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Abstract: The association between intracerebral hemorrhage (ICH) shape and a poor treatment
outcome has been established by few authors. We decided to analyze whether computationally
assessed hemorrhage shape irregularity is associated with any known predictors of its poor treatment
outcome. We retrospectively analyzed 48 patients with spontaneous intracerebral hemorrhage.
For each patient we calculated Fractal Dimension, Compactness, Fourier Factor and Circle Factor.
Our study showed that patients above 65 years old had significantly higher Compactness (0.70 ± 0.19
vs. 0.56 ± 0.20; p < 0.01), Fractal Dimension (0.46 ± 0.22 vs. 0.32 ± 0.20; p = 0.03) and Circle Factor
(0.51 ± 0.25 vs. 0.35 ± 0.17; p < 0.01). Patients with hemorrhage growth had significantly higher
Compactness (0.74 ± 0.23 vs. 0.58 ± 0.18; p < 0.01), Circle Factor (0.55 ± 0.27 vs. 0.37 ± 0.18; p < 0.01)
and Fourier Factor (0.96 ± 0.06 vs. 0.84 ± 0.19; p = 0.03). In conclusion, irregularity resulting from the
number of appendices can be a predictor of ICH growth; however, the size of those appendices is
also important. Shape roughness better reflects the severity of brain tissue damage and a patient’s
general condition.
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1. Introduction

Spontaneous intracerebral hemorrhage (ICH) is a devastating type of stroke with a 30-day mortality
rate of 30%–55% [1–4]. Therefore, it is important to establish factors that might predict a poor outcome of
treatment, especially since management options for ICH remain restricted [5,6]. These predictors include
poor neurological status upon admission, older age and arterial hypertension [7–9]. Additionally,
in our previous study, which concerned the computer-aided, objective analysis of ICH shape, we found
that such shape irregularity can be independently correlated with a worse treatment outcome [10].
However, mechanisms of such association are still inconclusive. One of the explanations can be found
in a study by Barras et al. [11], which showed that ICH shape irregularity can be related to the risk of
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its enlargement, which is considered a strong predictor of treatment outcome [12]. Nonetheless, in this
study, the authors used a five-grade scale based on the number of appendices with a round shape,
which reflects only one of two types of tortuosity that we distinguished in our study [10]. It might also
be a subjective method. As knowledge of the abovementioned predictors might also contribute to the
choice of treatment method [13], we decided to analyze whether computationally assessed ICH shape
irregularity can be associated with these predictors.

2. Materials and Methods

We performed retrospective analysis of prospectively collected data of 48 patients hospitalized
between January 2013 and July 2016, with ICH confirmed by head CT scan. We included in our study
only patients with spontaneous ICH, minimal or no blood in ventricles and only supra-tentorial ICH.
We obtained patients’ detailed medical records, which included medical history, current medication
and blood test results taken upon admission. Upon admission, patients were assessed using the
Glasgow Coma Scale (GCS). The patients included in our study underwent head CT upon admission,
after 24 hours and in case of neurological worsening. On discharge, they were assessed using the
Glasgow Outcome Scale (GOS). We defined a poor outcome as GOS < 3. The study protocol was
approved by the local bioethical committee and all patients gave their informed consent. To detect ICH
contour and analyze shape irregularity we performed a series of image analyses to obtain binarized
images and applied Canny Edge Detection. Then, the appropriate contour was obtained from each
image. For each patient we measured four shape descriptors. The first, Compactness (C), was defined as

C = 1-(4πA/p2),

where p is the length of the perimeter of the contour and A is its enclosed area. It measures how efficiently
a contour encloses a given area. Next, Fourier Factor (FF) was obtained from the following formula:

FF = 1−

∑N/2
k=−N

2 +1

(
|Z0(k)|
|k|

)
∑N/2

k=−N
2 +1

∣∣∣Z0(k)
∣∣∣ ,

where k = 0, . . . , N -1, N is the number of pixels representing the contour and Z0(k) are normalized
Fourier descriptors calculated with fast Fourier transform. The result of the formula displays the
irregularity of the hematoma shape as a function of the number of its Fourier series components—the
greater their number is, the more irregular the ICH shape in terms of roughness. We also calculated
Fractal Dimension (FD) using the Richardson method, in which FD is the slope of the linear regression
model fitted to a graph of log p, where p is the contour perimeter, against the corresponding values of
log (1/s), where s is the length of unit used to measure that perimeter. In this method, the lower the
slope, the less the irregularity of the shape of hematoma. FD determines how shape contour details
change according to the scale by which they are measured. The final descriptor was Circle Factor (CF),
which was introduced by us. It is calculated with the following formula:

CF = p/pc,

where p is ICH contour perimeter and pc is the perimeter of the largest circle that can be inscribed into
an ICH contour. According to this formula, the more the index approaches unity, the less irregular is the
shape of the hematoma. All methods are described in more detail in our previous article [10]. Additionally,
all the shape descriptors were normalized to lie within the 0 to 1 range. The imaging data used for analysis
were obtained from the CT scans taken upon admission and prior to any surgical procedures.

