which means 1 h after CCL2 (10 ng/5 ll) administration A.
Tactile (B, von Frey test) and thermal (C, cold plate test) hypersensitivity was measured. Data are

presented as the mean ± SEM, total number of animals: 24 mice: (B, C) n= 6 mice per group. The

results were evaluated with the use of one-way ANOVA followed by Bonferroni’s multiple comparisons

post hoc test of selected pairs at the indicated time points. ooop< 0.001 indicates differences between

the V + V and V + CCL2-treated naive mice; ^^^p< 0.001 indicates differences between the V

+ CCL2- and C021 + CCL2-treated naive mice. Abbreviations: C021, C021 dichydrochloride (CCR4

antagonist); N, naive; V, water for injection.
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The effect of a single intrathecal and intraperitoneal
injection of C021 on motor coordination measured on
the 7th day after STZ treatment

A single intrathecal (30 lg/5 ll; Fig. 7A) and

intraperitoneal (10 mg/kg; Fig. 7B) C021 injection

significantly improved motor coordination in STZ-treated

animals, as measured by the rotarod test, while V-

treated mice exhibited significant impairment of motor

function compared with naive animals (F2,29 = 6,70,

p= 0.0040 for i.t and F2,21 = 4.54, p= 0.0230 for i.p.).
DISCUSSION

The present study is the first to demonstrate the

importance of CCR4 as one of the crucial receptors

involved in the pathogenesis of neuropathic pain in

diabetes. In a STZ-induced mouse model of diabetic

neuropathy, we proved that the mRNA and protein

levels of CCL2 are elevated in the spinal cord on day 7,

when strong tactile and thermal hypersensitivity has

developed. Moreover, in naive mice, the CCR4

antagonist is able to block the pronociceptive properties

of intrathecally injected CCL2. Importantly, our research

provides the first evidence that in STZ-induced

neuropathy, both the intrathecal/intraperitoneal
administration of C021 (CCR4

antagonist) diminishes tactile and

thermal hypersensitivity in a dose-

dependent manner, beneficially

effects motor coordination, and

enhances the analgesic properties

of morphine and buprenorphine.

Our results provide a novel basis

for the further evaluation of the

potential use of CCR4 as a target

for the treatment of diabetic

neuropathy and suggest spinal

CCL2/CCR4 signaling as an

important process for diabetic

neuropathy development and

opioid effectiveness.

Streptozotocin-induced

diabetes is a well-established

animal model used in studies of

neuropathic pain (Morgado et al.,

2011; Pabreja et al., 2011;

Zychowska et al., 2015, 2016,

2017; Castany et al., 2016; Kou

et al., 2016; Rojewska et al.,

2018). The hyperglycemic states

that occur in diabetes are responsi-

ble for Schwann cell metabolic

activity disruption and myelin

degeneration and, consequently,

neuropathic pain development

(Mizisin, 2014). The response to

noxious stimuli is transmitted by

lightly myelinated Ad and unmyeli-

nated C fibers, while the reaction

to nonnoxious stimuli is conducted

by highly myelinated Ab fibers

(Neumann et al., 1996). Moreover,
high blood glucose level contributes to the development of

inflammation. The release of inflammatory mediators,

such as interleukins and chemokines, initiates the

immune response. The neuroinflammatory process at

the spinal cord level can cause the activation of glial cells,

which can release many pronociceptive factors in an

uncontrolled manner. In summary, the pathophysiology

of diabetic neuropathic pain is complex and includes

peripheral and central neuronal changes as well as neu-

roimmune interactions, which become more prominent

during inflammatory reactions (Safieh-Garabedian et al.,

2019). In streptozotocin-induced diabetes, the increased

blood glucose concentration correlates with long-lasting

hypersensitivity to mechanical and thermal stimuli

(Zychowska et al., 2013a), and this correlation is in agree-

ment with our obtained results. Currently, an increasing

number of works indicate the important role of neuroim-

munological changes in neuropathy development

(Zychowska et al., 2013a, 2015; Rojewska et al., 2018);

however, the role of CCR4 in diabetes still needs to be

clarified, which is why this receptor became the subject

of our research.

