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Prostatic carcinoma (PC) is the m ost frequent urologic cancer and one of the most 
frequent cancers in m ales; it is a heterogeneous disease, in terms o f molecular fea
tures, m orphology and prognosis. A bout half o f cases depends on TM PR SS2-ETS 
translocation which leads to a production o f ER G  transcription factor. ER G  +  
and E R G — cancers seem to differ in a number o f features, which could lead to an 
altered nuclear structure; the aim of the study was to test this hypothesis. The 
m aterial consisted o f total 39 PC cases, representing E R G +  and E R G —, as well 
as G leason pattern 3 and 4. Filtering by color deconvolution and autom atic seg
m entation were used, and the properly detected nuclei were m anually selected. 
From each case fifty nuclei were obtained; then geometric features and texture 
param eters were assessed. The analysis o f the collected data showed differences 
both between E R G + /E R G — and G leason pattern 3 and 4 cases in m ost of the 
features analyzed. O ur results suggest that indeed the E R G  status, thus likely 
TM PR SS2-ETS translocation, has an im pact on m orphology o f nuclei in PC, and 
their differences are evident enough to be detectable by im age analysis.

K ey w ord s: male, neoplasm grading, TM PRSS2 protein, human, prostatic neo
plasm s, urologic neoplasms.

Introduction___________________________

Prostatic carcinoma (PC) is one of the most fre
quent tumors worldwide and in the Western world 
it is indeed the most common cancer in males and 
an im portant cause o f death [1]. The most frequent 
genetic event in PC is a translocation involving ETS 
family genes, most often ER G ; this results in ERG 
protein product overexpression [2], a feature present 
in about half o f patients in Europe, including whose 
from our material [3]. The biologic and prognostic

significance of ER G  expression in PC remains unclear 
and is a subject of intense analysis.

The aim of the study was to collect a set of nucle
ar parameters, including both geometric and texture 
features, and to analyze them in relation to ER G  ex
pression. As it has been shown before that the PCs of 
different Gleason grade show differences in nuclear 
parameters [4, 5, 6, 7], we decided to compare lower
and higher-grade tumors. The preliminary version of 
the results was presented at 26th European Congress 
of Pathology [8].
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Material and methods____________________

The study material consisted of prostatectomy 
specimens from the files of Pathology Departm ent. 
Immunohistochemistry for ER G  was performed on 
tissue microarrays, as previously reported [3]. The 
cases were reevaluated and reclassified according to 
the current criteria [9, 10, 11]. From the obtained 
dataset four groups were established as a combina
tion of the following features: lower-grade (Gleason 
pattern 3) or higher-grade (Gleason pattern 4) and 
E R G - or E R G +  (Fig. 1). The Table I shows the 
details o f grading, however for m aking the analysis 
more evident, only Gleason pattern in the TM A  core 
was used for analysis.

The im ages of hematoxylin-eosin stained tissue 
microarrays were taken on a Zeiss Axioscope m i
croscope equipped with a 100X  oil immersion lens 
using a N ikon D 5 1 0 0  digital camera. Pictures (Fig. 
2) were transferred to a personal computer, convert
ed from N ikon raw im age format into T IF format

T ab le  I. Composition of experimental diets

G l e a so n

sc o r e
N %

i s u p
GRADE

N %

3 +  3 =  6 9 23.08 1 9 23.08

3 +  4 =  7 18 46.15 2 18 46.15

4 +  3 =  7 8 20.51 3 8 20.51

4 +  4 =  8 1 2.56 4 1 2.56

G
\IIir\ 

+

2 5.13 5 3 7.69

G
\II+ir\ 1 2.56

and processed using color deconvolution algorithm. 
The resulting files were used for the segm entation 
o f nuclei. The properly segm ented nuclei were being 
selected by the operator until fifty nuclei were avail
able for each case (Fig. 3). The im ages of the nu
clei were then processed by a program  which m ea
sured the geom etric and textural features listed in 
Table II.