The database management and statistical analysis were performed with RStudio version 8.5 for
Windows (RStudio, Inc, USA). We used the Shapiro–Wilk test to assess normality. For comparisons of
continuous variables, we used the t-test for normally distributed variables and the Mann–Whitney
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U test for non-normally distributed variables. We used the χ2 test for dichotomized variables.
To assess correlation between continuous variables, we used Pearson’s and Spearman’s correlation
tests, for normally and non-normally distributed variables, respectively. To compare the predictive
performance of certain shape descriptors for ICH growth, we used receiver operative characteristics
(ROC) curve analysis. We express continuous variables as mean ± standard deviation. To find
factors independently associated with a risk of ICH growth, we employed logistic regression analysis,
with and without adjustment for possible confounders. All significance tests were two-tailed, and a 5%
confidence level was considered significant. The significance was presented individually per analysis
and, after a Bonferroni correction, in the context of multiple comparisons.

3. Results

3.1. Study Group Characteristics

Our study group consisted of 48 patients, 16 (33.33%) of whom were females. The average age of
the study group was 63.44 ± 16.55 years. The mean GCS upon admission was 7.68 ± 4.82 and the mean
GOS upon discharge was 2.42 ± 1.23. Based on CT scans, we found that the average C = 0.66 ± 0.11,
the average FF = 0.87 ± 0.11, the average FD = 1.36 ± 0.13 and the average CF = 3.20 ± 0.94. A poor
treatment outcome was observed in 28 (58.33%) patients.

3.2. Association of ICH Shape with Its Growth and Comorbidities

Our study showed that patients above 65 years old had significantly higher C (0.70 ± 0.19 vs.
0.56 ± 0.20; p < 0.01), FD (0.46 ± 0.22 vs. 0.32 ± 0.20; p = 0.03) and CF (0.51 ± 0.25 vs. 0.35 ± 0.17;
p < 0.01). We also found significantly lower FF among patients with diabetes mellitus (0.76 ± 0.34 vs.
0.89 ± 0.11; p = 0.049) and significantly lower CF among patients with hypercholesterolemia (0.18 ±
0.11 vs. 0.45 ± 0.22; p = 0.02). We found no significant differences in terms of ICH shape between
patients with or without hypertension and a history of ischemic stroke (Table 1). A total of 14 (29.17%)
patients had ICH growth during the first 24 hours of hospitalization. These patients had a significantly
higher Mean Corpuscular Hemoglobin Concentration (34.89 ± 1.39 vs. 33.62 ± 0.95; p < 0.01) and
a higher serum glucose level upon admission (9.97 ± 5.31 vs. 6.99 ± 2.04; p = 0.04). They also had
significantly higher C (0.74 ± 0.23 vs. 0.58 ± 0.18; p < 0.01), CF (0.55 ± 0.27 vs. 0.37 ± 0.18; p < 0.01) and
FF (0.96 ± 0.06 vs. 0.84 ± 0.19; p = 0.03) (Table 2, Figure 1). In multivariate logistic regression analysis,
after adjustment for all possible confounders, C (OR = 2.439; 95% CI: 1.231–5.541; p = 0.02) and CF (OR
= 1.094; 95% CI: 1.015–1.196; p = 0.03) remained independently associated with risk of ICH growth.
In ROC curve analysis, we found that the area under curve (AUC) was highest for FF (AUC = 0.814),
followed by CF (AUC = 0.721), C (AUC = 0.716) and FD (AUC = 0.639) (Figure 2).
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Table 1. Association of comorbidities with ICH shape descriptors. SD—standard deviation.