There is growing evidence that suggests the

functional involvement of the CCR4-CCL17/CCL22/



Fig. 3. The intrathecal injection of C021 diminished hypersensitivity in a dose-dependent
manner 7 days after STZ treatment in mice. Effects of single injections of V, C021 or RS (C021: 10,

20, or 30 lg/5 ll; RS: 30 lg/5 ll) on mechanical (von Frey test; A, C) and thermal (cold plate test; B, D)
hypersensitivity, as measured at 1, 4 and 24 h following antagonist injection. Data are presented as the

mean ± SEM, total number of animals: 52 mice: (A, B) n= 6–8 mice per group; (C, D) n= 9–10 mice

per group. The results were evaluated using one-way ANOVA followed by Bonferroni’s test for multiple

comparisons. *p< 0.05, **p< 0.01, and ***p< 0.001 indicate significant differences between the V-

treated and C021-treated STZ-exposed animals. Abbreviations: V, water for injection or DMSO

(control group for RS504393); C021, C021 dichydrochloride (CCR4 antagonist); RS, RS504393

(CCR2 antagonist); STZ, streptozotocin.
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CCL2 axis in the pathogenesis of many diseases. The

significance of CCR4 during the development of asthma

(Zhang et al., 2017), multiple sclerosis (Moriguchi et al.,

2016; Jafarzadeh et al., 2017; Ruland et al., 2017;

Scheu et al., 2017), and dermatitis (Matsuo et al., 2018)

has been described. Recently it has been shown that

blockade of the CCR4 might be a promising strategy in

patients with hepatocellular carcinoma (Cheng et al.,

2017), glioblastoma (Jacobs et al., 2010), prostate, ovar-

ian, lung and breast cancers (Zou et al., 2005; Li et al.,

2012; Maolake et al., 2017). It has been indicated that

CCR4 promotes tumor growth and metastasis (Cheng

et al., 2017). Moreover, in vitro data have shown that

CCL2 not only increases the expression of CCR4 in can-

cer cells (Maolake et al., 2017), but also induces the

migration of lymphocytes toward melanoma (Zhang

et al., 2006). In 2017, Kiguchi et al. showed for the first

time altered spinal expression of CCR4 in diabetic mon-

keys; however, the role of CCR4 in nociceptive transmis-

sion has not been studied thus far (Kiguchi et al., 2017).

CCR4 is present in many cells of the nervous system,

including both neuronal (Meucci et al., 1998) and non-

neuronal (e.g. microglia, astroglia, dendritic cells, macro-

phages, lymphocytes, basophils, natural killer cells, and

platelets) (Abi-Younes et al., 2001; Flynn et al., 2003;

Stolberg et al., 2011; Pease and Horuk, 2014) cells.

CCR4 has two main ligands, CCL17 and CCL22 (Imai
et al., 1997; Yoshie and

Matsushima, 2015; Scheu et al.,

2017), which, as we have shown,

exhibit strong pronociceptive prop-

erties in naive mice (Bogacka

et al., 2020). CCL17 can be pro-

duced by microglia (Klein et al.,

2017), thymus and peripheral

blood mononuclear cells (Imai

et al., 1997; Nomiyama et al.,

1997), dendritic cells (Sallusto

et al., 1999; Alferink et al., 2003)

and neurons (Fülle et al., 2018).

The level of CCL17 is enhanced

in patients suffering from

fibromyalgia (Garcia et al., 2014),

diabetic retinopathy (Dai et al.,

2014) and in animal models of

multiple sclerosis (Ruland et al.,

2017; Scheu et al., 2017). CCL22

is mainly released by macro-

phages and microglia (Yamashita

and Kuroda, 2002; Scheu et al.,

2017), and increased levels of

CCL22 have been described in

animal models of asthma (Zhang

et al., 2017), dermatitis (Matsuo

et al., 2018) and multiple sclerosis

(Moriguchi et al., 2016; Ruland

et al., 2017). However, at the

spinal cord level, we did not

observe changes in the mRNA

levels of CCL17 and CCL22 after

streptozotocin administration, so

it seems that their central role is
not crucial in mouse models of diabetes. However, in

the periphery, the importance of CCL17 and CCL22 dur-

ing tissue repair in diabetes was recently proven (Barros

et al., 2019). Around 80% of people with diabetes suffer

from a various skin disorders (Demirseren et al., 2014).