F ig . 1. Immunohistochemistry of the TM A  tissue cores used for assessing ER G  status; A) and B) are Gleason pattern 3; 
C) and D) are Gleason pattern 4; A) and C) are E R G -; B) and D) are E R G + ; immunohistochemistry; magnification 0 .3X
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F ig . 2. H istology o f prostatic carcinomas used in the study; A) and B) are Gleason pattern 3; C) and D ) are Gleason p a t
tern 4; A) and C) are E R G -; B) and D ) are E R G  +  ; hematoxylin and eosin; lens m agnification 100X

W here: L — nuclear perimeter, S — nuclear area, 
Lh — horizontal diameter, Lv — vertical diameter, D  . -7 7 min

minimum diameter, D  -  maximum  diameter.’  m ax

The im age processing was performed with Im ageJ 
1.47V (National Institutes o f Health), AnalySIS 3.2 
(Soft Im aging Systems G m bH ) software, color decon
volution macro (G. Landini, http://www.mecourse. 
com/landinig/) as well as macros developed by one of 
the authors (KO). Student's t test was used for com
parison between groups. Interactions between factors 
was assessed using ANO VA. Significance level was 
set to 0.05. The data was analyzed using Statistica 12 
(StatSoft, Tulsa CA, USA) and R  package (R  Founda
tion for Statistical Com puting) [12].

Definitions of the form factors used:

4nS
SF  =

R f  =

L 2

L

L

Rc =

compactnes =
D

D
-  i
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T ab le  II . Parameters used in the study (see [49, 50, 51] 
for details)

S im p le  ge o m e tr ic  featu res

Area

Perimeter 

Convex perimeter 

Convex area

Equivalent circle diameter

M inim um , m axim um  and mean diameter

F o rm  fac to rs : SF, R f, R c , co m p ac tn ess

T ex tu re  featu res

Gray level correlation matrix derived (mean, SD, 
energy, contrast, homogeneity, entropy)

Central moments invariants (^1 to ^7)

Gray level kurtosis

Gray level skewness

Results_________________________________

The group under study consisted of 39 cases; the 
mean age o f the patients was 62 .58  (range 50 to 
75 years, SD  5.89). The age o f the patients did not 
show significant relationship with any o f the ana
lyzed variables. Eleven cases were pT2 (29.2% ), 26 
(66 .7% ) were pT3 and 2 (5 .1% ) were pT 4. Details 
o f grading are shown in Table I. For the study, areas 
with Gleason patter 3 or 4, either E R G +  or E R G - 
were selected. A m ong the four established study 
groups the following numbers were obtained: 9 cas
es of Gleason pattern 3, E R G - cancers; 11 cases of 
Gleason pattern 3, E R G +  cancers; 9 cases o f G lea
son pattern 4, E R G -  cancers and 10 cases of G lea
son pattern 4, E R G +  cancers. For each case at least 
fifty nuclei were m easured. The results are shown 
in Table III. Individual case profiles are shown on 
Fig. 4, and the profiles averaged over the study 
group on Fig. 5. As m ight have been expected, the

F ig . 3. Exam ples o f individual segm ented nuclei; A) and B) are G leason  pattern  3; C) and D  are G leason  pattern  4; 
A) and C) are E R G - ; B) and d are E R G + . Originals were in hematoxylin and eosin; lens magnification 100X
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Tab le  III . The descriptive statistics o f the measured nuclear param eters

Pa ea m eter M ean M i n . M a x . SD

Area 47.894 17.234 117.981 15.844

Convex perimeter 26.186 16.047 46.348 4.220

Convex area 48.895 17.711 136.673 16.172

Equivalent circle diameter 7.710 4.684 12.256 1.239

Maximum diameter 8.840 5.273 15.551 1.511

Mean diameter 8.127 4.995 14.653 1.314

Minimum diameter 6.985 4.075 12.045 1.214

Perimeter 25.916 15.627 62.150 4.272

SF 0.875 0.348 0.960 0.044

R f 1.006 0.508 2.159 0.187

Rc 0.468 0.295 0.490 0.012

Compact-ness 0.796 0.432 0.976 0.096

GV  kurtosis 2051.805 114.967 68146.526 3183.838

GV  skewness 195.148 23.874 2970.758 184.768

GLCM  average 178.786 140.576 205.565 8.441

GLCM  stdev 260.611 216.920 297.582 10.447

GLCM  max 0.232 0.125 0.432 0.034

GLCM  energy 0.114 0.033 0.591 0.048

GLCM  contrast 353.797 151.334 684.435 88.212

GLCM  homo-geneity 1.130 0.902 1.288 0.063

GLCM  entropy 14.675 10.970 17.460 0.926

*1 1.004 0.001 1.461 0.214

<[2 0.069 -2 .682 3.701 0.964

*3 7.231 0.000 192.203 12.477

[4 7.684 0.000 168.287 11.749

[5 -0 .759 -400 .845 2009.738 77.684

[ 6 7.500 -76 .007 573.799 31.675

^7 -1 .2 8 8  -1490 .214  647.995 50.434

nuclei o f G leason pattern 4 cases were significant
ly larger and slightly more irregular than those of 
pattern 3 cases; there were also differences in the 
m ajority of textural features (Table IV). W hen ana
lyzing the nuclei of E R G +  and E R G — cases it could 
be seen that in E R G +  cases they were significantly 
larger, yet they showed no difference in form fac
tor values. However, there were differences in their 
textural param eters (Table V). Table VI shows com 
parison o f unifactorial and m ultifactorial with inter
actions models.