Age > 65 years
(n = 23)

Age < 65 years
(n = 25) p-Value

Compactness ± SD 0.70 ± 0.19 0.56 ± 0.20 < 0.011

Fourier Factor ± SD 0.89 ± 0.11 0.86 ± 0.21 0.451

Fractal Dimension ± SD 0.46 ± 0.22 0.32 ± 0.20 0.031

Circle Factor ± SD 0.51 ± 0.25 0.35 ± 0.17 < 0.011

Female gender
(n = 16)

Male gender
(n = 32) p-Value

Compactness ± SD 0.63 ± 0.16 0.63 ± 0.23 0.991

Fourier Factor ± SD 0.86 ± 0.12 0.88 ± 0.19 0.741

Fractal Dimension ± SD 0.41 ± 0.18 0.38 ± 0.24 0.671

Circle Factor ± SD 0.41 ± 0.23 0.43 ± 0.23 0.761

Hypertension
(n = 18)

No hypertension
(n = 30) p-Value

Compactness ± SD 0.61 ± 0.26 0.64 ± 0.16 0.581

Fourier Factor ± SD 0.86 ± 0.25 0.88 ± 0.10 0.651

Fractal Dimension ± SD 0.39 ± 0.24 0.39 ± 0.21 0.971

Circle Factor ± SD 0.42 ± 0.26 0.43 ± 0.21 0.961

Diabetes mellitus
(n = 7)

No diabetes
mellitus
(n = 41)

p-Value

Compactness ± SD 0.57 ± 0.35 0.64 ± 0.17 0.431

Fourier Factor ± SD 0.76 ± 0.34 0.89 ± 0.11 0.051

Fractal Dimension ± SD 0.42 ± 0.32 0.38 ± 0.20 0.631

Circle Factor ± SD 0.40 ± 0.34 0.43 ± 0.21 0.721

Hypercholesterolemia
(n = 4)

No
hypercholesterolemia

(n = 44)
p-Value

Compactness ± SD 0.42 ± 0.13 0.65 ± 0.2 0.031

Fourier Factor ± SD 0.83 ± 0.14 0.88 ± 0.17 0.561

Fractal Dimension ± SD 0.25 ± 0.20 0.40 ± 0.22 0.201

Circle Factor ± SD 0.18 ± 0.11 0.45 ± 0.22 0.021

History of
ischemic stroke

(n = 3)

No history of
ischemic stroke

(n = 45)
p-Value

Compactness ± SD 0.56 ± 0.18 0.63 ± 0.21 0.531

Fractal Dimension ± SD 0.89 ± 0.04 0.87 ± 0.17 0.891

Circle Factor ± SD 0.36 ± 0.15 0.39 ± 0.22 0.841

Compactness ± SD 0.31 ± 0.16 0.43 ± 0.23 0.351

1Bonferroni adjusted 5% significance level was 0.05/24 = 0.0021.
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Table 2. Comparison of patients with and without ICH growth. SD—Standard Deviation.

Risk factor ICH Growth
(n = 14)

No ICH Growth
(n = 34) p-Value

Age [years] ± SD 66.71 ± 15.47 62.39 ± 16.61 0.411

Female gender [%] 21.43 (3) 38.24 (13) 0.261

Comorbidities

Hypertension [%] 50 (7) 32.35 (11) 0.251

Diabetes mellitus [%] 14.29 (2) 14.71 (5) 0.971

Alcoholism [%] 0 (0) 2.94 (1) 0.521

Ischemic heart disease [%] 7.14 (1) 11.76 (4) 0.631

History of heart attack [%] 0 (0) 5.88 (2) 0.351

History of ischemic stroke [%] 0 (0) 8.82 (3) 0.251

Atrial fibrillation [%] 14.29 (2) 11.76 (4) 0.811

Lungs diseases [%] 0 (0) 2.94 (1) 0.521

Hyperthyroidism [%] 7.14 (1) 2.94 (1) 0.511

Hypothyroidism [%] 14.29 (2) 5.88 (2) 0.341

Hypercholesterolemia [%] 0 (0) 11.76 (4) 0.181

Current medications

Acetylsalicylic acid [%] 14.29 (2) 11.76 (4) 0.811

B—blockers [%] 14.29 (2) 14.71 (5) 0.971

Angiotensin-converting-enzyme inhibitors [%] 7.14 (1) 8.82 (3) 0.851

Calcium channel blockers [%] 0 (0) 8.82 (3) 0.251

Diuretics [%] 14.29 (2) 29.41 (10) 0.271

Steroids [%] 0 (0) 5.88 (2) 0.351

Antidiabetic therapy [%] 7.14 (1) 0 (0) 0.121

Insulin [%] 0 (0) 2.94 (1) 0.521

Anticoagulants [%] 28.57 (4) 20.59 (7) 0.551

Statins [%] 0 (0) 11.76 (4) 0.181

Hematoma measurements

Compactness ± SD 0.74 ± 0.23 0.58 ± 0.18 <0.01
Fourier Factor ± SD 0.96 ± 0.06 0.84 ± 0.19 0.03