Wound healing is a process that involves many inflamma-

tory mediators and is one of the serious long-term compli-

cations associated with this metabolic disease. In 2019,

Barros et al. showed that the CCR4/CCL17/CCL22 axis

is engaged in regulatory T cell recruitment and activation

in inflamed skin. The results of that study provide evi-

dence that CCR4�/� diabetic mice displayed an increase

in collagen fiber deposition (Barros et al., 2019). However,

there are evidences that CCR4-deficient mice are prone

to autoimmune disorders because thymocytes do not

undergo efficient clonal deletion and, as a consequence,

autoreactive T cells are accumulated in the periphery

(Hu et al., 2015). Therefore, it is necessary to have in

mind that CCR4 blockade, except significant analgesic

benefits and promotion of wound healing process under

diabetic neuropathy, may act like a double-edged sword.

In reference to T cells importance, CCR4 is expressed

by Th2 cells and it is worth to mention that diabetes can

be mediated by Th1 (Von Herrath and Oldstone, 1997),

Th2 (Anderson et al., 1993) or both Th1/Th2 cells (Azar

et al., 1999). These populations are known to be



Fig. 4. The single intrathecal injection of C021 enhanced the effectiveness of morphine and

buprenorphine 7 days after STZ treatment in mice. Animals treated with a single injection of V or C021

(30 lg/5 ll) received a single dose of V, M (1 lg/5 ll) or B (1 lg/5 ll) after 30 min, and 30 min later, the

behavioral tests were conducted. Data are presented as the mean ± SEM, total number of animals:

54 mice: (B, C) n= 6–8 mice per group; (D, E) n= 6–8 mice per group. The results were analyzed

using one-way ANOVA with Bonferroni’s multiple comparisons test. ***p< 0.001 indicates changes

compared with the V + V-treated STZ-exposed mice; @@@p< 0.001 indicates differences between

the C021 + V- and C021 + M/B-treated STZ-exposed mice; +++p< 0.001 indicates differences

between the V +M/B- and C021 + M/B-treated STZ-exposed mice. Abbreviations: B; buprenor-

phine; C021, C021 dichydrochloride (CCR4 antagonist); M, morphine; STZ, streptozotocin; V, water

for injection.
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implicated in the initiation and pro-

gression of the diabetes, mostly

because of disrupted balance of

their regulatory cytokines (Azar

et al., 1999). Accordingly, it might

seem that blockade of CCR4 in

Th2 cells could have a negative

effect under diabetes, since this

cells were generally regarded as

anti-inflammatory. However, Th2

and their mediators were shown

to be involved in pathogenesis of

diabetes through support of pan-

creatic mononuclear-cell infiltration

and acceleration of b islet cell

destruction (Azar et al., 1999).

Therefore it is possible, that

CCR4 blockade in diabetes would

also help to restore balance

between Th1/Th2 mediators.

Besides, in progression of neu-

ropathy an increasing role has

been attributed to microglia and

macrophages cells. What is signifi-

cant to mention, CCR4 can be also

expressed by those cells (Flynn

et al., 2003). It is currently known

that microglia is important in the

development of diabetic neuro-

pathic pain (Zychowska et al.,

2016). Moreover, in our previous

study we have shown that C021

administration can decrease level

of IBA-1-positive cells both in cen-

tral and peripheral nervous system,

what leads to decrease of painful

symptoms evoked by chronic con-

striction injury (Bogacka et al.,

2020). This results additionally

support our hypothesis that block-

ade of CCR4 on microglia may

have beneficial effect in the treat-

ment of diabetes-based

neuropathy.

It seems that another important

ligand for CCR4 is CCL2, which

until now, was considered to be

the main ligand of CCR2. CCL2 is

a key chemoattractant molecule

for leucocytes, and it principally

recruits monocytes and, to a

lesser extent, memory T cells and

dendritic cells to the sites of

inflammation (Graves et al., 1999;

Sorensen et al., 2004; Deshmane

et al., 2009; McMillin et al., 2014).