Discussion_____________________________

For some time now, it is known and accepted that 
a subset of PCs develop through a translocation in
volving ETS family genes and TM PRSS2  gene [2, 13].

Under normal conditions, ETS family genes are ex
pressed mainly by endothelial cells [14] and in trans
location-related PC their genes comes under con
trol of the androgen receptor. Androgen gene may 
be upregulated by the previous N K X 3.1  gene loss. 
This results in a significant expression o f the tran
scription factors o f the ETS family by the prostatic 
epithelial cells. Such carcinogenic mechanism is quite 
unusual for a carcinoma and similar to the phenom
ena which cause some mesenchymal or hem atopoi
etic cancers [2, 13, 15]. Importantly, the expression 
of the ETS family transcription factors, ER G  may be 
tested by immunohistochemistry and the results are 
highly correlated with the TM PRSS2-ETS transloca
tion [13]. This offers an easy and cheap m ethod for 
classifying PC genotype. A lthough a number of stud
ies were published on the subject, it is still unclear
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F ig . 4. Individual profiles o f the cases under study; A) and B) are Gleason pattern 3; C) and D ) are Gleason pattern 4; 
A) and C) are E R G -; B) and D) are E R G + ; on the X  axis the individual variables describing nuclear features are present
ed; on the Y  axis their average values; for clarity, the names o f the variables are om itted; all plots have the sam e scaling

whether translocation-associated prostate cancers 
are different in morphology or behavior [15]. In our 
opinion, some differences exist in terms of both mor
phology and stage as well as interaction with the tu
mor microenvironment [3, 16, 17, 18].

K D M 1A , C H D 1, and androgen receptor were 
identified as forming a complex responsible for tar
geted D N A  breaks, which lead to TM PRSS2-ETS 
translocation [19]. TM PRSS2-ETS translocation 
may influence chromatin structure and stability by 
an upregulation o f PIM1 kinase and a deregulation of 
Poly(ADP-Ribose) Polymerase [20, 21]. Another en
zyme im portant for chromatin structure, which has 
been shown to participate in the generation of trans
locations in PC, is topoisomerase II beta. It is required 
for an expression of androgen-receptor regulated 
gene as well as it was shown to mediate double strand 
breaks o f D N A  in PC and in prostatic intraepitheli
al neoplasia (PIN) in an androgen receptor-mediat
ed mechanism [22]. TM PRSS2-ETS translocation is 
the only one o f the recurrent translocation — deletion 
events peculiar for PC. Another frequent alteration 
in PC is the 5q21 deletion. It has been shown that

•  G leason  3 E R G — --o - -  G leaso n  3 E R G +

•  G leason  4 E R G — ---o— G leaso n  4 E R G +

F ig . 5. Profiles o f the study groups. On the X  axis the indi
vidual variables describing nuclear features are presented; 
on the Y  axis their average values; the variable names are 
om itted

it causes the loss of C H D 1, which protein product — 
chromodomain helicase D N A  binding protein 1, par
ticipates in chromatin remodeling. Interestingly, this
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Tab le  IV. The differences between pattern 3 and pattern 
4 cases. For clarity, only means and significance levels for 
variables showing significant differences are shown (p -  sig 
nificance levels reached by Student t-test).

Pa ea m eter Pa t t e r n  3 Pa t t e r n  4 P-VALUE

Area 45.343 50.671 <  0.001

Convex perimeter 26.186 26.831 <  0.001

Convex area 48.895 51.703 <  0.001

Equivalent circle 
diameter

7.511 7.927 <  0.001

Maximum diameter 8.709 8.983 <  0.001

Mean diameter 7.968 8.300 <  0.001

Minimum diameter 6.741 7.251 <  0.001

Perimeter 25.301 26.586 <  0.001

SF 0.871 0.881 <  0.001

Rc 0.466 0.469 <  0.001

GV  kurtosis 0.780 0.813 <  0.001

GV  skewness 2449.806 1618.661 <  0.001

GLCM  average 221.115 166.887 <  0.001

GLCM  stdev 179.698 177.794 <  0.001

GLCM  max 261.736 259.386 <  0.001

GLCM  energy 0.234 0.229 0.003

GLCM  contrast 0.120 0.108 < 0 .0 0 1

GLCM  homo-geneity 363.859 342.846 < 0 .0 0 1

GLCM  entropy 1.140 1.120 < 0 .0 0 1

GV  kurtosis 14.520 14.843 < 0 .0 0 1

*1 0.975 1.037 < 0 .0 0 1

*3 8.114 6.270 0.001

* 6 9.050 5.813 0.024

alteration is mutually exclusive with respect to TM - 
PRSS2-ETS translocation because the CH D 1 protein 
product is required for the occurrence of this translo
cation [23, 24]. Altered expression of proteins acting 
on chromatin structure and the chromatin destabili
zation could result in a change of its structure visible 
at the microscopic level, similar to the one that may 
be noticed in other organs [24].