Fractal Dimension ± SD 0.48 ± 0.3 0.35 ± 0.17 0.07
Circle Factor ± SD 0.55 ± 0.27 0.37 ± 0.18 <0.011

Volume - ABC/2 [mm3] ± SD 32086.46 ± 31745.84 56904.27 ± 40666.45 0.191

Precise volume [mm3] ± SD 34942 ± 7635.34 62833.16 ± 37010.62 0.351

Blood tests results upon admission

White Blood Cells count [103/µL] ± SD 9.92 ± 4.8 14.61 ± 20.39 0.481

Red Blood Cells count [103/µL] ± SD 4.23 ± 1.07 4.25 ± 0.72 0.951

Platelet count [103/µL] ± SD 179.4 ± 67.4 189.11 ± 103.54 0.781

Haemoglobin [g/dl] ± SD 13.16 ± 3.28 12.67 ± 2.16 0.601

Mean Corpuscular Volume [µm3] ± SD 89.33 ± 4.86 88.8 ± 5.63 0.791

Mean Corpuscular Haemoglobin [pg] ± SD 31.15 ± 2.04 29.88 ± 2.05 0.101

Mean Corpuscular Haemoglobin
Concentration [g/dL] ± SD 34.89 ± 1.39 33.62 ± 0.95 <0.011

International Normalized Ratio ± SD 12.56 ± 35.64 1.76 ± 2.12 0.141

Prothrombin Time [s] ± SD 17.4 ± 8.95 14.88 ± 6.55 0.361

Activated Partial Thromboplastin Time [s] ± SD 36.13 ± 10.84 32.57 ± 9.63 0.351

Sodium [mmol/L] ± SD 138.4 ± 4.62 141.07 ± 6.63 0.251

Potassium [mmol/L] ± SD 3.84 ± 0.48 3.97 ± 0.63 0.551

Glucose [mmol/L] ± SD 9.97 ± 5.31 6.99 ± 2.04 0.041

Creatinine [µmol/L] ± SD 71.58 ± 17.94 93.63 ± 72.69 0.311

Urea [mmol/L] ± SD 4.95 ± 1.96 8.04 ± 6.18 0.121

1Bonferroni adjusted 5% significance level was 0.05/44=0.0011.
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Figure 2. Receiver operating characteristics graph for sensitivity and specificity of intracerebral
hemorrhage growth prediction. C—Compactness, CF—Circle Factor, FD—Fractal Dimension,
FF—Fourier Factor.

3.3. Correlation between ICH Shape and Test Results upon Admission

In our study we found significant positive correlation between white blood cell count (WBC)
upon admission and FD (R = 0.44; p = 0.02). We also found significant negative correlations of platelet
count (PLT) upon admission with C (R = −0.41; p = 0.03) and FD (R = -0.38; p < 0.01). FD was also
positively correlated with the international normalized ratio (INR) upon admission (R = 0.48; p < 0.01).
Our study also showed significant negative correlation of potassium level upon admission with FD
(R = −0.52; p = 0.01) and CF (R = −0.40; p = 0.04) (Table 3, Figure 3). Additionally, GCS upon admission
was negatively correlated with FD (R = −0.37; p = 0.01) (Table 4).
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Table 3. Correlation of ICH shape with blood test results taken upon admission.

Compactness Fourier Factor Fractal Dimension Circle Factor

White Blood Cells count [103/µL] 0.17 −0.16 0.44 0.15
p-value1 0.40 0.41 0.02 0.46

Red Blood Cells count [103/µL] 0.02 0.21 −0.05 0.01
p-value1 0.94 0.29 0.82 0.97

Haemoglobin [g/dL] 0.02 0.23 −0.10 0.01
p-value1 0.93 0.26 0.63 0.99

Platelet count [103/µL] −0.41 −0.01 −0.38 −0.30
p-value1 0.03 0.96 0.049 0.13

International Normalized Ratio 0.29 0.14 0.48 0.22
p-value1 0.09 0.44 < 0.01 0.20

Activated Partial Thromboplastin Time [s] −0.11 −0.19 −0.10 0.07
p-value1 0.58 0.34 0.61 0.73

Sodium [mmol/L] 0.15 −0.02 0.26 0.11
p-value1 0.46 0.91 0.20 0.59

Potassium [mmol/L] −0.29 0.04 -0.52 −0.40
p-value1 0.14 0.83 0.01 0.04

1Bonferroni adjusted 5% significance level was 0.05/32 = 0.0016.