After sciatic nerve ligation in rats,

the repeated intrathecal adminis-

tration of a CCR2 antagonist effec-

tively reduced neuropathic pain

symptoms (Kwiatkowski et al.,



Fig. 5. Intraperitoneally injected C021 diminished hypersensitivity in a dose-dependent
manner 7 days after STZ treatment in mice. Effects of a single injection of V, C021 or RS (C021:

1, 5, 10, or 20 mg/kg; RS: 10 mg/kg) on mechanical (von Frey test; A, C) and thermal (cold plate test;

B, D) hypersensitivity, as measured at 1, 4 and 24 h following antagonist administration. Data are

presented as the mean ± SEM, total number of animals: 60 mice: (A, B) n= 5–8 mice per group; (C,
D) n= 7–10 mice per group. The results were evaluated using one-way ANOVA followed by

Bonferroni’s test for multiple comparisons. *p< 0.05, **p< 0.01, and ***p< 0.001 indicate

significant differences between the V-treated and C021-treated animals after treatment with STZ.

Abbreviations: V, water for injection or DMSO (control group for RS504393); C021, C021

dichydrochloride (CCR4 antagonist); RS, RS504393 (CCR2 antagonist); STZ, streptozotocin.
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2017); however, the pain was not completely mitigated.

Moreover, in a model of osteoarthritis, CCR2-knockout

mice still had transient distal mechanical hypersensitivity

(Miller et al., 2012). Importantly, single intrathecal and

intraperitoneal injections of a CCR2 antagonist, in con-

trast to injections of a CCR4 antagonist, do not relieve

hypersensitivity in diabetes. A few studies suggested that

CCL2 also induced effects through CCR4 (Graves et al.,

1999; McMillin et al., 2014), which is in agreement with

our behavioral results showing that the CCR4 antagonist

can partly diminish the CCL2 pronociceptive properties

after its intrathecal administration in naive mice. In the

diabetic model, we demonstrated the spinal upregulation

of CCL2, which is why this chemokine seems to be an

important mediator of nociceptive transmission via

CCR2 and CCR4. Our data provide evidence that even

a single intrathecal injection of C021 can effectively dimin-

ish pain-related behavior on day 7 of STZ-induced neu-

ropathy in mice, when we observed fully developed

hypersensitivity. Furthermore, a single intraperitoneal

injection of C021 successfully diminished the neuropathic

pain-related symptoms in diabetic neuropathy. Interest-

ingly, our results provide proof that in diabetes, CCR4

blockade is more effective than CCR2 blockade. It is

known that during diabetes, the deterioration of various

motor skills can be observed (Pfützner et al., 2011).

Importantly, patients with this disease show slower
walking velocity and shorter stride

length and might be more suscepti-

ble to injuries or fractures (Mueller

et al., 1994). One of the reasons

for these complications is nerve

damage, which might accompany

diabetes (Rojas et al., 2018). In

our study, we showed that a single

i.t. and i.p. injection of C021

improved the locomotor activity of

STZ-treated animals, which we

could observe by prolonged persis-

tence on rotating rods. All the

results we obtained suggest that

CCR4 is an important target for

diabetic neuropathy management;

however, the exact molecular

mechanism needs future

investigation.

Given the high prevalence of

pain experienced by diabetic

patients and the fact that

chemokine and opioid receptors

may crosstalk, we found it

essential to know whether the

blockade of CCR4 can influence

opioid effectiveness. It is known

from clinical (Przeklasa-

Muszynska and Dobrogowski,

2011) and experimental (Zurek

et al., 2001; Zychowska et al.,

2013a, 2017; Rojewska et al.,

2018) studies that diabetic neuro-

pathic pain management is not

easy due to the relatively low effec-
tiveness of opioids against this pain. Many studies, includ-

ing these regarding diabetes, suggest that altered

neuroimmunological interactions are responsible for

weaker opioid analgesia. In models of neuropathic pain

of different etiologies, it has been shown that pronocicep-

tive interleukins (IL-1beta, IL-6, and IL-18) (Zanjani et al.,

2006; Mika, 2008; Chen et al., 2012; Pilat et al., 2015,

2016) and chemokines (CCL1, CCL2, CCL3, CCL4,

CCL5, CCL7, CCL9, CCL17 and CCL22) (Kwiatkowski

et al., 2016, 2019; Zychowska et al., 2017; Rojewska

et al., 2018; Bogacka et al., 2020) are involved in this phe-

nomenon. Moreover, the literature data give many evi-

dences that some of these cytokines also decrease the

analgesic effects of opioids (Szabo et al., 2002; Chen

et al., 2007; Pilat et al., 2015, 2016; Zychowska et al.,

2017; Kwiatkowski et al., 2019; Pawlik et al., 2020). Addi-

tionally, beneficial effects of immunomodulators and glial

inhibitors, such as pentoxyphylline and minocycline, on

opioid effectiveness in neuropathy have already been

shown (Mika et al., 2013; Zychowska et al., 2013a,

2016; Rojewska et al., 2014; Piotrowska et al., 2016b).