Im age analysis is a powerful tool in histopathol- 
ogy. It may allow for a detection of differences be
tween groups o f cases which may be not evident visu
ally. In the PC pathology the visual nuclear grading 
may fail [25] while im age analysis may show signif
icant results [4, 6, 7]. Currently this method is used 
for research purpose, although an implementation 
o f the computer-aided diagnosis systems has been 
proposed [26]. Application o f im age analysis to his- 
topathology is often difficult because of a large size 
and a complexity o f the im age, variability in staining 
as well as difficulty in segmentation [26]. Color de-

Tab le  V. The differences between E R G -  and E R G +  cases. 
For clarity, only means and significance levels for variables 
showing significant differences are shown (p -  significance 
levels reached by Student t-test)

Param eter E R G - E R G + P-VALUE

Area 45.597 49.904 <  0.001

Convex perimeter 25.582 26.714 <  0.001

Convex area 46.537 50.957 <  0.001

Equivalent circle 
diameter

7.536 7.863 <  0.001

Maximum diameter 8.638 9.017 <  0.001

Mean diameter 7.940 8.290 <  0.001

Minimum diameter 6.821 7.128 <  0.001

Perimeter 25.309 26.448 <  0.001

GLCM  average 177.278 180.106 <  0.001

GLCM  stdev 258.809 262.187 0.020

GLCM  energy 0.111 0.116 <  0.001

GLCM  contrast 368.024 341.350 < 0 .0 0 1

GLCM  homo-geneity 1.125 1.135 < 0 .0 0 1

GLCM  entropy 14.767 14.594 < 0 .0 0 1

*1 1.028 0.983 < 0 .0 0 1

*3 7.936 6.614 0.019

*4 8.618 6.867 0.001

convolution is a relatively new tool in im age analysis 
that has already gained a wide acceptance in quanti
tative pathology, as it allows an effective threshold
ing of histologic im age [27, 28]. For the best o f our 
knowledge, no publications concerning relationship 
between nuclear morphometry and ER G  status in PC 
are available, although several studies on the applica
tion of im age analysis in PC were published. M ost of 
them concentrate on automatic cancer diagnosis or 
computer-aided grading.

Loeffler et al. [27] aimed to obtain a classification 
of PC on the same rules, but more objective than the 
standard Gleason method. U sing two relatively sim
ple parameters, they were able to classify the tumors 
into Gleason pattern 3 and Gleason pattern 4/5 with 
high accuracy. Venkataraman et al. [7] compared the 
features of Feulgen stained nuclei in Gleason pattern 
4 PC. Although the aim of that study is very dif
ferent from ours, they employed a similar analytical 
approach, using a large set o f geometric and tex
tural features on manually segm ented nuclei. They 
found significant differences between tumors that 
were either Gleason 7 =  3 +  4 or 7 =  4 +  3. The 
later nuclei tended to be larger, more irregular and 
have coarser chromatin. That adds an argument to 
the separation of these categories, as seen in the new 
ISUP grading system [9]. Alexandratou et al. [29]
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T ab le  V I. M ultifactorial analysis o f interactions between 
ER G  status and Gleason grade