Table 4. Factors correlated with the Glasgow Coma Scale Score upon admission.

R p-Value

Hematoma volume [mm3] 0.28 0.47
Age −0.21 0.59

Compactness −0.18 0.24
Fourier Factor 0.02 0.91

Fractal Dimension −0.37 0.01
Circle Factor −0.19 0.20
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4. Discussion

In our study we found associations between several risk factors of poor outcome after ICH and its
shape descriptors. To analyze the ICH contour, we used computationally calculated, objective shape
descriptors—three of them have previously been used in breast cancer analysis [14–16] and the fourth
was designed by us [10]. To analyze the results of our study, it remains important to distinguish the
shape characteristics defined by each of the descriptors. As mentioned before [10], there might be two
main categories of shape irregularity—the first of them, which can be described by C and CF, is related
to the number of appendices with a round shape, and the second, which might be described by FF
and FD, is related to shape roughness. There are also differences between descriptors in both groups.
As C is inversely proportional to the ICH area, it is more sensitive to the number of appendices with
a regular contour than CF, which is rather sensitive to these appendices’ size. Similarly, the value of
FD is the effect of contour measurements according to different scales; therefore, it is also prone to
irregularities in more macroscopic shapes, as opposed to FF, which describes only the roughness of
ICH margins. The CF index introduced by us has several advantages. First, it is easy to obtain, analyze
and comprehend by health-care professionals without an applied math background. As compared to
other indices, apart from the number of appendices as described by others, it takes into account their
size, which, given the pathophysiology of peripheral bleeds, may be proportional to the severity of the
extravasation of blood.

The first of our study findings was an independent correlation of C and CF with risk of ICH
growth. This is consistent with the study results of Barras et al. [11]. In that study, shape irregularity
was measured using a five-grade scale based on the number of appendices. As we were unable to
find independent association between FF or FD, it follows that only the more macroscopic type of
irregularity might be related to a risk of ICH growth. However, the association of CF also indicates that
not only is the number of appendices related to ICH enlargement, but also their size. An explanation
of such association might be the suggestion by Delcourt et al. that the presence of appendices is related
to bleeding on hematoma borders [17].

Another finding of our study was a correlation of blood test results upon admission with ICH
shape. First, we found that WBC count was positively correlated to FD. It is known that contact
of blood-extravasated components with brain tissue might trigger an inflammatory response [18].
The fact that the rougher shape of ICH increases the area of brain tissue in contact with blood
explains such correlation. Higher shape roughness might also be related to more severe tissue damage,
which also promotes an inflammatory response [19]. Other values which were correlated with ICH
shape irregularity were PLT count and INR. Clotting disorders might cause more severe bleeding and
therefore a higher pressure of ICH formation, which could also lead to a rougher shape of hematoma.
That explanation might be consistent with the finding that both INR and PLT were correlated with
FD. Additionally, the abovementioned fact that bleeding at the hematoma border might be related to
the number of appendices explains the correlation between C and PLT count. In terms of potassium,
it was shown that hypokalemia is a common phenomenon among patients with brain damage [20].
The mechanisms of a low level of potassium after brain injury remain unclear; however, it was suggested
that it might result from electrolytes shifting from an extracellular to an intracellular compartment,
stimulated by the release of catecholamines [20]. Therefore, potassium level might as well reflect
severity of brain damage.

Our study also showed an association between older age and C, CF and FD. It is already known
that changes in cerebral vasculature that occur with age make cerebral tissue more susceptible to
injury [21]. Vascular walls weakening might also contribute to more severe bleeding and therefore
irregularity of shape expressed both in roughness and presence of appendices.

Another interesting finding of our study was a negative correlation between GCS upon admission
and FD. From all the shape descriptors, FD was shown to be related to the largest number of possible
indicators of brain tissue damage and bleeding severity, which explains its association with patients’
condition. As mentioned before, that descriptor most comprehensively describes the irregularity
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of ICH shape. A similar approach to shape analysis was introduced in a study by Wang et al. [22],
where shapes were classified either as regular or irregular based on both appendices and roughness.
Those studies found a correlation of ICH shape irregularity with 30-days mortality. However, in that
kind of classification, it might be difficult to find clear borders between regular and irregular shape.
Additionally, in our previous study, FD was shown to be independently related to a higher risk of poor
treatment outcome.