These studies have indicated that the effectiveness of

mentioned substances is due to their beneficial effects

on microglia cells, which are strongly activated in

neuropathy (Ferrini et al., 2013; Mika et al., 2013;

Kwiatkowski and Mika, 2018). As we mention, our



Fig. 6. The single intraperitoneal injection of C021 enhanced the effectiveness of morphine and

buprenorphine 7 days after STZ treatment in mice. Animals treated with a single injection of V or C021

(10 mg/kg) received a single dose of V, M (5 mg/kg) or B (5 mg/kg) after 30 min, and 30 min later, the

behavioral tests were conducted. Data are presented as the mean ± SEM, total number of animals:

51 mice: (B, C) n= 7–8 mice per group; (D, E) n= 5–7 mice per group. The results were analyzed

using one-way ANOVA with Bonferroni’s multiple comparisons test. **p< 0.01; ***p< 0.001 indicate

differences compared with the V + V-treated STZ-exposed mice; @p< 0.05; @@@p< 0.001 indicate

differences between the C021 + V- and C021 + M/B-treated STZ-exposed mice; ++p< 0.01;
+++p< 0.001 indicate differences between the V +M/B- and C021 + M/B-treated STZ-exposed

mice. Abbreviations: B; buprenorphine; C021, C021 dichydrochloride (CCR4 antagonist); M,

morphine; STZ, streptozotocin; V, water for injection.
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previous studies confirmed the

strong activation of microglia under

diabetic neuropathy (Zychowska

et al., 2013a). CCR4 expression

on microglia/macrophages was

recently suggested to be responsi-

ble for pro-inflammatory polariza-

tion of these cells (Chen et al.,

2019). This corresponds well with

our results showing, that in rats

after sciatic nerve ligation CCR4

blockade reduced the level of

microglia/macrophages in the

spinal cord and DRG (Bogacka

et al., 2020). Similarly, also antago-

nists of CCR2 (Kwiatkowski et al.,

2017) and CCR5 (Kwiatkowski

et al., 2016) enhanced morphine

analgesia in a nerve injury-

induced model of neuropathy by

reducing microglia/macrophages

level. Other data give evidence that

the CCL2, a key mediator of spinal

microglial activation, is likewise

responsible for lower opioid effi-

cacy in naive animals (Zhao et al.,

2012). This is in agreement with

our results showing that C021 pre-

vents CCL2 upregulation in mouse

model of neuropathy, which can be

one of the mechanism of its benefi-

cial effects (Bogacka et al., in

press). The data from our research

provide the first evidence that

intrathecal and intraperitoneal

injections of C021 enhanced the

effectiveness of morphine and

buprenorphine in diabetic neuropa-

thy. This is an important observa-

tion from a clinical point of view;

however, the molecular mecha-

nism still needs further investiga-

tions. Based on literature (Zhang

et al., 2003, 2004; Brack et al.,

2004; Chen et al., 2004; Heinisch

et al., 2011) we hypothesize that

crosstalk between opioid and che-

mokine receptors via heterologous

desensitization can be another rea-

son of decreased analgesic effect

of opioids. Heterologous desensiti-

zation is observed in cells that

express multiple types of GPCRs

when the activation of one type of

receptor leads to the changes of

other types due to activation of

several protein kinases (Kelly

et al., 1999; Zhang et al., 2004).