Param eter Eff e c t s  in  a d d it iv e  
m o d el

E R G - E R G +

P-VALUE

Area < <  0.001 < <  0.001 < <  0.001

Convex perimeter < <  0.001 < <  0.001 < <  0.001

Convex area < <  0.01 < <  0.01 <  0.01

Equivalent circle 
diameter

< <  0.001 < <  0.001 < <  0.001

Maximum
diameter

< <  0.001 < <  0.001 < <  0.001

Mean diameter < <  0.001 < <  0.001 < <  0.001

Minimum
diameter

< <  0.001 < <  0.001 < <  0.001

Perimeter < <  0.001 <  0.01 < <  0.001

GLCM  average < <  0.001 < <  0.001 <  0.05

GLCM  stdev < <  0.001 < <  0.001 <  0.01

GLCM  energy < <  0.001 N S < <  0.001

GLCM  contrast <  0.01 <  0.05 < <  0.001

GLCM  homo
geneity

< <  0.001 < <  0.001 N S

GLCM  entropy < <  0.001 < <  0.001 N S

*1 < <  0.001 < <  0.001 N S
N S  — non significant

used gray level correlation matrix m ethod to emulate 
grading of PC by Gleason method. They achieved 
over 85%  accuracy of the classification. In contrast 
to the present study, the analysis was applied to the 
overall image o f the tumor without an extraction of 
the structures such as nuclei, cytoplasm or extra
cellular compartment. Veltri et a l . group published 
a number of very interesting papers on quantitative 
methods in prostate cancer pathology [30, 31, 32, 
33, 34, 35]. They used a Feulgen-stained tissue m i
croarray and measured a large set of morphologic 
and textural features, similarly as in our study. These 
features were combining into 'quantitative nuclear 
grade'. They analyzed nuclear features o f PC with 
different Gleason grades and compared them to nor
mally appearing nuclei adjacent to the cancer [30]. 
A lthough some differences were seen between benign 
and m alignant nuclei, as well as between PC with dif
ferent grades, the features under study showed large 
overlap between the groups. Similar methodology 
was used to identify the cases with biochemical recur
rence [36] with an accuracy exceeding this of com
bined stage and Gleason score, and also to predict 
survival in patients with biochemical recurrence [34]. 
These results were obtained using older staging and 
grading systems, and it would be interesting to see

the influence of recent modifications of T N M  and 
Gleason systems. Farjam et a l . [37] tested the image 
analysis for diagnosis o f PC achieved the accuracy 
exceeding 95% . In the segm ented image they m ea
sured geometric features of the glands, Bektas et al. 
[38] compared the basic nuclear parameters in PC 
with different Gleason score. As could be expected, 
they showed an increase in nuclear size and irregular
ity with progression of the tumor grade.

Isharwal et al. [39] analyzed several morphometric 
features of the PC nuclei, including geometric and 
textural parameters, for determining the differences 
between organ-confined and advanced cancers. They 
found the ploidy status to be by far the most im port
ant difference. In multiparametric models, inclusion 
of ploidy status improved the model performance by 
1.5% in relation to more traditional dataset. Wal- 
iszewski et a l . proposed the use of fractal geometry 
to classify PCs as an alternative to Gleason score 
[40, 41 , 42]. One of the interesting results was the 
difference between 3 + 4  and 4 +  3 cancer, a differ
ence which is seen in other studies and emphasized 
by the new ISU P grading system [42, 43]. H uang 
et a l . [44] also used fractal geometry for emulation 
PC classification by Gleason method. They achieved 
overall accuracy reaching 94.6% . It is also o f im port
ant to note, that the previous classification system 
contained many poorly defined elements, extreme
ly difficult to assess even by highly trained humans. 
Gertych et al. [28] analyzed PCs by machine learning 
approach. They used a set o f descriptors to obtain 
classification of the image into stromal and epithelial 
compartments and then epithelial elements into be
nign and cancerous. The features used were related to 
gray level and the texture. Tabesh et al. [45, 46] used 
image analysis system of automatic diagnosis o f PC 
as well as assessment o f Gleason score. The accuracy 
of cancer diagnosis exceeded 95% , while accuracy of 
the classification into low and high grades exceed
ed 81% . They used features extracted from the color 
histograms, fractal dimensions and wavelets analysis 
combined with different classifiers, including G auss
ian and K N N . Weyn et al. [47] analyzed chromatin 
structure in a set of normal and neoplastic precur
sor lesion from the colon, esophagus and prostate. 
A large set of features was normalized and grouped 
to form nuclear signatures used to compare different 
groups o f cases. Prostate cases consisted of entirely 
normal glands, normal gland adjacent to carcinoma 
and PIN. They noticed significant differences be
tween normal, low grade P IN  and high grade PIN, 
but did not study PC cases.

D N A  ploidy was analyzed by several authors. For 
example Lorenzato et al. [48] analyzed D N A  ploi- 
dy Gleason 3 +  3 PC on core biopsy material. They 
found that clinically organ-confined cancers tended 
to be diploid significantly more frequently than the
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advanced ones. This difference was more significant 
for tumors with low PSA level. In our material, the 
nuclei of Gleason 3 +  3 cases were slightly larger, 
but significant differences were seen in few textural 
features only (data not shown).

C onclusions______________________________________

We have shown that the E R G +  and E R G - dif
fer in their nuclear features. We hypothesize that this 
may be due to differences in their molecular patho
genesis, but this has to be clarified by further studies.
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