5. Conclusions

Computer-aided analysis of ICH allows researchers to objectively analyze its shape irregularity in
a few different contexts. As previously shown, irregularity resulting from the number of appendices can
be a predictor of ICH growth; however, the size of those appendices is also important. Shape roughness
better reflects the severity of brain tissue damage and a patient’s general condition. Therefore,
a comprehensive descriptor of shape such as FD remains best for that kind of analysis. On the other
hand, FF, which takes into consideration only roughness without considering entire shape, was not
correlated with any of the analyzed factors. Our study was mainly limited by the study group size.
Further research should be performed on a bigger and more varied study group. Despite that limitation,
this is the first study that analyzes the association between objective shape descriptors and potential
predictors of poor treatment outcome after ICH.
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Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sacco, S.; Marini, C.; Toni, D.; Olivieri, L.; Carolei, A. Incidence and 10-Year Survival of Intracerebral
Hemorrhage in a Population-Based Registry. Stroke 2009, 40, 394–399. [CrossRef]

2. Counsell, C.; Boonyakarnkul, S.; Dennis, M.; Sandercock, P.; Bamford, J.; Burn, J.; Warlow, C.
Primary Intracerebral Haemorrhage in the Oxfordshire Community Stroke Project. Cerebrovasc. Dis.
1995, 5, 26–34. [CrossRef]

3. Broderick, J.; Connolly, S.; Feldmann, E.; Hanley, D.; Kase, C.; Krieger, D.; Mayberg, M.; Morgenstern, L.;
Ogilvy, C.S.; Vespa, P.; et al. REPRINT: Guidelines for the Management of Spontaneous Intracerebral
Hemorrhage in Adults: 2007 Update: A Guideline From the American Heart Association/American Stroke
Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes
in Research Interdisciplinary Working Group: The American Academy of Neurology affirms the value of
this guideline as an educational tool for neurologists. Circulation 2007, 116, e391–e413.

4. Broderick, J.P.; Brott, T.; Tomsick, T.; Miller, R.; Huster, G. Intracerebral hemorrhage more than twice as
common as subarachnoid hemorrhage. J. Neurosurg. 1993, 78, 188–191. [CrossRef] [PubMed]

5. Sahni, R.; Weinberger, J. Management of intracerebral hemorrhage. Vasc. Health Risk Manag. 2007, 3, 701–709.
[PubMed]

6. Hayes, S.B.; Benveniste, R.J.; Morcos, J.J.; Aziz-Sultan, M.A.; Elhammady, M.S. Retrospective comparison
of craniotomy and decompressive craniectomy for surgical evacuation of nontraumatic, supratentorial
intracerebral hemorrhage. Neurosurg. Focus 2013, 34, E3. [CrossRef] [PubMed]

7. Rådholm, K.; Arima, H.; Lindley, R.I.; Wang, J.; Tzourio, C.; Robinson, T.; Heeley, E.; Anderson, C.S.;
Chalmers, J. INTERACT2 Investigators Older age is a strong predictor for poor outcome in intracerebral
haemorrhage: The INTERACT2 study. Age Ageing 2015, 44, 422–427. [CrossRef] [PubMed]

http://dx.doi.org/10.1161/STROKEAHA.108.523209
http://dx.doi.org/10.1159/000107814
http://dx.doi.org/10.3171/jns.1993.78.2.0188
http://www.ncbi.nlm.nih.gov/pubmed/8421201
http://www.ncbi.nlm.nih.gov/pubmed/18078021
http://dx.doi.org/10.3171/2013.2.FOCUS12422
http://www.ncbi.nlm.nih.gov/pubmed/23634922
http://dx.doi.org/10.1093/ageing/afu198
http://www.ncbi.nlm.nih.gov/pubmed/25497513


Brain Sci. 2020, 10, 252 11 of 11

8. Ariesen, M.J.; Claus, S.P.; Rinkel, G.J.E.; Algra, A. Risk Factors for Intracerebral Hemorrhage in the General
Population: A Systematic Review. Stroke 2003, 34, 2060–2065. [CrossRef] [PubMed]

9. Lord, A.S.; Langefeld, C.D.; Sekar, P.; Moomaw, C.J.; Badjatia, N.; Vashkevich, A.; Rosand, J.; Osborne, J.;
Woo, D.; Elkind, M.S.V. Infection After Intracerebral Hemorrhage. Stroke 2014, 45, 3535–3542. [CrossRef]
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