Moreover, activation of opioid

receptors by an agonist induces

changes in some chemokine levels



Fig. 7. The intrathecal and intraperitoneal injection of C021
beneficially affected motor coordination 7 days after STZ treat-
ment in mice. The effects of a single injection of V or C021 (30 lg/
5 ll i.t., A and 20 mg/kg i.p., B) were measured 1 h 15 min after V or

antagonist administration by the rotarod test. *p< 0.05 indicates

significant differences between the V-treated and C021-treated STZ-

exposed animals. Data are presented as the mean ± SEM, total

number of animals: 48 mice: (A, B) n= 8–12 mice per group.
##p< 0.01 indicates differences between the naive and the V-treated

STZ-exposed animals. Abbreviations: N, naive, V, water for injection;

C021, C021 dichydrochloride (CCR4 antagonist); STZ,

streptozotocin.
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and chemokine receptor expression (Wetzel et al., 2000;

Mahajan et al., 2002; Happel et al., 2008). Ligands which

bind to chemokine receptors can desensitize opioid

receptors, and by this mechanism decreases the opioid

analgesia. It has been already shown that chemokine

ligands e.g. CXCL12 and CCL5 induce the phosphoryla-

tion of MOR and influence the perception of pain by

cross-desensitizing of this opioid receptor (Szabo et al.,

2002). In 2014, Ye et al. described heterologous desensi-

tization between CXCR3-MOR, which results in suppress-

ing morphine analgesic effects (Ye et al., 2014). Others

have shown that morphine can increase CCR5 expres-

sion and that CCR5-MOR also may crosstalk with each

other by dimerization (Miyagi et al., 2000; Yuan et al.,

2012, 2013). Therefore, pharmacological targeting of het-

erodimers is a useful method to modulate opioid receptor

activity (Yuan et al., 2012, 2013; Akgün et al., 2015).

Recently, Akgün and coworkers synthesized bivalent

ligands (MCC series) that contain 2 pharmacophores (a

mu opioid agonist and a CCR5 antagonist), which dimin-

ished inflammation-induced pain-related behavior; this

synthesis is an interesting therapeutic strategy (Akgün

et al., 2015). However, the CCR5 antagonist has no anal-

gesic properties in streptozotocin-induced neuropathy

(Rojewska et al., 2018); therefore, we suggest that for dia-

betes therapy, the creation of bivalent ligands that contain

MOR agonist and CCR4 antagonist pharmacophores

would be more valuable.

Our results are worth emphasizing because we

provide the first evidence that CCR4 antagonists can

enhance morphine and buprenorphine analgesia in

neuropathic pain, which may be relevant for clinical

applications in the future. Equally important are the data

showing that CCR4 blockade is also beneficial for

wound healing in diabetes (Barros et al., 2019). From a

clinical perspective it is worth to point out that in our mice
model of diabetes-induced neuropathic pain we did not

observed any side effects in C021 (CCR4 antagonist)

treated animals and, what is very important, mice have

revealed reduced tactile and thermal hypersensitivity.

Our behavioral tests also showed that CCR4 antagonist

has positive impact on motor coordination of animals. It

is known that any drug or substance can induce some

side effects. This cannot also be ruled out for CCR4 tar-

geted drugs. Due to the fact that CCR4 is expressed by

Th2 and Treg cells, it become potential therapeutic point

for treatment of allergic diseases such as asthma and ato-

pic dermatitis, as well as Adult T-cell leukemia/lymphoma

(ATL) (Yoshie and Matsushima, 2015). The pharmaceuti-

cal company Kyowa Hakko Kirin, developed fully human-

ized monoclonal antibody targeting CCR4, named

Mogamulizumab (Yu et al., 2017). During I and II phase

of clinical trials in patients with ATL this antibody was

well-tolerated, but in few cases induced skin-related

adverse effects, which might be correlated with almost

total absence of Treg cells (Ishida et al., 2013). Therefore,

in order to determine if and what side effects CCR4-

oriented therapy can bring under diabetic neuropathy,

we definitely need a long studies involving both animal

and human ones. Moreover, the gender-related differ-

ences need to be study, especially since females often

have more serious complications during diabetes

(Centers for Disease Control and Prevention, 2018).

Overall, these data emphasized CCR4 as a promising tar-

get to be exploited as a novel therapeutic approach for the

polytherapy of diabetic-based neuropathic pain.

In conclusion, diabetic neuropathy is a serious and

common complication of diabetes that is associated with

increased risks of mortality and cardiovascular diseases.

In light of our current results, we can confidently state

that CCR4 signaling plays an important role in a mouse

model of diabetic neuropathy. These findings support

the hypothesis that the blockade of CCR4 signaling has

a positive feedback role in the regulation of morphine

and buprenorphine analgesia. Therefore, blocking CCR4

may represent a new strategy for effective polytherapy

with opioids, which may provide a rational strategy in

patients suffering from diabetic neuropathic pain.
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